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ARITHMETIC VERSION OF ANDERSON LOCALIZATION

FOR QUASIPERIODIC SCHRÖDINGER OPERATORS

WITH EVEN COSINE TYPE POTENTIALS

LINGRUI GE, JIANGONG YOU, AND XIN ZHAO

Abstract. We propose a new method to prove Anderson localization
for quasiperiodic Schrödinger operators and apply it to the quasiperi-
odic model considered by Sinai [33] and Fröhlich-Spencer-Wittwer [16].
More concretely, we prove Anderson localization for even C2 cosine type
quasiperiodic Schrödinger operators with large coupling constants, Dio-
phantine frequencies and Diophantine phases.

1. Introduction

Anderson localization of particles and waves in disordered media is one
of the most intriguing phenomena in solid-state physics found by Anderson
[5]. Mathematically, localization has already been extensively studied for
the random cases [1, 3, 4, 13, 30]. Anderson localization in quasiperiodic
media even has stronger backgrounds in physics [9, 32], which is known to
have strong connection with integer quantum Hall effect [2, 21, 31], and also
plays an important role in the emerging subject of optical crystals [28].

Although been studied for over sixty years, Anderson localization 1 for
quasiperiodic operators has not been completely understood since it de-
pends sensitively on the frequency, the phase and amplitude of oscillation
of the potential. So far almost sure Anderson localization 2 for fixed Dio-
phantine frequencies was rigorously proved only for the following cosine type
quasiperiodic Schrödinger operators with large coupling constants by Sinai
[33], Fröhlich-Spencer-Wittwer [16] 3 and Forman-Vandenboom [15]

(1.1) (Hλv,α,θu)n = un+1 + un−1 + λv(θ + nα)un,∀n ∈ Z,

with α ∈ R\Q (the frequency), θ ∈ T := R/Z (the phase), λ ∈ R (the
coupling constant) and v ∈ C2(T,R) (the potential) satisfying

• dv
dθ = 0 at exactly two points, one is minimal and the other one is
maximal, which are denoted by z1 and z2.

• These two extremals are non-degenerate, that is, d2v
dθ2

(zj) 6= 0 for
j = 1, 2.

Anderson localization (AL) with precise arithmetic descriptions on both
the frequencies and full Lebesgue measure set of the phases, is referred as
to arithmetic version of Anderson localization, which is obviously stronger

1Pure point spectrum with exponentially decaying eigenfunctions
2Anderson localization for almost every phase.
3Fröhlich-Spencer-Wittwer [16] requires the potential to be even.
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than almost sure Anderson localization. The first arithmetic version of An-
derson localization was given by Jitomirskaya [23] who proved that for any
fixed Diophantine frequency and any fixed Diophantine phase, the almost
Mathieu operator 4 has AL for |λ| > 1. Such arithmetic description on
the frequency and the phase was explored in a sharp way by Jitomirskaya
and Liu, namely, for Diophantine phase, there is a sharp spectral transition
in frequency [25], and for Diophantine frequency, there is a sharp spectral
transition in phase [26]. Arithmetic Anderson localization for one dimen-
sional long range quasiperiodic operators with cosine potential was proved
in [7, 12]. Recently, a new nonperturbative proof of arithmetic theoretic
Anderson localization was given in [18], which applies to higher dimensional
long range quasiperiodic operators, based on nonperturbative reducibility
method and duality argument.

However, the proofs of all the above arithmetic Anderson localization re-
sults crucially depend on the assumption that the potential is exactly the
cosine function. It is not clear if arithmetic Anderson localization could be
expected for other potentials. The main purpose of this paper is to present a
new method from the point of view of dynamical systems to prove the arith-
metic version of Anderson localization for quasiperiodic Schrödinger oper-
ators. Applying our method to even cosine type quasiperiodic Schrödinger
operator, we give an improvement of Fröhlich-Spencer-Wittwer’s result [16].
Compared to the methods of [15, 16, 33] which are based on certain kind
of multiscale analysis, our method is purely dynamical and gives concrete
description of the localization phases 5. We are also able to give almost
sharp estimate on the decay rate of the all eigenfunctions.

1.1. Statement of the main results. Before formulating our results, we
first give precise arithmetic description on α and θ. A frequency α ∈ R is
called (κ, τ)-Diophantine (denoted by α ∈ DC(κ, τ)) if

(1.2) dist(kα,Z) ≥ γ|k|−τ , ∀k ∈ Z\{0}.

We will use the notation

DC =
⋃

κ>0; τ>1

DC(κ, τ).

For a given irrational number α, we say θ ∈ (0, 1) is (γ, τ)–Diophantine with
respect to α (denoted by Θτ

γ) if

‖2θ + kα‖R/Z >
γ

(|k|+ 1)τ
,

for any k ∈ Z, where ‖x‖R/Z = dist(x,Z). Let Θ =
⋃

γ>0; τ>1Θ
τ
γ . Clearly, Θ

is a set of full Lebesgue measure for any fixed irrational number α.

