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Abstract

We define inclusive scattering matrix in the framework of geometric ap-
proach to quantum field theory. We review the definitions of scattering theory
in the algebraic approach and relate them to the definitions in geometric ap-
proach.
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1 Introduction

Geometric approach to quantum theory where the starting point is the set of states
was suggested in [I],[2]. In this approach one can work with convex set Cy of normal-
ized states or with convex cone C of not necessarily normalized states ( proportional
points of the cone C specify equivalent states) M. m present paper we discuss scat-
tering theory in geometric approach. Our starting point is a convex cone C and a
subgroup V of the group of automorphisms of this cone.

We notice at the end of the paper that one can use also a subsemiring W of the
semiring of endomorphisms EndC. ( Endomorphisms of cone C form a semiring EndC
because the set of endomorphisms is closed with respect to addition and composition.

We say that a closed convex set C is a convex cone if for every point 2 € C all points of the
form Az where A is positive also belong to C. Notice that in our terminology a vector space is a
convex cone.
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Notice that the semiring EndC is closed also with respect to multiplication by a
nonnegative number; we assume that ¥ also has this property.)

We review geometric and algebraic approaches to quantum theory and the relation
between these approaches. We give definitions of scattering matrix and inclusive
scattering in algebraic approach. This makes the present paper independent of papers
[1],[2] and of the papers [6], [3] devoted to the scattering in algebraic approach.

Let us recall the relation of the geometric approach with the algebraic approach to
quantum theory [2]. In algebraic approach a starting point is an associative algebra
A with involution * ( a x-algebra). The cone C of not necessarily normalized states is
defined as a set of linear functionals on A4 obeying f(A*A) > 0. Every element B € A
specifies two operators on 4" ( on the dual space); one of them, denoted by the same
symbol B, transforms a functional f(A) into the functional f(AB), another, denoted
by the symbol B, transforms f(A) into the functional f(B*A). The operator BB is
an endomorphism of the cone C. We define V as the group of all involution preserving
automorphisms of A acting in natural way on C. The semiring W is defined as the
minimal set of endomorphisms of C containing all endomorphisms of the form BB
and closed with respect to addition and composition (it is closed also with respect
to multiplication by a non-negative number as all semirings we consider).

To define scattering in any approach to quantum field theory we need notions
of time and spatial translations. In algebraic approach translations (as any symme-
tries) are automorphisms of the algebra A; these automorphisms induce the auto-
morphisms of the cone C and other objects related to the algebra A. In geometric
approach translations should be regarded as elements of the group V consisting of
automorphisms of the cone C; their action on the cone should induce an action on
the semiring W.

Particles and quasiparticles are defined as elementary excitations of stationary
translation-invariant state w.

In algebraic approach one can define the notion of scattering matrix of elementary
excitations. Probably it is impossible to generalize this notion to geometric approach,
however, in geometric approach one can give a very natural definition of inclusive
scattering matrix of elementary excitations of stationary translation-invariant state
w . It is easy to show that this notion agrees with analogous notion in algebraic
approach.

Notice that our constructions can be applied also to scattering of quasiparticles
in equilibrium and non-equilibrium statistical physics. ( The conventional scattering
matrix does not make sense in this situation, but the inclusive scattering matrix
does; see [5],[3]).

In [4] we apply the notions of present paper to define scattering in the framework



of Jordan algebras.

2 Geometric approach

In geometric approach to quantum theory we start with a convex closed cone C of
(non-normalized) states in Banach space £ (or, more generally, in complete topo-
logical linear space £). We fix a subgroup V of the group of automorphisms of the
cone C. ( By definition an endomorphism of C is a continuous linear operator in £
transforming the cone into itself. An automorphism is an invertible endomorphism.)

In some cases it is useful to add to this data a subsemiring W of the semiring
End(C) of endomorphisms of the cone; we assume that W is invariant with respect
to the action of the group V.

The dynamics in quantum theory is governed by one-parameter group of time
translations T acting on the cone C. We assume that T, € V. ( Here 7 stands for
a real number.) Time translations can be considered also as transformations of W
denoted by the same symbol T.. If A € V or A € W the time translation acts as
conjugation: T, (A) = T, AT_.; we will use the notation T (A) = A(7).

Quantum field theory in geometric approach is specified by a cone C with the
action of spatial translations 7} where x € RY and time translations 7 (the trans-
lations should constitute a commutative subgroup of the group V.) The same data
specify statistical physics in the space R? where d stands for the dimension of the
group of spatial translations. We use the notations

T T (A) = T, T AT T = A(T, )

for an operator A acting in L.

