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Abstract

The definitions of scattering matrix and inclusive scattering matrix in the
framework of formulation of quantum field theory in terms of associative al-
gebras with involution are presented. The scattering matrix is expressed in
terms of Green functions on shell (LSZ formula) and the inclusive scattering
matrix is expressed in terms of generalized Green functions on shell. The ex-
pression for inclusive scattering matrix can be used also for quasi-particles (for
elementary excitations of any translation-invariant stationary state, for exam-
ple, for elementary excitations of equilibrium state.) An interesting novelty is
the consideration of associative algebras over real numbers.

1 Introduction

The standard algebraic approach to quantum theory is based on consideration
of associative algebra with involution ∗(algebra of observables). This algebra
will be denoted byA, we assume that it has a unit. Usually it is assumed thatA
is an algebra over complex numbers (then the involution should be antilinear),
but we consider also the case when A is an algebra over real numbers. Notice,
however, that the case of algebras over real numbers is less natural; the reader
can skip everything related to this case.

The states are defined as positive linear functionals on A (one says that
the functional ω is positive if ω(A∗A) ≥ 0 for A ∈ A). The set of states is a
convex cone denoted by C. Proportional states are identified, hence instead of
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the cone C one can consider the convex set C0 of states obeying ω(1) = 1 (the
set of normalized states).

Time translation (evolution operator) acts on A as involution preserving
automorphism. To define particles and their scattering we need also spatial
translations; together time and spatial translations span commutative group
T . The time translations are denoted by Tτ and spatial translations by Tx
where x ∈ R

d. The induced transformations of the space of states are denoted
by the same symbols. If A ∈ A we use the notation A(τ,x) for TτTxA.

Let us consider a stationary translation-invariant state ω and the pre
Hilbert space H of the corresponding GNS (Gelfand-Naimark-Segal) repre-
sentation of A. Recall that in this representation there exists a cyclic vector Φ
obeying ω(A) = 〈AΦ,Φ〉. (One says that Φ is a cyclic vector if H = AΦ). The
translations descend to H. In complex case the infinitesimal translations (en-
ergy and momentum operators) are defined on a dense subset of Hilbert space
H̄ (of the completion of H), in real case they act on a dense subset of the
complexification of H̄. (We use the same notation for translations in H as for
automorphisms of A. The element A of the algebra A and the corresponding
operator in H are also denoted by the same symbol. Notice that representing
A as an operator we should consider translation of A as a conjugation with
TτTx, i.e. A(τ,x) = TτTxAT−τT−x. )

Elements of H can be regarded as excitations of ω.
The elementary space h is defined as a space of smooth fast decreasing

functions on R
d × I (all of their derivatives should decrease faster than any

power); it is equipped with L2 metric. (Here I denotes a finite set consisting
of m elements.) We should consider real -valued functions if A is an algebra
over R and complex-valued functions if A is an algebra over C. It is convenient
to consider the elements of h as columns of m functions on R

d. The spatial
translations act naturally on this space; we assume that the time translations
also act on h and commute with spatial translations. In momentum representa-
tion the spatial translation Tx is represented as multiplication by eixk and the
time translation Tτ is represented as a multiplication by a matrix e−iτE(k).We
assume that E(k) is a non-degenerate Hermitian matrix.

To guarantee that time translations act in h we assume that E(k) is a
smooth function of k and has at most polynomial growth. If h consists of
complex-valued functions then diagonalizing the matrix E(k) we can reduce
the general case to the case when m = 1; this remark was used in [8]. ( Notice,
however, that the eigenvalues of E(k) are not necessarily smooth functions of
k.)

An elementary excitation of ω is defined as an isometric map Φ : h→ H =
AΦ commuting with translations.

If A is an algebra over R we assume that the elements of h in momentum

2



representation obey the reality condition f∗(k) = f(−k).
We show that imposing the condition of asymptotic commutativity we can

define the scattering matrix and inclusive scattering matrix of elementary ex-
citations of ω. To analyze the properties of scattering matrix we assume that
ω has cluster property. Our results are based on ideas of [8] . ( This paper
was published as Section 13.3 of [14], an improved version of it was published
recently in preprint form.) Notice that the results of [8] generalize Haag-
Ruelle theory dealing with scattering matrix in Lorentz-invariant local quan-
tum field theories. (See [15] for an exposition of Haag-Ruelle theory closest to
our approach and [16] or [14] for generalization of this theory to the case when
Lorentz-invariance is not assumed.)

If A is a C∗-algebra over complex numbers (as in [8]) one can identify
(quasi-local) observables with self-adjoint elements of this algebra. For every
normalized state ω one defines a probability distribution of the observable a
corresponding to a self-adjoint element A in such a way that for every contin-
uous function f the expectation value of f(a) is equal to ω(f(A)). One can
consider also global observables corresponding to infinitesimal automorphisms
of A, in particular, energy and momentum corresponding to time and spatial
infinitesimal translations. We can talk about joint spectrum of energy and
momentum operators in H (in the space of excitations of translation-invariant
stationary state ω). We say that ω is a ground state if the energy operator in
H̄ is positive definite.

For algebras over real numbers one should consider skew-adjoint elements
(A = −A∗) instead of self-adjoint elements (for algebras over complex num-
bers there exists an obvious one-to-one correspondence A→ iA between skew-
adjoint and self-adjoint elements). The definition of the probability distribu-
tion of physical quantity used in the case of complex numbers does not work,
however, one can use the geometric approach to quantum theory to derive the
probability distribution from decoherence [3].

