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Monte Carlo cluster algorithms are popular for their efficiency in studying the Ising model near its
critical temperature. We might expect that this efficiency extends to the bond-diluted Ising model.
We show, however, that this is not always the case by comparing how the correlation times τw and
τsw of the Wolff and Swendsen-Wang cluster algorithms scale as a function of the system size L when
applied to the two-dimensional bond-diluted Ising model. We demonstrate that the Wolff algorithm
suffers from a much longer correlation time than in the pure Ising model, caused by isolated (groups
of) spins which are infrequently visited by the algorithm. With a simple argument we prove that
these cause the correlation time τw to be bounded from below by Lzw with a dynamical exponent
zw = γ/ν ≈ 1.75 for a bond concentration p < 1. Furthermore, we numerically show that this lower
bound is actually taken for several values of p in the range 0.5 < p < 1. Moreover, we show that
the Swendsen-Wang algorithm does not suffer from the same problem. Consequently, it has a much
shorter correlation time, shorter than in the pure Ising model even. Numerically at p = 0.6, we find
that its dynamical exponent is zsw = 0.09(4).

INTRODUCTION

The Ising model is one of the most popular models in
statistical physics: its simplicity makes it easy to study
while it is complex enough that many interesting physical
phenomena can be studied with it, such as phase tran-
sitions and criticality [1]. Since its inception, numerous
variants of the Ising model have been proposed to study
different phenomena. An important class of such variants
are the Ising models with impurities. These are used to
investigate how the presence of impurities, which occur
frequently in nature, affects the properties of a system.
Common ways to model impurities in the Ising model is
by randomly removing spins (site-dilution [2–4]), bonds
(bond-dilution [5–9]) or alternatively by randomly mod-
ifying the strength of the interactions in some other way
[6, 10]. In this paper we focus on the variant with bond-
dilution.

The introduction of bond-dilution to the Ising model
changes its properties significantly. For example, it has
been shown that the critical temperature that separates
the ferromagnetic and paramagnetic phases of the Ising
model changes depending on the extent of the bond-
dilution [8]. This even introduces a new type of phase
transition because the critical temperature drops to zero
at a certain bond concentration creating two phases (zero
and non-zero critical temperature) separated by what is
referred to as the percolation threshold [11]. In addition,
it appears that the presence of impurities also alters the
universality class of the model [2].

A common approach to study the Ising model is the
use of Monte Carlo methods. The choice of the algo-
rithm does not change any of the equilibrium proper-
ties: all algorithms sample the same (Boltzmann) distri-

bution. However, the dynamics of different algorithms
can vary strongly leading to pronounced differences in
their efficiency for studying a certain model. In the pure
Ising model, cluster algorithms such as the Wolff and
Swendsen-Wang algorithms have proven themselves to
be much more effective at criticality than single spin-flip
algorithms like Metropolis [12]. This difference is ex-
pected to be even more pronounced in the bond-diluted
Ising model since it has been recently shown that sin-
gle spin-flip algorithms suffer from a diverging correla-
tion time when the percolation threshold is approached
[5]. The dynamics of cluster algorithms for the bond-
diluted Ising model remains poorly studied and so it is
still unclear whether they actually are more effective.
Some studies have proposed that the efficiency of these
cluster algorithms carries over to the bond-diluted Ising
model and that correlation times actually decrease when
site- or bond-dilution is introduced [4, 13]. We present
a quantitative analysis of the dynamics of the Wolff and
Swendsen-Wang algorithms to show that this is in fact
not the case for the Wolff algorithm. We will demon-
strate that the Wolff algorithm suffers from much longer
correlation times than in the pure model, caused by iso-
lated (groups of) spins, a fact which has previously been
hinted at by Ballesteros et al, who showed that depending
on the degree of bond dilution there are different regions,
characterised by the size of the groups of isolated spins,
where certain Monte Carlo updates are more efficient at
thermalising the system [14]. We expand upon their work
by proving a lower bound on the dynamical exponent of
the Wolff algorithm and numerically showing that this
lower bound is actually taken for several values of the
dilution.

This paper is organised as follows. We first define the
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bond-diluted Ising model, the cluster algorithms, and the
observables that we use. Next, we present our results and
discuss what they teach us about the correlation times of
the Wolff and Swendsen-Wang algorithms. In the final
section we summarise our main findings and conclude.

