
Topological Defects, Inherent Structures, and Hyperuniformity

Duyu Chen,1, ∗ Yu Zheng,2 and Yang Jiao3, 2, †

1Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
2Department of Physics, Arizona State University, Tempe, AZ 85287

3Materials Science and Engineering, Arizona State University, Tempe, AZ 85287

Disordered hyperuniform systems are exotic states of matter that completely suppress large-scale
density fluctuations like crystals, and yet possess no Bragg peaks similar to liquids or glasses. Such
systems have been discovered in a variety of equilibrium and non-equilibrium physical and biolog-
ical systems, and are often endowed with novel physical properties. While it is well known that
long-range interactions are necessary to sustain hyperuniformity in thermal equilibrium at positive
temperatures, such condition is not required for the realization of disordered hyperuniformity in
systems out of equilibrium. However, the mechanisms associated with the emergence of disordered
hyperuniformity in nonequilibrium systems, in particular inherent structures (i.e., local potential-
energy minima) are often not well understood, which we will address from a topological perspective
in this work. Specifically, we consider a representative class of disordered inherent structures which
are constructed by continuously introducing randomly distributed topological defects (dislocations
and disclinations) often seen in colloidal systems and atomic-scale two-dimensional materials. We
demonstrate that these inherent structures can be viewed as topological variants of ordered hype-
runiform states (such as crystals) linked through continuous topological transformation pathways,
which remarkably preserve hyperuniformity. Moreover, we develop a continuum theory to demon-
strate that the large-scale density fluctuations in these inherent structures are mainly dominated by
the elastic displacement fields resulted from the topological defects, which at low defect concentra-
tions can be approximated as superposition of the displacement fields associated with each individual
defect (strain source). We find that hyperuniformity is preserved as long as the displacement fields
generated by each individual defect decay sufficiently fast from the source (i.e., the volume inte-
grals of the displacements and squared displacements caused by individual defect are finite) and
the displacement-displacement correlation matrix of the system is diagonalized and isotropic. Our
results also highlight the importance of decoupling the positional degrees of freedom from the vibra-
tional degrees of freedom when looking for disordered hyperuniformity, since the hyperuniformity
property is often cloaked by thermal fluctuations (i.e., vibrational degrees of freedom).

I. INTRODUCTION

Disordered hyperuniform (DHU) systems are exotic
states of matter [1, 2] that lie between a perfect crys-
tal and liquid. These systems are similar to liquids
or glasses in that they are statistically isotropic and
possess no Bragg peaks, and hence lack any conven-
tional long-range order, and yet they completely sup-
press large-scale density fluctuations like crystals and
in this sense possess a hidden long-range order [1–3].
Specifically, the static structure factor S(k), which is di-
rectly proportional to the scattering intensity measured
in scattering experiments, vanishes for DHU systems in
the infinite-wavelength (or zero-wavenumber) limit, i.e.,
limk→0 S(k) = 0, where k is the wavenumber [1, 2].

Here S(k) is defined as S(k) ≡ 1 + ρh̃(k), where h̃(k)
is the Fourier transform of the total correlation function
h(r) = g2(r) − 1, g2(r) is the pair correlation function,
and ρ is the number density of the system. Note that
this definition implies that the forward scattering contri-
bution to the diffraction pattern is omitted. Equivalently,
the local number variance σ2

N (R) ≡ 〈N2(R)〉 − 〈N(R)〉2
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associated with a spherical observation window of radius
R grows more slowly than the window volume (i.e., a
scaling of Rd in d-dimensional Euclidean space) for DHU
systems in the large-R limit [1, 2], where N(R) is the
number of particles in a spherical window with radius R
randomly placed into the system. The small-k scaling
behavior of S(k) ∼ kα dictates the large-R asymptotic
behavior of σ2

N (R), based on which all DHU systems
can be categorized into three classes: σ2

N (R) ∼ Rd−1

for α > 1 (class I); σ2
N (R) ∼ Rd−1 ln(R) for α = 1

(class II); and σ2
N (R) ∼ Rd−α for 0 < α < 1 (class

III) [2]. It is also noteworthy that the direct correlation
function c(r), defined via the Ornstein–Zernike relation
h(r) = c(r) + ρc(r)

⊗
h(r) (where

⊗
denotes convolu-

tion) [4], becomes long-ranged in the sense that it has
an unbounded volume integral. This is in diametric con-
trast to standard thermal critical points in which h(r) is
long-ranged, and hence a system at a hyperuniform state
is considered an “inverted” critical point [1].

