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Abstract

We introduce a new stochastic verification algorithm that
formally quantifies the behavioral robustness of any time-
continuous process formulated as a continuous-depth model.
Our algorithm solves a set of global optimization (Go) prob-
lems over a given time horizon to construct a tight enclosure
(Tube) of the set of all process executions starting from a
ball of initial states. We call our algorithm GoTube. Through
its construction, GoTube ensures that the bounding tube is
conservative up to a desired probability and up to a desired
tightness. GoTube is implemented in JAX and optimized to
scale to complex continuous-depth neural network models.
Compared to advanced reachability analysis tools for time-
continuous neural networks, GoTube does not accumulate
overapproximation errors between time steps and avoids the
infamous wrapping effect inherent in symbolic techniques.
We show that GoTube substantially outperforms state-of-the-
art verification tools in terms of the size of the initial ball,
speed, time-horizon, task completion, and scalability on a
large set of experiments. GoTube is stable and sets the state-
of-the-art in terms of its ability to scale to time horizons well
beyond what has been previously possible.

Introduction
The use of deep-learning systems powered by continu-
ous-depth models continues to grow, especially due to the
revival of neural ordinary differential equations (Neural
ODEs) (Chen et al. 2018). These models parametrize the
derivative of the hidden states by a neural network. The re-
sulting system of differential equations can perform strong
function approximation and generative modeling. Ensuring
their safety and robustness in any of these fronts is a ma-
jor imperative, particularly in high-stakes decision-making
applications such as medicine, automation, and finance.

A particularly appealing approach is to construct a tight
overapproximation of the set of states reached over time ac-
cording to the neural network’s dynamics (a bounding tube)
and provide deterministic or stochastic guarantees for the
conservativeness of the tube’s bounds.
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Figure 1: Reachtubes of LRT-NG (Gruenbacher et al. 2020)
and GoTube for a CT-RNN controlling CartPole-v1 envi-
ronment. CAPD (Kapela et al. 2020) and Flow* (Chen,
Ábrahám, and Sankaranarayanan 2013) failed.

Deterministic verification approaches ensure conserva-
tive bounds (Chen, Ábrahám, and Sankaranarayanan 2013;
Gowal et al. 2018; Mirman, Gehr, and Vechev 2018; Bunel
et al. 2020a; Kapela et al. 2020; Gruenbacher et al. 2020),
but often sacrifice speed and accuracy (Ehlers 2017), and
thus scalability; see CAPD, Flow*, and LRT-NG in Fig. 1
and Fig. 3. Stochastic methods, on the other hand, only
ensure a weaker notion of conservativeness in the form of
confidence intervals (stochastic bounds). This, however, al-
lows them to achieve much more accurate and faster veri-
fication algorithms that scale up to much larger dynamical
system (Shmarov and Zuliani 2015b; Bortolussi and San-
guinetti 2014; Gruenbacher et al. 2021).

It was recently shown theoretically that stochastic ver-
ification approaches based on Lagrangian reachability
(SLR) could provably guarantee confidence intervals for
continuous-depth models (Gruenbacher et al. 2021). The
proposed theoretical framework suggests performing both
stochastic global optimization and local differential op-
timization (Zhigljavsky and Zilinskas 2008; Pontryagin
2018), and uses interval arithmetic to symbolically bound
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Figure 2: GoTube in a nutshell. The center x0 of ball
B0 =B(x0, δ0), with δ0 the initial perturbation, and samples
x drawn uniformly from B0’s surface, are numerically inte-
grated in time to χ(tj , x0) and χ(tj , x), respectively. The
Lipschitz constant of χ(tj , x) and their distance dj(x) to
χ(tj , x0) are then used to compute Lipschitz caps around
samples x, and the radius δj of bounding ball Bj depend-
ing on the chosen tightness factor µ. The ratio between the
caps’ surfaces and B0’s surface are correlated to the desired
confidence 1− γ.

the Lipschitz constant. Thus, it can construct a bounding ball
of the reachable states at every time step, and over time, a
tight bounding Tube. Although these theoretical results sug-
gest an elegant way to avoid compounding errors, the SLR
algorithm has not been implemented, so is this approach
computationally tractable in practice?

We implemented the SLR algorithm as instructed in (Gru-
enbacher et al. 2021). We observed that even after resolving
the first-occurring inefficient sampling and their vanishing
gradient problems, the algorithm still blew up in time, even
for low-dimensional benchmarks such as the Dubins Car.
There are three fundamental algorithmic constraints of the
symbolic techniques such as stochastic Lagrangian reacha-
bility that result in them being computationally intractable:
1) the use of interval arithmetic for computing a conservative
upper bound for the Lipschitz constant of the system funda-
mentally limits the scalability of reachability-based verifica-
tion methods, 2) the use of local gradient descent to search
for local maxima in practice is more expensive than a simple
local search, and 3) the computational overhead due to the
propagation of many initial states is high.

In this work, we propose technical solutions for these fun-
damental issues and introduce a practical stochastic verifica-
tion algorithm for continuous-time models. In particular, to
tackle the first fundamental challenge introduced above, we
develop a new theory that allows us to compute stochastic
bounds for the Lipschitz constant in order to define a spher-
ical cap around each sample, where the maximum perturba-
tion is stochastically bounded (Lipschitz cap). As such, we
are able to remove the conservative interval-based computa-
tion of the Lipschitz constant. Furthermore, we provide con-
vergence guarantees for computing the upper bound of the
confidence interval for the maximum perturbation at time
tj with confidence level 1− γ and tube tightness µ, using
the estimation of the Lipschitz constant. This eliminates the

dependence on the propagation horizon and considerably re-
duces computational complexity in the number of samples.
We directly use this new Lipschitz constant computation
framework instead of the costly interval arithmetic.