Let us discuss the relation of the above definitions to the quantum theory in the
algebraic approach. In this approach as in geometric one we need time and spatial
translations to define elementary excitations and scattering. The time translations
T, and spatial translations Ty act as automorphisms of A; these automorphisms
induce automorphisms of the cone C and of the semiring ¥V denoted by the same
symbols. If w € C is a translation-invariant stationary state we can consider a
representation of A in a pre Hilbert space H such that there exists a cyclic vector
0 € H obeying w(A) = (#, Af). This representation is called GNS ( Gelfand-Naimark-
Segal) representation. We denote an operator in this representation corresponding
to A € A by the same symbol A. (Notice that these operators are bounded. ) We
can consider also the representation of A in the Hilbert space H (in the completion
of H). Time and spatial translations descend to H and to H.



For every vector ¥ in the Hilbert space H we define the corresponding state o by
the formula 0(A) = (¥, AV). If ¥ = 0 we have 0 = w, if ¥ = B we have 0 = BBw.

3 Elementary excitations

Let us repeat the definitions and statements from [2] with small modifications.

We consider a translation-invariant stationary state w € C. Let us start with
the definition of excitation of w in geometric approach. We say that o € C is an
excitation of w if Tyo tends to Cw as x tends to oo for some constant C. ( We have
in mind weak convergence in this definition. Recall that v is a weak limit of u,, € L if
for every f € LY (in the dual space) the limit of f(u,) is equal to f(u).) We say that
proportional elements of a cone specify the same state, hence this condition means
that for large x the state Tyo is close to w.

To define the notion of elementary excitation we need a notion of elementary
space.

Recall that elementary space b is defined as a space of smooth real-valued or
complex-valued functions on R? x Z with all derivatives decreasing faster than any
power (here Z denotes a finite set consisting of m elements). One can identify this
space with 8™ (with direct sum of m copies of Schwartz space S = S(R?). The
space h can be regarded as pre Hilbert space (as a dense subspace of L?). The
spatial translations act naturally on b ( shifting the argument); we assume that the
time translations also act on § and commute with spatial translations. In momentum
representation an element ¢ of b should be considered as a complex function of k € R?
and discrete variable ¢ € Z. If § consists of real-valued functions then in momentum
representation we should impose the condition ¢(—k) = ¢(k). The spatial translation
T, is represented as multiplication by e*¥ and the time translation 7T’ is represented
as a multiplication by a matrix e7"P®) where E(k) is a non-degenerate Hermitian
matrix. We assume that F/(k) a smooth function of at most polynomial growth, then
the multiplication by F(k) is an operator acting in §. The eigenvalues of E(k) are
denoted by e4(k).

We need some facts about time evolution of elements of § in coordinate represen-
tation.

If

(Tr¢)(x, )| < Cu1 + [x|* +7%)7"

for all x € RY obeying X ¢ U and all n € N we say that 7U is an essential support
of T, ¢ in coordinate representation. Notice that the set U is not defined uniquely; if



U’ is a subset of R? containing U and 7U is an essential support of T¢ in coordinate
representation then 7U’ is also an essential support of T’¢.

Let us consider functions fi,..., f, € b and essential supports 7U; of functions
T,(f;) in coordinate representation. We say that these functions do not overlap if the
distances between sets U; are positive (the distances between essential supports grow
linearly with 7).

ASSUMPTION. We assume that collections (f1, ..., fn) of non-overlapping

functions are dense in §* = S™"

It is easy to verify that this assumption is almost always satisfied (in particular,
it is satisfied if all functions €,(k) are strictly convex). The proof can be based on
the following lemma.

Lemma 1. Let us denote by U, , where ¢ € b, an open subset of R containing all
points having the form Ves(k) where k belongs to supp(¢) = Ussuppe;) (to the union
of supports of the functions ¢(k,j) in momentum representation).

Let us assume that supp(¢) is a compact subset of R%. Then for large |7 we have

(Tr¢)(x,5) < Cull + |x|* + 77"

where X ¢ Uy, the initial data ¢ = ¢(x, j) is the Fourier transform of ¢(k,j), and
n is an arbitrary integer. (In other words Uy is an essential support of Tr¢ in
coordinate representation,).

The proof of this lemma ( Lemma 2 in [2]) can be given by means of the stationary
phase method; see Section 4.2 of [6] for more detail.

An elementary excitation of w is defined as a map o : h — C of an elementary
space b into the set of excitations of w . This map should commute with translations
and satisfy the following additional requirement: one can define a map L : h —
End(L) obeying o(¢) = L(¢)w.

Notice that the conditions we imposed on L(¢) do not specify it uniquely. Later
we impose some extra conditions on these operators. Not very precisely one can say
that the operators L(¢) and L(1)) should almost commute if supports of ¢ and v are
far away (see ([[II) for precise formulation). Still these extra conditions leave some
freedom in the choice of L. We assume that the operators L(¢) are chosen in some
way.