DHU states have been discovered in a wide spectrum of
equilibrium and non-equilibrium physical and biological
systems [5–37]; see Ref. [2] for a thorough overview. The
exotic structural features of DHU systems appear to en-
dow such systems with novel physical properties. For ex-
ample, disordered hyperuniform dielectric networks were
found to possess complete photonic band gaps compara-
ble in size to photonic crystals, while at the same time
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maintaining statistical isotropy, enabling waveguide ge-
ometries not compatible with photonic crystals [38, 39].
Moreover, certain disordered hyperuniform patterns have
superior color-sensing capabilities, as demonstrated by
avian photoreceptors [26]. Recent evidences also suggest
that adding disorder into crystalline low-dimensional ma-
terials in a hyperuniform manner through the introduc-
tion of topological defects may enhance electronic trans-
port in such materials [40–42], which is complementary
to the conventional wisdom of the landmark “Anderson
localization” [43] that disorder generally diminishes elec-
tronic transport.

While it is well known that effective long-ranged in-
teractions are required to drive an equilibrium many-
particle system to a hyperuniform state, this condition
is not necessary to achieve hyperuniformity in systems
out of equilibrium [2]. Among the wide spectrum of
hyperuniform nonequilibrium systems discovered previ-
ously, many fall into the category of inherent structures,
i.e., local potential-energy minima associated with cer-
tain forms of interactions [2]. For instance, a variety of
maximally-random-jammed (MRJ) hard-particle pack-
ings [7, 9, 10, 44–46] are demonstrated to be hyper-
uniform; since in athermal systems increasing the den-
sity plays the same role as decreasing temperature of
a molecular liquid and MRJ packings are local density
maxima, these MRJ packings are considered inherent
structures. The amorphous inherent structures in the
quantizer problem also possess a high degree of hyperuni-
formity [29]. Interestingly, avian photoreceptor patterns
are inherent structures associated with isotropic short-
range hard-core repulsions between any pair of cells and
isotropic long-range soft-core repulsions between pairs of
cells of the subtype, and they are shown to be multi-
hyperuniform, i.e., the photoreceptor patterns of both
the total population and the individual cell types are si-
multaneously hyperuniform [26]. Another examples are
the inherent structures associated with the k-space over-
lap potentials, which are shown to be hyperuniform [47].
It is also noteworthy that not all inherent structures are
found to be hyperuniform [47]. For example, the inherent
structures associated with the Lennard-Jones and steeply
repulsive potentials are in general not hyperuniform due
to the dominance of grain boundaries and vacancy defects
[47, 48].

Despite the ubiquitous nature of disordered hyperuni-
form inherent structures, the mechanisms associated with
the emergence of disordered hyperuniformity in many
such systems are still not well understood. In this work,
we provide a topological perspective to shed lights on this
issue. In particular, we consider a representative class
of disordered inherent structures in two-dimensional Eu-
clidean space R2 which can be viewed as defected states of
perfect triangular lattice crystal [49, 50] obtained by con-
tinuously introducing topological defects such as bound
dislocations, free dislocations, and disclinations that are
the key elements in the Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) two-stage melting theory in two

dimensions [51–53]. These defects are also commonly
seen in 2D colloidal systems [54, 55] and 2D semiconduc-
tors [40, 41] and play an important role in determining
the physical properties of such materials.

Using various structural descriptors, we demonstrate
that these inherent structures preserve the class-I hy-
peruniformity of the original triangular lattice crystal.
We also show that disclinations result in the strongest
“degradation” of the translational and orientational or-
der of the crystal, followed by free dislocations and
bound dislocations at comparable defect concentrations.
The bond-orientational correlations in these structures
rapidly decay to their long-range values over a short
length scale, regardless of the defect types and concen-
trations. These behaviors are in stark contrast to those
observed in thermally equilibrium configurations during
the 2D melting process, which shows a two-step change
in their translational and bond-orientational order cor-
relations as temperature increases, corresponding to the
two Kosterlitz-Thouless (KT) type transitions (i.e., solid-
hexatic, and hexatic-liquid). In addition, the structures
sampled from this 2D melting process are typically non-
hyperuniform. These results highlight the importance
of decoupling the positional degrees of freedom from the
vibrational degrees of freedom and investigate inherent
structures that correspond to local energy minima of the
systems (i.e., positional degrees of freedom) when look-
ing for disordered hyperuniformity, since the hyperuni-
formity property is often cloaked by thermal fluctuations
(i.e., vibrational degrees of freedom).

Moreover, we derive a continuum theory to explain
the hyperuniformity-preserving nature of the topolog-
ical transformations that link the disordered inherent
structures and the original hyperuniform crystals at low
defect concentrations. We demonstrate that the large-
scale density fluctuations in these inherent structures are
mainly dominated by the elastic displacement fields re-
sulted from the topological defects, which at low defect
concentrations can be approximated as superposition of
the displacement fields associated with each individual
defect (strain source). Remarkably, the class-I hyper-
uniformity of the original crystal is preserved as long as
the displacement fields of individual defects decay suf-
ficiently fast from the source (i.e., the volume integrals
of the displacements and squared displacements caused
by individual defect are finite) and the displacement-
displacement correlation matrix of the system is diag-
onalized and isotropic. In addition, the structure fac-
tor approaches zero with a universal quadratic scaling
at small wavenumbers, regardless of the types and ex-
act concentrations of topological defects. Our numerical
results and theoretical analysis uncover the mechanisms
underlying the emergence of disordered hyperuniformity
in a wide spectrum of disordered structures, and provide
insights to the discovery, design, and generation of novel
disordered hyperuniform materials.

