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Abstract: The Jarzynski identity can describe small-scale nonequilibrium systems through
stochastic thermodynamics. The identity considers fluctuating trajectories in a phase space.
The complexity geometry frames the discussions on quantum computational complexity us-
ing the method of Riemannian geometry, which builds a bridge between optimal quantum
circuits and classical geodesics in the space of unitary operators. Complexity geometry
enables the application of the methods of classical physics to deal with pure quantum
problems. By combining the two frameworks, i.e., the Jarzynski identity and complexity
geometry, we derived a complexity analog of the Jarzynski identity using the complexity
geometry. We considered a set of geodesics in the space of unitary operators instead of the
trajectories in a phase space. The obtained complexity version of the Jarzynski identity
strengthened the evidence for the existence of a well-defined resource theory of uncomplex-
ity and presented an extensive discussion on the second law of complexity. Furthermore,
analogous to the thermodynamic fluctuation-dissipation theorem, we proposed a version
of the fluctuation-dissipation theorem for the complexity. Although this study does not
focus on holographic fluctuations, we found that the results are surprisingly suitable for
capturing their information. The results obtained using nonequilibrium methods may con-
tribute to understand the nature of the complexity and study the features of the holographic
fluctuations.
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1 Introduction

After Wheeler proposed the “It from bit” [1], an increasing number of concepts in informa-
tion theory have been introduced into every corner of physics and have played important
roles. One fascinating and novel example of such concepts is the quantum computational
complexity1, defined as the minimal number of primitive quantum gates required to gener-
ate a given unitary operator U :

U = gN ...g2g1︸ ︷︷ ︸
Complexity=N

, (1.1)

where the fixed gate set {g1, g2, . . . , gN} comprises the primitive gates required to generate
U . Complexity has been introduced as a theoretical tool for quantifying the difficulty
faced in implementing a desired quantum computational task. It measures the hardness
in constructing a given unitary operator U (unitary complexity) or approximating a target
quantum state from a reference state (state complexity).

In the context of AdS/CFT correspondence [2–4], several information quantities have
natural duality in terms of geometric objects, which is considered to encode the features of
holographic spacetime (e.g., entanglement entropy is dual to the area of extremal surfaces)
[5]. Similar to the entanglement entropy, complexity was recently conjectured to have a
holographic dual. The two main holographic correspondences for complexity are “Com-
plexity=Volume” [6–8] and “Complexity=Action” [9, 10]. Chemissany and Osborne [11]
developed a procedure to directly associate a pseudo-Riemannian manifold with the dual
AdS space (bulk spacetime) arising from a natural causal set induced by local quantum cir-
cuits. Additionally, they studied the fluctuations of the AdS space, which is caused by the
dynamics of the dual boundary quantum system via the principle of minimal complexity2,
and argued that the Brownian motion in the space of unitary operators might simulate such
a fluctuation. Furthermore, they introduced a partition function by introducing a path in-
tegral in the space of unitary operators to capture information on holographic fluctuations.

To obtain a more quantitative comprehension of the complexity, a geometric treatment
was proposed for the complexity in [12] and solidified in [13–15]. Based on previous works, a
framework, called “complexity geometry” was gradually established [16, 17]. We summarized
the main idea of complexity geometry as follows: introduction of a Riemannian (or a Finsler)
metric in the space of unitary operators3 (note that the elements of the space of unitary
operators act on a given number of qubits). Accordingly, the distance or action functional
obtained from the metric is defined as the two measures of the complexity. Therefore,

1“Quantum computational complexity” is referred to as “complexity”
2This will be explained in the next section.
3The group manifold, the space of unitary operators, and the configuration space in this article all refer

to special unitary group with an introduced metric structure.
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pure quantum (quantum scenario) complexity-related problems are changed into geometric
problems that can be solved with classical mechanics (classical scenario) [18]. In particular,
geodesics in the space of unitary operators can be obtained by geodesic equations. Recently,
complexity and its geometry have been used as an efficient tool to study extensive topics,
such as the second law of complexity [18], black hole thermodynamics [19], the accelerated
expansion of the universe [20], and quantum gravity [21].

In the past few decades, the study of nonequilibrium systems in high energy physics has
become increasingly popular. Accordingly, several remarkable theoretical frameworks have
been implemented to capture the features of nonequilibrium systems. One of the most eye-
catching frameworks is the Jarzynski identity [22, 23], which connects equilibrium quantities
with nonequilibrium processes. In particular, the Jarzynski identity builds a bridge between
the equilibrium free energy difference, ∆F , and the work done on the system during a non-
equilibrium process, W . The Jarzynski identity is expressed in the following form:

〈exp(−βW )〉 = exp(−β∆F ), (1.2)

where β denotes the inverse temperature. The bracket, 〈· · · 〉, represents the ensemble
average of all possible values of W . There are several proofs of the Jarzynski identity
[24–28]. Hummer and Szabo proposed an elegant path integral proof [27] of the Jarzynski
identity based on the Feynman-Kac formula [29–32]. This has played a pivotal role in
stochastic thermodynamics. Furthermore, as a novel tool, the Jarzynski identity has been
used as diverse as renormalization group [33], Out-of-Time-Order correlators (OTOCs) [34],
and the Rényi entropy [35] in holography and quantum information. Thus, it is natural to
propose that the Jarzynski identity can be generalized to connect with another important
information quantity, the complexity, which may provide us with deeper insights into high-
energy physics.

The Jarzynski identity not only interrelates with the second law of thermodynamics but
also characterizes a few fluctuation relations, including the fluctuation-dissipation theorem
that significantly connects with entropy. Based on this, one of the core ideas we explored
in this study was the derivation of a version of the Jarzynski identity for complexity using
the path integral approach [27]. In addition, we generalized the discussions in [18] for sys-
tems with time-dependent Hamiltonians and derived a version of the fluctuation-dissipation
relation for complexity. Because [11] found that the fluctuations of a boundary quantum
system are diametrically associated with those of a bulk spacetime, we suggested that the
proposed fluctuation-dissipation theorem is a feasible tool for quantitatively exploring the
holographic fluctuations4.

In this study, we derived a complexity version of the Jarzynski identity, which is our
main result. In addition, we argued that the obtained identity might bring us insights into
several topics about complexity, in particular uncomplexity as a computational resource,
generalization of the second law of complexity, complexity fluctuation-dissipation theorem,
and holographic fluctuations. The remainder of this paper is organized as follows. In Sec-
tion 2, we briefly review the central concepts of the complexity geometry and the complexity

4We will not delve into this issue or invoke any gravitational model in our paper. In this paper, we
mainly focus on presenting the relationship between the complexity itself and the Jarzynski identity.
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version of the least action principle, namely the principle of minimal complexity. We review
a special derivation of the Jarzynski identity based on the path integral method. In Section
3, we introduce the path integral in the space of unitary operators, and apply it to obtain
the complexity version of the Jarzynski identity. The application of the Hamilton-Jacobi
equation helps us rewrite the identity to a more intuitive form. In Section 4, we discuss
four issues about the complexity based on the obtained Jarzynski identity, which are the re-
source theory of uncomplexity, generalization of the second law of complexity for stochastic
auxiliary system A, fluctuation-dissipation theorem in the context of quantum complexity,
and holographic fluctuations. In Section 5, we perform a numerical simulation of the trans-
verse field Ising model to support our discussions on the second law of complexity, where
the complexity version of the Jarzynski identity plays a vital role. Finally, in Section 6, we
summarize our results and provide the conclusions and outlooks. This paper is structured
in accordance with the flowchart presented in Fig. 1.