In algebraic approach we define an excitation of w as a vector in the space of
GNS representation H; assuming cluster property one can verify that the state cor-
responding to such a vector is an excitation in the sense of geometric approach. An



elementary excitation of w is defined as an isometric map ® of elementary space b into
‘H commuting with time and spatial translations. This definition agrees with the def-
inition in geometric approach. To verify this fact we notice that the assumption that
0 is a cyclic vector implies the existence of operators B(¢) obeying ®(¢) = B(¢)0.
(Here ¢ € b. ) We define a map o : h — C saying that o(¢) is a linear functional
on A assigning a number (®(¢), A®(¢p)) to A € A. The map o is quadratic if we
are working over R, it is Hermitian if we are working over C. It commutes with
time and spatial translations. Representing o(¢) in the form o(¢) = L(¢)w where
L(¢) = B(¢)B(¢$) € End(C) we obtain that this map specifies an elementary excita-
tion in geometric approach.

We assume that B(¢) is linear with respect to ¢; then L(¢) is quadratic or Her-
mitian.

We say that a map o of real vector spaces is quadratic if the expression o(u +
v) —o(u) — o(v) is linear with respect to u and v. A map ¢ of complex vector spaces
is Hermitian if o(u + v) — o(u) — o(v) is linear with respect to u and antilinear
with respect to v. If V' is a real vector space then the corresponding cone C'(V) is
defined as a convex envelope of the set of vectors of the form v ® v in the tensor
square V ® V. (If we are dealing with topological vector spaces there exist different
definitions of tensor product and of topology in the tensor product. In this case
we should consider the closure of convex envelope in appropriate topology of tensor
product. ) A quadratic map V' — V' induces a linear map of the cone C(V) — V',
a quadratic map of V into a cone C' C V' induces a linear map of cones C'(V') — C".
Similar statements are true for complex vector spaces and Hermitian maps. ( The
cone corresponding to complex vector space is defined as a convex envelope of the set
of vectors of the form f® f in the tensor product V ® V.) If V is a Hilbert space the
corresponding cone can be identified with the cone of positive definite self-adjoint
operators belonging to trace class.

It is natural to assume that in geometric approach the maps ¢ and L are quadratic
or Hermitian, but this assumption is not used in most of our statements.

Elementary excitations should be identified with particles or quasiparticles. No-
tice that particles and quasiparticles can be unstable; this means that we should
consider also objects that only approximately obey the conditions we imposed on
elementary excitations. The definition of inclusive scattering matrix given in the
next section works also for such objects, but instead of the time 7 tending to o0 we
should consider large, but finite 7. (This is true also for the conventional scattering
matrix in algebraic approach; see Appendix to [0] for detail.)



4 Scattering. Mgller matrices.

Let us consider scattering of elementary excitations defined by the map o(f) =

L(f)w.
We define the operator L(f, ) where f € § by the formula

L(f.7) = T.(L(T-. f)) = TyL(T. f)T-..

(We are using the same notation for time translations in C and in §. The time transla-
tion acts on operators as conjugation with 7,.) We assume that sup, . ||| < oo
and the operators L(f) are bounded, hence sup, g ||L(f,7)|| < oco. ( Here and in
what follows we assume that £ is a Banach space. If £ is a a topological vector
space specified by a system of seminorms we should impose the above conditions for
every seminorm. )

Notice that L(f,T)w does not depend on 7. (Using the fact that the map o
commutes with translations we obtain that L(f,7)w = Tro(T_.f) = o(f).). This
means that

L(f,T)w=0 (1)

where the dot stands for the derivative with respect to 7.
Let us introduce the notation

A(fis s fol —00) = lim A(fis 7, fas o) (2)

T]——00,"* ,Tp—>—00

where
A(fl, Tly eeny fn, Tn) = L(fl, Tl)...L(fn, Tn)w.
We say that (2]) is an in-state.
For large negative 7 the state

TTA(fla"' >.fn| - OO)

can be described as a collection of particles with wave functions T’ f;. To prove this
fact we use the formulas

T(L(f, 7)) = Trar (T /)T = L(T f, 7+ 7),

TTA(f17 e afn| - OO) = A(Tr.fla T 7T7'fn| - OO)

For f1,---, f, in a dense subset of § x - - - X jj the distance between essential supports
of wave functions T’ f; tends to oo as 7 — —o0o. This follows from the assumption in
preceding section.