Elementary excitations of ground state are called particles. Elementary
excitations of arbitrary translation-invariant stationary state are called quasi-
particles. Quasi-particles are in general unstable; this means that the condi-
tions in the definition of elementary excitation are satisfied only approximately.
For quasi-particles the definition of scattering matrix does not work, however,
the definition of inclusive scattering matrix still makes sense.

Notice that our considerations can be applied to the scattering of elemen-
tary excitations of any translation-invariant state. In particular, they can be
applied to the scattering of elementary excitations of an equilibrium state.
It is important to notice that our considerations can be applied also in non-
equilibrium situation. The generalized Green functions we are using coincide
with functions considered in Keldysh formalism of non-equilibrium statistical
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physics. They appear also in the formalism of L-functionals that can be used
to give a simple and transparent derivation of diagram technique for calcula-
tion of generalized Green functions in the framework of perturbation theory
[10],[7],[14].

The ground state is not singled out in any way in our considerations.
The main goal of present paper is to give an exposition of scattering theory

in such a way that it can be easily compared with the definition of scattering
in geometric approach to quantum field theory [4] and in the approach based
on Jordan algebras [5]. In the present paper we consider also the case when
A is an algebra over R; this is necessary for comparison with papers [4], [5]
where we consider both real and complex elementary spaces. There exists an
opinion that complex numbers are important in the formulation of quantum
mechanics. It is true that imposing very natural axioms one can justify this
opinion (see, for example,[1]). One of goals of [3] and present paper is to
formulate axioms that allow us to avoid using complex numbers.

2 Scattering matrix.

Let us consider an algebra with involution A. We assume that spatial and
time translations act as automorphisms of A. We fix a translation-invariant
stationary state ω; excitations of ω are defined as elements of pre Hilbert
space H obtained by GNS construction. The algebra A acts in H. In what
follows we denote the operator in H corresponding to an element A ∈ A
by the same letter. We assume that all operators we are dealing with are
smooth. (An operator corresponding to an element B ∈ A is smooth if B =∫
α(x, t)A(x, t)dxdt, where α(x, t) ∈ S(Rd+1), A ∈ A.)
The element of H corresponding to ω is denoted by Φ.We define an elemen-

tary excitation as an isometric map of an elementary space h into H commuting
with spatial and time translations. (Recall that an elementary space consists
of smooth fast decreasing functions depending on spatial variable x or on mo-
mentum variable k and on discrete variable taking m values. We consider
simultaneously algebras over complex an real numbers; correspondingly the
functions considered below are complex-valued or real-valued.)

Let us fix m elements φ1, · · · , φm ∈ h and m operators B1, · · · , Bm ∈ A
obeying Φ(φi) = BiΦ. The elements φi are columns of functions φαi , together
they can be considered as a square matrix. We assume that this matrix is
invertible and commutes with the matrix E(k) governing the time translation
in h. If this condition is satisfied we say that B1, · · · , Bm are good operators.
We require also that B∗

i Φ = Φ(ψi) for some ψi ∈ h.
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Notice that
Bj(τ,x)Φ = Φ(TτTxφj).

In momentum representation

Bj(τ,x)Φ = Φ((e−iτE(k))
α

βe
ikxφβj ).

Let us consider a collection of smooth functions f = (f1(k), · · · , fm(k))
decreasing faster than any power. ( The space of smooth fast decreasing func-
tions is denoted by S; we can say that f ∈ Sm. ) We define an operator B(f, τ)
acting in H (in the completion of H) by the formula

B(f, τ) =

∫
dxf̃ jτ (x)Bj(τ,x) (1)

where f̃ jτ (x) denotes the inverse Fourier transform with respect to k of the
function f jτ (k) = f i(k)(eiτE(k))ji .

The operator B(f, τ) depends linearly of f ; it specifies a generalized vector
function of k, τ that can be written in the form

B(k, τ) = eiτE(k))B̂(τ,k) (2)

where B̂(τ,k) is a Fourier transform with respect to x of Bj(τ,x) considered
as a generalized vector function.

Let us prove that B(f, τ)Φ does not depend on τ. Using (1) we obtain

B(f, τ)Φ =

∫
dxf̃ iτ (x)Φ((e

−iτE(k))
α

βe
ikxφβi ) =

Φ(f j(k)(eiτE(k))ij(e
−iτE(k))

α

βφ
β
i ) = Φ(f jφαj ). (3)

(We have used the fact that the matrix eiτE(k) commutes with the matrix φ.)
In what follows we denote f jφαj as fφ where f is considered as column

vector and φ as a square matrix.
Later we will use this statement in the following form:

Lemma 1. Ḃ(f, τ)Φ = 0

Here dot denotes the derivative with respect to τ.

Definition 2. Let us consider the function f jτ (x) corresponding to the collec-
tion f = (f1, ..., fm) of smooth fast decreasing functions. We say that a set
τK(f) is an essential support of the function f jτ (x) if for all n

f jτ (x) < Cn(1 + |x|2 + τ2)−n

where x

τ
/∈ K.
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In the case when Fourier transforms f i(k) of functions f i(x) have compact
support one can assume that K(f) is compact, but in general is not clear that
one can find a compact set K obeying the conditions of this definition.

Let us impose the conditions of asymptotic commutativity on the operators
Aj ∈ A. This means that

||[Aj(τ,x), Ak ]|| <
Cn(τ)

1 + ||x||n
. (4)

Here n is an arbitrary integer and Cn(τ) is a polynomial. ( The condition we
have imposed can be weakened, see [8].)

Let us consider the vectors

Ψ(f1, τ1, ..., fn, τn) = B(f1, τ1)...B(fn, τn)Φ

where fi ∈ Sm is a collection of m smooth fast decreasing functions on R
d.