Figure 1. Flowchart of the paper. The reason for connecting “Fluctuation-dissipation theorem”
and “Holographic fluctuations” with a dashed line is that the former might be a potential tool to
help us quantitatively study the latter.

2 Preliminaries

In this section, we first briefly review the notion of the complexity geometry. Two significant
concepts are retrospected: theQ-A correspondence and the principle of minimal complexity.
Second, we present a review of the derivation of the Jarzynski identity presented in [27],
which relies on the Feynman-Kac formula and path integral method. Finally, we generalize
the derivation to adapt to our later discussions.
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2.1 Complexity geometry

The complexity geometry is a powerful tool for quantifying the hardness to generate a spe-
cific unitary operator U ∈ SU(dim[H]) from the identity I ∈ SU(dim[H]), where “dim[H]”
denotes the dimensions of the Hilbert space of the quantum systems (i.e., H) comprising a
fixed number of qubits.

Figure 2. The minimal number of polyline segments (black line) can be understood as the gate
complexity, and the action of trajectory γ(t) (red line) can be understood as a smooth representation
of the complexity.

Instead of using gate complexity, we minimize a smooth function (the cost) in a smooth
manifold (the space of unitary operators) [2]. Then, our purpose changes from how to
determine the optimal quantum circuit comprising quantum gates to how to generate the
target unitary operator

U = γ(T ) = Pe−i
∫ T
0 H(t)dt (2.1)

from a given Hamiltonian H(t) with minimal cost (the central idea is presented in Fig. 2)
in a certain time interval T , where P represents the time-ordered operator. γ(t) denotes
the trajectory in the space of unitary operators. A cost with fixed boundary conditions
γ(0) = I, γ(T ) = U is defined as follows:

Aa(U) ≡
∫ T

0
La[γ(t), γ̇(t)]dt, (2.2)

where La is a local functional of the γ(t) ∈ SU(dim[H]) in the space of unitary operators5

that has the four following characteristics:

(1) Continuity : La[γ, γ̇] ∈ C∞.

(2) Non-negativity : La[γ, γ̇] ≥ 0 takes an equal sign if and only if γ̇ = 0.

(3) Positive homogeneity : ∀λ ∈ R, La[γ, λγ̇] = λLa[γ, γ̇].
5The subscript “a” indicates an auxiliary system, which will be described in Section 2.1.2.
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(4) Triangle inequality : ∀γ̇, γ̇′, La satisfies the triangle inequality such that La[γ, γ̇] +

La[γ, γ̇
′] ≥ La[γ, γ̇ + γ̇′].

If we regard La in Eq. (2.2) as a Lagrangian, Aa(U) becomes the action functional of
the trajectory connecting endpoints I and U in the space of unitary operators. Thus,
complexity is defined as the minimal value of Aa,

C(U) ≡ inf
γ
Aa(U) = inf

γ

∫ T

0
La[γ(t), γ̇(t)]dt, (2.3)

and the infimum is over all possible trajectories. The four properties of La define a smooth
manifoldM6 equipped with a local metric, called the complexity metric,

Gγ(·, ·) : TγM× TγM→ R, (2.4)

where TγM is the tangent space at γ ∈M. Note that in this study,M is nothing but the
SU(dim[H]) group manifold. We will useM to represent the group manifold SU(dim[H])

(the space of unitary operators) throughout this study. More details can be found in [12–17].

2.1.1 Real quantum system “Q”

The quantum system we considered comprises K qubits. The interactions between these
qubits are taken as k-local. Here, k-local means that the Hamiltonian of the system contains
the interaction terms of not more than k qubits. For example, a 2-local Hamiltonian

H(t) =
∑
i,j

hij(t), (2.5)

where hij(t) is a Hermitian operator acting on two arbitrary qubits i and j. The general
expression of a k-local Hamiltonian is

H(t) =
∑

i1<i2<...<ik

∑
a1={x,y,z}

· · ·
∑

ak={x,y,z}

Ja1,··· ,aki1,··· ,ik (t)σa1i1 σ
a2
i2
· · ·σakik . (2.6)

Schematically, it can be written as

H(t) = JM (t)σM (t), (2.7)

where σI and JI(t) are the set of generalized Pauli matrices and coupling functions. I

runs over all (4K −1) Pauli matrices with corresponding nonzero couplings7. We follow the
Einstein’s summation convention here and thereafter. This time-dependent Hamiltonian
generates Eq. (2.1) and determines the dynamics of a quantum system.

What are the dynamics of the quantum system Q? The system Q is a standard quan-
tum system. Thus, when referring to its dynamics, we usually consider the evolution process
of the states in its Hilbert space (the space of states) with 2K dimensions. We choose a

6To be precise, the Finsler manifold is a type of generalization of the Riemannian manifold. See Chapter
8 of [36] for the Finsler geometry.

7(4K − 1) is also the dimensions of SU(2K) group.
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reference state |Ω〉 and a target state |Ψ(T )〉 as the initial and final system states, respec-
tively. We then define a moving point γ(t) ∈ M. According to the Schrödinger’s picture,
the evolution starting from the initial state at time t = 0 to the final state at t = T is
achieved by applying a particular unitary operator U = γ(T ),

|Ψ(T )〉 = U |Ω〉 , (2.8)

and the time-evolution (with constraints γ(0) = I and γ(T ) = U) of γ(t) itself satisfies the
Schrödinger equation

dγ(t)

dt
= −iH(t)γ(t), (2.9)

where H(t) is a traceless Hermitian operator, i.e., Eq. (2.7).
In this study, we mainly focus on the time-dependent Hamiltonian form of Eq. (2.7),

which is a generalization of the case presented in [18]. The only difference between these
two is that the coupling J in the present study varies with time but is constant in [18]. Two
typical examples with the time-independent Hamiltonian are the SYK model [37–40] and
thermofield-double (TFD) state [41, 42].

2.1.2 Auxiliary classical system “A”

Because of the application of the complexity geometry, we define a classical auxiliary system
A, along the lines of [18], as a system that describes the evolution of the unitary operators of
the quantum system Q. We must consider the following questions to define such a classical
auxiliary system:

(1) What does system A look like?

(2) How do we define the distance (metric) in the configuration space of A?

(3) What is the equation of motion?

Let us answer these questions one by one. The classical auxiliary system A describes the
evolution of the unitary operators inM; thus, the configuration space is the space of unitary
operatorsM and each point inM corresponds to an element of the special unitary group.
The number of degrees of freedom of system A is equal to the dimension ofM. Moreover,
the evolution of a unitary operator in the space of unitary operators can be regarded as
the motion of a fictitious nonrelativistic free particle with unit mass in the configuration
space. The particle velocity is described by a tangent vector γ̇ along the trajectory in
M. The tangent vector’s dimension is consistent with the dimension ofM (the number of
degrees of freedom of system A). For instance, consider a system Q comprising K qubits
andM = SU(2K). Then, the dual auxiliary system A has (4K − 1) degrees of freedom and
the tangent vectors ofM are described by (4K − 1)-dimensional variables.