This remark allows us to say that for arbitrary 7 the state T, A(f1,- -, fu| — 00)
describes a collision of particles with wave functions (fy,--- , fu)-
It is obvious that the in-state ([2) is symmetric with respect to fi, ..., fu if

tim_[[[L(fi 7). (5 7] = 0. 3)
One can replace (3) by
[L(¢), L(¥)][| < /dde'D“b(X —X)[¢a(x)] - [¥05(x')] (4)

where D®(x) tends to zero faster than any power as x — 0o.
Then the in-state is symmetric if the wave functions fi, ..., f,, do not overlap.
Let us give conditions for the existence of the limit

lim A(fi, 7,5 fu, Ta)- (5)

T1——00," ,Tp—>—00
For simplicity we consider the case when 77 = --- =17, = 7.

Lemma 2. Let us assume that for 7 — —oo the commutators [L(f,-, 7), L(f;,7)] are
small. More precisely, the norms of these commutators should be bounded from above
by a summable function of T :

L (fis 7) L(F5 DI < el7), /IC(T)IdT < 0. (6)

Then the vector A(7) = A(f1,7,- -, fn, T) has a limit as T — —o0.

It is sufficient to check that the norm of the derivative of this vector with respect
to 7 is a summable function of 7. (Then A(r) — A(my) = f:f A(7)dT tends to zero
as Ty, Ty — —00.)

Calculating A(7) by means of Leibniz rule we obtain n summands; each summand
has one factor with L. The assumption about the behavior of commutators allows
us to move the factor with derivative to the right if we neglect the terms tending to
zero faster than a summable function of 7. It remains to notice that the expression
with the derivative in the rightmost position vanishes due to ().

If £ is a complete topological linear space with the topology specified by a system
of seminorms we can generalize the above proof assuming an analog of (@) for every
seminorm.

Instead of (€]) we can assume that



IL(fi, ) = L(fi, 1), LS5, DI < e(7), /IC(T)IdT < 0. (7)

where |7 — 7| is bounded from above.
We can slightly strengthen ([6l) assuming that

L (fio 7) L5 O < ), /IC(T)\dT < o0 (8)

where 7 — 7y is bounded from above. Then we can derive (7)) from (g]) integrating
over T.
It is easy to derive from () that

L(fi,™") = L(fi,7), L(f;, 7)][| = O (9)
as 7,7 — oo or 7,7 — —o0.

Lemma 3. The condition (9) implies the existence of the limit (3). Hence the
existence of this limit follows also from (7) or (8).

We should check that the difference

L(f1, 7). L(fn, 70w — L(f1,71) . L(fr, Tn)w

tends to zero as 7/, 7; — —00.
It is sufficient to consider the expression

L(fh Tl)(L(flv Tz/) - L(fla TZ>>L(fTL7 Tn)w‘ (1O>

(One can go from L(f1,71)...L(fn, Tn)w to L(f1,7{,...L(fs, T,)w in n steps changing
one variable at every step.) Using (@) we can move the factor L(f;, 7)) — L(f;, ) to
the rightmost position in ([I0). It remains to notice that this factor gives zero acting
on w.

Notice that the distance between essential supports of functions 75 f; grows lin-
early as 7 — —oo if the sets Uy, do not overlap. This allows us to derive the existence
of the limit for fi,---, f, in a dense subset of h x - - - x b if we assume that the com-
mutator [T, (L(T-. f)), L(T-,g)] is small when the essential supports of T f and T’ ¢
are far away for 7,7 — 0o. One can make this statement precise in various ways.

For example, applying Lemma [3] we can prove the following theorem



Theorem 4. Let us assume that
I[Ta(L(9)), L¥)]|| < /dde’D“b(X = X)[@a(x)] - [0 (x")] (11)

where D®(x) tends to zero faster than any power as X — oo and o runs over a finite
interval. Then the limit (3) exists if the functions f; do not overlap (hence it exists
for fi, ..., fn in dense subset of h X ... X §).

Applying (II]) we obtain estimates for commutators [T, (L(T_,f)), L(T-,g)] that
are sufficient to prove the inequality (), hence the existence of the limit (2)).( We
are using the relation

LS, ), Lg, DI = [T (LT () f), T (L(T--9))]]| < (12)
C| | [TT’—T(L(T—T’f)> L(T—Tg)] ||

and its particular case for 7' = 7.)

Let us review shortly the scattering theory in the algebraic approach modifying
slightly the considerations of [3] Recall that in this approach an elementary ex-
citation of translation-invariant stationary state w is specified by an isometric map
® : ) — H commuting with translations and obeying ®(f) = B(f)f where B(f) € A.
( Here 6 stands for a a vector corresponding to w in the space H of GNS represen-
tation.)

Let us define the operator B(f,7) by the formula

B(f.7) = T,(B(T_,)) = T, B(T_. f))T_,.