Theorem 1.1. Given α ∈ DC and an even C2 cosine type potential v, there
exists λ0(α, v) such that Hλv,α,θ has Anderson localization for all θ ∈ Θ
provided that λ > λ0.

4Operator (1.1) with v(θ) = 2 cos 2πθ.
5In [15, 16, 33], Anderson localization was proved for almost every phase without an

arithmetic description.
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Remark 1.1. To give a simple arithmetic description of the localization
phases (i.e., the Diophantine phases), the eveness condition seems to be
necessary.

Remark 1.2. If α is very Liouvillean or θ is very α-Liouvillean (i.e., for
generic α and θ), Hλv,α,θ has purely singular continuous spectrum [8, 26, 27].
Thus to prove localization type results, the arithmetic assumptions on both
α and θ are necessary.

We also have a precise estimate on the decay rate of all eigenfunctions.

Theorem 1.2. Given α ∈ DC, ε > 0 and an even C2 cosine type potential
v, there exists λ0(α, v, ε) such that all eigenfunctions of the operator Hλv,α,θ

satisfy

lim inf
|n|→∞

−
ln

(

u2E(n) + u2E(n+ 1)
)

2|n|
≥ (1− ε) ln λ

provided that λ > λ0.

Remark 1.3. For the almost Mathieu operator (a typical example), Jito-
mirskaya [23] proved

lim inf
|n|→∞

−
ln

(

u2E(n) + u2E(n+ 1)
)

2|n|
= lnλ.

Thus, the decay rate in the above theorem is almost sharp.

We point out an interesting phenomenon based on Theorem 1.1: The
localization phases do not sensitively depend on the space of even C2 cosine
type v. This phenomenon can be viewed as the robustness of localization
phases introduced in [18].

Definition 1.1. For fixed α, HV,α,θ is said to have Cr robust Anderson lo-

calization if there is a Cr neighborhood B(V ) of V and a subset Θ̃, such
that

⋂

Ṽ ∈B(V )

{θ |HṼ ,α,θ has AL} = Θ̃,

moreover |Θ̃| = 1.

Theorem 1.1 proved that Hλv,α,θ with even cosine like potential has C2

robust Anderson localization in the space of even potentials. It seems that
both the symmetry (eveness) and the profile (C2 cosine type) of the potential
play key roles in robust Anderson localization.

We also mention some important results related to Anderson localization.
Eliasson [14] proved that if v is a Gevrey function satisfying non-degenerate
conditions, for any fixed Diophantine α, Hλv,α,θ has pure point spectrum
for a.e. θ and large enough λ (depending on α). Bourgain and Goldstein
[10] proved that, in the positive Lyapunov exponent regime, for any fixed
θ, Hλv,α,θ has AL for a.e. Diophantine α provided that v is a non-constant
real analytic function. See [11, 17, 20, 29] for more results.
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1.2. Strategy of the proof. As we mentioned above, our method is mo-
tivated by the methods introduced in [8, 18, 19, 24, 34]. In [8, 24], Avila-
You-Zhou and Jitomirskaya-Kachkovskiy gave criteria to prove almost sure
Anderson localization for quasiperiodic operators based on nonperturbative
reducibility method and duality argument. More precisely, there are two
steps. The first step is to construct a family of eigenvalues and eigenfunc-
tions for almost every phase based on reducibility and duality. The second
step is to show the family of eigenfunctions they constructed form a complete
basis of ℓ2(Z). However, the arithmetic version of Anderson localization is
more difficult to be proved compared with almost sure Anderson localiza-
tion. In [18], Ge-You found a strategy to recover the phases lost in using the
method in [8, 24], by introducing an auxiliary measure defined by reducibil-
ity, i.e. the R-measure. By using quantitative reducibility, they proved
stratified continuity of the R-measure with respect to the phase on the set
of Diophantine phases. Ge-You’s method was further developed and simpli-
fied by Ge-You-Zhao in [19] to give a new proof of the arithmetic transition
conjecture proposed by Jitomirskaya [22].

In the present paper, instead of using reducibility and duality, we give a
new way to construct a family of eigenvalues with exponentially localized
eigenfunctions for C2 cosine type quasiperiodic Schrödinger operators by
the induction scheme developed in [34]. The intuition is that if the inter-
section between asymptotic stable and unstable directions of the transfer
matrix persist in larger and larger time scale which eventually implies the
intersection of stable and unstable directions and the norm of the transfer
matrix grows exponentially, then one can construct an eigenfunction. When
a family of eigenvalues with exponentially localized eigenfunctions are con-
structed almost surely, almost sure Anderson localization follows directly
by the criteria in [8, 24]. To prove the arithmetic version of AL, i.e., AL
for all θ ∈ Θ, one possible way is to prove that dµpp

θ
6 is continuous in Θ.