We say that f1, ..., fn are not-overlapping if the sets Kj = K(fj) do not
overlap (more precisely we should assume that the distance between sets Kj

and Kj′ is positive for j 6= j′).

Lemma 3. If f1, ..., fn do not overlap the vectors

Ψ(f1, τ1, ..., fn, τn) = B(f1, τ1)...B(fn, τn)Φ

have a limit in H̄ as τj tend to −∞; this limit will be denoted by

Ψ(f1, ..., fn| −∞)

The set spanned by such limits will be denoted by D−.

Let us sketch the proof of this lemma for the case when τ1 = ... = τn = τ.
It is sufficient to check that

∫ 0
−∞

||Ψ̇(τ)||dτ is finite. (Here Ψ(τ) stands for

Ψ(f1, τ, ..., fn, τ) and Ψ̇ denotes the derivative with respect to τ .) The deriva-
tive Ψ̇ is a sum of n terms; every term contains n factors and one of this factors
is a derivative. We can interchange the factors because the commutators can
be neglected as τ → ∞; this follows from the condition that the functions fj
do not overlap and from the fact that for non-overlapping families essential
supports of functions f iτ (x, j) and f

i
τ (x, j

′) are far away for large τ .
We use this remark to shift the factor with the derivative to the right. It

remains to apply the lemma 1.
Let us define the in-operators a+in by the formula

a+in(fφ) = a+in(f
jφαj ) = lim

τ→−∞
B(f, τ). (5)

6



Lemma 3 gives conditions on f that guarantee the existence of this limit as
strong limit on the set D−.

Let us introduce the asymptotic bosonic Fock space Has as a Fock repre-
sentation of canonical commutation relations

[b(ρ), b(ρ′)] = [b+(ρ), b+(ρ′)] = 0, [b(ρ), b+(ρ′)] = 〈ρ, ρ′〉

where ρ, ρ′ ∈ h.
We define Møller matrix S− as a map Has → H obeying

a+in(ρ)S− = S−b
+(ρ), S−|0〉 = |0〉

Here |0〉 stands for the Fock vacuum.
Notice that spatial and time translations act naturally in Has. The Møller

matrix commutes with these translations.
Operators ain(ρ) are defined on the image of S− by the formula

ain(ρ)S− = S−b(ρ).

They are Hermitian conjugate to a+in(ρ).
One can give a direct definition of Møller matrix by the formula

S−b
+(fk1 φ

α
k ) · · · b

+(fknφ
α
k )|0〉 = Ψ(f1, ..., fn| −∞)

or equivalently

S−(b
+(g1) · · · b

+(gn)|0〉) = lim
τ→−∞

B(g1φ
−1, τ) · · ·B(gnφ

−1, τ)Φ.

If g1, · · · , gn do not overlap the vector

B(g1φ
−1, τ) · · ·B(gnφ

−1, τ)Φ (6)

describes n distant particles as τ → −∞.
It is convenient to require strong cluster property ( see Section 2 of [8]) to

analyze the Møller matrix . (This condition can be weakened.)
Let us make the following

Assumption. The subset of the space Smn spanned by non-overlapping
families (f1, ..., fn) contains an open dense subset of Smn.

This assumption is not restrictive; see the discussion in Section 4.2 of [8].
Using the above assumption and cluster property one can prove the theorem

below.

Theorem 4. The Møller matrix S− is a well defined isometric operator.
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Notice first of all that it is not clear from our definitions that the in-
operators and Møller matrices are well defined (they can depend on the choice
of operators Bj). In other words, the operator S− a priori can be multivalued.
However, we can prove that this operator is isometric and use the fact that an
isometric operator is necessarily single-valued.

To prove that the operator S− preserves the inner product we express the
inner product

〈B(f1, τ1)...B(fn, τn)Φ, B
′(f ′1, τ

′

1)...B
′(f ′n′ , τ ′n′)Φ〉

in terms of truncated correlation functions. We assume that both (f1, ..., fn)
and (f ′1, ..., f

′

n′) do not overlap, then it follows from Definition 2 and cluster
property that only two-point correlations 〈B

′∗(f ′, τ ′)B(f, τ)Φ,Φ〉 = 〈B(f, τ)Φ, B′(f ′, τ ′)Φ〉
contribute in the limit τj, τ

′

j′ → −∞. Calculating the two-point correlation
functions by means of (9) we see that S− is an isometry. We assumed that the
vectors corresponding to families of non-overlapping functions span a dense
subset of Has, hence S− can be extended to an isometric embedding of the
space Has into H.

Taking τ → +∞ instead of τ → −∞ we obtain the definition of Møller
matrix S+ and of out-operators a+out(ρ), aout(ρ). If Møller matrices are surjec-
tive operators we can define the scattering matrix (S-matrix) by the formula
S = S−1

+ S−. In this case one says that the theory has particle interpretation.1

In other words we can say that the theory has particle interpretation if for
dense subset of H the time evolution can be represented as linear combination
of vectors

e−iHτΨ(f1, ..., fn| −∞) = Ψ(Tτf1, ..., Tτ fn| −∞)

for τ < 0 and of vectors

e−iHτΨ(f1, ..., fn|+∞) = Ψ(Tτf1, ..., Tτ fn|+∞)

fot τ > 0.
This means that generically both for τ → −∞ and for τ → +∞ we obtain

a collection of distant particles (the wave functions Tτfk have distant essential
supports if functions fk do not overlap). Without assumption that the theory
has particle interpretation we can define scattering matrix by the formula
S = S∗

+S−, however this definition gives a unitary operator only in the case
when the image of S− coincides with the image of S+.