MODEL AND METHODS

Model

In this paper we study the bond-diluted Ising model in
two dimensions on a square lattice of size L × L. This
model is a variant of the regular Ising model with nearest-
neighbour interactions and is obtained by randomly re-
moving a fraction 1−p of the bonds (i.e. interactions be-
tween two neighbours) from the lattice, where p is called
the bond concentration. Defined this way, p is the proba-
bility that there is a bond between two neighbours. With
this choice, p = 1 corresponds to the regular Ising model
and p = 0 to a collection of isolated spins (no interac-
tions). We define the model with the Hamiltonian

H = −J
∑
〈ij〉

cij(p)sisj (1)

where the sum runs over all pairs of nearest-neighbour
sites, si = ±1 is the spin on site i and cij(p) is a constant
that follows a Bernoulli distribution with probability p,
i.e. it has value 1 with probability p and value 0 with
probability 1 − p. We refer to a realization of the cij ’s
for all nearest-neighbour pairs as a configuration of the
model. The bond-dilution is frozen in for a particular
configuration. In other words, the values of the cij ’s
are fixed for a specific configuration. All through the
manuscript, energy is measured in units of J .

Algorithms

We use the bond-diluted Ising model to study the be-
haviour, and in particular the dynamics, of two cluster
Monte Carlo algorithms. The first of these is the Wolff
algorithm [15]. The basic idea behind this algorithm is to
grow a cluster of spins and flip all the spins in this cluster
simultaneously with probability 1. To grow a cluster we
perform the following steps [12],

1. choose a spin at random from the lattice,

2. consider each of its neighbours. If the spins are
aligned, add the neighbour to the cluster with prob-
ability 1− e−2βJ with β = 1

kBT
and J the coupling

constant from the Hamiltonian,

3. for each of the neighbours added in step 2 also con-
sider all their neighbours to be added to the cluster

and repeat this until no more neighbours exist that
have not yet been considered.

It can be shown that by growing the cluster in this way
we satisfy both ergodicity and detailed balance [12]. It is
important to note that in the bond-diluted Ising model
two spins are only considered to be neighbours if there is
a bond between them.

The second algorithm under consideration is the
Swendsen-Wang algorithm [16]. Similar to the Wolff al-
gorithm, clusters of spins are grown according to the
aforementioned procedure. It differs, however, in the fact
that we do not just grow a single cluster, but cover the
entire lattice with clusters and flip each of these with
probability 1

2 in a single step [12]. Since clusters are
grown in the same way as in the Wolff algorithm, show-
ing that the Swendsen-Wang algorithm satisfies ergodic-
ity and detailed balance proceeds analogously [12].

Observables

During our simulations we keep track of several quan-
tities. This includes the energy of a state, which follows
directly from the definition of the model and requires no
further explanation. Additionally, we measure a quan-
tity which we will refer to as the spin age and which we
define as follows.

To extract more information about the dynamics of the
Wolff algorithm from our simulations, we label each site
in the lattice with a spin age ai, which we define to be the
time since site i was last visited (i.e. was part of a Wolff
cluster) measured in the number of Wolff cluster moves.
In other words, when a site is visited, its age is set to 0
and each subsequent Wolff cluster move where the site is
not visited, the age is incremented by 1. Once the system
is thermalised, both with respect to its configuration of
spins and the distribution of ages, we count how often
a certain age occurs at various steps in the simulation,
to produce a histogram showing the distribution of ages
in equilibrium. To be specific, at certain steps in the
simulation (between moves) we measure for each age a
how many spins in the lattice are labelled with that age
at that step and we call this number the age frequency
fL(a).

RESULTS AND DISCUSSION

The Wolff algorithm

We first discuss the behaviour of the Wolff algorithm
applied to the bond-diluted Ising model. We will start
with a simple argument to show that there must be a
lower limit on the correlation time. Then we discuss
the results from our numerical analysis to show that this
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lower bound is also taken for several values of the bond
concentration p. But before going into the simple argu-
ment, let us first introduce some notation and two differ-
ent time scales that we have used.