The rest of the paper is organized as follows: in Sec II,
we describe the procedures to generate disordered inher-
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ent structures via continuous topological transformations
from the reference triangular lattice crystal state in R2.
In Sec. III, we employ various statistical descriptors to
characterize the large-scale structural features, in partic-
ular hyperuniformity of the resulting inherent structures.
In Sec. IV, we derive continuum theory to explain the
class-I hyperuniformity of the inherent structures. In Sec.
V, we provide concluding remarks.

II. REALIZATIONS OF DISORDERED
INHERENT STRUCTURES CONTAINING

RANDOMLY DISTRIBUTED TOPOLOGICAL
DEFECTS

A. Dislocations and disclinations induced by
topological transformations

To introduce bound dislocations (i.e., a pair of dislo-
cations that are next to each other) into the triangular
lattice, we first randomly pick a bond in the lattice. Note
that any bond in the triangular lattice is also the short
diagonal of a rhombus. Next, we break this chosen bond
and connect the two vertices associated with the long di-
agonal of the corresponding rhombus with a new bond,
resulting in a pair of dislocations next to one another.
If the vertices associated with the old and new bonds
all possess six bonds before the transformation, then the
transformation would lead to two five-coordinated ver-
tices and two seven-coordinated vertices; otherwise, we
would obtain higher-order defected structures. Here we
impose the constraint that the vertices after the trans-
formation should each possess at leave five bonds to en-
sure local structural stability. The process of introduc-
ing a single pair of bound dislocations is illustrated in
the top panel of Fig. 1. We quantify the amount of
bound dislocations by the defect concentration defined
as p ≡ Nop/Nb, where Nop is the number of success-
ful topological transformations, and Nb is the number of
bonds in the triangular lattice. Note that a single topo-
logical transformation described in this paragraph would
introduce a pair of dislocations, in the absence of other
topological defects.

To generate free dislocations, we start from bound
dislocations with the additional constraint that the
initial bound dislocations should consist of two five-
coordinated vertices and two seven-coordinated vertices,
and randomly pick a five-coordinated vertex and a seven-
coordinated vertex that are part of the bound disloca-
tions. We then let these two defected vertices “glide” in
the lattice by continuously breaking existing bonds and
forming new bonds. Note that the direction that the de-
fected vertices can “glide” is fixed once the two vertices
are picked given the local bonding constraints. To form
free dislocations and minimize the spatial correlations of
the free dislocations, we let the defects glide for at least
one step; beyond that, the defects have 1/2 of proba-
bility to stop and 1/2 of probability to continue gliding

at each lattice site. If the gliding defects stop before
hitting any “road block”, i.e., vertices that are not six
coordinated, then we count this as one successful topo-
logical transformation in the context of free dislocations.
The process of introducing a single pair of free disloca-
tions is illustrated in the middle panel of Fig. 1. We
also experiment with other stopping rules, and find that
the details of different stopping rules do not affect the
large-scale structural features of the resulting structures,
which is the focus of this work. We quantify the amount
of free dislocations by the defect concentration defined as
p ≡ Nop/Nb, where Nop is the number of successful topo-
logical transformations described in this paragraph, and
Nb is the number of bonds in the triangular lattice. Note
that similar to the case of bound dislocations, a single
topological transformation described in this paragraph
would introduce a pair of dislocations (each consisting of
a 5-coordinated vertex and a 7-coordinated vertex), in
the absence of other topological defects.

To generate disclinations, we start from a free disloca-
tion and break the bond between the seven-coordinated
vertex and one of its six-coordinated neighbors and con-
nect the long diagonal of the corresponding rhombus
with a new bond. This six-coordinated neighbor should
have two six-coordinated neighbors that are not neighbor
of the five-coordinated vertex. This bond-breaking and
bond-forming process creates an isolated 5-coordinated
vertex, and another 5-coordinated vertex surrounded by
two 7-coordinated vertices. We then let one of the two
7-coordinated vertices and its neighboring 5-coordinated
vertex glide away in the same way as that in the case of
free dislocations. If these steps can be completed, then
we count this as a successful topological transformation
in the context of disclinations, which would create an iso-
lated five-fold disclination, an isolated seven-fold discli-
nation, and two free dislocations (each consisting of a
5-coordinated vertex and a 7-coordinated vertex), in the
absence of other topological defects. Such a topological
transformation is illustrated in the bottom panel of Fig.
1. Note that the disclinations are accompanied by free
dislocations, which is consistent with previous observa-
tions [54, 55] that disclinations typically arise with free
dislocations. We quantify the amount of disclinations by
the defect concentration defined as q ≡ Nop/Nb, where
Nop is the number of successful topological transforma-
tions described in this paragraph, and Nb is the number
of bonds in the triangular lattice. It is noteworthy that
structures containing disclinations at q should be com-
pared to structures containing bound and free disloca-
tions at p = 3

2q for a fair comparison at the same effective
defect concentration, given the number of 5-coordinated
and 7-coordinated vertices that each case generates in
the absence of other topological defects.
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FIG. 1: (Color online) Illustration of the formation of inherent structures containing bound dislocations (top panel), free
dislocations (middle panel), and disclinations with associated dislocations (bottom panel) through series of topological trans-
formations (i.e., rearrangement of bonding network) and subsequent structural relaxation in a triangular lattice. Vertices with
seven bonds are highlighted with yellow circles, and vertices with five bonds highlighted with green circles.