However, this seems to be a difficult task and we don’t know how to prove
it directly since dµpp

θ sensitively depends on θ. Our strategy is to introduce
a new measure dνθ via the localized eigenfunctions we constructed, which
is called L-measure, motivated by the R-measure defined in [18]. We will
prove that dνθ is absolutely continuous with respect to dµpp

θ . The advantage
of dνθ is its stratified continuity in Θ, more precisely the continuity in Θτ

γ ,
can be proved by quantitative estimates of the localized eigenfunctions. In
this way, we can approximate each lost phase in Θ by localization phases,
and prove dµpp

θ (R) = dνθ(R) = 1 for all phases in Θ.

2. Wang-Zhang’s induction theorem

Inspired by [36], Wang and Zhang in [34] developed an induction scheme
to study the positivity and continuity of the Lyapunov exponent and Cantor
spectrum of quasiperiodic Schrödinger operators with C2 cosine type poten-
tials [34, 35]. We observe that the induction theorem can also be used to
construct eigenfunctions, which is one of the corner stones in our proof of

6the pure point piece of the spectral measure
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the arithmetic version of Anderson localization. Now we briefly introduce
their induction theorem. The readers are referred to [34] for details.

For θ ∈ R/Z, let

Rθ =

(

cos 2πθ − sin 2πθ
sin 2πθ cos 2πθ

)

∈ SO(2,R).

Define
s : SL(2,R) → RP1 = R/(πZ)

as the most contraction direction of A ∈ SL(2,R), i.e., ‖A · ŝ(A)‖ = ‖A‖−1

for unit vector ŝ(A) in the direction s(A). Abusing the notation a little,
define u(A) = s(A−1) and û(A) = ŝ(A−1). Then for A ∈ SL(2,R), it is
clear that

A = Ru ·

(

‖A‖ 0
0 ‖A‖−1

)

·Rπ
2
−s,

where s, u ∈ [0, π) are angles corresponding to the directions s(A), u(A) ∈
R/(πZ).

The main object of the present paper is the following Schrödinger cocycles
(α, Sλv

E ), where

Sλv
E (x) :=

(

E − λv(x) −1
1 0

)

, E ∈ R.

Let λ ≥ λ0 = λ0(v) ≫ 1 and t = E
λ ∈ J = [inf v − 2, sup v + 2]. In this case,

there is B ∈ C2(T× J, SL(2,R)) such that

(2.1) B−1(x+ α, t)

(

E − λv(x) −1
1 0

)

B(x, t) = A(x, t),

where

A(x, t) =

(

λ(x, t) 0
0 λ−1(x, t)

)

· Rφ(x,t), cot φ(x, t) = t− v(x).

(2.1) in fact gives the polar decomposition of the Schrödinger cocycles.

From now on, let A(x, t) be as above and

An(x, t) :=

{

A(x+ (n − 1)α, t) · · ·A(x+ α, t)A(x, t), n ≥ 0

A−1(x+ nα, t)A−1(x+ (n+ 1)α, t) · · ·A−1(x− α, t), n < 0
.

Abusing the notation a little bit, for n ≥ 1, we define

sn(x, t) = s[An(x, t)], un(x, t) = s[A−n(x, t)].

We call sn (respectively, un) the n-step stable (respectively, unstable) direc-
tion.

Set I0 = R/Z and g1(x, t) = s1(x, t) − u1(x, t) = tan−1[t − v(x)] for all
t ∈ J . Let {pn

qn
}n≥1 be the continued fraction approximants of α. Fix a large

N = N(v). [34] proved the following conclusion by induction. Assume that
for i ≥ 1, the following objects are well defined:

(1) i-th step critical points :

Ci(t) = {ci,1(t), ci,2(t)}

with ci,j(t) ∈ Ii−1,j(t) minimizing {|gi(x, t)|, x ∈ Ii−1,j(t)}.
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(2) i-th step critical interval :

Ii,j(t) = {x : |x− ci,j(t)| ≤
1

2iq2τN+i−1

} and Ii(t) = Ii,1(t) ∪ Ii,2(t).

(3) i-th step return times :

qN+i−1 ≤ r±i (x, t) : Ii(t) → Z+

are the first return times (back to Ii(t)) after time qN+i−1 − 1. Here
r+i (x, t) is the forward return time and r−i (x, t) is backward. Let

ri(t) = min
{

r+i (t), r
−
i (t)

}

with r±i (t) = minx∈Ii(t) r
±
i (x, t).

(4) (i+ 1)-th step angle gi+1 :

gi+1(x, t) = sri(t)(x, t)− uri(t)(x, t) : Di → RP1,

where

Di := {(x, t) : x ∈ Ii(t), t ∈ J}.