Notice that B(f,7)0 does not depend on 7. This follows from the remark that w is
stationary, hence T_.0 = 6 and B(f,7)0 = T,®(T_,f) = ®(f).

Lemma 5. Let us assume that
I[B(fi7), B(f; DI < (1)
where ¢(T) is a summable function. Then the vector
V() = B(f1,7)...B(fn,7)0

has a limit in H as T tends to —oo.

2Notice that the operators B(f,7) of present paper correspond to the operators B(f¢~!,7) of
[3]. The properties of operators B(f,7) that are taken for granted in the present paper are derived
in [3] from asymptotic commutativity of the algebra A.
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Theorem 6. Let us assume that
I[B(¢), B(¥)]]| < /dde’D“b(X —X)[@a(x)] - [0 (x')] (13)

where D®(x) tends to zero faster than any power as X — oo. Then for fi, ..., fn in
dense subset of h X ... X b the vector

\I/(fl,Tl, ceny fnaTn) = B(fl,Tl)...B(fn,’Tn)e

has a limit in H as 7; tend to —oo; this limit will be denoted by

\Ij(.fla sy fn| - OO)

The proof of Lemma[lis very similar to the proof of Lemmal[2l To prove Theorem
6l we use the analog of (I2) to verify the analogs of (8), (l) and (9); using the analog
of ([@) we apply the method used in the proof of Lemma [3l

Let us introduce the asymptotic bosonic Fock space H,s as a Fock representation
of canonical commutation relations

[b(p), b(p")] = [b7(p), b ()] = 0, [b(p), b ()] = (p, ')

where p, p' € B.

We define Mgller matrix S_ as a linear map of H,, into H that transforms
bt (f1)...b7(fn)]0) into W(f1, ..., fu]| — 00). ( Here |0) stands for the Fock vacuum.)
Imposing some additional conditions one can prove that the operator S_ can be
extended to isometric embedding of H,s into H (see [3]).

Replacing —oo by +o00 in the definition of S_ we obtain the definition of the Mgller
matrix S, . If both Mgller matrices are surjective maps we say that the theory has
particle interpretation. We can define the scattering matrix of elementary excitations
(particles) as an operator in H,s by the formula S = S%S_; if the theory has particle
interpretation this operator is unitary.

Let us define the in-operators a; by the formula

af(f)= lm_B(f.7). (14)

This limit exists as as strong limit on vectors W(fi, ..., f,| — 00) if there exists the

limit W(f, f1, ..., fu| — 00).
Operators a_,, (out-operators) are defined by the formula

g (f) = lim B(f,7). (15)

T—400
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Equivalently Mgller matrix S_ can be defined as a map H,, — H obeying
at,(p)S- = S_b"(p),S-|0) = 0.
The operators a;,(p), aou(p) (Hermitian conjugate to a; (p) and a},,(p) ) obey
ain(p)S- = S-b(p), aou(p)S+ = S1b(p).

Notice that spatial and time translations act naturally in H,,. The Mgller matrix
commutes with translations.

There exists an obvious relation between our considerations in geometric and
algebraic approach. It is clear that the operator L(f,7) in the space of states cor-
responds to the operator B(f,7) in H (i.e L(f,7) = B(f,7)B(f,7).) It follows that
the state A(f1, 71, -+, fu, Tn) corresponds to vector W(fi, 7y, -, fn, 7o) , the state
A(f1, -+, fu]l — 00) (the in-state) corresponds to the vector W(fi, -, f,| — 00).

The relation ([III) implies that (B) specifies a map of symmetric power of § into
the cone C. This map (defined on a dense subset) will be denoted by S_; it can
be regarded as an analog of the Mgller matrix S_ in geometric approach. The
above statements allow us to relate S_ with S_ for theories that can be formulated
algebraically. In this case S_ maps symmetric power of h considered as a subspace
of the Fock space into . Composing this map with the natural map of # into the
cone of states C we obtain S_.

The map S_ is not linear, but in the case when L is quadratic or Hermitian it
induces a multilinear map of the symmetric power of the cone C(h) corresponding to
b into the cone C.

Constructing the scattering matrix in algebraic approach we imposed some con-
ditions on commutators ( for example the condition (I3) in Lemma 5). These con-
ditions can be replaced by similar conditions on anticommutators, the above state-
ments remain correct after slight modifications. ( In particular, we should consider
the fermionic Fock space instead of bosonic one.) It is important to notice that op-
erators L = BB (almost) commute not only in the case when operators B (almost)
commute, but also in the case when operators B (almost) anticommute, hence our
considerations in geometric approach can be applied not only to bosons, but also to
fermions.

5 Inclusive scattering matrix

Instead of the cone C one can consider the dual cone C¥ C LY (it consists of linear
functionals that are non-negative on C). The group V (in particular the group of
translations) and the semiring W act on CV.