1It is possible that the ”elementary space” h does not describe all particles existing in the theory
(for example, we are missing some composite particles). In this case we have a chance to get a
theory with particle interpretation extending the space h.
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Until now all of our considerations were applicable both to algebras over
real numbers and algebras over complex numbers. In what follows we restrict
ourselves to algebras over complex numbers. Notice, however, that we can
apply the considerations below to algebras over real numbers complexifying
the elementary space h and the pre Hilbert space H.

Let us diagonalize the matrix E(k); corresponding eigenvalues are denoted
by ǫj(k) and eigenvectors are denoted ραj (k). ( We assume that these eigenvec-
tors constitute an orthonormal system.) In momentum representation gener-
alized eigenvectors vectors of time and spatial translations are ραj (k)δ(k−k0).
We consider in- and out-operators corresponding to these eigenvectors as gen-
eralized functions of k; they are denoted

ain(k, j), a
+
in(k, j), aout(k, j), a

+
out(k, j).

For example,
∫
dk

∑
i f

i(k)a+out(k, i) = a+out(fρ) where fρ = f i(k)ραi (k)).
(Here ρ is considered as a square matrix.) These operators can be inter-
preted as annihilation and creation in- and out- operators of particles with
momentum k. Sometimes we omit discrete indices characterizing the type of
particle in these operators, then the operators ain(k), a

+
in(k), aout(k), a

+
out(k))

should be regarded as m-dimensional vectors and the values of corresponding
correlation functions as elements of tensor product of m-dimensional spaces.

If we assume that the theory has particle interpretation, the Møller ma-
trices establish unitary equivalence of ain(k, j), a

+
in(k, j), aout(k, j), a

+
out(k, j)

with b(k, j), b+(k, j) where b(k, j), b+(k, j) are operator generalized functions
in Has corresponding to b(fρ), b+(fρ).

The matrix elements of scattering matrix can be expressed in terms of in-
and out-operators:

〈S(b+(g1) · · · b
+(gn)|0〉), (b

+(h1) · · · b
+(hm)|0〉)〉 =

〈S−(b
+(g1) · · · b

+(gn)|0〉), S+(b
+(h1) · · · b

+(hm)|0〉)〉 =

〈a+in(g1) · · · a
+
in(gn)Φ, a

+
out(h1) · · · a

+
out(hm)Φ〉 =

〈 lim
τ→−∞

B(g1φ
−1, τ) · · ·B(gnφ

−1, τ)Φ, lim
τ→+∞

B(h1φ
−1, τ) · · ·B(hmφ

−1, τ)Φ〉

hence

〈S(b+(g1) · · · b
+(gn)|0〉), (b

+(h1) · · · b
+(hm)|0〉)〉 =

lim
τ→−∞,τ ′→+∞

ω(B∗(hmφ
−1, τ ′) · · ·B∗(h1φ

−1, τ ′)B(g1φ
−1, τ) · · ·B(gnφ

−1, τ))

(7)

9



and

〈a+in(k1, i1)...a
+
in(kn, in)Φ, a

+
out(k

′

1, j1)...a
+
out(k

′

m, jm)Φ〉 = (8)

lim
τ→−∞,τ ′→+∞

ω(B′(k′

m, jm, τ
′)...B′(k′

1, j1, τ
′)B(k1, i1, τ)...B(kn, in, τ))

where ∫
dk

∑
i

f i(k)B(k, i, τ) = B(fρφ−1, τ),

∫
dk

∑
i

f i(k)B′(k, i, τ ′) = B∗(fρφ−1, τ ′).

Omitting discrete indices and using (2) we can write

〈a+in(k1)...a
+
in(kn)Φ, a

+
out(k

′

1)...a
+
out(k

′

m)Φ〉 =

lim
τ→−∞,τ ′→+∞

ω(D(k′

m)B′(k′

m, τ
′)...D(k1)B

′(k′

1, τ
′)D(k1)B(k1, τ)..D(kn)B(kn, τ)) =

(9)
lim

τ→−∞,τ ′→+∞

ω(D(k′

m)eiτ
′E(k′

m)B̂∗(τ ′,k
′

m)...D(k′

1)e
iτ ′E(k′

1
)B̂∗(τ ′,k

′

1)

D(k1)e
iτE(k1)B̂(τ,k1)..D(kn)e

iτE(kn)B̂(τ,kn))

where D stands for the matrix ρφ−1.
It is easy to describe the joint spectrum of momentum and energy operators

in Has (of infinitesimal generators of spatial and time translations). It consists
of points (ǫj1(k1) + ... + ǫjr(kr),k1 + ... + kr). For r = 0 we obtain the point
(0, 0) corresponding to the vacuum vector. The points with r = 1 constitute
one-particle spectrum, the points with r > 1 belong to multi-particle spectrum.
If the theory has particle interpretation the same formulas describe the joint
spectrum of momentum and energy operators in H̄.

The decomposition of the spectrum in one-particle spectrum and multi-
particle spectrum induces the decomposition of H̄ into direct sum of one-
dimensional space H0 containing Φ, one-particle space H1 (the closure of the
image of the map h→ H ) and multi-particle space M.

3 LSZ formula

The scattering matrix can be expressed in terms of Green functions. These
functions can be defined by the formula

Gr(τ1,x1, i1, ..., τr,xr, ir) = ω(T (Bi1(τ1,x1)...Bir (τr,xr))

10



where T stand for the chronological product. We defined Green functions
in (τ,x)-representation, taking Fourier transform with respect to x we obtain
Green functions in (τ,k)- representation; taking inverse Fourier transform with
respect to τ we get Green functions in (ε,k)-representation. For simplicity we
are assuming that that Bi are self-adjoint (otherwise we should consider not
only Bi, but also B

∗
i under the sign of T -product).