We supply our global optimization scheme with a simple
sampling process to propagate the initial states in parallel,
according to the neural network’s dynamics. This compen-
sates for local differential optimization with additional sam-
ples. Our algorithm is called GoTube, as it solves a set of
global optimization problems to construct a tight and com-
putationally tractable enclosure (Tube) of all possible evolu-
tions of the system for a given time horizon.

GoTube takes advantage of advanced automatic differ-
ential toolboxes such as JAX to perform highly parallel
and tensorized operations to further enhance the runtime
of the verification suite. On a large set of experiments
with continuous-depth models, GoTube substantially out-
performs state-of-the-art verification tools in terms of the
size of the initial ball, speed, time-horizon, task completion,
and scalability. We summarize the contributions of our paper
as follows:
• A novel and efficient theory for computing stochastic

bounds for the Lipschitz constant of the system, which
helps us achieve tight reachtubes for continuous-time dy-
namical systems.

• We prove convergence guarantees for the GoTube Algo-
rithm, thus ensuring that the algorithm terminates in fi-
nite time even using stochastic Lipschitz caps around the
samples instead of deterministic local balls.

• We perform a diverse set of experiments on continuous-
time models with increasing complexity and demonstrate
that GoTube considerably outperforms state-of-the-art
verification tools.

Related Work
Global Optimization. Efficient local optimization methods
such as gradient descent cannot be used for global optimiza-
tion since such problems are typically non-convex. Thus,
many advanced verification algorithms tend to use global
optimization schemes (Bunel et al. 2018, 2020a). Depending
on the properties of the objective function, e.g. smoothness,
various types of global optimization techniques exist. For in-
stance, interval-based branch-and-bound (BaB) algorithms
(Neumaier 2004; Hansen and Walster 2003) work well on
differentiable objectives up to a certain scale, which has re-
cently been improved (De Palma et al. 2021). There are also
Lipschitz-global optimization methods for satisfying Lips-
chitz conditions (Malherbe and Vayatis 2017; Kvasov and
Sergeyev 2013). For example, a method for computing the
Lipschitz constant of deep neural networks to assist with
their robustness and verification analyses was recently pro-
posed in (Fazlyab et al. 2019) and (Bhowmick, D’Souza, and
Raghavan 2021). Additionally, there are evolutionary strate-
gies for global optimization using the covariance matrix
computation (Hansen and Ostermeier 2001; Igel, Hansen,
and Roth 2007). In our approach, for global optimization,
we use random sampling and compute neighborhoods (Lip-
schitz caps) of the samples, where we have probabilistic



Table 1: Related work on the reachability analysis of continuous-time systems. Determ.= Deterministic. ”No” indicates a
stochastic method. Table content is partially reproduced from (Gruenbacher et al. 2021).

Technique Determ. Parallel wrapping Arbitrary
effect Time-horizon

LRT (Cyranka et al. 2017) with Infinitesimal strain theory yes no yes no
CAPD (Kapela et al. 2020) implements Lohner algorithm yes no yes no
Flow-star (Chen, Ábrahám, and Sankaranarayanan 2013) with Taylor models yes no yes no
δ-reachability (Gao, Kong, and Clarke 2013) with approximate satisfiability yes no yes no
C2E2 (Duggirala et al. 2015) with discrepancy functions yes no yes no
LDFM (Fan et al. 2017) by simulation, matrix measures yes yes no no
TIRA (Meyer, Devonport, and Arcak 2019) with second-order sensitivity yes yes no no
Isabelle/HOL (Immler 2015) with proof-assistant yes no yes no
Breach (Donzé 2010; Donzé and Maler 2007) by simulation yes yes no no
PIRK (Devonport et al. 2020) with contraction bounds yes yes no no
HR (Li, Bak, and Bogomolov 2020) with hybridization yes no yes no
ProbReach (Shmarov and Zuliani 2015a) with δ-reachability, no no yes no
VSPODE (Enszer and Stadtherr 2011) using p-boxes no no yes no
Gaussian process (GP) (Bortolussi and Sanguinetti 2014) no no no no
Stochastic Lagrangian reachability SLR (Gruenbacher et al. 2021) no yes no no
GoTube (Ours) no yes no yes

knowledge about the values, such that we are able to cor-
respondingly estimate the stochastic global optimum with
high confidence. (Zhigljavsky and Zilinskas 2008).
Verification of Neural Networks. A large body of work
tried to enhance the robustness of neural networks against
adversarial examples (Goodfellow, Shlens, and Szegedy
2014). There are efforts that show how to break the many
defense mechanisms proposed (Athalye, Carlini, and Wag-
ner 2018; Lechner et al. 2021), until the arrival of meth-
ods for formally verifying robustness to adversarial attacks
around neighborhoods of data (Henzinger, Lechner, and
Zikelic 2021). The majority of these complete verification
algorithms for neural networks work on piece-wise linear
structures of small-to-medium-size feedforward networks
(Salman et al. 2019). For instance, (Bunel et al. 2020b) has
recently introduced a BaB method that outperforms state-
of-the-art verification methods (Katz et al. 2017; Tjandraat-
madja et al. 2020). A more scalable approach for rectified
linear unit (ReLU) networks (Nair and Hinton 2010) was
recently proposed based on Lagrangian decomposition; this
approach significantly improves the speed and tightness of
the bounds (De Palma et al. 2021). The proposed approach
not only improves the tightness of the bounds but also per-
forms a novel branching that matches the performance of the
learning-based methods (Lu and Mudigonda 2020) and out-
performs state-of-the-art methods (Zhang et al. 2018; Singh
et al. 2020; Bak et al. 2020; Henriksen and Lomuscio 2020).
While these verification approaches work well for feedfor-
ward networks with growing complexity, they are not suit-
able for recurrent and continuous neural network instances,
which we address in this work.
Verification of Continuous-time Systems. Reachability
analysis is a verification approach that provides safety guar-
antees for a given continuous dynamical system (Gurung
et al. 2019; Vinod and Oishi 2021). Most dynamical systems
in safety-critical applications are highly nonlinear and un-
certain in nature (Lechner et al. 2020). The uncertainty can

be in the system’s parameters (Wang et al. 2015; Shmarov
and Zuliani 2015b; Enszer and Stadtherr 2011), or their ini-
tial state (Enszer and Stadtherr 2011; Huang et al. 2017).
This is often handled by considering balls of a certain ra-
dius around them. Nonlinearity might be inherent in the sys-
tem dynamics or due to discrete mode-jumps (Fränzle et al.
2011). We provide a summary of methods developed for the
reachability analysis of continuous-time ODEs in Table 1.