Because any Hermitian operator can be expanded in generalized Pauli matrices, such as
Eq. (2.7), we can consider the set of Pauli matrices as a set of basis inM. The generalized
Pauli matrices satisfy

TrσMσN = δMN , (2.10)

– 7 –



where we assume that the trace “Tr” is always normalized and δMN denotes the Kronecker-
delta. Therefore, coupling JM (t) can be solved as

JM (t) = δMNTr[iγ̇(t)γ†(t)σN ]. (2.11)

If we set γ(0) = I, then at t = 0 Eq. (2.11) is in form of

JM (0) = δMNTr[iγ̇(t)σN ]|t=0, (2.12)

where the right-hand side is the projection of the initial velocity onto the tangent space
axes oriented along the Pauli basis. Brown and Susskind regarded JM (0) as the initial
velocity of a fictitious particle of system A (i.e., VM (0) ≡ JM (0)). This is called the
velocity-coupling correspondence [18]. Hence, JM (t) plays the role of a time-dependent
velocity. Then, couplings can be written in terms of general (local) coordinates, that is,
{JM (t)} → {ẊM (t)}, where {XM (t)} denotes the coefficients (components) of some vectors
inM expanded in the Pauli basis. Notably, the selection of local coordinates is not unique.
An example of different choices is presented in [43].

Next, let us introduce the standard inner-product metric (bi-invariant) inM, that is,

ds2|inner−product = Tr[dU †dU ]

= δMNTr[iU †dUσM ]Tr[iU †dUσN ],
(2.13)

which equally treats all tangent directions σI . Mathematically, it means that if M is
equipped with a bi-invariant metric, then M is homogeneous and isotropic. Such a bi-
invariant metric induces the system A with characteristics similar to those in a classical
system in the Euclidean space.

Recall that the complexity is a tool for measuring how difficult it is to generate a target
unitary U . We generalize δMN to a symmetric positive-definite penalty factor GMN by
extending Eq. (2.13) to the complexity geometry condition [16]. The metric then becomes

ds2 = GMNTr[iU †dUσM ]Tr[iU †dUσN ], (2.14)

which is a right-invariant local metric on M. The metric is rewritten in terms of general
coordinates as follows:

ds2 = GMNdXMdXN . (2.15)

Eq. (2.15) provides a homogeneous but anisotropic curved space (with negative curvature
for a large number of qubits [16, 44]) as the configuration space. “Anisotropic” means
that it is hard for a particle of the system A to move in some directions. In quantum
computation, this means that it is tough to impose quantum gates in some directions to
generate the unitary operator U , because these directions are severely penalized. A more
detailed discussion can be found in [16]. We mainly consider the (irreducible8) Markov
processes in M in the following sections. The state-space S of these processes consists of
the possible trajectories starting at the origin I ∈ M and has a fixed endpoint U ∈ M,

8In this study we consider that all Markov chains are irreducible.
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S ≡ {γi}, where i ∈ {0, 1, · · · · · · , N} indicates each moment and satisfies γ0 = γ(t0) = I

and γN = γ(tN ) = U . We can obtain the action functional of the trajectories inM using
the metric presented in Eq. (2.15)

Aa =

∫
1

2
GMNẊ

MẊNdt, (2.16)

where subscript “a” denotes a quantity of the system A. Eq. (2.16) is a rewritten form of
Eq. (2.2) after considering the Lagrangian

La =
1

2
GMNẊ

MẊN . (2.17)

Next, the complexity is calculated by minimizing Aa in Eq. (2.16) as

C = inf
γ

∫
1

2
GMNẊ

MẊNdt, (2.18)

which is an explicit form of Eq. (2.3).
For any classical system, the equation of motion can be derived from an action func-

tional by applying the Euler-Lagrange equation. Thus, for any auxiliary system A, the
equation of motion reads

∂La
∂XM

− d

dt
(
∂La

∂ẊM
) = 0. (2.19)

Substituting the right-hand side of Eq. (2.17) into Eq. (2.19), we obtain

ẌM + ΓMYNẊ
Y ẊN = 0, (2.20)

where the Christoffel symbol ΓMYN is defined as

ΓMYN ≡
1

2
GMS(∂NGSY + ∂YGSN − ∂SGNY ), (2.21)

and ∂M ≡ ∂
∂XM . Eq. (2.20) is the geodesic equation in M, which is the equivalent

expression to the equation of motion9.
We further extend the discussion made by Brown and Susskind [18]. Consider a sys-

tem Q governed by a time-dependent Hamiltonian H(t). Consequently, the dual auxiliary
system A is a stochastic classical system, and the evolution of the unitary operator corre-
sponds to a Markov process inM. The equation of motion becomes a stochastic differential
equation, e.g., Quantum Brownian Circuit [46],

dγ(t) = −1

2
γ(t)dt+

i√
8K(K − 1)

∑
j<k

3∑
αj ,αk=0

σ
αj
j ⊗ σ

αk
k γ(t)dBj,k,αj ,αk(t), (2.22)

where dBj,k,αj ,αk(t) are independent Wiener processes with a unit variance per unit time.
K denotes the number of qubits in the quantum system Q. The configuration space M

9There is one more equivalent form commonly used in Lie algebra, namely, the Euler-Arnold equation
[45].
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is SU(2K) (equipped with a complexity metric). The system A has (4K − 1) degrees of
freedom.

In summary, although the understanding of the complexity geometry is still incomplete,
it helps us change pure quantum problems (i.e., finding the optimal circuits) to classical
geometric problems (i.e., finding geodesics inM). This quantum-classical duality is called
the Q-A correspondence.

2.1.3 Principle of minimal complexity

The principle of minimal complexity is the complexity version of the principle of least action,
namely the application of the principle of least action to the auxiliary system A [11]. The
statement of the principle of minimal complexity is the rewritten form of the principle of
least action [47]: “A true dynamical trajectory of the system A between an initial and a
final configuration in a specified time interval is found by imagining all possible trajectories
that the system could conceivably take. Then, we compute the complexity for each of these
trajectories and select one that makes the complexity stationary (or ‘minimal’). Thus, true
trajectories are those that have the minimal complexity.”

By applying the variational method to the first order of Eq. (2.18), the Euler-Lagrange
equation for the principle of minimal complexity can be obtained. However, Eq. (2.19) is
a necessary condition for the minimal value of complexity. To determine whether a trajec-
tory is minimal, we must consider its second-order variation. A trajectory with minimal
complexity has a positive second-order derivative.

A similar statement arises from the complexity=action conjecture, that is, the principle
of least computation [10]. The conjecture states that the complexity of the boundary state
is proportional to the on-shell action of the bulk spacetime. Therefore, we can apply
the principle of least action to obtain the equations of motion in the bulk spacetime and
minimize the complexity.

2.2 Jarzynski identity

As one of the most remarkable achievements in recent decades, the Jarzynski identity can
be derived or proved by various means such as microscopic [22] or stochastic [27] dynamics.
In this study, our discussion is mainly based on the path integral derivation of the Jarzynski
identity presented by Hummer and Szabo [27].