12



Let us consider a translation invariant stationary element o € CY obeying the
conditions similar to the conditions we imposed on w. ( In algebraic approach we
can take a(o) = (1), the value of ¢ on the unit of algebra.) Let us assume that
(a|L'(g) is an elementary excitation of a.. ( Here L’ maps the elementary space § into
the space of endomorphisms of £; these endomorphisms can be considered also as
endomorphisms of the dual space £.)

Taking

lim_ (] (L (1, 7) - L (g )| ACF1, <+ ful = 50))

T —>+00

we obtain a number characterizing the result of the collision. We can write this
number as

lim (] L' (g1, 1)L (gm, 7o) L(f1, 71) - Ly o) [w) (16)

/
T}, —>+00,Tj——00

Let us assume that operators L(f) obey (11l) and operators L'(g) obey similar con-
dition. Then

Theorem 7. If both (f1,.., fn) and (g1, ..., gm) do not overlap the limit ({I6) exists.
This limit is symmetric with respect to (f1, .., fn) and with respect to (g1, ..., gm)

The proof of this theorem is similar to the proof of Theorem [l The second state-
ment follows from the fact that operators L(f;, ;) and L(f;/, 7j;) almost commute in
the limit 7;, 7, = —oo and from similar fact for operators L'.

By definition of elementary excitation o(¢) is a quadratic (or Hermitian) map,
hence it is natural to assume that the map L(¢) is also quadratic (or Hermitian).
Then it can be extended to a bilinear (or sesquilinear) map L(¢, ¢) and the map
L, T) can be extended to a map L(qg, ¢, 7). (If we assume that the bilinear map is
symmetric then these extensions are unique, but in algebraic approach it is convenient
to consider extensions that are not symmetric. Recall that in the algebraic approach
we define L(¢) as B(¢)B(¢); the extension can be defined by the formula L(¢, ¢) =
B(¢)B(¢).) We assume that L' is also quadratic or Hermitian and extend it to
bilinear or sesquilinear map.

Using these extensions we can define a functional

U(.éi’gi’ "’7@%’79;’7.@17.917 7§nagn) =
(af - 1im_} L'y, g0, ) LG, gh, o)V L(G1, 91, 71) - LGy Gy o)) (17)
Ti OO,Tj —00

that is linear or antilinear with respect to all of its arguments.

13



Notice that in the case when we take symmetric extensions of L and L' the
existence of the limit (I7) follows from the existence of the limit (I6); in general case
we should modify slightly the condition (1) to prove a generalization of Theorem [7l

We say that (I7) is inclusive scattering matrix. ( If we do not assume that the map
L(¢) is quadratic or Hermitian the inclusive scattering matrix should be defined by
the formula (I6]).) B This terminology comes from the fact that in algebraic approach
matrix elements of inclusive scattering matrix are related to inclusive cross-sections.
In this approach one can express inclusive scattering matrix in terms of on-shell
GGreen functions that appear in the formalism of L-functionals (used in [5], [6],
[1]) and in Keldysh formalism [8],[9],][10]. Let us sketch the derivation of this
expression.( See [5],[6],[11] for more detail.)

The functional (I7) can be considered as a generalized function

o(ky, iy, Ky, i, o ki, k

n’s ‘n’>s

/ = ~ .
n's b n’)klallaklalla"'aknalnaknazn) (18)

This generalized function is defined for open dense subset of its arguments. It is
sufficient to require that ki # k;, ki # k', k; # k;, k; # k;, for i # j if we assume
that k # k' implies Ve;(k) # Ve)(k') ( Recall that we use the notation ¢;(k) for
eigenvalues of the matrix E(k).) More generally we can consider the sets U(k)
consisting of vectors Ve;(k) and assume that the sets U(k) and U(k’) do not overlap.
Then the essential support of a function 7", (f) is far away from the essential support
of a function T, (f’) if the support of f lies in the neighborhood of k, the support
of f’ lies in the neighborhood of k’ # k and 7 — oc.

One can say that the function (I8) gives matrix elements of inclusive scattering
matrix.