We have defined Green functions using the operators Bi (good operators),
however one can modify this definition replacing Bi by other operators Ai ∈ A.

It is easy to calculate the two-point Green function G2. We start with
two-point correlation function

w2(τ1,x1, i, τ2,x2, j) = ω(Bi(τ1,x1)Bj(τ2,x2)) =

〈Bj(τ2,x2)Φ, Bi(τ1,x1)Φ〉 =

∫
dkeik(x2−x1)〈e−iτ2E(k)φj(k), e

−iτ1E(k)φi(k)〉

Expressing G2 in terms of w2 we obtain that in (ε,k)-representation

G2(ε1,k1, i, ε2,k2, j) = Gi,j(ε1,k1)δ(ε1 + ε2)δ(k1 + k2)

where for fixed k the function Gi,j(ε,k) has poles with respect to ε at the
points ±ǫs(k) (here ǫs(k) are eigenvalues of the matrix E(k))). Namely,

Gi,j(ε,k) = Ai,j(ε,k) +Aj,i(−ε,−k)

where

Ai,j(ε,k) =
∑
s

i

ε+ ǫs(k)− i0
〈as(k)φj(k), φi(k)〉 (10)

We have used the fact that the matrix eiE(k)τ can be expressed as a linear
combination of exponents eiǫj(k)τ with matrix coefficients depending on k:

eiE(k)τ =
∑
s

as(k)e
iǫs(k)τ .

Using the same fact and (7) or (9) it is easy to check that the scattering
matrix can be expressed in terms of asymptotic behavior of Green functions
in (τ,k) representation. (One should divide the arguments of Green function
in two groups; in one group we should take the times tending to −∞, in the
second group to +∞. The ordering of times in every group is irrelevant due
to asymptotic commutativity of factors in (7). )

Equivalently one can work in (ε,k)- representation taking inverse Fourier
transform with respect to τ in (τ,k)-representation. Then the scattering ma-
trix can be expressed in terms of poles of Green functions with respect to ε
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and residues in these poles. This is the famous LSZ formula. One can derive
it from the following statements:

Let E denote a Hermitian matrix with eigenvalues ǫj . Then the matrix
eiτE can be written in the form

∑
j aje

iτǫj where aj are constant matrices.

Let us assume there exist limits A± = limτ→±∞ eiτEρ(τ) where ρ is a
column vector. Then ρ(τ) has asymptotic behavior

ρ(τ) ∼ e−iτEA± =
∑
k

e−iǫkτakA±

as τ → ±∞.
This implies that the (inverse) Fourier transform ρ(ε) of ρ(τ) has poles at

the points ±(ǫk + i0) with residues ∓2πiakA±.
We can say that
The asymptotic behavior of ρ(τ) is determined by the polar part of ρ(ε).
In what follows we use these statements in a little bit different form. We

represent ρ(τ) as e−iτEA−Φ(−τ) + e−iτEA+Φ(τ) + σ(τ) where σ(τ) → 0 as
τ → ∞. We assume that σ(τ) is a summable function, then

ρ(ε) = (E − ε+ i0)−1C− + (E + ε+ i0)−1C+ + σ(ε)

where σ(ε) is continuous, C− and C+ do not depend on ε. We say that the
first two summands constitute the polar part of ρ(ε). We need the following
statement

If f(ε) is a smooth function then

f(ε)ρ(ε) = (E − ε− i0)−1C ′

− + (E + ε− i0)−1C ′

+σ
′(ε) (11)

where C ′
− = f(E)C−, C

′
+ = f(−E)C+ do not depend on ε and σ′ is a contin-

uous function.
Notice that in the LSZ formula the operators Bi transforming the vector Φ

into an element of Φ(h) (of one-particle space) can be replaced by asymptot-
ically commuting smooth operators Ai ∈ A obeying a weaker condition: the
projections of vectors AiΦ on the one-particle space are linearly independent
and the projection of AiΦ on Φ vanishes. This can be proved if the theory
has particle interpretation. ( See Section 4.6 of [8] for the proof of this fact
in less general case; this proof can be generalized to our setting.) Instead of
this condition we can require the existence of smooth fast decreasing functions
αj
i (τ,x) such that the operators Bi =

∫
dτdxαj

i (τ,x)Aj(τ,x) are good oper-
ators.) ( This condition is always satisfied if the joint spectrum of H,P in
H0 ⊕H1 does not overlap with multi-particle spectrum.)

Using the formula

Bi(τ,x) =

∫
dτ ′dx′αj

i (τ
′ − τ,x′ − x)Aj(τ

′,x′)
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we can express the correlation functions for operators Bi in terms of corre-
lation functions for operators Ai. The expression looks very simple in (ε,k)-
representation: for example if αj

i = αiδ
j
i one should multiply the correlation

functions of operators Ai by the product of Fourier transforms of functions
αi with respect to τ,x. The corresponding expression for Green functions is
more complicated due to factors θ(τi − τj) entering the definition of chrono-
logical product. However, in scattering theory we are interested in asymptotic
behavior of Green functions in (τ,k) representation or in the behavior of po-
lar parts of Green functions in (ε,k)-representation. For k in dense open set
the behavior of the polar parts of Green functions for operators Ai in (ε,k)
representation can be described in the same way as for correlation functions.
( To prove this statement we use asymptotic commutativity of operators Ai

and the assumption (2). In the calculation of scattering matrix we decompose
the arguments of Green functions in two groups; we use the fact that due to
asymptotic commutativity the time ordering inside every group is irrelevant.)