2.2.1 Path integral derivation

First, suppose there is a system whose phase space is denoted by ~x. The evolution of the
system follows the canonical Liouville equation, i.e.,

∂P (~x, t)

∂t
= LtP (~x, t), (2.23)

where P (~x, t) is the phase space density function and Lt is a time-dependent operator.
Its stationary solution is a Boltzmann distribution Lte

−βH(~x,t) = 0 [48]. Therefore, we
consider a distribution P (~x, t) at time t that satisfies the condition of the stationary solution

– 10 –



LtP (~x, t) = 0. At the same time, it obeys

∂P (~x, t)

∂t
= −β

(
∂H(~x, t)

∂t

)
P (~x, t). (2.24)

If we combine the stationary solution condition of Eq. (2.23) and Eq. (2.24), a Fokker-
Planck type equation with a sink term can be obtained, i.e.,

∂P (~x, t)

∂t
= LtP (~x, t)− β

(
∂H(~x, t)

∂t

)
P (~x, t). (2.25)

Now, we consider the system evolves from an equilibrium state at t = 0 to a nonequilibrium
state at t = T under an arbitrary force. Under this condition, Hummer and Szabo deter-
mined that the solution of Eq. (2.25) could be expressed using the Feynman-Kac formula
[29–31] as follows:

P (~x, T ) =

〈
δ(~x− ~x(T ))exp[−β

∫ T

0

∂H

∂t
(~x, t)dt]

〉
, (2.26)

where the bracket 〈· · ·〉 represents the ensemble average. Each trajectory in the phase space
is weighted by a factor that can be defined as the external work done on the system,

W (T ) ≡
∫ T

0

∂H(~x, t)

∂t
dt. (2.27)

Based on the famous relation between the free energy and partition function in statistical
mechanics (i.e., F (t) = −β−1logZ(t)), the exponent of the free energy difference ∆F (T ) =

F (T )− F (0) is given as

e−β∆F (T ) =
Z(T )

Z(0)
=

∫
d~xe−βH(~x,T )∫
d~ye−βH(~y,0)

. (2.28)

The Boltzmann distribution reads

P (~x, T ) =
e−βH(~x,T )∫
d~ye−βH(~y,0)

. (2.29)

In Eq. (2.29), the numerator is divided by such a denominator because the initial distribu-
tion is exact. Thus the Jarzynski identity

exp(−β∆F (T )) = 〈exp(−βW (T ))〉 (2.30)

is derived by integrating both sides of Eq. (2.26) over ~x.

2.2.2 Generalized form

To generalize their formalism to a configuration space, we must re-interpret the meaning
of each symbol in Eq. (2.23). We re-interpret ~x and P (~x, t) as a random variable and
distribution function, respectively. Then, the time-dependent operator Lt becomes the

– 11 –



Fokker-Planck operator that satisfies a Fokker-Planck equation [49]. Consequently, the
stationary solution of Lt becomes Gaussian that can be expressed as

Lte
−ηA = 0, (2.31)

where η is a positive constant. The quadratic action A is given by

A =
1

2

∫ T

0
δij ẋ

iẋjdt, (2.32)

where xi and xj represent components of ~x. If we consider a curved space, we only need
to transform the Kronecker-delta δij into a general metric tensor gij . Then, Eq. (2.24)
becomes

∂P (~x, t)

∂t
= −η

(
∂A(~x, t)

∂t

)
P (~x, t). (2.33)

Similarly, combining this equation with Eq. (2.31) yields

∂P (~x, t)

∂t
= LtP (~x, t)− η

(
∂A(~x, t)

∂t

)
P (~x, t). (2.34)

We apply the Feynman-Kac formula to Eq. (2.34) to obtain

P (~x, T ) =

〈
δ(~x− ~x(T ))exp[−η

∫ T

0

∂A

∂t
(~x, t)dt]

〉
. (2.35)

We can further define the generalized work10 as

W (t) ≡
∫ t

0

∂A

∂s
(~x, s)ds. (2.36)

By integrating ~x on both sides of Eq. (2.35), we obtain a Jarzynski-like identity, that is,∫
D~xe−ηA(~x,T )∫
D~ye−ηA(~y,0)

≡ Z(T )

Z(0)
= 〈exp(−ηW (T ))〉, (2.37)

where Z(t) is the partition function and D~x and D~y are suitable path integral measures in
the configuration space. Note that if we regard the constant η as the inverse temperature
of the system and set T = 1, using the F (t) = −η−1logZ(t) relation, Eq. (2.37) becomes
the Jarzynski identity (i.e., Eq. (2.30)).

To apply this generalized method to the space of unitary operators, we will introduce
the Haar measure and ergodicity in the subsequent section. Furthermore, we will use the
Hamilton-Jacobi (HJ) equation to rewrite the complexity version of the Jarzynski identity.

3 Jarzynski identity under the background of the complexity geometry

In Section 3.1, we introduce the Haar measure and path integral in M. Then, we apply
the same logic as in the path integral derivation in the last section to obtain the Jarzynski
identity for complexity. We argue that one can use the Hamilton-Jacobi equation to rewrite
the obtained identity into a more meaningful form and raise several nonequilibrium analogs
of complexity dynamical issues. We will present these in the next section.

10We sometimes refer to the action functional as the energy functional, which is why the generalized work
is defined in this way, e.g., [33].
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3.1 Path integral in M

3.1.1 Path integral

Before discussing the path integral in M (mathematically, the path integral is somewhat
consistent with the Wiener measure; see [50] for the definition of the Wiener measure), we
must first clarify a prerequisite that enables to integrate in the group manifold. We define a
Haar measure as a unique measure that is invariant under translations by group elements.
We express a Haar measure in terms of general coordinates:

[dγ] ≡ 1

Nc

√
GMN (γ)dX1dX2 · · · dXdim(M). (3.1)

We use [dγ] to represent the Haar measure (see [43] for an example for choosing a spe-
cific parameterization of a normalized Haar measure). Nc is the normalization coefficient.√
GMN (γ) ≡ |det(Jd)| denotes the determinant of the Jacobian matrix Jd. The Jacobian

matrix identifies an invariant measure under coordinate transformations. We follow the
notation in Eq. (2.15), i.e., {XM} are the coefficients (or components) of γ(t) ∈ M ex-
panded on a local basis in all the following contents. The Haar measure must meet two
requirements:

(1) normalization condition:
∫
M[dγ] = I; and

(2) orthogonal completeness condition:
∫
M[dγ] |γ〉 〈γ| = I.

Here, |γ〉 is considered as the group representation of some pseudo-quantum states that
satisfies 〈γ|γ′〉 = δ(γ−γ′). Note that the system described by these pseudo-quantum states
is not a real quantum system, but a hypothetical quantum system obtained by applying
“stochastic quantization” [51] to system A, a classical system.

Note that the pseudo-quantum states only help us derive the path integral. To derive
the path integral in quantum mechanics, the evolution kernel is obtained by constantly in-
serting the orthogonal completeness condition, which is familiar to most physicists. Thus,
we can assume that there exists a hypothetical quantum system with such an orthogonal
completeness condition. Then, we can derive the path integral by inserting the orthogonal
completeness condition instead of introducing an unfamiliar concept, “i.e., stochastic quan-
tization” [51]. In this system, a stochastic differential equation, e.g., Langevin equation, is
analogous to the Heisenberg operator equation in quantum mechanics. Although the intro-
duction of the pseudo-quantum state is not mathematically rigorous, it is convenient for us
to introduce a path integral inM. A more rigorous discussion of “stochastic quantization”
can be found in [51]. It must be emphasized that the hypothetical quantum system is es-
sentially a classical stochastic system, and its uncertainty comes from stochastic motion not
from the Heisenberg uncertainty principle. Therefore, the system described here is purely
classical even if we use Dirac notations.

Once a Haar measure is defined, we can do integral in M. Thus, we can derive the
evolution kernel. Consider a Markov chain inM with a finite state space (i.e., S = {γ0 =

I, γ1, · · · · · · , γN = U} with 0 = t0 < t1 < t2 < · · · · · · < tN−1 < tN = T ). We set the unit
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time interval as ti − ti−1 = ∆t = T/N for any i ∈ {1, 2, · · · · · · , N}. Thus, the propagator
Ka(γi+1, ti+1; γi, ti) is defined as

Ka(γi+1, ti+1; γi, ti) ≡ 〈γi+1, ti+1|γi, ti〉 = eiLa[γ(ti+1);γ(ti)]∆t+O(∆t2). (3.2)

We can obtain the evolution kernel by repeatedly inserting the orthogonal completeness
condition similar to what we usually do in Feynman path integrals. If we take N→∞ such
that ∆t → 0 , the evolution kernel (or heat kernel) Ka(U, T ; I, 0) from I at t = 0 to U at
t = T is obtained as

Ka(U, T ; I, 0) ≡
∫
M

N−1∏
i=0

[dγi]Ka(γi+1, ti+1; γi, ti)

=

N−1∏
i=0

Ka(γi+1, ti+1; γi, ti).