The next theorem, which is from [34]’s induction theorem, gives the pre-
cise description of the several important quantities mentioned above.

Theorem 2.1 (Theorem 3 of [34]). Given α ∈ DC(κ, τ), ε > 0 and a C2

cosine type potential v, there exists λ0(α, v, ε) such that the following holds
for λ > λ0.

(1) For each i ≥ 1 and t ∈ J, it holds that

(2.2) |ci,j(t)− ci+1,j(t)| < Cλ− 3

4
ri−1(t), j = 1, 2;

(2) For each i ≥ 1, t ∈ J, and all x ∈ Ii(t), it holds that

(2.3) ‖A±r±i (x,t)(x, t)‖ > λ(1−ε)r±i (x,t) ≥ λ(1−ε)qN+i−1 .

(3) For each i ≥ 1, t ∈ J, and all x ∈ Ii,j(t), it holds that

(2.4) |gi(x, t)| ≥ c|x− ci,j(t)|
3 j = 1, 2.

(4) For each i ≥ 1 and t ∈ J . If |ci,1(t) − ci,2(t) − kα| ≥ 1
q2τ
N+i−1

for all

|k| ≤ qN+i−1, then

(2.5) ‖gi+1(·, t)− gi(·, t)‖C2 ≤ Cλ− 3

2
ri−1(t).

Theorem 2.1 is a simplified version of Theorem 3 in [34]. See (57)-(59) in
Theorem 3 and Lemma 6 of [34].

3. Construction of eigenfunctions

In this section, we construct sufficiently many “good” eigenfunctions of
Hλv,α,θ by Theorem 2.1. We denote by Σλv,α the spectral set of Hλv,α,θ (It
does not depend on θ since α is irrational).
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3.1. The critical points and growth of the transfer matrix.

Theorem 3.1. Let α ∈ DC(κ, τ) and v be an even C2 cosine type potential.
For any ε > 0, there exists λ0(ε, α, v) such that if λ > λ0, and t ∈ λ−1Σλv,α,
then there exists a strictly increasing continuous surjection

c∞(t) : λ−1Σλv,α → [0, 1/2],(3.1)

and there exist s∞(c∞(t), t), u∞(c∞(t), t) ∈ RP1 if c∞(t) ∈ Θτ
γ with

s∞(c∞(t), t) = u∞(c∞(t), t),(3.2)

such that

‖An(c∞(t), t)ŝ∞(c∞(t), t)‖ ≥ cλ−(1−ε)|n|, ∀n ∈ Z,(3.3)

where c = c(κ, γ, τ, v, ε) > 0 and ŝ∞(c∞(t), t) is the unit vector in the direc-
tion s∞(c∞(t), t).

Proof. By (2.2) in Theorem 2.1 (See also Theorem 3 [34] and Theorem 2 in
[35]), for any t ∈ λ−1Σλv,α, for all j ≥ 1 and m = 1, 2, we have

|cj+1,m(t)− cj,m(t)| ≤ Cλ− 3

4
rj−1(t) ≤ Cλ− 1

10
qN+j−2 ,(3.4)

thus there exists c∞,m(t) such that

c∞,m(t) = lim
n→∞

cn,m(t).

We first prove c∞,1(t) = −c∞,2(t), this is because of (2.3) in Theorem 2.1,
we have

‖A±rj(t)(cj,m(t), t)‖ ≥ λ(1−ε)rj(t),

this implies

‖Arj(t)(cj,m(t), t) · srj(t)(cj,m(t), t)‖ ≤ λ−(1−ε)rj(t),

‖A−rj(t)(cj,m(t), t) · urj(t)(cj,m(t), t)‖ ≤ λ−(1−ε)rj(t).

Since v is even, we have

‖Arj(t)(−cj,m(t), t) ·
(π

2
− urj(t)(cj,m(t), t)

)

‖

= ‖A−rj(t)(cj,m(t), t) · urj(t)(cj,m(t), t)‖ ≤ λ−(1−ε)rj(t),

this implies that

(3.5)
∣

∣

∣

π

2
− urj(t)(cj,m(t), t) − srj(t)(−cj,m(t), t)

∣

∣

∣ ≤ λ− 3

2
rj(t),

similarly

(3.6)
∣

∣

∣

π

2
− srj(t)(cj,m(t), t)− urj(t)(−cj,m(t), t)

∣

∣

∣ ≤ λ− 3

2
rj(t).

(3.5) and (3.6) imply

|grj(t)(cj,m(t), t) − grj(t)(−cj,m(t), t)| ≤ 2λ− 3

2
rj(t).

By (2.4) in Theorem 2.1,

c|cj,m(t)− (−cj,m(t))|3 ≤ |grj(t)(cj,m(t), t) − grj(t)(−cj,m(t), t)|.
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Hence

(3.7) |cj,m(t)− (−cj,m(t))| ≤ Cλ− 1

2
rj(t).