A fundamental shortcoming of the majority of the meth-
ods described in Table 1 is their lack of scalability while
providing conservative bounds. In this paper, we show that
GoTube establishes the state-of-the-art for the verification
of ODE-based systems in terms of speed, time-horizon, task
completion, and scalability on a large set of experiments.

Setup
In this section, we introduce our notation, preliminary con-
cepts, and definitions required to state and prove the stochas-
tic bounds that GoTube guarantees for time-continuous pro-
cess models.

Continuous-depth models. These are a special case of
nonlinear ordinary differential equations (ODEs), where the
model is defined by the derivative of the unknown states x
computed by a vector-valued function f :Rn→Rn, which is
assumed to be Lipschitz-continuous and forward-complete:

∂tx = f(x), x(t0) ∈ B0 =B(x0, δ0), (1)

B0 defines the initial ball (a region of initial states, whose
radius quantifies the magnitude δ0 of a perturbation of its
center x0). Time dependence can be incorporated by an addi-
tional variable x with δtx = 1. Thus this definition naturally
extends to time-varying ODEs. Nonlinear ODEs do not have
in general closed-form solutions, and therefore one can not
compute symbolically the solution χ(tj , x) for all x∈B0.
For a sequence of k timesteps from time t0 until time hori-
zon T : t0< . . .< tk = T , we use numerical ODE solvers



to compute χ(tj , x) of the initial value problem (IVP) in
Eq. (1) at time tj starting at different points x(t0) =x.

We extend this computation to the entire ball by numer-
ically integrating the center x0 and a set of points x∈V ,
uniformly sampled from the surface of the ball, and using
this information to compute stochastic upper bounds for the
possible evolutions of the system. We define the bounding
ball and bounding tube as follows:

Definition 1 (Bounding Ball) Given an initial ball
B0 =B(x0, δ0), we call Bj = B(χ(tj , x0), δj(B0)) a
bounding ball at time tj , if it stochastically bounds the
reachable states x at time tj for all initial points around x0
having the maximal initial perturbation δ0.

As we do not only want to bound the perturbation at one
specific time, but on a time series, we define:

Definition 2 (Bounding Tube) Given an initial ball B0 =
B(x0, δ0) and bounding balls for t0< . . .< tk =T , we call
the series of bounding balls B1,B2, . . . ,Bk a bounding tube.

Maximum perturbation at time tj . To compute a bounding
tube, we have to compute at every timestep tj the maximum
perturbation δj , which is defined as a solution of the opti-
mization problem:

δj ≥ max
x∈B0

‖χ(tj , x)− χ(tj , x0)‖ = max
x∈B0

d(tj , x), (2)

where dj(x) = d(tj , x) denotes the distance at time tj , if
the initial center x0 is known from the context. As stated
in (Gruenbacher et al. 2021), the radius at time tj can be
over-approximated by solving a global optimization prob-
lem on the surface of the initial ball B0: as we require
Lipschitz-continuity and forward-completeness of the ODE
in Eq. (1), the map x 7→ χ(tj , x) is a homeomorphism and
commutes with closure and interior operators. In particular,
the image of the boundary of the setB0 is equal to the bound-
ary of the image χ(tj ,B0). Thus, Eq. (2) has its optimum on
the surface of the initial ball BS0 = surface(B0), and we will
only consider points on the surface.

Main Results
Our GoTube algorithm and its theory solve fundamental
scalability problems of related works (see Table 1) by re-
placing interval arithmetic used to compute deterministic
caps with stochastic Lipschitz caps. This enables us to verify
continuous-depth models up to an arbitrary time-horizon, a
capability beyond what was achievable before.

To be able to do that, we formulated Theorems on: 1) How
to choose the radius of a Lipschitz cap using stochas-
tic bounds of local Lipschitz constants of the samples to-
gether with the expected difference quotients. 2) Conver-
gence guarantees using these new stochastic caps, as they
are used by GoTube to compute the probability of δj being
an upper bound of the biggest perturbation. In addition, we
implemented tensorization and substantially increased the
number of random samples, thus being able to remove the
dependence on the propagation-horizon of the gradient de-
scent and increasing the computation speed to be able to deal
with continuous-depth models.