B. Inherent structures

To obtain the inherent structures, we allow the trans-
formed structures to undergo elastic relaxation by per-
turbing the positions of the vertices in a way that drive
the bond lengths in the network towards values associ-
ated with the triangular lattice. In particular, this in-
volves local minimization of the energy function E de-
fined as follows:

E =
∑
bonds

kb(bi − b0)2, (1)

where bi is the bond length associated with bond i, and
b0 = 1 is the side length of a triangle in a triangular
lattice. Since we are looking at local energy minima,
the choice of the spring constant kb does not affect the
obtained structure, and without loss of generality, we set
kb to unity.

We investigate inherent structures containing the
aforementioned three types of topological defects for a
wide range of p (or q). In the cases of free dislocations and
disclinations, we generate structures up to values close to
saturation, i.e., more topological defects can no longer be
inserted into the system after a sufficiently large number
of attempts (e.g., 10N attempts, where N is the number
of vertices in the lattice). In the case of bound disloca-
tions, we stop at p = 0.17 since increasing p beyond that

sometimes leads to unphysical local bonding networks. In
the top section of Fig. 2 we show representative inherent
structures containing primarily bound dislocations with
N = 1200 particles, in the bottom left section of Fig.
2 representative inherent structures containing primar-
ily free dislocations with N = 1200 particles, and in the
bottom right section of Fig. 2 representative inherent
structures containing disclinations with N = 1200 parti-
cles.

III. STRUCTURAL CHARACTERIZATION
AND HYPERUNIFORMITY

To characterize the inherent structures with the afore-
mentioned topological defects, in particular at large
length scales, we generate configurations with N =
10, 800 particles at different p (or q) and look at various
statistics including pair statistics such g2(r), S(k) and
σ2
N (R) [1, 2], and bond-orientational statistics such as

the bond-orientational order metric Q6 and correlation
function C6(r) that have been routinely used to study
the 2D melting process [54–56]. To compute the statis-
tics accurately, we average over 10 configurations at each
p (or q).

Specifically, the pair correlation function g2(r) is pro-
portional to the probability density function of finding
two centers separated by distance r [57], and in practice
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FIG. 2: (Color online) (Top section) Representative inherent structures containing primarily bound dislocations at defect
concentration p=0.02, 0.06, 0.10, and 0.17, respectively. (Bottom left section) Representative inherent structures containing
primarily free dislocations at defect concentration p=0.02, and 0.04, respectively. (Bottom right section) Representative inherent
structures containing disclinations at defect concentration q=0.01, and 0.015, respectively. Vertices with more than six bonds
are highlighted in yellow, and vertices with less than six bonds in green.

is computed via the relation

g2(r) =
〈N(r)〉
ρ2πr∆r

, (2)

where 〈N(r)〉 is the average number of particle centers
that fall into the circular ring at distance r from a central
particle center (arbitrarily selected and averaged over all
particle centers in the system), 2πr∆r is the area of the
circular ring, and ρ is the number density of the system
[46, 57]. The static structure factor S(k) is the Fourier
counterpart, and for computational purposes, S(k) is the
angular-averaged version of S(k), which can be obtained
directly from the particle positions rj , i.e.,

S(k) =
1

N

∣∣∣∣∣∣
N∑
j=1

exp(ik · rj)

∣∣∣∣∣∣
2

(k 6= 0), (3)

where N is the total number of points in the system
[3, 9, 46]. The trivial forward scattering contribution
(k = 0) in Eq. 3 is omitted, which makes Eq. 3 com-
pletely consistent with the aforementioned definition of
S(k) in the ergodic infinite-system limit [2]. To compute
σ2
N (R), we randomly place circular observation windows

with radius R in the system, and count the number of
particles N(R) that fall into the observation window,
which is a random variable. The variance associated with
N(R) is denoted by σ2

N (R) ≡ 〈N(R)2〉− 〈N(R)〉2, which
measure density fluctuations of particles within a window
of radius R. In this work we sample 100,000 windows at
each window radius R to obtain σ2

N (R).
On the other hand, the order metric Q6 is defined as

Q6 ≡ |〈Ψ6〉|, (4)

where

Ψ6(ri) =
1

ni

ni∑
j=1

e6θij , (5)

and 〈· · · 〉 denotes ensemble average, ni is the number of
neighbors of vertex i located at ri, and θij is the polar
angle associated with the vector from vertex i to the j-
th bonded neighbor of vertex i. The bond-orientational
correlation function C6(r) is defined as

C6(r) ≡ 〈Ψ6(ri)Ψ
∗
6(rj)〉 | r = |ri − rj |, (6)

where Ψ∗6 is the complex conjugate of Ψ6. In practice,
to calculate C6(r), for each pair of particles located at
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ri and rj , we compute Ψ6(ri)Ψ
∗
6(rj), and bin the results

according to the distance r = |ri − rj |. We note that
Q6 = 1 and C6(r) = 1 for a perfect triangular network;
while for isotropic fluid phase, Q6 ≈ 0 and C6(r) decays
with an exponential envelop at large r [54, 55].