(3.3)

The sum of Lagrangians, La, can be written in the form of the complexity

Ka(U, T ; I, 0) =

∫
M

N−1∏
i=0

[dγi]e
iC(T ). (3.4)

However, the path integral in a curved configuration space inevitably introduces a correc-
tion term with a scalar curvature in the complexity C to maintain the covariance of the
path integral under any coordinate transformation. Consequently, we must deal with an
additional curvature term when calculating the path integral.

Fortunately, an elegant proposal [52] provides a novel form without any curvature
modification; it introduces a factor called Van Vleck-Morette determinant [53, 54] in Eq.
(3.4)

Ka(U, T ; I, 0) =

∫
M

N−1∏
i=1

[dγi]
Nci|∆(γ∗; γi)|√

GMN (γ∗)
eiC(T ), (3.5)

where Nci denotes the normalized factor of the ith Haar measure and |∆(γ∗; γ)| is the Van
Vleck-Morette determinant:

|∆(γ∗; γ)| ≡ N2
c√

GMN (γ∗)
√
GMN (γ)

det

(
− δ

2λ(γ∗; γ)

δXMδXN
∗

)
, (3.6)

where λ(γ∗; γ) is defined as the geodesic interval [55, 56] between a fixed point γ∗ ∈M and
γ ∈M. Note that

λ(γ∗; γ) ≡ 1

2
D2(γ∗; γ), (3.7)

where D(γ∗; γ) is the length of the geodesic connecting point γ∗ to point γ. With the
replacement, i.e.,

∫
MDγ ≡

∫
M
∏N−1
i=1 [dγi]

Nci |∆(γ∗;γi)|√
GMN (γ∗)

, the expression of evolution kernel

becomes
Ka(U, T ; I, 0) =

∫
M
DγeiC(T ). (3.8)
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The detailed derivation is presented in Appendix B (see also [52]). In time limit t→∞ we
consider the continuation of time t to the complex plane. A Wick rotation, t→ iηt, is then
applied to Eq. (3.8) such that one can rewrite the evolution kernel as

Za(T ) =

∫
M
Dγe−ηC(T ), (3.9)

where Za(T ) refers to the partition function of the system A and η is a positive constant11.
Let us give some remarks on this equation. In principle, one can consider a trajectory with a
large complexity inM. Then, the contribution of this trajectory to Eq. (3.9) is incredibly
small because the complexity exists in the form of an exponential function, specifically,
e−ηC , in Eq. (3.9). We will further consolidate this fact in Appendix C by discussing the
relationship between the principle of minimal complexity and the second law of complexity.

3.1.2 Ergodicity

The ergodic motion in the configuration space ensures that the contributions of all possible
trajectories are included in Eq. (3.9). The ergodicity for the system A can be fulfilled in
two ways: partial ergodic (chaotic evolution with a time-independent Hamiltonian [18]) and
complete ergodic (stochastic process with a time-dependent Hamiltonian [11]).

A time-independent k-local Hamiltonian generates the partial ergodic motion inM. To
understand this, consider a quantum system comprising K qubits that evolves by applying
the unitary operator

U = e−iHT =
2K∑
n=1

e−iEnT |En〉 〈En| , (3.10)

where |En〉 are the eigenstates of Hamiltonian H with eigenvalues En. Because ergodicity
is equivalent to the incommensurability of the energy eigenvalues in this case and there
are 2K energy eigenvalues for the Hamiltonian H, the unitary operator U moves on a 2K

dimensional torus (subspace ofM) [18] in an ergodic motion.
Complete ergodicity can be achieved in the case with a time-dependent k-local Hamil-

tonian, i.e., Eq. (2.6). In this case, the motions inM are considered as the ergodic Markov
process filling up all (4K−1) dimensions ofM. An ergodic Markov process must rigorously
satisfy irreducible and non-periodic conditions, and all states are persistent [57]. The neces-
sary and sufficient condition for the existence of a stationary distribution of an irreducible
Markov chain is an ergodic Markov chain. We can write a stationary distribution according
to our settings as follows:

P (γ, t) = Naexp(−ηC(t)), (3.11)

where Na represents the normalized constant. Thus, the ergodicity can be satisfied. In
conclusion, the existence of a stationary distribution indicates that the motion of the unitary
operator inM is ergodic when system Q is governed by a time-dependent Hamiltonian.

11It has two meanings, a Lagrangian multiplier and the inverse temperature of the system A [18].
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3.2 Complexity version of the Jarzynski identity

3.2.1 Derivation of the Jarzynski identity

In this section, we derive the complexity version of the Jarzynski identity from the Fokker-
Planck equation with a sink term in M. Consider a stochastic auxiliary system A that
describes a particle moving from a fixed point γ(0) ∈M to another fixed point γ(T ) ∈M.
The dual quantum system Q is governed by a time-dependent Hamiltonian H(t) evolving
in a time interval T . Here, the fixed endpoints of the trajectories inM play a similar role
to the two fixed states in a common Jarzynski case. The evolution equation of the system
A is a Fokker-Planck equation, i.e.,

∂P (γ, t)

∂t
= LtP (γ, t), (3.12)

where P (γ, t) represents the distribution function, and the time-dependent operator Lt de-
notes the Fokker-Planck operator12. Because of Eq. (3.11) and Eq. (3.9), we can construct
a distribution as the stationary solution of Eq. (3.12) at t = T similar to what we did in
Section 2.2:

P (γ, T ) =
1

Za(0)
exp(−ηC(T )), (3.13)

where Za(0) refers to the partition function at t = 0 and complexity C plays the role of the
action A in Section 2.2, such that P (γ, t) satisfies LtP (γ, t) = 0. Moreover, one can check
that

∂P (γ, t)

∂t
= −η

(
∂C(t)

∂t

)
P (γ, t). (3.14)

Hence, using this equation and LtP (γ, t) = 0, we can obtain the Fokker-Planck equation
with a sink term

∂P (γ, t)

∂t
= LtP (γ, t)− η

(
∂C(t)

∂t

)
P (γ, t). (3.15)

Solving this equation with constraint γ(T ) = γ, we obtain

P (γ, T ) =

〈
δ(γ − γ(T ))exp[−η

∫ T

0

∂C

∂t
(γ, t)dt]

〉
. (3.16)

The ensemble average is over all the possible trajectories departing from the identity I to
reach the fixed point U at t = T . The Dirac function indicates the termination condition.
Equating this equation with Eq. (3.13) gives:

1

Za(0)
exp(−ηC(T )) =

〈
δ(γ − γ(T ))exp[−η

∫ T

0

∂C

∂t
(γ, t)dt]

〉
. (3.17)

By integrating γ on both sides of this equality and defining a quantity, called computational
work Wa(t) as a type of general work defined in Eq. (2.36) with the following form:

Wa(t) ≡
∫ t

0

∂C

∂s
(γ, s)ds, (3.18)

12The derivations of the Fokker-Planck equation are presented in Appendix B.
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the complexity version of Jarzynski identity is given as

Za(T )