Algorithm 1: GoTube

Require: initial ball B0 = B(x0, δ0), time horizon T, se-
quence of timesteps tj (t0 < · · · < tk = T ), error
tolerance µ> 1, confidence level γ ∈ (0, 1), batch size
b, distance function d

1: V ← {} (list of visited random points)
2: sample batch xB ∈ BS0
3: for (j = 1; j ≤ k; j = j + 1) do
4: p̄← 0
5: while p̄ < 1− γ do
6: V ← V ∪ {xB}
7: xj ← χ(tj , x0) (integrate initial center point)
8: m̄j,V ← maxx∈V d(tj , x)
9: compute local Lipschitz constants λx for x ∈ V

10: compute expected local difference quotient ∆λx,V
for x ∈ V

11: compute cap radii rx(λx,∆λx,V) (Thm. 1) for x ∈
V

12: S ←
⋃
x∈V B(x, rx)S (total covered area)

13: p̄← Pr(µ · m̄j,V ≥ m?)
14: sample batch xB ∈ B0
15: end while
16: δj ← µ · m̄j,V
17: Bj ← B(xj , δj)
18: end for
19: return (B1, . . . ,Bk)

We start by describing the GoTube Algorithm. This facil-
itates the comprehension of the different computation and
theory steps. Given a continuous-depth model as in Eq. (1),
an initial ball B0 defined by a center point x0 and the max-
imum initial perturbation δ0, a time horizon T with a se-
quence of timesteps tj (t0< . . .< tk = T ), a confidence
level γ ∈ (0, 1), a tightness factor µ> 1, a batch size b, and a
distance function d. The output of the GoTube algorithm is a
bounding tube that stochastically over-approximates at most
by µ the propagated initial perturbation from the center x0
with a probability higher than 1− γ.

GoTube starts by sampling a batch (tensor) xB ∈ BS0 . It
then iterates for the k steps of the time horizon T the follow-
ing. After initializing the probability ensured to zero, and the
visited states to the empty set, it loops until it reaches the de-
sired confidence (probability) 1− γ, by increasingly taking
additional batches. In each iteration, it integrates the center
and the already available samples from their previous time
step and the possibly new batches from their initial state (for
simplicity, the pseudocode does not make this distinction ex-
plicit). GoTube then computes the maximum distance from
the integrated samples to the integrated center, their local
Lipschitz constant according to the variational equation of
Eq. (1). Based on this information GoTube then computes
the mean Lipschitz statistics and the cap radii accordingly.
The total surface of the caps is then employed to compute
and update the achieved confidence (probability). Once the
desired confidence is achieved, GoTube exits the inner loop
and computes the bounding ball in terms of its center and



radius, which is given by tightness factor µ times the max-
imum distance m̄j,V . After exiting the outer loop, GoTube
returns the bounding tube.
Definition 3 (Lipschitz Cap) Let V be the set of all sam-
pled points, x ∈ V be a sample point on the surface of
the initial ball, m̄j,V = maxx∈V dj(x) be the sample max-
imum and B(x, rx)S = B(x, rx) ∩ BS0 be a spherical
cap around that point. We call the cap B(x, rx)S a γ, tj-
Lipschitz cap, if it holds that Pr (dj(y) ≤ µ · m̄j,V) ≥ 1−γ
for all y ∈ B(x, rx)S .

Lipschitz caps around the samples are a stochastic version
of local balls around samples, commonly used to cover state
space. Intuitively, the points within a cap do not have to
be explored. The difference with Lipschitz caps is, that we
stochastically bound the values inside that space and de-
velop a theory to enable us to calculate a probability of
having found an upper bound of the true maximum m?

j =
dj(x

?
j ) = maxx∈B0

dj(x) of the optimization problem in
Eq. (2). Our objective is to avoid the usage of interval arith-
metic for computing the Lipschitz constant, as it impedes
scaling up to continuous depth models. Instead, we define
stochastic bounds on the Lipschitz constant to set the radius
rx of the Lipschitz caps, such that µ · m̄j,V is a γ-stochastic
upper bound for all distances dj(y) at time tj from values
inside the ball B(x, rx)S .

Theorem 1 (Radius of Stochastic Lipschitz Caps) Given
a continuous-depth model f from Eq. (1), γ ∈ (0, 1),
µ> 1, target time tj , the set of all sampled points V , the
number of sampled points N = |V|, the sample maximum
m̄j,V = maxx∈V dj(x), the IVP solutions χ(tj , x), and
the corresponding stretching factors λx = ‖∂xχ(tj , x)‖
for all x∈V . Let us define γ̂ = 1 −

√
1− γ. Let ∆λV be

the
√

1− γ-quantile of a stochastic lower bound FL,γ̂ as
defined by Lemma 1 in the Appendix:

∆λV(γ) = F−1L,γ̂(
√

1− γ), (3)

Let rx be defined as:

rx =

(
−λx +

√
λ2x + 4 ·∆λx,V · (µ · m̄j,V − dj(x))

)
2 ·∆λx,V

,

(4)

then it holds that:

Pr (dj(y) ≤ µ · m̄j,V) ≥ 1− γ ∀y ∈ B(x, rx)S , (5)

and thus that B(x, rx)S is a γ, tj-Lipschitz cap.

The full proof is provided in the Appendix. Proof sketch: As
∆λx,V is the

√
1− γ-quantile of maxx,y |λx−λy|/‖x−y‖,

it holds that Pr(λy ≤ λx + ∆λx,V · ‖x − y‖) ≥ 1 − γ.
Therefore Eq. (4) follows by solving the following equation:
(µ · m̄j,V − dj(x)) = λxrx + ∆λx,Vr

2
x.

Using conditional probability, we are able to state that
the convergence guarantee holds for the GoTube Algorithm,
thus ensuring that the Algorithm terminates in finite time
even using stochastic Lipschitz caps around the samples in-
stead of deterministic local balls.

Theorem 2 (Convergence via Lipschitz Caps) Given the
tightness factor µ > 1, the set of all sampled points V and
the sample maximum m̄j,V = maxx∈V dj(x). Let the initial
ball maximum be defined by m?

j = maxx∈B0
dj(x). Then:

∀γ ∈ (0, 1),∃N ∈ N s.t. Pr(µ · m̄j,V ≥ m?
j ) ≥ 1− γ (6)

where N = |V| is the number of sampled points.