A. Bound dislocations

We first present the results of the inherent structures
with primarily bound dislocations at different p. In par-
ticular, as shown in Fig. 3(a)-(c), the structure factor
S(k) decreases to essentially zero as k approaches zero
and local number variance σ2

N (R) grows roughly linearly
as R increases at large R, indicating the hyperunifor-
mity of these inherent structures. The pair correlation
function g2(r) decays to its long-range value over a short
range of r, and the long-range value of |g2(r) − 1| and
the magnitudes of the Bragg peaks in S(k) also decrease
significantly as p increases, indicating the possible loss of
translational order in these systems as dislocations are
introduced into the system. However, we note that the
absence of Bragg peaks alone does not guarantee that
the underlying structure is truly amorphous, since long-
range order can be hidden at the two-point level, but
still can be present at higher-point levels, as explicitly
demonstrated by Klatt et al. in the context of random,
uncorrelated displacements of particles on a lattice [58].
There are clear wiggles in S(k) at large k and significant
oscillations in g2(r) as well, which are manifestations of
the remaining short-range structures in the defected net-
works. We further analyze the small-wavenumber behav-
ior of S(k), and find that the exponent α in S(k) ∼ kα

oscillates around 2, as shown in Fig. 3(d), demonstrating
that bound dislocations preserve the class-I hyperunifor-
mity of the triangular lattice.

We also analyze the bond-orientional order of the in-
herent structures. The results of Q6 and C6(r) are shown
in Fig. 3(e) and 3(f), respectively. It can be clearly
seen that Q6 decreases rapidly as p increases, indicating
the loss of the global preferred orientation of the lattice.
On the other hand, C6(r) decays to its long-range value
rapidly over a short length scale regardless of p, which
can be attributed to the fact that the bound dislocations
are randomly introduced in the system, and the spatial
correlations of defect positions are minimized. The long-
range value of C6(r) also decreases as p increases, indi-
cating the loss of large-scale orientational correlation as
bound dislocations are introduced.

B. Free dislocations

We employ similar procedures to investigate inherent
structures containing primarily free dislocations, and the
computed statistics are shown in Fig. 4. Interestingly,
there are many structural similarities that these inher-
ent structures share with inherent structures containing

primarily bound dislocations. For example, these inher-
ent structures also preserve the class-I hyperuniformity
of the triangular lattice, as manifested by the fact that
S(k) essentially decreases to zero with an approximately
quadratic scaling as k approaches zero and σ2

N (R) in-
creases linearly as R increases at large R. Both g2(r)
and C6(r) decay to their respective long-range values
over a short length scale, and Q6 decreases rapidly as
p increases, indicating the loss of large-scale structural
order as free dislocations are introduced into the system.
However, we note that at the same p, free dislocations
degrade the translational and orientational order of the
triangular lattice much more than bound dislocations, as
evidenced by g2(r), Q6, and C6(r). This is not surpris-
ing that the impact of bound dislocations are much more
localized than that of free dislocations.

It is noteworthy that in colloidal systems during 2D
melting, as free dislocations begin to emerge, the systems
start to enter the hexatic phase regime, and the h(r) and
C6(r) typically show an exponential and an algebraic de-
cay, respectively [54, 55]. These behaviors are distinctly
different from those of our inherent structures containing
primarily free dislocations, where h(r) and C6(r) decay to
their respective long-range values over a short range of r
and oscillate around certain constants afterwards. These
differences may be attributed to the fact that in our sys-
tems, the free dislocations are introduced in a mostly un-
correlated manner, while in those colloidal systems dur-
ing 2D melting, the free dislocations arise as a result of
thermal excitation and possess certain degrees of spatial
correlation. Our results suggest that not only the types
of topological defects, but also the spatial correlation of
topological defects affect the structural behaviors of the
defected lattices.