By (3.4), we have
c∞,1(t) = −c∞,2(t).

We simply denote c∞(t) = c∞,1(t). By the induction theorem (Theorem
2.1) we have

c∞(t) =

{

0 t = inf λ−1Σλv,α,
1
2 t = supλ−1Σλv,α.

Note that c∞(t) is continuous on λ−1Σλv,α, since cj,1(t) converges uniformly
to c∞(t) on λ−1Σλv,α and cj,1 is continuous, combine these together, we get

that c∞(t) is a continuous surjection from λ−1Σλv,α to [0, 12 ].

Now we prove c∞(t) is increasing on λ−1Σλv,α, we need the following
result: for t ∈ λ−1Σλv,α with c∞(t) ∈ Θτ

γ , i.e.,

|2c∞(t)− kα| ≥
γ

(|k| + 1)τ
, ∀k ∈ Z,

by (3.4), there exists j0(γ), such that for all j > j0

|cj,1(t)− cj,2(t)− kα| ≥
1

q2τN+j−1

, |k| ≤ qN+j−1,(3.8)

thus by Corollary 3 in [35],

(3.9)
d (cj,1(t)− cj,2(t))

dt
≥ c > 0, 7

in a small neighborhood of t. In view of (3.7) and (3.9), for any sequence
t1 > · · · > tn > · · · with tn → t, we have c∞(tn) > c∞(t) for all n sufficiently
large.

We are now ready to prove the monotonicity of c∞(t). We prove this by
contradiction, otherwise, there exists t1 < t2 such that c∞(t1) > c∞(t2),
for γ ≪ |c∞(t1) − c∞(t2)|, there exists y ∈ Θτ

γ ∩ (c∞(t2), c∞(t1)), let t′ =

sup{t ∈ (t1, t2) : c∞(t) = y} and for t ∈ (t′, t2), we have

c∞(t) < y.

Thus there exists sequence t1 > · · · > tn > · · · with tn → t′, such that
c∞(tn) < c∞(t′) for all n sufficiently large which is a contradiction.

We omit the dependence on t in the following. For any n ≥ q100Cτ
N+j0−1, let

j0 < j1 < · · · < jk = n be the return times of c∞(t) to IN+j0 , by (2.3), (2.4)
in Theorem 2.1 and (3.4), we have

‖An(c∞)‖ ≥
k−1
∏

i=0

‖Aji−ji−1
(c∞ + ji−1α)‖q

6kτ
N+j0−1λ

−n+jk−1 ≥ cλ(1−ε)|n|, 8

for some c = c(κ, γ, τ, v, ε) > 0. Thus we have proved (3.3). Finally, (3.2)
follows from (2.5) in Theorem 2.1.

�

7In case of (3.8), ρj(t) = cj,1(t)− cj,2(t) in [35].
8Here we use the fact that |n− jk−1| ≤ qCN+j0−1, it follows from Lemma 3 of [6].
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3.2. Construction of good eigenfunctions. Recall that t = λ−1E.

Definition 3.1. For any γ > 0 and C > 0, a normalized eigenfunction 9 u(n)
is said to be (C, γ)-good, if

|u(n)| ≤ Ce−γ|n|

for any n ∈ Z.

Proposition 3.1. Assume α ∈ DC(κ, τ) and v is an even C2 cosine type
potential, for any ε > 0, there exists λ0(ε, α, v) and C(κ, γ, τ, v, ε) such that
if λ > λ0 and c∞(t) ∈ Θτ

γ, then Hλv,α,c∞(t) has a (C, (1 − ε) ln λ)-good
eigenfunction corresponding to eigenvalue E = λt.

Proof. We denote by AE,λ(θ) =

(

E − λv(θ) −1
1 0

)

, for n ≥ 0, by (2.1), we

have
∣

∣

∣
AE,λ

n+1(c∞(t)) ·
(

B−1(c∞(t), t) · sn+1(c∞(t), t)
)

∣

∣

∣
≤ C ‖An+1(c∞(t), t)‖−1 ,

∣

∣

∣
AE,λ

n+1(c∞(t)) ·
(

B−1(c∞(t), t) · sn(c∞(t), t)
)

∣

∣

∣

=
∣

∣

∣
AE,λ(c∞(t) + nα)AE,λ

n (c∞(t)) ·
(

B−1(c∞(t), t) · sn(c∞(t), t)
)

∣

∣

∣

≤C ‖An(c∞(t), t)‖−1 .

Hence
∣

∣

(

B−1(c∞(t), t) · sn+1(c∞(t), t)
)

−
(

B−1(c∞(t), t) · sn(c∞(t), t)
)∣

∣

≤2C ‖An(c∞(t), t)‖−1 ‖An+1(c∞(t), t)‖−1 .