The full proof is provided in the Appendix. Proof sketch:
Let x?j be a point such that dj(x?j ) = m?

j . Given γ ∈
(0, 1) and cap radii rx, we expand the convergence guar-
antee from deterministic local balls to stochastic Lipschitz
caps. For local balls it holds that ∃N ∈ N : Pr(∃x ∈
V : B(x, rx)S 3 x?j ) ≥

√
1− γ. Using a set of sampled

points V with cardinality N and using 1 −
√

1− γ instead
of γ in Eq. (3) and Theorem 1, the resulting probability is
larger than

√
1− γ. From the definition of a Lipschitz cap it

follows that Pr(dj(x
?) ≤ µ · m̄j,V |∃x ∈ V : B(x, rx)S 3

x?) ≥
√

1− γ. For any sets A,B it holds that Pr(A) ≥
Pr(A∩B) = Pr(A|B) ·Pr(B), thus we multiply both prob-
abilities and therefore Eq. (6) holds.

Experimental Evaluation
We perform a diverse set of experiments with GoTube to
evaluate its performance and identify its characteristics and
limits in verifying continuous-time systems with increasing
complexity. We run our evaluations on a standard worksta-
tion machine setup (12 vCPUs, 64GB memory) equipped
with a single GPU for a per-run timeout of 1 hour (except
for runtimes reported in Figure 4).

On the volume of the bounding balls with GoTube
Our first experimental evaluation concerns the overapproxi-
mation errors of the constructed bounding tubes. An ideal
reachability tool should be able to output an as tight as
possible tube that encloses the system’s executions. Conse-
quently, as our comparison metric, we will report the aver-
age volume of the bounding balls, with less volume is bet-
ter. We use the benchmarks and settings of (Gruenbacher
et al. 2020) (same radii, time horizons, and models) as the
basis of our evaluation. In particular, we compare GoTube
to the deterministic, state-of-the-art reachability tools LRT-
NG, Flow*, CAPD, and LRT. We measure the volume of
GoTube’s balls at the confidence levels of 90% and 99%,
using µ = 1.1 as the tightness factor (in the third experi-
ment we will talk in more detail about the trade-off between
tightness and runtime).

The results are shown in Table 2. For the first five bench-
marks, which are classical dynamical systems, we use the
small time horizons T and small initial radii δ0, which the
other tools could handle. GoTube, with 99% confidence,
achieves a competitive performance to the other tools, com-
ing out on top in 3 out of 5 benchmarks - using µ = 1.1
as the tightness bound. Intuitively this means, we are confi-
dent that the overapproximation includes all executions with
a confidence level 1 − λ, but this overapproximation might
not be as tight as desired. GoTube is able to achieve any
desired tightness by reducing µ and increasing the runtime.



GoTube constructs as-tight-as 
possible reachtubes

GoTube constructs reachtubes up
to an arbitrary  time-horizon

Figure 3: Visualization of the reachtubes constructed for the Dubin’s car model with various reachability methods. While the
tubes computed by existing methods (LRT-NG, Flow* and CAPD) explode at t≈ 20s (this moment is shown on the right side
of the figure) due to the accumulation of over-approximation errors (the infamous wrapping effect), GoTube can keep tight
bounds beyond t> 40s for a 99% confidence level (using 20000 samples, µ = 1.1 and runtime of one hour). Note also the
chaotic nature of 100 executions.

Table 2: Comparison of GoTube (using tightness bound
µ = 1.1) to existing reachability methods. The first five
benchmarks concern classical dynamical systems, whereas
the two bottom rows correspond to time-continuous RNN
models (LTC= liquid time-constant networks) in a closed
feedback loop with an RL environment (Hasani et al. 2021;
Vorbach et al. 2021). The numbers show the volume of the
constructed tube. Lower is better; best number in bold.

Benchmark LRT-NG Flow* CAPD LRT GoTube
(90%) (99%)

Brusselator 1.5e-4 9.8e-5 3.6e-4 6.1e-4 8.6e-5 8.6e-5
Van Der Pol 4.2e-4 3.5e-4 1.5e-3 3.5e-4 3.5e-4 3.5e-4
Robotarm 7.9e-11 8.7e-10 1.1e-9 Fail 2.5e-10 2.5e-10
Dubins Car 0.131 4.5e-2 0.1181 385 2.5e-2 2.6e-2
Cardiac Cell 3.7e-9 1.5e-8 4.4e-8 3.2e-8 4.2e-8 4.3e-8

CartPole-v1+LTC 4.49e-33 Fail Fail Fail 2.6e-37 4.9e-37
CartPole-v1+CTRNN 3.9e-27 Fail Fail Fail 9.9e-34 1.2e-33

The specific reachtubes and the chaotic nature of hundred
executions of Dubin’s car are shown in Figure 3. As one can
see, the GoTube reachtube extends to a much longer time
horizon, which we fixed at 40s. All other tools blew up be-
fore 20s. For the two problems involving neural networks,
GoTube produces significantly tighter reachtubes.

GoTube provides safety bounds up an arbitrary
time horizon
In our second experiment, we evaluate for how long GoTube
and existing methods can construct a reachtube before ex-
ploding due to overapproximation errors. To do so, we ex-
tend the benchmark setup by increasing the time horizon for
which the tube should be constructed, use tightness bound
µ = 1.1 and set a 95% confidence level, that is, probability
of being conservative.

The results in Table 3 demonstrate that GoTube produces
significantly longer reachtubes than all considered state-of-

Table 3: Results of the extended benchmark by longer time
horizons. The numbers show the volume of the constructed
tube, “Blowup” indicates that the method produced Inf
or NaN values due to a blowup. Lower is better; the best
method is shown in bold.