Let us give more precise formulations of the above statements.
We are starting with asymptotically commuting operators A1, ..., Am obey-

ing 〈AiΦ,Φ〉 = 0. We introduce the notation TA
i (k) for projections of vectors

AiΦ ∈ H on Φ(h) (on one-particle subspace of H) considered as elements of h
in momentum representation. We assume that these projections are linearly
independent (the matrix TA(k) = (TA(k))αi is non-degenerate).

We consider Green function

Gr(τ1,x1, i1, ..., τr,xr, ir) = ω(T (Ai1(τ1,x1)...Air (τr,xr))

and their Fourier transforms (Green functions in (τ,k)- and (ε,k)- representa-
tions. Notice that due to translation invariance the Green function in (ε,k)-
representation contains a delta-function δ(

∑
εi)δ(

∑
ki); talking about two-

point function (r=2) we always omit this delta-function. (Hence the two-point
Green function is a matrix-valued function of (ε,k).) We can write the two-
point Green function in (ε,k)-representation as a sum of the polar part (having
first order poles with respect to variables ε) and regular part. The polar part

(E(k) − ε+ i0)−1C−(k) + (E(k) + ε+ i0)−1C+(k)

governs the behavior of Green function in (τ,k)-representation as τ → ∞; it
is a sum of two summands; one of them (in-summand) is responsible for the
limit τ → −∞, another (out-summand) is responsible for the limit τ → ∞.

Let us consider the Green function Gr in (τ,k)-representation. We assume
that the arguments of this function are divided in two groups (with indices i in
the interval 1 ≤ i ≤ a and with indices in the interval a < i ≤ r.) We assume
that the times τi with the indices from the first group tend to −∞ and the
remaining times tend to +∞.

13



In (ε,k)- representation the Green function Gr can be represented as a
product of the amputated Green function and r two-point Green functions la-
beled by index i.We change the signs of the variables εi,ki where i is the index
from the second group to interpret these variables as energies and momenta of
outgoing particles. We define the polar part

Pr(ε1,k1, j1, ..., εr ,kr, jr)

of Green function replacing every two-point Green function in this representa-
tion by its in-summand of its polar part for indices i ≤ a and by out-summand
of the polar part for i > a.

Let us define operators A′
i by the formula A′

i =
∫
dτdxαj

i (τ,x)Aj(τ,x)

where αj
i (τ,x) are smooth fast decreasing functions. Polar parts of corre-

sponding Green functions are denoted by by P ′
r.

It is easy to express the projections TA′

i (k) of A′
iΦ on one-particle space in

terms of projections TA
j (k). We obtain

TA′

i (k) = αj
i (E(k),k)TA

j (k) (12)

where αj
i (E(k),k) =

∫
dτdxeikx−iE(k)ταj

i (τ,x)
Equivalently

TA′

(k) = α(E(k),k)TA(k). (13)

To prove (12) we represent Aj(τ,x)Φ as Φ(T
A(τ,x
j ) + ρ(τ,x) where ρ belongs

to the multiparticle space. We get

A′

iΦ =

∫
dτdxαj

i (τ,x)Φ(T
A(τ,x
j ) +

∫
dτdxαj

i (τ,x)ρ(τ,x).

Noticing that the second summand lies in the multiparticle space and that for
φ ∈ h we have Φ(eiPx−Hτφ) = Φ(eikx−iE(k)τφ) we obtain (12).

As we noticed the polar part governs the asymptotic behavior in (τ,k)-
representation. Using this fact one can prove that P ′

r(ε1,k1, i1, ..., ε,kr , ir) is
equal to the polar part of

αj1
i1
(ε1,k1)...α

jr
ir
(εr,kr)Pr(ε1,k1, j1, ..., εr ,kr, jr). (14)

Using (11) we obtain that

P ′

r(ε1,k1, i1..., ε,kr , ir) = αj1
i1
(E(k1),k1)...α

jr
ir
(E(kr),kr)Pr(ε1,k1, j1, ..., εr ,kr, jr)

or equivalently

P ′

r(ε1,k1, ..., ε,kr) = α(E(k1),k1)⊗...⊗α(E(kr),kr)Pr(ε1,k1, ..., εr ,kr) (15)
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In this formula and in what follows we consider P ′
r and Pr as functions

taking values in r-th tensor power ofm-dimensional space (we consider discrete
variables in Pr and in P ′

r as tensor indices).
Let us define now the normalized polar part of Green function (closely

related to Green function on shell) by the formula

P̃r(ε1,k1, ..., εr ,kr) = (TA(k1))
−1 ⊗ ...⊗ (TA(kr))

−1Pr(ε1,k1, ..., εr ,kr).

This function takes values in r-th tensor power of h.
It follows immediately from (13), (15) that

P̃ ′

r(ε1,k1..., εr ,kr) = P̃r(ε1,k1..., εr ,kr). (16)

This means that normalized polar parts of Green functions for A1, ..., Am and
A′

1, ..., A
′
m coincide.

Let us define Green functions on shell taking the residues of normalized
polar parts of Green functions.

Now we can formulate the LSZ formula in the following way:
Matrix elements of scattering matrix coincide with Green functions on shell

(up to sign change in outgoing momenta)
To prove this fact it is sufficient to verify it for good operators B1, ..., Bm

using (7) and (9).
Notice that the matrices TA entering the definition of normalized polar

part are closely related to the polar part of two-point Green function.