Let us show that in the algebraic approach inclusive cross-sections can be ex-
pressed in terms of these matrix elements. Notice that in this approach

U(§1>gi> "'agiw.g;uagbgb agnagn) = <1| , lim
T;—+00,T;—+—00

B 7B (g1 7)o B 7B 07 B0, ) Blg1s 1) B 7) Bl 7)) —
<a:ut(§1) out(gn’)\];l(glv 7gn| - )7a3_ut( /) out( )\Il(gh : 7gn| - OO)) =
(out (G )-+s Qout(91) A (91) -3 (G )W (1, vy G| — 00), W(Ga, ., G| — 00))

(19)

3Notice, that (I6) and (I7) can be considered either as inclusive scattering matrix of elementary
excitations of state w or as inclusive scattering matrix of elementary excitations of state «. Similar
statement is true for analogs of Green functions introduced in Section 6. It is not clear whether
this strange duality has any physical meaning.
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We have used Theorem [ Eq. (5] and relations (B Bsw)(A) = w(BfAB,) = (0, , B AB,f) =
(B10, AB,6), (1|ByB,|w) = (B16, Bof) in this derivation.
In terms of generalized functions

AR 1o /
oKy, i, K, i, . K, K,

n'» TL7

(our (K1 100) oo ouy (K, 5V ad (K, 20 at (K i )W (K, s K, i ) |[—00), U (Ky, i1, -y Ko, | —00))

Inclusive scattering matrix can be expressed in terms of generalized Green func-
tions. These functions (GGreen functions) are defined by the formula

(UT(B' (31, 71)B' (91, 1) B (G 1) B' (G 7o) B(G1, 71) B (g1, 71)--B(Gras ) B(Gs 7)) )
(21)

k1,Z1,k1,Z1,---,f{n,gn,kmin) = (20)

n' TL7

where T stands for chronological product (see [3]).

The inclusive cross-section of the process (M, N) — (Q;...,Q,,) is defined as a
sum (more precisely a sum of integrals) of effective cross-sections of the processes
(M,N) = (Q1, ..., Qm, R1, ..., R,) over all possible Ry, ..., R,. If the theory does not
have particle interpretation this formal definition of inclusive cross-section does not
work, but still the inclusive cross-section can be defined in terms of probability of the
process (M, N) — (@1, ..., Q,+ something else) and expressed in terms of inclusive
scattering matrix defined above. To verify this statement we consider the expectation
value

V(ajut(plv k1>aout(p17 kl) e a:ut(pmu km>aout(pm7 km)) (22>

where v is an arbitrary state.

This quantity is the probability density in momentum space for finding m outgo-
ing particles of the types kq, ..., k, with momenta py, ..., pm plus other unspecified
outgoing particles. It gives inclusive cross-section if v is an in-state.

Comparing this statement with (20) we obtain that inclusive cross-section can be
obtained from inclusive scattering matrix if k; tends to k; and k! tends to k!. (We
assume that the expression

V(ajut(f)lv k1>aout(p17 kl) e a;—ut(f)mu km>aout(pm7 km)) (2?))

tends to (22)) as p; tends to p;.)

6 Analogs of Green functions
Let us consider a functional
(T (L' (g1, 91, 1)+ L' (G Grs T ) LAG15 91, 1) - LGy Gy T) ) |w) (24)
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where T denotes chronological product. This expression is linear or antilinear with
respect to its arguments g, g;. We assume that these arguments do non-overlap.
It follows from this assumption and the second statement of Theorem [7] (or gen-
eralization of this theorem) that (24]) tends to inclusive scattering matrix (I7) as
T, — 400, 7; = —0oo (the time ordering is irrelevant for the first n’ factors and also
for the last n factors).

The functional (24) can be considered as a generalized function

TN T A A A 1 Y Y A A . . .
Gn/m(kl?Zl?kl?zl’Tl‘“ ? n’?anTn’?k17zlaklalla7_1a"'>knazn7knalna7_n) (25)

This generalized function is defined for open dense subset of its arguments.

One can obtain (I8) ( matrix elements of inclusive scattering matrix ) from (25])
taking the limit 7, — +o00, 7; = —o0.

The function (28) can be considered as an analog of Green function in (p,t)-
representation. Taking Fourier transform with respect to 77, 7; we obtain an analog
of Green function in (p,w)-representation that also can be used to calculate matrix
elements of inclusive scattering matrix. ( If a function f(t) has limits as t — doo
then these limits can be calculated as residues in the poles of the Fourier transform
of f(t)).

In the algebraic approach the functional (24]) and generalized function (25) are
related to generalized Green function (GGreen function) [3]. Namely, in this ap-
proach one can obtain (24) from (2I)) taking 7, = 74,7, = 7; and using the relation

L(g,9,7) = B(g,7)B(g, 7).

7 Discussion

Let us discuss some properties of the above construction of in-state and of inclusive
scattering matrix.

We start again with elementary excitation o : h — C of state w. By definition of
elementary excitation there exists a map L : § — End(L) obeying o(¢) = L(¢)w.
The map L is not unique; let us prove that under some conditions the in-state
does not change when we are changing L. More precisely we can prove the following
statement:

Let us assume that the maps L; : § — End(L) can be used to define in-state and

I[Li(@), L (9)]]| < /dde’D“b(X = x)[da(x)] - [0 (X)].
where D tends to zero faster than any power. Then
A(fl,"' 7fn| —OO) = lim Lil(f177—1>7---Lin(fn77n>w-

T1—+—00, ;T —+—00
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(We assume that the functions f; do not overlap.)