Za(0)
= 〈exp(−ηWa(T ))〉 , (3.19)

which is one of our main proposals in this paper.
To simplify Eq. (3.19), we introduce an analog of the thermodynamic free energy in

complexity, that is, the “computational free energy”:

Fa(t) ≡ −η−1logZa(t). (3.20)

If we assume η = 1/Ta as the inverse temperature of the system A and set t = 1, Fa can
be regarded as the thermodynamic free energy of system A and Za(t) takes the same form
as the partition function of a free particle13. A similar discussion between the complexity-
related and thermodynamic quantities was made in [18]. By substituting Eq. (3.20) into
Eq. (3.19), the equality takes a more familiar form:

exp(−η∆Fa(T )) = 〈exp(−ηWa(T ))〉 , (3.21)

where ∆Fa(T ) = Fa(T )− Fa(0) depends on the two endpoints of evolution in system A.
Even though we have already defined the computational work Wa, intuitively under-

standing its physical meaning remains hard. Hence, we expect a more instructive interpre-
tation of Wa exists within the abovementioned discussion of the complexity version of the
Jarzynski identity. Eq. (3.18) suggests that the definition of Wa contains the time deriva-
tive of complexity. We intend to rewrite the complexity version of the Jarzynski identity
using the Hamilton-Jacobi (HJ) equation that describes the change of complexity.

3.2.2 Hamilton-Jacobi equation

To further explore the Jarzynski identity in the context of complexity, a proper rewriting of
the expression is required. In this section, we start from the derivation of the HJ equation
considering the complexity geometry and use the HJ equation to rewrite Eq. (3.21). The
rewriting of the Jarzynski identity will facilitate the development of the thermodynamic
analog of complexity, particularly for the second law of complexity and the related topic
uncomplexity as a resource [18].

Recall that the trajectories inM follow the principle of minimum complexity, that is,

δC(γ, γ̇) = δ

∫ T

0
La(γ, γ̇, t)dt = 0. (3.22)

Now, let us consider the principle of minimal complexity from a different perspective, that
is, the Hamiltonian mechanics. We first determine the starting and ending points on a
configuration space (i.e., (γ(0) = I, t = 0) and (γ(T ) = U, t = T )), respectively. Next, we
assume that the trajectories connecting those points are obtained using Eq. (3.22), which
satisfies Eq. (2.19). The generalized momentum is defined as

PM ≡
∂La

∂ẊM
, (3.23)

13Essentially, this is the relationship between the partition function obtained from the path integral
approach and the thermodynamic free energy [58].
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Figure 3. The red arrow represents the direction of motion of a particle in the auxiliary system
(tangent to the trajectory γ(t)), the green arrow represents the direction of the particle’s momentum
(perpendicular to the blue curve), and the blue curve represents a surface of equal complexity.

whose direction is depicited in Fig. 3. Next, we rewrite Eq. (3.22) as

δC =

∫ T

0

{
∂La

∂ẊM
δẊM +

∂La
∂XM

δXM

}
dt. (3.24)

By substituting Eq. (2.19) into this equation and assuming a small variation at the end-
point, namely δγ(T ) = δγ 6= 0, Eq. (3.22) is reformulated as

δC =

∫ T

0

{
∂La

∂ẊM
δẊM +

d

dt
(
∂La

∂ẊM
)δXM

}
dt

=

∫ T

0

d

dt

{
∂La

∂ẊM
δXM

}
dt

= PMδX
M .

(3.25)

We take the limit δγ → 014, such that PM = ∂C
∂XM . Thus, the complexity can be regarded

as a functional of γ, and its infinitesimal variation is written as

δC =
∂C

∂XM
δXM +

∂C

∂t
dt. (3.26)

Dividing its both sides by dt and assuming that dC
dt = La we obtain

∂C

∂t
= La − PMẊM = −Ha, (3.27)

14In Lagrangian mechanics, we always assume the variations of endpoints to be zero when deriving the
Euler-Lagrange equation. Why do we need to consider an infinitesimal nonzero variation at the endpoint
when deriving the HJ equation, though the Euler-Lagrange equation and the HJ equation can be used to
describe the same classical system? The difference comes from different essential settings. In Lagrangian
mechanics, we identify the equation of motions by varying trajectories between two fixed endpoints. How-
ever, when deriving the HJ equation, we consider that the trajectory satisfies the equation of motion.
Therefore, instead of varying trajectories, we infinitesimally vary the endpoint of the trajectory to study
the corresponding change of the action. So does for the same case in complexity story. In particular,
[59, 60] have investigated a specific dynamic law, i.e., the first law of complexity by studying the variation
of a trajectory’s endpoint in the complexity geometry.
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where Ha is the Hamiltonian of the system A and Eq. (3.27) represents the HJ equation
in the complexity story. However, a new question arises: what is the form of Ha? We look
at the auxiliary Lagrangian, i.e., Eq. (2.17), in which PM has the following form:

PM =
∂C

∂XM

=

∫ T

0

∂La
∂XM

dt

=

∫ T

0

d

dt

(
∂La

∂ẊM

)
dt

= GMNẊ
N .

(3.28)

The last equal sign is established because the metric tensor GMN is Hessian [12], that is,
GMN ≡ ∂La

∂ẊM∂ẊN
. Based on the above construction, we have

Ha = La =
1

2
GMNẊ

MẊN , (3.29)

for which we have
∂C

∂t
+ La = 0. (3.30)

Substituting this into Eq. (3.18), the computational work is recast as

Wa(T ) = −
∫ T

0
La(t)dt = −C(T ). (3.31)

We then obtain the equivalent expression of the Jarzynski identity as

exp(−η∆Fa(T )) = 〈exp(ηC(T ))〉 . (3.32)

This equality directly builds a bridge between the computational free energy difference and
the complexity.

In the next section, we will argue that the thermodynamic analogs of complexity should
be explored based on Eq. (3.32), because complexity has similarities with the thermody-
namic entropy [18] and the Jarzynski identity strongly connects with the entropy.

4 On the nonequilibrium thermodynamic analog of complexity

The Jarzynski identity can provide a theoretical framework for exploring the thermody-
namics of nonequilibrium systems, including stochastic systems. Because we have derived
the Jarzynski identity, Eq. (3.32), and the system A is stochastic, this section primarily
aims to construct the thermodynamic analogs and deepen our understanding of complexity.
In addition, several interesting issues are discussed in this section. First, we will review the
content and development for each topic. Next, we will further explore these topics based
on the previously obtained results.
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4.1 Uncomplexity as a computational resource

To understand this statement, we must first know what a resource is. The resource theory
has a wide range of applications in quantum physics [61–66], and we do not need to know all
about them. All we need to learn from the resource theory in this paper can be summarized
by the following sentence: a resource is something one needs to do X [67]. For example,
negentropy is a resource needed for doing work [61–63], which is defined as the difference
between the maximal and actual entropies,

Negentropy(t) ≡ Smax − S(t). (4.1)

The system that does work (to achieve some goals) must expend negentropy. Therefore,
negentropy is a resource for doing work. Because complexity shows its analogs with classical
entropies [18], by analogy, a complexity version of negentropy, namely uncomplexity, is
defined as

Uncomplexity(t) ≡ Cmax − C(t), (4.2)

where Cmax is the possible maximal complexity and C(t) denotes the actual complexity of
the system Q at a certain moment. This quantity is a resource that can be expended for
doing direct computations [18, 67]. The central idea is expressed as

Fa ∝ −C, (4.3)

where Fa refers to the thermodynamic free energy of system A [18, 67] obtained by assuming
η = 1/Ta as the inverse temperature of the system A and setting T = 1 in Eq. (3.20).
Equivalently,

R(t) ≡ Cmax − C(t), (4.4)

where resource is denoted by R(t).
Suppose that a particle is initialized at I ∈ M with zero complexity in the system

A. Equivalently, no gate is initially applied to any qubit in the system Q. Recall that
uncomplexity is the space for complexity to grow [18]. We can write

Fa(0) = R(0) = Cmax, (4.5)

because Fa represents the ability of the system Q to do computation15 (analogous to the
case in thermodynamics). Substituting Eq. (4.4) and Eq. (4.5) into Eq. (3.32), we obtain

exp(−ηFa(T )) = 〈exp(−ηR(T ))〉 = 〈exp [−η(Cmax − C(T ))]〉 . (4.6)

This equation provides new evidence supporting the existence of a well-defined resource
theory of uncomplexity [68].