Benchmark CartPole-v1+CTRNN CartPole-v1+LTC
Time horizon 1s 10s 0.35s 10s

LRT Blowup Blowup Blowup Blowup
CAPD Blowup Blowup Blowup Blowup
Flow* Blowup Blowup Blowup Blowup
LRT-NG 3.9e-27 Blowup 4.5e-33 Blowup
GoTube (ours) 8.8e-34 1.1e-19 4.9e-37 8.7e-21

the-art approaches, without suffering from severe overap-
proximation errors. Particularly, Figure 1 visualizes the dif-
ference to the existing methods and overapproximation mar-
gins for two example dimensions of the CartPole-v1 envi-
ronment and its CT-RNN controller.

GoTube can trade runtime for reachtube tightness
In our last experiment, we introduced a new set of bench-
mark models entirely based on continuous-time recurrent
neural networks. The first model is an unstable linear dy-
namical system of the form ẋ = Ax+ Bu that is stabilized
by a CT-RNN policy via actions u. The second model cor-
responds to the inverted pendulum environment, which is
similar to the CartPole environment but differs in that the
control actions are applied via a torque vector on the pen-
dulum directly instead of moving a cart. The CT-RNN poli-
cies for these two environments were trained using deep RL.
Our third new benchmark model concerns the analysis of
the learned dynamics of a CT-RNN trained on supervised
data. In particular, by using the reachability frameworks, we
aim to assess if the learned network expressed oscillatory
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Figure 4: GoTube’s runtime (x-axis) and volume size (y-axis) as a function of the tightness factor µ. Volume was normalized
by the volume obtained with the lowest µ (4.3e-13, 2.4e-12, and 2.1e-38 in particular).

behavior. The CT-RNN state vector consists of 16 dimen-
sions, which is twice as much as existing CT-RNN reacha-
bility benchmarks (Gruenbacher et al. 2020).

Here, we study how GoTube can trade runtime for the vol-
ume of the constructed reachtube through its tightness fac-
tor µ. In particular, we run GoTube on our newly proposed
benchmark with various values of µ. We then plot GoTube’s
runtime (x-axis) and volume size (y-axis) as a function of
µ. The resulting curves show the Pareto-front of runtime-
volume trade-off achievable with GoTube.

Figure 4 shows the results for a time horizon of 10s in
the first two examples, and of 2s in the last example. Our
results demonstrate that GoTube can adapt to different run-
time and tightness constraints and set a new benchmark for
future methods to compare with.

Discussions, Scope and Conclusions
We proposed GoTube, a new stochastic verification algo-
rithm that provides robustness guarantees (also safety guar-
antees if a set of states to be avoided is given) for high-
dimensional, time-continuous systems. GoTube is stable and
sets the state-of-the-art in terms of its ability to scale to time
horizons well beyond what has been previously possible. It
also allows a larger perturbation radius for the initial ball,
for which other verification methods fail. Lastly, GoTube’s
scalability enables it to readily handle the verification of
advanced continuous-depth neural models, a setting where
state-of-the-art deterministic approaches fail.
SLR versus GoTube? SLR combines symbolic with statis-
tical reachability techniques. However, no implementation is
available to date. For comparison purposes, we implemented
SLR on our own and observed that while it does not blow up
in space, it blows up in time. As a consequence, we were
not able to use SLR to construct reachtubes for our high-
dimensional benchmarks.
Sample blow up in GoTube? As a pure Monte-Carlo tech-
nique, the number of samplesN to be taken depends on both
the confidence coefficient λ and the tightness coefficient µ
as well as on the system’s dimensionality. As a consequence,
for very small values of these coefficients, the number of
samples tends to blow up. The goal of symbolic techniques
is exactly the one to avoid such a blowup. However, in our

experiments, we observed that GoTube outperformed in all
cases the symbolic techniques. This implies that the overap-
proximation error of symbolic techniques is more problem-
atic than the blowup in the number of samples for a large
number of dimensions.

What about Gaussian Processes? Gaussian Processes
(GPs) are powerful stochastic models which can be used for
stochastic reachability analysis (Bortolussi and Sanguinetti
2014) and uncertainty estimation for stochastic dynamical
systems (Gal 2016). The major shortcoming of GPs is that
they simply cannot scale to the complex continuous-time
systems that we tested here. Moreover, Gaussian Processes
have a large number of hyperparameters, which can be chal-
lenging to tune across different benchmarks.

Limitations of GoTube. GoTube does not necessarily per-
form better in terms of average volume of the bounding balls
for smaller tasks and shorter time horizons if not choosing a
very small µ, as shown in Table 2. GoTube is not yet suit-
able for the verification of stochastic dynamical systems, for
instance, Neural Stochastic Differential Equations (Neural
SDEs) (Li et al. 2020; Xu et al. 2021). Although GoTube
is considerably more computationally efficient than existing
methods, the dimensionality of the system, as well as the
type of numerical ODE solver exponentially, affect their per-
formance. We can improve on this limitation by using Hy-
persolvers (Poli et al. 2020), closed-form continuous depth
models, and compressed representations of neural ODEs.

Future of GoTube. GoTube opens many avenues for future
research. The most straightforward next step is to search for
better intermediate steps in Algorithm 1. For instance, bet-
ter ways to compute the Lipschitz constant and to improve
the sampling process. GoTube is now applicable for com-
plex deterministic ODE systems; it would be an important
line of work to find ways to marry reachability analysis with
machine learning approaches to verify neural SDEs as well.
Last but not least, we believe that there is a close relationship
between stochastic reachability analysis and uncertainty es-
timation techniques used for deep learning models (Abdar
et al. 2021). Uncertainty-aware verification could be worth
exploring based on what we learned with GoTube.
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Appendix
Proofs of the Theorems