For all the results we measure time in cluster moves
of the algorithm used, because we found this the most
intuitive timescale for understanding the results. How-
ever, when evaluating the performance of an algorithm,
we prefer to measure time such that it scales with re-
quired CPU time. Since the CPU time per single Wolff
cluster move can vary significantly, we require a second
timescale for the Wolff algorithm. A good candidate is
to measure time such that t = 1 corresponds to the sit-
uation where on average as many spins are flipped as
there are in the lattice. The relation between the time
t and our previous time, which we denote by tsteps for

Wolff, is given by t = tsteps
〈n〉
L2 , where 〈n〉 is the average

size of a Wolff cluster [12]. It can also be shown that
〈n〉 scales as Lγ/ν at the critical temperature such that
Lγ/ν−2 acts as a conversion factor when required [12]. By
construction, the same number of spins, namely all the
spins in the lattice, are visited by the Swendsen-Wang
algorithm in each cluster move, so tsteps already scales
with CPU time for Swendsen-Wang and there is no ad-
ditional timescale meaning we use t to denote the time
measured in Swendsen-Wang cluster moves.

Now let us turn to the simple argument. We argue that
the correlation time τsteps,w for p < 1 is bounded from
below by L2, i.e. τsteps,w = Ω(L2). To see this, note that
for any p < 1 there will always exist at least one isolated
spin in the lattice for a sufficiently large system size (i.e.
for a sufficiently large system the expectation value for
the number of isolated spins will be at least 1). With an
isolated spin we mean spins which have all their bonds
to the rest of the lattice removed. Such spins would only
be flipped by the Wolff algorithm if they are chosen as
the seed spin. And since each spin is equally likely to be
picked and there are L2 spins, the correlation stored in
these spins, however small it might be, will also survive
for Ω(L2) cluster moves. Therefore, we can conclude that
the correlation time τsteps,w is bounded from below by L2.

To study the behaviour numerically, we ran simula-
tions with the Wolff algorithm for various system sizes
with p = 0.6 at (βJ)−1 = 0.940 where β = 1

kBT
and J the

coupling constant. We chose this value for p because the
effects of bond-dilution become more pronounced when
the bond fraction p is significantly below 1. The temper-
ature was chosen to be in the vicinity of the critical tem-
perature as determined with the Binder cumulant. The
value we found is also in good agreement with the critical
temperature found in other papers, see for example [5].
Unless otherwise mentioned, we used 100, 000 different
realizations of the bond dilution in each simulation.

Figure 1 shows the evolution of the energy of the sys-
tem towards its thermal equilibrium value as a function
of Wolff cluster moves. For L = 40 we ran for 400 cluster

0.00 0.02 0.04 0.06 0.08 0.10 0.12
tsteps L 2

0.002

0.01

0.04

|E
(t)

E
|L

2

L = 40
L = 50
L = 60
L = 70
L = 80
L = 100

FIG. 1. Convergence of the energy E(t) to the thermal equi-
librium 〈E〉 during thermalisation with the Wolff algorithm
for different system sizes L with p = 0.6 at (βJ)−1 = 0.940
where β = 1

kBT
and J the coupling constant. For tsteps = 0

the system starts in a state with all spins pointing up. Both
the vertical and horizontal axes were scaled with L2. Note
the collapse of the right tails of the curves, suggesting that
the correlation time τsteps,w ∼ L2.

moves per configuration, for L = 100 we ran for 300 clus-
ter moves and in between we tuned the number of cluster
moves to roughly keep the CPU time used per simulation
constant. At tsteps = 0, the system starts in the configu-
ration with all spins pointing up (si = 1 for all i). Notice
how the curve seems to transition from a fast decay for
small tsteps to a slower decay at large tsteps. When the
vertical and horizontal axes are scaled with L2 the tails
of the curves, the regions of slower decay, collapse. Since
these tails are the limiting factor in convergence of the
energy to its equilibrium this suggests that the correla-
tion time τsteps,w scales as L2 such that τw scales as Lzw

with zw = γ/ν. Numerically, it is reported that γ/ν is in-
dependent of p for p ≥ 0.6, and actually indistinguishable
from γ/ν = 1.75 as in the regular Ising model [8]. Note
that, while the equilibrium exponents are numerically in-
distinguishable, the dynamic exponent is very different:
in the regular two-dimensional (2D) Ising model the dy-
namic exponent is reported as zw = 0.25(1) [12].