C. Disclinations

Next, we investigate inherent structures containing pri-
marily isolated disclinations, and the results are shown in
Fig. 5. Clearly, the inherent structures preserve class-I
hyperuniformity of the triangular lattice, and the trans-
lational and orientional order of the system are greatly
degraded by the introduced disclinations. Remarkably,
both h(r) and C6(r) decay to their respective long-range
values over a short range of r and oscillate around cer-
tain constants afterwards. These results are surprising
since previously isolated disclinations caused by thermal
excitation as temperature increases in colloidal systems
were known to induce large-scale structural distortions,
and lead the systems to transition into isotropic liquids,
which essentially lose translational and orientational or-
der, and are generally not hyperuniform [54, 55]. In par-
ticular, in those systems h(r) and C6(r) both exhibit an
exponential decay as r increases [54, 55]. These different
behaviors can be attributed to the fact that in our sys-
tems the disclinations are randomly placed into the sys-
tems, which do not affect large-scale density fluctuations
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FIG. 3: (Color online) Statistics associated with inherent structures containing primarily bound dislocations at different defect
concentrations p with N=10,800 particles. (a) Structure factor S(k). (b) Local number variance σ2

N (R). (c) Log-log plot of
|g2(r)− 1|. (d) Small-wavenumber scaling exponent α of S(k). (e) Bond-orientational order metric Q6. (f) Bond-orientational
order correlation function C6(r).

or orientational correlations. Nonetheless, we find that in
our systems disclinations degrade the translational and
orientational order much more than bound and free dis-
locations at comparable defect concentration, which is
not surprising given that disclinations cause larger-scale
structural distortions than dislocations.

IV. CONTINUUM THEORY OF
HYPERUNIFORMITY IN INHERENT

STRUCTURES CONTAINING TOPOLOGICAL
DEFECTS

In this section, we devise a continuum theory to explain
our observations from Sec. III of the impact of the topo-
logical defects on hyperuniformity, i.e., how the topolog-
ical transformations involving dislocations and disclina-
tions preserve the class-I hyperuniformity of the original
triangular-lattice crystal? We note that the introduc-
tion of topological defects preserves the total number of
particles in the system, i.e., no particles were removed
or added. Therefore, the impacts on the local number
density fluctuations are resulted from the perturbation

of particle positions at the core of the defects and the
associated elastic displacement field. Specifically, we as-
sume that the particle displacement (at low defect con-
centrations) at position x is the linear superposition of
the displacements introduced by different topological de-
fects at r1, · · · , rM , where M is the number of topological
defects, i.e.,

u(x) =

M∑
i=1

f(x− ri). (7)

Therefore, the average displacement field 〈u(x)〉 is given
by

〈u(x)〉 =

∫ M∑
i=1

f(x− ri)PM (rM )drM

=

∫
f(x− r1)ρ1s(r1)dr1

= ρs

∫
f(r)dr,

(8)

where PM (rM ) is the probability density function [1] as-
sociated with finding defects 1, 2, · · · ,M at position r1,
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FIG. 4: (Color online) Statistics associated with inherent structures containing primarily free dislocations at different defect
concentrations p with N=10,800 particles. (a) Structure factor S(k). (b) Local number variance σ2

N (R). (c) Log-log plot of
|g2(r)− 1|. (d) Small-wavenumber scaling exponent α of S(k). (e) Bond-orientational order metric Q6. (f) Bond-orientational
order correlation function C6(r).

r2, · · · , rM , and ρms(r
m)(m < M) is the reduced generic

density function [1] of the defects defined as

ρms(r
m) =

M !

(M −m)!

∫
· · ·
∫
PM (rM )drM−m, (9)

and because of statistical homogeneity, the one-point
density function ρ1s(r1) is equal to the average de-
fect density ρs in the system. Similarly, the different
components of the displacement-displacement correlation
Ψµν(r = y − x) ≡ 〈uµ(x)uν(y)〉 − 〈uµ(x)〉〈uν(y)〉 are

given by

Ψµν(r) =

∫ M∑
i=1

M∑
j 6=i

fµ(x− ri)fν(y − rj)PM (rM )drM

+

∫ M∑
i=1

fµ(x− ri)fν(y − ri)PM (rM )drM

−
∫
ρ2sfµ(x− r1)fν(y − r2)dr1dr2

=

∫
ρ2shs(r2 − r1)fµ(x− r1)fν(y − r2)dr1dr2

+

∫
ρsfµ(x− r1)fν(y − r1)dr1,

(10)

where hs(r) ≡ g2s(r) − 1 = [ρ2s(r) − ρ2s]/ρ
2
s is the to-

tal correlation function of the topological defects. If the
topological defects are randomly introduced into the sys-
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FIG. 5: (Color online) Statistics associated with inherent structures containing disclinations at different defect concentrations
p with N=10,800 particles. (a) Structure factor S(k). (b) Local number variance σ2

N (R). (c) Log-log plot of |g2(r) − 1|. (d)
Small-wavenumber scaling exponent α of S(k). (e) Bond-orientational order metric Q6. (f) Bond-orientational order correlation
function C6(r).

tem, then hs(r) = 0, which gives

Ψµν(r) =

∫
ρsfµ(x− r1)fν(y − r1)dr1

=

∫
ρsfµ(r1)fν(r1 + r)dr1

(11)

In the Fourier space, this corresponds to

Ψ̃µν(k) = ρsf̃µ(k)f̃∗ν (k) = ρsf̃µ(k)f̃ν(−k), (12)

where Ψ̃, f̃ are the Fourier transforms of Ψ and f , re-
spectively, and f̃∗ is the complex conjugate of f̃ .