To prove this statement we notice first of all that L;(f,7)w = L;(f, 7)w hence
the choice of the operator L; in the rightmost position does not matter. Then we use
the fact that one can move every factor to the rightmost position without changing
the limit (the commutators are small when 7; — —00.)

Similar statement is true for inclusive scattering matrix.

Let us consider a Poincaré -invariant theory. Recall that in our definitions we
started with the homomorphism of the translation group 7 into group of V. We
assume that this homomorphism can be extended to a homomorphism of the Poincaré
group P. The translation group acts also on the elementary space b§; we assume
that this action also can be extended to the action of Poincaré group and that the
elementary excitation of Poincaré invariant state w considered as a map o : ) — C
commutes with the actions of Poincaré group on § and C : for every P € P and f €}
we have

o(Pf) = Po(f) (26)

Then we say that the theory is Poincaré-invariant.

By definition of elementary excitation there exists a map L : § — W obeying
o(f) = L(f)w. If L commutes with Poincaré transformations the scattering is obvi-
ously Poincaré-invariant. However, one can prove Poincaré invariance of scattering
in much more general situation. Let us sketch a proof of this fact assuming that

im [J[L(P o). L (7] = 0 (27)
(We introduced notation L”(f,7) = PL(f,7)P~".)
The generalized Mgller matrix S_ is a map of the symmetric power of b into C.
Let us check that this map commutes with actions of Poincaré group. (Similar proof
can be applied to inclusive scattering matrix.)

We should identify
L(Pfi,7),..L(Pf,,T)w (28)

with
PL(f1,7), .L(fn, T)w = LP(fl,T), ...LP(fn,T)w

in the limit 7 — —oo. We will show that we can replace L(Pf;, 7) with L (f;, 7) in
any number of factors of ([28)) without changing the limit. For the rightmost factor
this statement is equivalent to (20]). Let us assume that this statement is correct for
the last k factors. Then it is true also for (k4 1)-th factor from the right. (To prove
this we interchange the (k + 1)-th factor with k-th factor from the right using (27)
and use the induction hypothesis.) We proved the statement by induction.
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Modifying the considerations of Section 4 we can give various conditions for
Poincaré invariance of scattering thery on a dense subset of h x ... X }.

Until now we did not use the semiring ¥V in our considerations. Let us show how
it can be used. We need an additional structure on this semiring: we assume that it
is represented as a union of subsemirings Wy corresponding to domains V C RY. If
L1 € Wy, Ly € Wy, ||L1|| = ||L2|| = 1 and the domains are far away we assume
that the commutator [L;, Ly] is small: for every n

||[Lla L2]|| S Cnd(‘/la ‘/2)_n

where d(V1, V5) stands for the distance between domains and C,, is a constant factor.

Let us assume that the operators L(¢) belong to the semiring W. Moreover,
we require that in the case when the function 7, ¢ has essential support in 7V the
corresponding operator L(7T;¢) belongs to W, for some constant C. Then it is easy
to check that the inequality () is satisfied in the case when functions f;, f; do not
overlap. This allows us to prove the existence of the limit (2)) defining in-state in the
case when the functions f; do not overlap.

One can give a formulation of quantum theory in terms of group V of linear
operators acting in topological vector space and semiring VW of linear operators
acting in the same space. It seems that such a formulation can be useful in BRST
approach to quantum theory.

One can prove analogs of results of present paper in the case when the group of
spatial translations is discrete. It is natural to assume that this group is is isomor-
phic to Z¢ (free abelian group with d generators). This happens, in particular, for
quantum theory on a lattice in d-dimensional space.

The notion of elementary space should be modified: h should consist of fast
decreasing functions on the lattice Z¢, spatial translations act on this space as shifts
of the argument. Equivalently one can consider elements of h as smooth functions on
a torus (as smooth periodic functions of d arguments); taking corresponding Fourier
series we come to fast decreasing functions on Z¢.

Working with this version of elementary space we can modify all definitions and
theorems of this paper. One should expect that modified theorems can be applied
to gapped lattice systems.

These ideas can be applied also in the case when translation symmetry is spon-
taneously broken (i.e.the theory is translation invariant, but we consider elementary
excitations of a state w that is invariant only with respect to a discrete subgroup of
the translation group.).

Similar modifications can be made when the time is discrete.

Acknowledgements I am indebted to A. Rosly for very useful comments.
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