This implies that
∣

∣

(

B−1(c∞(t), t) · s∞(c∞(t), t)
)

−
(

B−1(c∞(t), t) · sn(c∞(t), t)
)∣

∣

≤
∑

k≥n

2C ‖Ak(c∞(t))‖−1 ‖Ak+1(c∞(t))‖−1 .

We have
∣

∣

∣
AE,λ

−n (c∞) ·
(

B−1(c∞(t), t) · u∞(c∞(t), t)
)

∣

∣

∣

≤C ‖An(c∞(t), t)‖−1 +
∥

∥

∥
AE,λ

n (c∞(t)) ·
(

B−1(c∞(t), t) · (sn(c∞(t), t)− s∞(c∞(t), t))
)

∥

∥

∥

≤C



‖An(c∞(t), t)‖−1 + ‖An(c∞(t), t)‖
∑

k≥n

‖Ak(c∞(t), t)‖−1 ‖Ak+1(c∞(t), t)‖−1



 .

By (3.3), we have
∑

k≥n

‖Ak(c∞(t), t)‖−1 ‖Ak+1(c∞(t), t)‖−1 ≤ Cλ−2(1−ε)|n|,

for some C = C(κ, γ, τ, v, ε).

9We say u(n) is normalized if
∑

n
|u(n)|2 = 1.
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Similarly,
∣

∣

∣
AE,λ

n (c∞) ·
(

B−1(c∞(t), t) · s∞(c∞(t), t)
)

∣

∣

∣

≤C ‖A−n(c∞(t), t)‖−1 +
∥

∥

∥
AE,λ

−n (c∞(t)) ·
(

B−1(c∞(t), t) · (un(c∞(t), t) − u∞(c∞(t), t))
)

∥

∥

∥

≤C



‖A−n(c∞(t), t)‖−1 + ‖A−n(c∞(t), t)‖
∑

k≥n

‖A−k(c∞(t), t)‖−1 ‖A−k−11(c∞(t), t)‖−1



 .

For E = λt, we denote by
(

uE(n+ 1)
uE(n)

)

= AE,λ
n (c∞(t))B−1(c∞(t), t) · s∞(c∞(t), t),

then for n ∈ Z, by (3.2), we have
∥

∥

∥

∥

(

uE(n + 1)
uE(n)

)∥

∥

∥

∥

= ‖AE,λ
n (c∞(t))B−1(c∞(t), t) · s∞(c∞(t), t)‖

≤ Cλ−(1−ε)|n|.

Thus (uE)n is a (C, (1 − ε) ln λ)-good eigenfunction for Hλv,α,c∞(t). �

4. Completeness arguments

4.1. L-measure. In [18], the authors introduced R-measure to prove the
arithmetic version of Anderson localization. Inspired by the idea, we intro-
duce similarly a measure by Proposition 3.1 in stead of reducibility in [18].
The measure, we call it L-measure, will play an important role in the proof of
arithmetic version of Anderson localization. We next define E : T → Σλv,α

as the following:

E(θ) =

{

λc−1
∞ (θ) θ ∈ [0, 12 ],

λc−1
∞ (1− θ) θ ∈ (12 , 1].

Since c∞ is increasing in the spectrum, E(θ) takes one value
For every τ > 1 and γ > 0, we define Eτ

γ = E(Θτ
γ). For any E ∈ Eτ

γ , we

define a vector-valued function uE : Eτ
γ → ℓ2(Z) as the following,

(4.1) uE(n) =
vE(n)

‖vE‖L2

,

where vE is the eigenfunction of Hλv,α,c∞(t) constructed in Proposition 3.1.

For any fixed θ ∈ Θτ = ∪γ>0Θ
τ
γ , we denote by Em(θ) = λc−1

∞ (Tmθ). We
can define the following L-measure,

Definition 4.1 (L-measure). νθ : B → R is defined as:

νθ(B) =
∑

m∈NB
θ

|uEm(θ)(m)|2 + |uEm(θ)(m+ 1)|2

2
,

for all B in the Borel σ-algebra B of R, where NB
θ = {m|Em(θ) ∈ B}.

The L-measure is well defined since the eigenvalues are simple and has
the following property.
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Lemma 4.1. For a.e. θ,

νθ(E
τ
γ ) ≥ |Θτ

γ |

where | · | is the Lebesgue measure.

Proof. Note that νθ(E
τ
γ ) is measurable in θ and νθ(E

τ
γ ) = νθ+α(E

τ
γ ). Thus

νθ(E
τ
γ ) = C for a.e. θ.

For any θ ∈ T, let Nθ = {m|Em(θ) ∈ Eτ
γ }. For any m ∈ Z, if m /∈ Nθ,

let Pm(θ) = 0. If m ∈ Nθ, let Pm(θ) be the spectral projection of Hλv,α,θ

onto the eigenspace corresponding to Em(θ). By the definition of Em(θ),
uEm(θ)(n) is an normalized eigenfunction of Hλv,α,Tmθ, thus T−muEm(θ)(n)
10 is an normalized eigenfunction of Hλv,α,θ. Now we define a projection
operator for any θ ∈ T,

P (θ) =
∑

Tmθ∈Θτ
γ

Pm(θ).