4 Inclusive scattering matrix

An element B of the algebra A specifies two operators on linear functionals
on A. First operator is denoted by the same symbol B; it transforms the
functional σ into the functional (Bσ)(A) = σ(AB). The second one (denoted
B̃) transforms σ into the functional (B̃σ)(A) = σ(B∗A). The vectors in the
space H correspond to excitations of the state ω: the vector BΦ corresponds
to the state B̃Bω. Let us introduce notations

B(f) = B(f, 0), L(g) = B̃(gφ−1)B(gφ−1), L(g, τ) = TτL(T−τg) = B̃(f, τ)B(f, τ)

where g = fφ ∈ h. Instead of working with vectors

Ψ(f1, τ1, ..., fn, τn) = B(f1, τ1)...B(fn, τn)Φ

we can work with corresponding states

Λ(g1, τ1, ..., gn, τn) = L(g1, τ1), ...L(gn, τn)ω.
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It follows from Lemma 3 that these states have a limit as τj → −∞ if fj =
gjφ

−1 do not overlap. These states will be necessary in geometric approach
(see [4]), however they are useful also in algebraic approach. Namely, we use
these states to construct the inclusive scattering matrix.

Let us consider the state

L(g′1, τ
′

1)...L(g
′

n′ , τ ′n′)L(g1, τ1)...L(gn, τn)ω

considered as a linear functional on A (as an element of the cone C). We
assume that g′i as well as gj are not overlapping, then this state has a limit
as τ ′i → +∞, τj → −∞; we denote this limit by Q. Notice that Q does not
change if we permute g1, ..., gn (in the limit τj → −∞ the operators L(gj , τj)
commute). Similarly Q does not change if we permute g′1, ..., g

′

n′ .
More generally we can consider a linear functional Q̃ on A defined as a

limit of

L(g̃′1, g
′

1, τ
′

1)...L(g̃
′

n′ , g′n′ , τ ′n′)L(g̃1, g1, τ1)...L(g̃n, gn, τn)ω

as τ ′i → +∞, τj → −∞.( We introduced the notation L(g̃, g, τ) = B̃(f̃ , τ)B(f, τ).)
Then we define

σ(g̃′1, g
′

1, ..., g̃
′

n′ , g′n′ , g̃1, g1, ..., g̃n, gn).

as Q̃(1). This functional is linear with respect to its arguments g̃′i, gi, g̃j , gj . It
is well defined if each of four families g̃′i, gi, g̃j , gj is non-overlapping. In bra-ket
notations

σ(g̃′1, g
′

1, ..., g̃
′

n′ , g′n′ , g̃1, g1, ..., g̃n, gn) =

〈1| lim
τ ′i→+∞,τj→−∞

L(g̃′1, g
′

1, τ
′

1)...L(g̃
′

n′ , g′n′ , τ ′n′)L(g̃1, g1, τ1)...L(g̃n, gn, τn)|ω〉

(17)
By definition the functional σ is inclusive scattering matrix.
To justify this definition we notice that

σ(g̃′1, g
′

1, ..., g̃
′

n′ , g′n′ , g̃1, g1, ..., g̃n, gn) =

lim
τj→−∞′,τ ′i→+∞

(L(g̃1, g1, τ1)...L(g̃n, gn, τn)ω)(B(f ′1, τ
′

1)...B(f ′n′ , τ ′n′)B(f ′n′ , τ ′n′)∗...B(f ′1, τ
′

1)
∗) =

( lim
τj→−∞

(L(g̃1, g1, τ1)...L(g̃n, gn, τn)ω)(a
+
out(g

′

1)...a
+
out(g

′

n′)aout(g̃
′

n′)...(aout(g̃
′

1))

We have used the relation (M̃Nρ)(X) = ρ(M∗XN) in this derivation.
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The inclusive cross-section can be expressed in terms of inclusive S-matrix
defined above. To verify this statement we consider the expectation value

ν(a+out,k1(p1)aout,k1(p1) . . . a
+
out,km

(pm)aout,km(pm)) (18)

where ν is an arbitrary state. This quantity is the probability density in mo-
mentum space for finding m outgoing particles of the types k1, . . . , kn with
momenta p1, . . . ,pm plus other unspecified outgoing particles. It gives inclu-
sive cross-section if

ν = lim
τi→−∞

L(g1, τ1)...L(gn, τn)ω

The inclusive scattering matrix can be expressed in terms of generalized
Green functions (GGreen functions). These functions appear naturally in
the formalism of L-functionals [9], [10], [14]; their relation to inclusive cross-
sections is analyzed in [7], [8], [14]. They appear also in Keldysh formalism
and in thermo-field dynamics [11],[12],[13]. GGreen functions can be defined
by the formula

G(τ1,x1, i1, ..., τr,xr, ir, τ
′

1,x
′

1, i
′

1, ..., τ
′

r′ ,x
′

r′ , i
′

r′) =

(T (Bi1(τ1,x1)...Bir (τr,xr, )B̃i′
1
(τ ′1,x

′

1)...B̃i′
r′
(τ ′r,x

′

r))ω)(1)

where T stand for the chronological product. More precisely we defined GGreen
functions in (τ,x)-representation, taking Fourier transform with respect to x

we obtain GGreen functions in (τ,k)- representation. Using the fact that the
matrix eiE(k)τ can be expressed as a linear combination of exponents eiǫj(k)τ

with matrix coefficients depending on k it is easy to check that the inclusive
scattering matrix can be expressed in terms of asymptotic behavior of GGreen
functions in (τ,k) representation. (One should take r = r′ and assume that
τi → +∞, τ ′i → +∞ for i ≤ m and τj → −∞, τ ′j → −∞ for j > m. The
ordering of times in every group is irrelevant due to asymptotic commutativity
of factors. )

Equivalently one can work in (ε,k)- representation taking inverse Fourier
transform with respect to τ in (τ,k)-representation. Then the inclusive scat-
tering matrix can be expressed in terms of poles of GGreen functions with
respect to ε and residues in these poles.