Next, we derive the expression for the structure factor
S(k) of triangular lattice affected by displacement fields
u. Previously, it was shown [59] in general that when
the displacement field has a finite variance 〈|u|2〉 and the
displacement-displacement correlation matrix is isotropic
and diagonalized, i.e., Ψµν(r) = δµνΨ(r), the structure
factor S(k) of a displaced hyperuniform point pattern at
small |k| is approximated by

S(k) ≈ [|k|2Ψ(0) + (1− |k|2Ψ(0))S0(k)]

+ ρ0|k|2(Ψ̃(k) +

∫
d(r)h0(r)Ψ(r)e−ik·r)

(13)

where S0(k) and h0(r) are the structure factor and total
correlation function of the original point patterns. In
the cases where the original point patterns are crystals,
we can use the properties of crystals to simplify Eq. 13.
In particular, the structure factor S0(k) = 0 holds for
|k| < K, where K is the wavenumber associated with the
first Bragg peaks, and pair correlation function g20(r) =
h0(r) + 1 is simply a collection of δ-functions at lattice
sites and zero otherwise. By Taylor-expanding the second
line of Eq. 13 at small k and invoking the continuum
approximation, we obtain the following expression:

S(k) ≈ k2Ψ(0) + ρ0k
2Ψ̃(0)

= ρsk
2

∫
f21 (r)dr + ρ0ρsk

2|f̃1(0)|2

= ρsk
2

∫
f22 (r)dr + ρ0ρsk

2|f̃2(0)|2

(14)

Interestingly, Eq. 14 suggests that as long as the vol-
ume integrals of f(r) and |f(r)|2 are finite, the structure
factor S(k) of the triangular lattice affected by the dis-
placement fields generated by the collection of randomly
distributed source functions f scales as S(k) ∼ k2, which
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indicates that such displacement fields preserve the class-
I hyperuniformity of the original crystals.

Subsequently, we test our continuum theory against
numerical examples of inherent structures investigated
in Sec. III. We first check whether the assumptions of
our theory are satisfied in these cases. In Fig. 6(a) we
visualize the magnitude of the displacement field u in
an inherent structure containing a single pair of bound
dislocations. Clearly, the displacement field concentrates
around the center of the topological defect, i.e., the center
of the old broken bond (which is the same as the center of
the new formed bond). We further compute the decay of
|u(r)| as a function of the distance r from the core of the
topological defect, which appears to decay exponentially
as shown in Fig. 6(b), although we note that |u(r)| ap-
pears to be anisotropic around the core as shown in Fig.
6(a). The exponential decay suggests that the volume
integrals of the source f and |f |2 should be finite.

We then look at the cases where a substantial amount
of topological defects are affecting the structures. Specifi-
cally, in Fig. 7 we show the spatial distribution of the vec-
tor displacement field u(r) for three representative exam-
ples: an inherent structure containing primarily bound
dislocations at p = 0.17, an inherent structure contain-
ing primarily free dislocations at p = 0.04, and an inher-
ent structure containing disclinations at q = 0.015. All
of the three fields in Fig. 7 appear to be approximately
isotropic, suggesting a finite Ψ(0). We also compute the
different components of displacement-displacement cor-
relation matrix Ψ(r) for all these three cases, and the
results are shown in Fig. 8. The orthogonal components
Ψ12 appear to vanish, and the diagonal components are
roughly the same, i.e., Ψ11(r) ≈ Ψ22(r), which satisfies
the condition Ψµν(r) = δµνΨ(r) in our theory. In ad-
dition, the diagonal components Ψ11 and Ψ22 in Fig. 8
show relatively short-ranged correlations, which are con-
sistent with the visualizations in Fig. 7.

With the assumptions in our theory largely satisfied
by our numerical examples in Sec. III, we proceed to
investigate whether the numerically determined small-k
behavior of S(k) matches the prediction by our theory.
Indeed, as shown in Figs. 3-5, at low and intermediate
defect concentrations p and q, the scaling exponent α in
S(k) ∼ kα at small k oscillates around 2, matching the
quadratic scaling predicted by our theory; however, at
very small or large p and q (relative to saturation), the ex-
ponent α slightly deviates from 2. The deviation at very
small p or q can be attributed to the fact that at these
defect concentrations the systems are not entirely homo-
geneous, which degrades the accuracy of our continuum-
theory prediction; on the other hand, at large p or q, the
topological defects begin to interact with each other and
modify the inherent structures accordingly, which is not
taken into account in our continuum theory.

FIG. 6: (Color online) Displacement field u in an inherent
structure containing a single pair of bound dislocations. (a)
Spatial distribution of normalized |u(r)|/|u(r)|max. (b) Decay
of |u(r)| as a function of the distance r from the core of the
topological defect, i.e., the center of the old broken bond (the
same as the center of the new formed bond), and the red
solid line is an exponential fit (note that the vertical axis is
log-scale).