Note that all these E’s in Eτ
γ are different and all Pm(θ) are mutually or-

thogonal. It follows that P (θ) is a projection. Moreover, we have
∫

T

〈P (θ)δ0, δ0〉+ 〈P (θ)δ0, δ0〉

2
dθ =

∫

T

∑

Tmθ∈Θτ
γ

〈Pm(θ)δ0, δ0〉+ 〈Pm(θ)δ0, δ0〉

2
dθ.

By Fubini theorem, we have
∫

T

∑

Tmθ∈Θτ
γ

〈Pm(θ)δ0, δ0〉+ 〈Pm(θ)δ1, δ1〉

2
dθ

=

∫

Θτ
γ

∑

m∈Z

〈PmT−m(θ)δ0, δ0〉+ 〈Pm(T−mθ)δ1, δ1〉

2
dθ.

Since TmHλv,α,T−mθT−m = Hλv,α,θ, we have

Hλv,α,T−mθT−muEm(θ) = T−mHλv,α,θuEm(θ) = Em(θ)T−muEm(θ)

= Em(T−mθ)T−muEm(θ).

It follows that T−muEm(θ) belongs to the range of Pm(T−mθ), and for each
δn ∈ ℓ2(Z), we have

〈Pm(T−mθ)δn, δn〉 ≥ |〈T−muEm(θ), δn〉|
2.

This implies that

∑

m∈Z

∫

Θτ
γ

〈PmT−m(θ)δ0, δ0〉+ 〈Pm(T−mθ)δ1, δ1〉

2
dθ

≥
∑

m∈Z

∫

Θτ
γ

|〈T−muEm(θ), δ0〉|
2 + |〈T−muEm(θ), δ1〉|

2

2
dθ

=
∑

m∈Z

∫

Θτ
γ

|〈TmuEm(θ), δ0〉|
2 + |〈T−muEm(θ), δ1〉|

2

2
dθ.

10T−m is a translation defined by T−mu(n) := u(n+m).
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Since uEm(θ) is a normalized eigenfunction, i.e.,
∑

m∈Z

|〈TmuEm(θ), δ0〉|
2 =

∑

m∈Z

|〈TmuEm(θ), δ1〉|
2 = 1.

Hence we have
∫

T

〈P (θ)δ0, δ0〉+ 〈P (θ)δ1, δ1〉

2
dθ

≥
∑

m∈Z

∫

Θτ
γ

|〈TmuEm(θ), δ0〉|
2 + |〈T−muEm(θ), δ1〉|

2

2
dθ

=|Θτ
γ |.

Thus

νθ(E
τ
γ ) ≥ |Θτ

γ |

for a.e. θ. This finishes the proof. �

4.2. Arithmetic version of Anderson localization.

Lemma 4.2. For any ǫ > 0, there exists N0(γ, τ, v, α, ǫ) > 0 such that for
all θ ∈ Θτ

γ, we have

RN0
νθ(E

τ
γ ) :=

∑

|m|>N0:Tmθ∈Θτ
γ

|uEm(θ)(m)|2 + |uEm(θ)(m+ 1)|2

2
≤ ǫ.

Proof. Note that for any Tmθ ∈ Θτ
γ , by Proposition 3.1,

|uEm(θ)(m)|2 + |uEm(θ)(m+ 1)|2

2
≤ Ce−

lnλ
2

|m|.

Thus for any ǫ > 0, there exists N0(γ, τ, v, α, ǫ) > 0 such that for all θ ∈ Θτ
γ ,

∑

|m|>N0:Tmθ∈Θτ
γ

|uEm(θ)(m)|2 + |uEm(θ)(m+ 1)|2

2
≤ ǫ.

�

We define Eτ =
⋃

γ>0 E
τ
γ . Then

Lemma 4.3. For any N > 0 and ǫ > 0, there exists δ(γ, τ, v, α,N, ǫ) > 0
such that

|TNνθ(E
τ )− TNνθ′(E

τ )| ≤ ǫ

for any θ, θ′ ∈ Θτ
γ with |θ − θ′| ≤ δ where TNνθ(E

τ ) := νθ(E
τ )−RNνθ(E

τ ).

Proof. For any fixed N and any θ ∈ Θτ
γ , we have

‖θ + kα+ nα‖R/Z ≥
γ

(|k + n|+ 1)τ
≥

γ(1 +N)−τ

(|n|+ 1)τ
, |k| ≤ N.