To verify our argument that isolated (groups of) spins
exist that are not touched by the algorithm for a long
time, we computed a histogram of the distribution of the
spin ages throughout a simulation with the Wolff algo-
rithm in the manner described in the Model and Methods
section. For these simulations we used 104 realizations of
the bond-dilution. To initialise the system we first ther-
malise with 50 Swendsen-Wang moves, starting from a
state with all spins pointing up. We also first run the
simulation for 5L2 Wolff cluster moves to make sure that
spins can actually reach all the ages that we report in the
histogram. Finally, we measure the age for an additional
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1000 consecutive Wolff steps. We did the simulations for
both p = 0.6 at (βJ)−1 = 0.940 as before as well as for
p = 0.7 at (βJ)−1 = 1.310, p = 0.8 at (βJ)−1 = 1.648
and p = 0.9 at (βJ)−1 = 1.964. For completeness, we
also did the simulations at p = 1 at (βJ)−1 = 2.27.
We found these temperatures to be in the vicinity of the
critical temperature at their respective bond fractions p,
again in agreement with the critical temperature found
in other papers [5]. The results are shown in figure 2.

The figure clearly shows that some spins survive for a
very long time. Also note the strikingly good collapse of
the curves in 2a when we scale the horizontal axis with
L2, for p = 0.6, p = 0.7, p = 0.8 and p = 0.9. This
supports our earlier finding that τw scales as Lzw with
zw = γ/ν ≈ 1.75 for these values of p. In contrast, the
histogram drops to zero very quickly for p = 1 and we
need a different scaling to get a reasonable collapse. This
seems to suggest that the effect of long surviving spins
only shows up for p < 1.

The Swendsen-Wang algorithm

We now turn our attention to the Swendsen-Wang al-
gorithm. By construction, it visits every spin in the lat-
tice each step, so it should not suffer from the problems
encountered with the Wolff algorithm, originating from
long surviving spins. Similar to the Wolff algorithm, we
ran simulations for various system sizes L at p = 0.6
and (βJ)−1 = 0.940, i.e. the setup of the simulations
was exactly the same, only the algorithm used to update
the spins was different. Figure 3 shows the analogue of
figure 1, but then for Swendsen-Wang. In addition, it
contains an inset figure that shows the same data but
plotted in a different way. At L = 30 we ran for 300
Swendsen-Wang steps per configuration while at L = 100
we ran for 100 steps; in between we tuned the steps to
keep the CPU time used roughly constant. In the main
part of the figure we can see that the energy quickly con-
verges to its thermal equilibrium value and the slowly
decaying tail from figure 1 is absent. Moreover, when
scaling the vertical axis with L2 and the horizontal axis
with Lzsw with zsw = 0.09(4), the curve collapse sug-
gests that the correlation time τsw for Swendsen-Wang
at p = 0.6 scales as Lzsw . The value for zsw used to
scale the horizontal axis was chosen to be the same as
the value we determined with a different method which
will be described below. Note that the dynamical expo-
nent zsw is significantly smaller at p = 0.6 than for the
regular 2D Ising model (p = 1) where zsw = 0.25(1) [12].
This is the opposite of the super slowing down observed
for the Metropolis algorithm [5]. Finally, in the inset
figure the data for h(t) versus time t is plotted. Here

h(t) = − log (c |E(t)− 〈E〉|) with c = |E(0)− 〈E〉|−1.
The blue curve is a straight line with slope 0.87. Since
the data seems to be parallel to this blue curve instead

of a curve with slope 1, the convergence of the energy
seems to be a stretched exponential.

We have already shown that there is a value for the
dynamical exponent zsw that gives a good collapse of the
data in figure 3. However, this plot shows data from sim-
ulations out-of-equilibrium so we did not use this data to
determine the correct scaling of the correlation time (at
least not in the form presented in figure 3). Instead, we
determined it from equilibrium simulations. For this we
computed the evolution of the mean-square displacement
of the energy 〈[E(t)−E(0)]2〉 from the same data as was
used for figure 3. To obtain equilibrium data we dis-
carded all data before the system was thermalised. For
L = 30 this concerns all data before t = 50 and for all
other system sizes all data before t = 20 (i.e. these times
became the new t = 0 for determining 〈[E(t)−E(0)]2〉).
The results are shown in figure 4. After scaling the verti-
cal axis with the numerically determined limiting values
of the curves, we can collapse the curves using a horizon-
tal scaling of Lzsw with zsw = 0.09(4). The uncertainty
in the dynamical exponent was determined by tuning the
scaling of the axis to determine the range within which
the collapse seemed good. The size of this range was
then used as a measure of the uncertainty. This confirms
our earlier numerical estimate of the dynamical critical
exponent for the Swendsen-Wang algorithm at p = 0.6.