Lemma 1 (Stochastic lower bound FL,γ) Consider the
experiment of randomly sampling two times m points
of the initial ball B0: (a1, . . . , am) and (b1, . . . , bm).
Let g : Rn → R be a real-valued function and
X = maxmi=1 |g(ai)− g(bi)|/‖ai− bi‖ be a random vari-
able with the unknown cumulative distribution function
F . Let (x1, . . . , xn) ∼ X be independent, identically
distributed samples with the empirical distribution function
F̂n(x) =

∑n
i=1 1xi≤x. Let Gn be a generalized extreme

value distribution fitted to the empirical distribution func-
tion F̂n and let D−n describe the goodness of fit, being the
one-sided Kolmogorov–Smirnov statistic:

D−n = sup
x

(Gn(x)− F̂n(x)) (S1)

Given the confidence level γ and α = min(γ, 0.5), then let
us define εn,γ and FL,γ as follows:

εn,γ =

√
ln 1

α

2n
(S2)

FL,γ(x) = Gn(x)− εn,γ −D−n (S3)

Then it holds that:

Pr(sup
x

(FL,γ(x)− F (x)) ≤ 0) ≥ 1− γ, (S4)

which intuitively means that FL,γ is a lower bound of F with
confidence γ.

Proof. The Fisher-Tippett-Gnedenko theorem states that the
distribution of a normalized maximum converges to the gen-
eralized extreme value distribution, if the distribution of the
normalized maximum does converge. So intuitively that the-
orem is similar to the central limit theorem for the averages,
but for the normalized maxima. Consequently, we start by
fitting the empirical distribution function F̂n by a general-
ized extreme value distribution Gn and compute Eq. (S1).

The Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky,
Kiefer, and Wolfowitz 1956) with a tight constant deter-

mined by (Massart 1990), states that for all ε ≥
√

1
2n ln 2,

it holds that:

Pr(sup
x

(F̂n(x)− F (x)) > ε) ≤ e−2nε
2

(S5)

Solving γ = e−2nε
2

for ε and considering Massarts lower
bound for ε, yields:

Pr(sup
x

(F̂n(x)− F (x)) > εn,γ) ≤ γ, (S6)

with εn,γ as defined in Eq. (S2). We use the triangular in-
equality for supremum and the monotony of the probability

measure as follows:
Pr
(

sup
x

(
Gn(x)− F (x)

)
> εn,γ +D−n

)
= (S7)

= Pr
(

sup
x

(
Gn(x)− F̂n(x)+ (S8)

+ F̂n(x)− F (x)
)
> εn,γ +D−n

)
(S9)

≤ Pr
(

sup
x

(
Gn(x)− F̂n(x)

)
+ (S10)

+ sup
x

(
F̂n(x)− F (x)

)
> εn,γ +D−n

)
(S11)

(S1)
= Pr

(
sup
x

(
F̂n(x)− F (x)

)
> εn,γ

)
(S12)

(S6)
≤ γ, (S13)

from which it follows directly, that Eq. (S4) hold.
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Figure S1: Visualisation of the stochastic lower bound FL,γ
of Lemma 1.

Theorem 1 (Radius of Stochastic Lipschitz Caps) Given
a continuous-depth model f from Eq. (1) in the main
paper (∂tx= f(x) with x(t0)∈ B(x0, δ0)), γ ∈ (0, 1),
µ> 1, target time tj , the set of all sampled points V , the
number of sampled points N = |V|, the sample maximum
m̄j,V = maxx∈V dj(x), the IVP solutions χ(tj , x), and
the corresponding stretching factors λx = ‖∂xχ(tj , x)‖
for all x∈V . Let us define γ̂ = 1 −

√
1− γ. Let ∆λV be

the
√

1− γ-quantile of a stochastic lower bound FL,γ̂ as
defined in Eq. (S3) of Lemma 1:

∆λV(γ) = F−1L,γ̂(
√

1− γ), (S14)
Let rx be defined as:

rx =

(
−λx +

√
λ2x + 4 ·∆λx,V · (µ · m̄j,V − dj(x))

)
2 ·∆λx,V

,

(S15)
then it holds that:

Pr (dj(y) ≤ µ · m̄j,V) ≥ 1− γ ∀y ∈ B(x, rx)S , (S16)

and thus that B(x, rx)S is a γ, tj-Lipschitz cap.



Proof. Let {x1, . . . , xn} be n independent experiments by
sampling from X = maxmi=1 |λai −λbi |/‖ai− bi‖ as de-
fined in Lemma 1, where each variable is the maximum of
m executions. From Eq. (S4) it follows that:

Pr(FL,γ̂(x) ≤ F (x)) ≥ 1− γ̂ =
√

1− γ (S17)

Let us now derive the probability of X being less or equal
to ∆λV defined by Eq. (S14). For any sets A,B it holds that
Pr(A) ≥ Pr(A ∩B) = Pr(A|B) · Pr(B), thus:

Pr(X ≤ ∆λV) ≥ (S18)

≥ Pr
(
X ≤ ∆λV |FL,γ̂(x) ≤ F (x)

)
· (S19)

· Pr
(
FL,γ̂(x) ≤ F (x)

)
(S20)

Let us have a look on Eq. (S19): As Pr(X ≤ ∆λ) =
F (∆λ) and we are looking for the conditional probability
depending on FL,γ̂(x) ≤ F (x), we can use FL,γ̂(∆λ) as a
lower bound of Eq. (S19) and thus, using Eq. (S17):

Pr(X ≤ ∆λV) ≥ FL,γ̂(∆λV) ·
√

1− γ (S21)

As Eq. (S14) defines ∆λV as the
√

1− γ-quantile of FL,γ ,
we can further state that

Pr(X ≤ ∆λV) ≥ 1− γ,

with X =
m

max
i=1

[
|λai − λbi |
‖ai − bi‖

]
(S22)

Let Y = |λa − λb|/‖a − b‖ be another random variable
with a, b being to sample points of the initial ball B0. From
Eq. (S22) it holds that