As in LSZ formula for scattering matrix we can work with operators A1, ..., Am

requiring the existence of fast decreasing functions αj
i such that the operators

Bi =
∫
dτdxαj

i (τ,x)Aj(τ,x) are good operators. Using Kȧllén-Lehmann rep-
resentation of two-point GGreen function we define polar part and normalized
polar part of GGreen function. (We represent GGreen functions in terms of
amputated GGreen functions and use Kȧllén-Lehmann representation of two-
point GGreen function in the proof.)
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5 Fermions

We assumed that operators Bi asymptotically commute (4). One can replace
this assumption with the assumption of asymptotic anticommutativity (we
replace the commutator in (4) by anticommutator). Then we should modify
also the definition of truncated correlation functions including some signs.

One can repeat all considerations of present paper in this situation. Slight
modifications are necessary. In particular, instead of bosonic Fock space one
should consider fermionic Fock space (Fock representation of canonical anti-
commutation relations.) The particles obey Fermi statistics. To define inclu-
sive scattering matrix we again consider states

Λ(g1, τ1, ..., gn, τn) = L(g1, τ1), ...L(gn, τn)ω

and prove that these states have a limit as τi → −∞ under the same conditions
on g1, ..., gn. It is important to notice that under these conditions it follows from
the asymptotic anticommutativity of operators Bi that the operators L(gi, τi)
commute in the limit τi → −∞.

6 BRST formalism

Methods of homological algebra (=BRST formalism) can be applied in scatter-
ing theory. Recall that in homological algebra together with modules (algebras,
etc) one considers differential graded modules (algebras,...). It is sufficient to
have Z2-grading. A module is Z2-graded if it is represented as a direct sum
of even and odd parts. A differential can be defined as parity reversing ho-
momorphism Q obeying Q2 = 0. Homology is defined as KerQ/ImQ (as a
quotient of the submodule consisting of Q-closed elements with respect to the
submodule consisting of Q-exact elements).

The main idea is to replace a module by simpler (for example, free) dif-
ferential graded module. (The new module should be quasi-isomorphic to the
original module, considered as a differential module with trivial grading and
trivial differential. Quasi-isomorphism is defined as a homomorphism com-
muting with the differential and inducing an isomorphism on homology.)

The above considerations can be applied to differential Z2- graded algebras
(algebras with parity reversing BRST operator Q obeyingQ2 = 0.) All physical
quantities should be BRST-closed (should belong to the kernel of Q); one
should neglect the BRST-exact quantities (the elements of the image of Q).
The BRST-operator on algebra should satisfy graded Leibniz rule: Q(AB) =
Q(A)B ± AQ(B) (plus sign if A is even, minus sign if A is odd. If algebra A
is realized by operators in differential A-module with differential Q̂ then the
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differential Q on algebra is defined as supercommutator with Q̂, i.e. QA =
[Q,A] if A is even and QA = [Q,A]+ if A is odd.

Instead of Hilbert spaces one can consider differential modules equipped
with a structure of pseudo Hilbert space (space with non-degenerate, but in-
definite scalar product). However, the indefinite scalar product should descend
to definite scalar product on homology.

Gelfand-Naimark-Segal (GNS) construction can be generalized to the case
when an algebra is not equipped with involution. In this generalization we start
with a unital associative algebra A and a linear functional ω on A. Then we can
introduce a (not necessarily symmetric) scalar product on A by the formula
〈x, y〉 = ω(xy). We are saying that a ∈ A is a right null vector if 〈x, a〉 = 0 for
every x ∈ A. It is easy to check that right null vectors constitute a left ideal
in A. Factorizing A with respect to this ideal we obtain a right A-module
denoted by R. Similarly factorizing with respect to left null vectors we obtain
a left A-module denoted by L. It is easy to define a pairing between L and
R; this paring is non-degenerate. If the algebra A is equipped with involution
we can consider an induced involution on the space of linear functionals; we
assume that the functional ω is self-adjoint. Then R is complex conjugate to L
and the pairing between L and R can be interpreted as (in general indefinite)
scalar product in L. If ω is a positive functional we come back to the GNS
construction.

Let us suppose now A is a differential algebra with differential Q. This
differential specifies a differential on the space A∨ of linear functionals denoted
by the same symbol. We assume that Qω = 0 (the functional ω is Q-closed).
This assumption implies that the ideals we constructed are Q-invariant, hence
the differential Q descends to the A-modules R and L. The pairing between
differential modules R and L respects the differential Q.

We will work with differential algebra A equipped with involution ∗ that
agrees with the differential. We assume that time translations and spatial
translations act as automorphisms of A and commute with the differential Q.
We fix a translation-invariant stationary self-adjoint Q-closed linear functional
ω that descends to a positive functional on homology of A. Applying the
modification of GNS construction to ω we obtain a differential pseudo pre
Hilbert space H with the differential (BRST operator) denoted Q̂.

We modify the definition of elementary space saying that a differential
vector space h̃ is an elementary space in new sense if its homology can be
identified with elementary space in old sense. An elementary excitation of ω
is defined as an linear map of h̃ in H commuting with space-time translations
and differentials (BRST operators).

We can repeat with minor modifications the construction of Møller matrices
and scattering matrices in new situation. In particular, a scattering matrix S̃
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can be defined as an operator in Fock space F̃ corresponding to the space h̃.
The operator S̃ commutes with BRST operator, hence it descends to homology
giving the scattering matrix S of physical (quasi)particles. (The operator S
acts in the Fock space F̃ corresponding to the space h.)

Acknowledgements I am indebted to A. Kapustin for valuable discus-
sions.
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