V. CONCLUSIONS AND DISCUSSION

In this work, we made an attempt to elucidate a possi-
ble mechanism for the observed hyperuniformity in disor-
dered inherent structures of a wide spectrum of systems.
In particular, we considered a representative class of dis-
ordered inherent structures which are linked to an orig-
inal crystal state via continuous topological transforma-
tions involving dislocations and disclinations. We show
via both numerical simulations and theoretical analysis
that these topological transformations preserve the class-
I hyperuniformity of the triangular lattice, and the struc-
ture factor S(k) possesses a universal quadratic scaling
as k decreases at small k at low defect concentrations.

Our continuum theory connects the large-scale density
fluctuations in these inherent structures to the elastic dis-
placement fields resulted from the topological defects. It
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FIG. 7: (Color online) (a) Spatial distribution of the vector displacement field u(r) in an inherent structure containing primarily
bound dislocations at p = 0.17 with N = 1200 particles. (b) Spatial distribution of the vector displacement field u(r) in an
inherent structure containing primarily free dislocations at p = 0.04 with N = 1200 particles. (c) Spatial distribution of the
vector displacement field u(r) in an inherent structure containing disclinations at q = 0.015 with N = 1200 particles.

FIG. 8: (Color online) (a) Different components of the displacement-displacement correlation matrix Ψ(r) of an inherent
structure containing primarily bound dislocations at p = 0.17 with N = 10, 800 particles. (b) Different components of the
displacement-displacement correlation matrix Ψ(r) of an inherent structure containing primarily free dislocations at p = 0.04
with N = 10, 800 particles. (c) Different components of the displacement-displacement correlation matrix Ψ(r) of an inherent
structure containing disclinations at q = 0.015 with N = 10, 800 particles.

indicates that class-I hyperuniformity can be preserved
as long as the displacement fields resulted from individ-
ual defects decay fast enough from the source (i.e., the
volume integrals of the displacements and squared dis-
placements caused by individual defect are finite) and
the displacement-displacement correlation matrix of the
system is diagonalized and isotropic. Conceptually, the
introduction of topological defects into a crystal does not
affect the average particle density of the system (since
the total number of particles are conserved), and any
change in density fluctuations of the resulting disordered
inherent structures could only come from the elastic dis-
placement fields caused by the topological defects. As
long as these elastic fields are homogenized and suffi-
ciently localized, the salient features of large-scale den-
sity fluctuations of the original crystal, i.e., hyperunifor-

mity, should be preserved. These results suggest promis-
ing new venues for the discovery, design, and generation
of novel disordered hyperuniform materials.

Moreover, the inherent structures containing disloca-
tions and disclinations studied in this work are quite
different from the equilibrium structures containing the
same type of topological defects in colloidal systems dur-
ing 2D melting [54, 55] in terms of various structural fea-
tures, in particular the hyperuniformity and the large-r
scaling behavior of g2(r) and C6(r). These differences
suggest that not only the types of defects, but also the
spatial correlations of defects are key to understand the
impact of defects on the structural features of crystalline
systems. These results also highlights the cloaking ef-
fect of thermal fluctuation on hyperuniformity, and indi-
cates that when looking for disordered hyperuniformity,
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in many cases one should probably look at potential-
energy minima (local or global), which are only functions
of the positional degrees of freedom and not affected by
the vibrational degrees of freedom.

Here we studied the introduction of topological defects
into triangular lattice, but given the duality of triangu-
lar lattice and honeycomb lattice, the dual of the vari-
ous inherent structures obtained in this work are similar
to the network structures obtained previously [41] that
are topologically transformed from the honeycomb lat-
tice through the introduction of Stone-Wales (SW) de-
fects. Interestingly, those defected honeycomb network
structures were found to capture the salient structural
features of amorphous graphene and other 2D materials
[41]. However, we note that previously it was demon-
strated that as the SW defect concentration reaches cer-
tain critical value, the corresponding systems changes
from class-I hyperuniformity to class-II hyperuniformity,
which can be attributed to the fact that in those sys-
tems the bond angles were also regulated because of the
underlying chemical constraints [41] and the additional
coupling between defects likely modifies the behavior of
large-scale density fluctuations and leads to the change
in the class of hyperuniformity at sufficiently large defect

concentrations.

It is also noteworthy that topological defects such as
dislocations and disclinations appear as point defects
in two dimensions, while in three dimensions they are
known to appear as line defects. Given this difference, it
would be interesting to explore the impact of topologi-
cal defects on the large-scale structural features of crys-
tals in three dimensions, and the potential findings may
shed light on the emergence of hyperuniformity in cer-
tain disordered inherent structures. For example, there
were theories [50] suggesting that MRJ packings (or ran-
dom close packings as termed by many experimentalists)
might be considered as disordered topological variants
of the tetrahedral particle packings, just like that Frank-
Kasper phases [50, 60, 61] are considered as ordered topo-
logical variants.
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