SUMMARY AND CONCLUSIONS

We have shown how the correlation times τw and τsw
of the Wolff and Swendsen-Wang cluster algorithms scale
as a function of the system size L when applied to the
2D bond-diluted Ising model. We demonstrated that the
Wolff algorithm suffers from a much longer correlation
time than in the pure Ising model, caused by isolated
(groups of) spins which are infrequently visited by the
algorithm. With a simple argument we proved that these
cause the correlation time to be bounded from below by
Lzw where zw = γ/ν ≈ 1.75 for a bond concentration
p < 1. Furthermore, we showed numerically that this
lower bound is actually taken for several values of the
bond concentration in the region 0.5 < p < 1. Moreover,
we have shown that the Swendsen-Wang algorithm does
not suffer from the same problem, by construction. It
has a much shorter correlation time, even shorter than in
the pure Ising model. Numerically, we have found that
its correlation time scales as Lzsw with zsw = 0.09(4) at
p = 0.6.

We expect that the Wolff algorithm will suffer from
the same problems in the three-dimensional bond-diluted
Ising model, albeit to a lesser degree as more bonds will
have to be removed to create isolated spins. In addi-
tion, we think the same will hold for the site-diluted and
weakly diluted (i.e. where you weaken instead of remov-
ing the bonds) Ising models. This could be something to
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FIG. 2. Distribution of spin ages a during a simulation with the Wolff algorithm at equilibrium. In figure (a) we see the data
for p = 0.6 at (βJ)−1 = 0.940, p = 0.7 at (βJ)−1 = 1.310, p = 0.8 at (βJ)−1 = 1.648 and p = 0.9 at (βJ)−1 = 1.964. In
figure (b) we see the data for p = 1 at (βJ)−1 = 2.27. Here β = 1

kBT
and J the coupling constant. The spin age is defined as

the time since the site was last visited, measured in Wolff cluster moves. Note the different scaling of the horizontal axis for
(a) and (b). The horizontal axis in (a) was scaled with L2, while in (b) it was scaled with Lzsteps,w where zsteps,w = 0.50 was
chosen to correspond with the zw = 0.25(1) for the regular 2D Ising model [12]. The collapse of the curves in (a) again suggests
that the correlation time τsteps,w of the Wolff algorithm scales as L2, in agreement with figure 1. Scaling the horizontal axis in
(b) with the dynamical exponent for the regular 2D Ising model from the literature also leads to a reasonable collapse, as we
would expect.

explore in the future.
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FIG. 3. Convergence of the energy E(t) to the thermal
equilibrium 〈E〉 during thermalisation with the Swendsen-
Wang algorithm for different system sizes L with p = 0.6 at
(βJ)−1 = 0.940 where β = 1

kBT
and J the coupling constant.

For t = 0 the system starts in a state with all spins pointing
up. The vertical axis was scaled with L2 and the horizontal
axis with Lzsw with zsw = 0.09(4), where zsw was chosen to
be the same as in figure 4. Note that this plot is equivalent
to figure 1 but for the Swendsen-Wang algorithm. The col-
lapse of the curves suggests that the correlation time for the
Swendsen-Wang algorithm scales as Lzsw with zsw = 0.09(4).
Also note the absence of a slowly decaying tail, demonstrat-
ing that the Swendsen-Wang algorithm does not suffer from
the same problems that plague the Wolff algorithm (see figure
1). The inset figure in the top-right shows the same data but
plotted differently. Here h(t) = − log (c |E(t)− 〈E〉|) with
c = |E(0)− 〈E〉|−1. The blue curve is a straight line with
slope 0.87. Since the data seems to be parallel to this blue
curve instead of a curve with slope 1, the convergence of the
energy seems to be stretched exponential.
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FIG. 4. Mean-square displacement of the energy 〈[E(t) −
E(0)]2〉 in thermal equilibrium as a function of Swendsen-
Wang moves t for different system sizes L with p = 0.6 at
(βJ)−1 = 0.940 where β = 1

kBT
and J the coupling constant.

The vertical axis was scaled with the numerically determined
limit value of the curves, while the horizontal axis was scaled
with Lzsw with zsw = 0.09(4). The dynamical critical ex-
ponent for the Swendsen-Wang algorithm was determined by
tuning the scaling of the horizontal axis until a good collapse
was found.
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