Pr(Y ≤ ∆λV) ≥ Pr(X ≤ ∆λV) ≥ 1− γ (S23)

It trivially holds for x, y ∈ V that:

λy = λx +
λy − λx
‖x− y‖

· ‖x− y‖

≤ λx +
|λx − λy|
‖x− y‖

· ‖x− y‖ (S24)

From Eq. (S23) it follows that:

Pr

(
λx +

|λx − λy|
‖x− y‖

· ‖x− y‖ ≤ (S25)

≤ λx + ∆λx,V · ‖x− y‖

)
≥ 1− γ (S26)

and using the monotony of the probability measure:

Pr
(
λy ≤ λx + ∆λx,V · ‖x− y‖

)
≥ 1− γ (S27)

Using the mean value inequality for vector-valued functions
it holds that:

|dj(x)− dj(y)| = | ‖χ(tj , x)− χ(tj , x0)‖−
− ‖χ(tj , y)− χ(tj , x0)‖ | {triangle inequality}
≤ ‖χ(tj , x)− χ(tj , y)‖ {mean value theorem}
⇒ ∃z ∈ [x, y] : |dj(x)− dj(y)|
≤ ‖∂xχ(tj , z)‖‖x− y‖ = λz · ‖x− y‖

Combining this with Eq. (S27) and thus using λx + ∆λx,V ·
‖x− y‖ as a probabilistic upper bound for λz , we obtain the
following results for all y with ‖x− y‖ ≤ rx:

Pr
(
|dj(x)− dj(y)| ≤
≤ (λx + ∆λx,V · ‖x− y‖) · ‖x− y‖

)
≥ 1− γ

Pr
(
|dj(x)− dj(y)| ≤
≤ (λx + ∆λx,V · rx) · rx

)
≥ 1− γ

(S28)

As rx defined like in Eq. (S15) is the solution of the
quadratic equation µ · m̄j,V − dj(x) = λxrx + ∆λx,Vr

2
x,

it holds that:
Pr
(
|dj(x)− dj(y)| ≤ µ · m̄j,V − dj(x))

)
≥

≥ 1− γ ∀y ∈ B(x, rx)S
(S29)

We now distinguish between two cases for y: (a) dj(y) ≤
dj(x) and (b) dj(y) ≥ dj(x). In case (a) it is trivial: dj(y) ≤
dj(x) ≤ µ · m̄j,V . Having case (b), Eq. (S29) is equivalent
to

Pr
(
dj(y)− dj(x) ≤ µ · m̄j,V − dj(x))

)
≥ 1− γ

⇐⇒
Pr
(
dj(y) ≤ µ · m̄j,V)

)
≥ 1− γ, (S30)

thus Eq. (S16) holds and B(x, rx)S is a Lipschitz cap.
Theorem 2 (Convergence via Lipschitz Caps) Given the
tightness factor µ > 1, the set of all sampled points V and
the sample maximum m̄j,V = maxx∈V dj(x). Let the initial
ball maximum be defined by m?

j = maxx∈B0
dj(x). Then:

∀γ ∈ (0, 1),∃N ∈ N s.t. Pr(µ · m̄j,V ≥ m?
j ) ≥ 1− γ

(S31)

where N = |V| is the number of sampled points.
Proof. Let x?j be a point such that dj(x?j ) = m?

j . Given γ ∈
(0, 1) and cap radii rx as defined in Eq. (S15), we know from
the definition of a spherical cap that

prx = Pr(B(x, rx)S 3 x?j ) =
Area(B(x, rx)S)

Area (B0)
(S32)

and thus it holds that:

Pr(∃y ∈ V : B(y, ry)S 3 x?j ) = 1−
∏
x∈V

(1− prx) (S33)

We derive a lower bound of rx by using the first sample xj,1
and replacing the values in Eq. (S15) as follows:

µ · m̄j,V − dj(x) (S34)
≥ µ · m̄j,V − m̄j,V = (µ− 1) · m̄j,V (S35)
≥ (µ− 1) · dj(xj,1), (S36)

thus a lower bound of all Lipschitz cap radii is given by
rbound =

=
−λx +

√
λ2x + 4 ·∆λx,V · (µ− 1) · dj(xj,1)

2 ·∆λx,V
≤

≤ rx ∀x ∈ V
⇒ Pr(∃y ∈ V : B(y, ry)S 3 x?j ) ≥

≥ 1− (1− prbound
)
N

(S37)



As in the limit of N → ∞ the probability of Eq. (S37)
is 1, it follows that ∀γ ∈ (0, 1) ∃N ∈ N : Pr(∃x ∈
V : B(x, rx)S 3 x?j ) ≥

√
1− γ.

Using a set of sampled points V with cardinality N and
using γ̂ = 1−

√
1− γ as the error rate for the upper bound

∆λx of the confidence interval in Eq. (S14). Using the result
of Theorem 1, the resulting probability ∀y ∈ B(x, rx)S is:

Pr (dj(y) ≤ µ · m̄j,V) ≥ 1− γ̂ =
√

1− γ (S38)

If there is an x ∈ V such that B(x, rx)S 3 x?j , then
Eq. (S38) obviously holds also for x?j , thus:

Pr(dj(x
?) ≤ µ · m̄j,V |∃x ∈ V : B(x, rx)S 3 x?) ≥

√
1− γ

For any sets A,B it holds that Pr(A) ≥ Pr(A ∩ B) =
Pr(A|B) · Pr(B), and using:

A = (µ · m̄j,V ≥ m?
j ) (S39)

B = (∃x ∈ V : B(x, rx)S 3 x?j ) (S40)

it follows that Pr(µ · m̄j,V ≥ m?
j ) ≥ Pr(A|B) · Pr(B) =

1− γ and therefore Eq. (S31) holds.
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