Thus T kθ ∈ Θτ for |k| ≤ N . By Proposition 2.1, we have

‖vEm(θ)‖ℓ2 ≤ C(γ, τ, v, α).
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By telescoping and Lemma 4.2, there exists δ(γ, τ, v, α,N, ǫ), such that if
|θ − θ′| < δ, then

∣

∣‖vEk(θ)‖
2
ℓ2 − ‖vEk(θ′)‖

2
ℓ2

∣

∣ ≤
ǫC−4

500(2N + 1)
.(4.2)

∣

∣vEk(θ)(k)− vEk(θ′)(k)
∣

∣ ≤
ǫC−4

500(2N + 1)
, ∀|k| ≤ 2N + 1.(4.3)

(4.2) and (4.3) imply for any |k| ≤ N ,

|uEk(θ)(k)− uEk(θ′)(k)| =

∣

∣

∣

∣

vEk(θ)(k)

‖vEk(θ)‖ℓ2
−

vEk(θ′)(k)

‖vEk(θ′)‖ℓ2

∣

∣

∣

∣

=

∣

∣vEk(θ)(k)‖vEk(θ′)‖ℓ2 − vEk(θ′)(k)‖vEk(θ)‖ℓ2
∣

∣

‖vEk(θ)‖ℓ2‖vEk(θ′)‖ℓ2

≤
ǫC−4

500(2N + 1)

‖vEk(θ)‖ℓ2 +C

‖vEk(θ)‖ℓ2‖vEk(θ′)‖ℓ2
.

Thus we have

|uEk(θ)(k)− uEk(θ′)(k)| ≤
ǫ

100(2N + 1)
.

By Definition 4.1 and (4.1), one has

|TNνθ(E
τ )− TNνθ′(E

τ )|

=

∣

∣

∣

∣

∣

∣

∑

|k|≤N

|uE(T kθ)(k)|
2 −

∑

|k|≤N

|uE(T kθ′)(k)|
2

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∑

|k|≤N

|uE(T kθ)(k + 1)|2 −
∑

|k|≤N

|uE(T kθ′)(k + 1)|2

∣

∣

∣

∣

∣

∣

≤
ǫ

50(2N + 1)
(2N + 1) ≤ ǫ.

�

Lemma 4.4. For any θ ∈ Θτ
γ, we have θ is Θ100τ

γ/100- homogenous, i.e.,

|(θ − σ, θ + σ) ∩Θ100τ
γ/100| ≥ σ for any σ > 0.

Proof. Let Θk = {θ ∈ [0, 1) : ‖2θ + kα‖R/Z < γ
100(|k|+1)100τ

}, then Θ100τ
γ/100 =

[0, 1)\ ∪k∈Z Θk. Thus for any σ > 0 sufficiently small, we have

(θ − σ, θ + σ) ∩Θ100τ
γ/100 = (θ − σ, θ + σ)\ ∪k∈Z Θk.

Notice that if Θk ∩ (θ − σ, θ + σ) 6= ∅, then
γ

(|k| + 1)τ
≤ ‖kα+ 2θ‖R/Z ≤ 4σ.

It follows that |k| ≥ ( γ
4σ )

1

τ , thus |Θk| ≤ C(γ, τ)σ100 which implies that

|(θ − σ, θ + σ) ∩Θ100τ
γ/100| ≥ 2σ −

∑

k≥( γ
σ
)
1
τ

Θk ≥ σ.
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�

Proof of Theorem 1.1: For any fixed θ ∈ Θτ
γ , by Lemma 4.4 and Lemma

4.1, for any γ1 < γ/100, there exists a sequence θk ∈ Θ100τ
γ1 such that θk → θ

and

νθk(E
100τ
γ1 ) ≥

∣

∣Θ100τ
γ1

∣

∣ .

By Lemma 4.2, there exists N0(γ1, τ, , α) > 0 such that

RN0
νθk(E

100τ
γ1 ) ≤ γ1.

By Lemma 4.3,

TN0
νθ(E

100τ ) = lim
k→∞

TN0
νθk(E

100τ ).

Thus

νθ(E
100τ ) ≥ TN0

νθ(E
100τ ) ≥ lim sup

k→∞
TN0

νθk(E
100τ
γ1 )

≥
∣

∣Θ100τ
γ1

∣

∣− γ1 ≥ 1− 2γ1.

Let γ1 → 0, we have

1 ≤ νθ(E
100τ ) ≤ µpp

θ (E100τ ) ≤ µθ(E
100τ ) ≤ 1, 11

where µθ is the spectral measure of Hλv,α,θ defined by

1

2
(〈δ0, χB(Hλv,α,θ)δ0〉+ 〈δ1, χB(Hλv,α,θ)δ1〉) =

∫

R

χBdµθ,

and µpp
θ is pure point piece of µθ. It follows that µθ = µpp

θ for any θ ∈ Θτ
γ .

Thus we finish the proof. �
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