15−∆Fa always takes non-negative values because F (0) = Cmax ≥ Fa(T ).
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4.2 Second law of complexity and fluctuation theorem

The second law of complexity is obtained by applying the thermodynamic method to the
auxiliary system A and has been studied when the system A is chaotic [18]. Based on the
same logic, we should use stochastic thermodynamics to study the second law of complexity
when the system A is stochastic rather than chaotic. We need two important pieces to
complete this “puzzle”: the second law of thermodynamics and the trajectory thermodynam-
ics [28]. In Section 4.2.1, we will first review these two important pieces in the framework
of nonequilibrium thermodynamics. Subsequently, in Section 4.2.2, we will discuss the sec-
ond law of complexity for stochastic auxiliary systems using an analogy with discussions
of Section 4.2.1. To avoid confusion, we specify a few significant notations and make a
clarification before the discussion.

Notations: in the following content, we use

P (γ) ≡ P (γ, T ) =
e−ηC(γ)

Za(0)
(4.7)

to represent the stationary distribution of a trajectory γ ∈ M in the forward process
(starting from γ(0) = I to γ(T ) = U). A superscript “tilde” denotes the quantities related
to the reverse process. By implementing time-reverse, such that t → t̃ = T − t and
γ → γ̃(t̃) = γ(t) for P (γ), we define the stationary distribution of a time-reverse trajectory
γ̃ ∈M (starting from γ̃(0) = U to γ̃(T ) = I) as

P̃ (γ̃) ≡ P̃ (γ̃, T̃ ) =
e−ηC(γ̃)

Z̃a(0̃)
, (4.8)

where Z̃a(0̃) refers to the partition function meeting the initial conditions of the reverse
process. In the common thermodynamics’ case, the stationary distribution of a forward
trajectory ~x in a phase space [71]

P (~x) = P (~x, t) =
e−βH(~x)

Z(0)
, (4.9)

and the integral is over the phase space. Similar to Eq. (4.8) the counterpart of Eq. (4.9),
P̃ (~̃x) represents the stationary distribution of a time-reverse trajectory ~̃x in the phase space.

D(p(x)||q(y)) represents the relative entropy between any two distributions p(x) and
q(y)

D(p(x)||q(y)) ≡
∫
p(x)log

p(x)

q(y)
dx ≥ 0, (4.10)

which is equal to zero if and only if p(x) = q(y),∀x, y. Such a quantity provides a measure of
distinguishability and is a handy tool for quantifying time-asymmetry in thermodynamics.

Clarification: our discussion on the second law of complexity is an extension of that
made by Brown and Susskind [18]. However, there are two main differences between our
discussion and theirs. The first difference is that the system A they discussed was a clas-
sical chaotic system. The Hamiltonian of the corresponding quantum system Q was time-
independent. In contrast, our systemA is a classical stochastic system, whose dual quantum
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system Q has a time-dependent Hamiltonian. The second difference is that we used dif-
ferent methods to study the second law of complexity. In particular, we used the approach
developed by Brock and Esposito [28] the trajectory thermodynamics to explore the second
law of complexity by analogy with their discussions on the second law of thermodynamics
of nonequilibrium systems.

4.2.1 Second law of thermodynamics and trajectory thermodynamics

This section provides a brief review on the second law of thermodynamics for nonequilibrium
systems and the trajectory thermodynamics [28]. Note that the most common expression of
the second law of thermodynamics is known as the Clausius inequality, that is,

β〈Q〉 ≤ ∆S, (4.11)

where Q is the heat absorbed by the system during a process and β and S represent the
constant inverse temperature and the system’s thermodynamic entropy, respectively. We
define the free energy of the system as

F ≡ U − β−1S, (4.12)

where U denotes the system’s internal energy. By combining this definition with the first
law of thermodynamics,

∆U = W +Q, (4.13)

we obtain
〈W 〉 ≥ ∆F, (4.14)

which corresponds to the Kelvin-Planck statement of the second law of thermodynamics: it
is impossible to extract energy from a sole heat bath and converse all that energy into work
without introducing any other influence. Equivalently, Eq. (4.14) can be written as

〈∆Stotal〉 = 〈∆iS〉 ≡ β〈Wdiss〉 ≡ β(〈W 〉 −∆F ) ≥ 0, (4.15)

where 〈∆Stotal〉 denotes the combined entropy change of the system and environment [71]
and 〈Wdiss〉 ≡ 〈W 〉 − ∆F is the average dissipated work for the forward process16. ∆iS

is defined as the cumulative entropy production along a trajectory [28], which is the time
integration of the entropy production Ṡi ≡ dSi

dt . Therefore, the non-negativity of ∆iS can
be converted into the following form:

〈Ṡi〉 ≥ 0 (4.16)

which is one of the basic features of the thermodynamic second law [28]. Eq. (4.14) can also
be derived from Eq. (1.2) by directly applying the Jensen’s inequality, that is, 〈ex〉 ≥ e〈x〉.
Thus, Eq. (1.2) is closely related to the second law of thermodynamics.

Next, we review the second piece of the “puzzle,” that is, the trajectory thermodynamics
[28]. The cumulative entropy production along a forward trajectory ~x in phase space is

16Because 〈Wdiss〉 is a physical measure quantifying the dissipation, Eq. (4.15) is also a measure of
dissipation.
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defined as the log-ratio of the distributions for observing its trajectory in the forward and
reverse processes.

∆iS(~x) = log
P (~x)

P̃ (~̃x)
= β(W −∆F ), (4.17)

where W denotes the work done on the system in a forward experiment. Instead of the
trajectories in the phase space, we treat the cumulative entropy production as a random
variable because it encodes each trajectory. Consequently, the distribution of the cumulative
entropy production is given by the path integral in phase space in combination with Eq.
(4.9):

P (∆iS) ≡
∫
δ(∆iS −∆iS(~x))P (~x)d~x

= exp(∆iS)

∫
δ(∆iS −∆iS(~x))P̃ (~̃x)d~x

= exp(∆iS)

∫
δ
(
−∆iS −∆iS̃(~̃x)

)
P̃ (~̃x)d~̃x

≡ exp(∆iS)P̃ (−∆iS),

(4.18)

and because ˜̃
~x = ~x and ˜̃P = P , the cumulative entropy production along a reverse trajectory

~̃x is obtained by

∆iS̃(~̃x) = log
P̃ (~̃x)

P (~x)
= −∆iS(~x). (4.19)

Furthermore, because the Jacobian for the transformation to the time-reverse variables is
equal to one [28], we can conclude from Eq. (4.18) that

P (∆iS)

P̃ (−∆iS)
= exp(∆iS), (4.20)

which is called detailed fluctuation theorem [78]. Eq. (4.20) has the corresponding state-
ment [28]: the probability of stochastic entropy’s increase in the forward process is expo-
nentially more probable than that of a corresponding decrease in the reverse process. We
can rewrite the Eq. (4.20) as

〈exp(−∆iS)〉 = 1 (4.21)

by integrating ∆iS in Eq. (4.20). Hence by directly applying Jensen’s inequality to Eq.
(4.21), we obtain Eq. (4.15). Finally, we note that the average cumulative entropy produc-
tion can be given by:

〈∆iS〉 = β(〈W 〉 −∆F ) = D(P (~x)||P̃ (~̃x)) ≥ 0, (4.22)

where D(P (~x)||P̃ (~̃x)) represents the relative entropy between P (~x) and P̃ (~̃x).

4.2.2 Discussions on the second law of complexity

The second law of complexity was first conjectured in [44] and developed in [18, 67]. This
conjecture has two equivalent statements:

1. Conditioning on the complexity being less than maximal, it will most likely increase,
both into the future and into the past (Statement 1).
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2. Decreasing complexity is unstable (Statement 2).

These statements initially described the features of complexity growth for a chaotic auxiliary
system, which is dual to a quantum system with a time-independent Hamiltonian. To avoid
confusion, we stipulate that the first statement is called “Statement 1,” and the second
statement is called “Statement 2.” We mainly focus on Statement 2. Analogous to the
canvass in Section 4.2.1, we extend the discussion on the second law of complexity to the
case in which system A is stochastic (i.e., corresponds to a quantum system with a time-
dependent Hamiltonian). Notably, we argue that the complexity version of the Jarzynski
identity and trajectory thermodynamics provide a “Kelvin-Planck-like” statement and a new
version of Statement 2 of the second law of complexity for stochastic auxiliary systems.

The distribution for a forward trajectory γ inM is presented as Eq. (4.7). Moreover,
the distribution for its reverse γ̃ is represented by Eq. (4.8). By analogy with Eq. (4.17)
we introduce a new quantity similar to the cumulative entropy production as follows:

∆iC(γ) = log
P (γ)

P̃ (γ̃)
, (4.23)

and we refer to it as the cumulative complexity production along the forward trajectory γ.
Moreover, we replace ∆iS, work W , and free energy difference ∆F in Eq. (4.22) with Eq.
(4.23), computational workWa, and computational free energy difference ∆Fa, respectively.
We obtain

〈∆iC〉 = η (〈Wa〉 −∆Fa) = −η (〈C〉+ ∆Fa) ≥ 0. (4.24)

This inequality can be obtained by applying the Jensen’s inequality to Eq. (3.32). Thus,
the complexity version of the Clausius inequality is obtained as follows:

〈C〉 ≤ −∆Fa. (4.25)

Because Eq. (4.24) and Eq. (4.25) are similar to Eqs. (4.15) and (4.14), respectively, we
conclude that Eqs. (4.24) and (4.25) are the mathematical expressions of the second law of
complexity for stochastic auxiliary systems. Eq. (4.16) denotes the equivalent expression of
Eq. (4.15), which describes the increase of entropy for nonequilibrium systems. After mak-
ing an analog with Eq. (4.15), Eq. (4.24) corresponds to a “Kelvin-Planck-like” statement
of the second law of complexity and describes the increasing nature of complexity, which is
the stochastic generalization of the second law of complexity.

Let us consider ∆iC(γ) as a random variable. Analogous to Eq. (4.18), the resulting
distribution for ∆iC can be obtained by doing a path integral inM:

P (∆iC) ≡
∫
δ(∆iC −∆iC(γ))P (γ)Dγ

= exp(∆iC)

∫
δ(∆iC −∆iC(γ))P̃ (γ̃)Dγ

= exp(∆iC)

∫
δ(∆iC + ∆iC̃(γ̃))P̃ (γ̃)Dγ̃

≡ exp(∆iC)P̃ (−∆iC)

(4.26)
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that can be rewritten as
P (∆iC)

P̃ (−∆iC)
= exp(∆iC). (4.27)

Eq. (4.27) is the complexity version of the detailed fluctuation theorem analogous to Eq.
(4.20) and the mathematical expression of the new version of Statement 2 for the stochas-
tic system A. We summarize the statement as follows: the possibility for an increase
in stochastic complexity production is exponentially greater than that of a corresponding
decrease. The average cumulative complexity production is equal to zero if and only if
P (γ) = P (γ̃), ∀γ ∈ M. This reveals that the time-asymmetry only vanishes when all
possible trajectories inM are reversible (i.e., the maintenance of time-reversal symmetry).
However, this vanishing condition is extremely hard to satisfy because the probability of re-
versing even a small fraction of the trajectory in the space of unitary operators is negligible
for a stochastic system A, which has been already discussed in Section 9 of [67].

This section ends with the exploration of the probability to observe a complexity value
that rises beyond the complexity upper bound obtained by applying the Jensen’s inequality
to Eq. (3.32), that is, −∆Fa. Same as before, let us resolve this problem within thermody-
namics and give a thermodynamic analog of the complexity. To experimentally obtain the
average work, we measure the fluctuating work Wi of a single trajectory in a specific carry
out i of the experiment in statistical mechanics [70]. A protocol defines a family of the
Hamiltonian {H(t)} governing the system evolution from t = 0 to t = T . The experiments
are run by controlling a parameter, such as

Λ(t) ≡ Λ0 + (ΛT − Λ0)× t

T
, with 0 ≤ t ≤ T, (4.28)

where Λ = {Λi} is a set of external controlled parameters changing in time. One can
consider a similar situation in the complexity context, because the trajectories in M are
generated by time-dependent Hamiltonians and each trajectory corresponds to a specific
value of complexity. In particular, we consider a similar protocol that defines a family
of {H(t)} and evolves the unitary operator17 in a time interval T . Then, we repeat the
experiment n times and compute the complexity for each experiment of the quantum system
Q18. Taking the arithmetic mean of these values to build a complexity ensemble (i.e.,
Ω = {Ci}), we can construct a probability distribution P (C) for complexity in the limit
n→∞. The average complexity is obtained as

〈C(T )〉 = lim
n→∞

1

n

n∑
i=1

Ci(T ) =

∫
P (C)CdC. (4.29)

Notably, the considered Hamiltonians are time-dependent and the evolution of the system
A follows a Markov process19. Now, suppose several experiments with C > −∆Fa + ζ

17Note that we evolve a unitary operator using a time-dependent Hamiltonian instead by evolving a
quantum state.

18We must reinitialize the system Q to the same initial state after each experiment.
19If the system has a time-independent Hamiltonians (e.g., SYK model), the randomness in the distribu-

tion function P (C) comes from the random couplings {J}. We leave this for our future study.
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are included in the ensemble Ω. In combination with Eq. (3.32), the probability of their
appearance is as follows:

pv[C > −∆Fa + ζ] ≡
∫ ∞
−∆Fa+ζ

P (C)dC

≤
∫ ∞
−∆Fa+ζ

exp[η(C + ∆Fa − ζ)]P (C)dC

≤ exp[η(∆Fa − ζ)]

∫ ∞
0

exp(ηC)P (C)dC

= exp(−ηζ),

(4.30)

where ζ is an arbitrary positive number. Eq. (4.30) shows a behavior similar to a ther-
modynamic case [71] where the left tail of the distribution P (C) becomes exponentially
suppressed in the forbidden region C > −∆Fa. Consequently, it is hard to measure a com-
plexity value that rises significantly more than the multiples of η beyond −∆Fa, which can
be considered as a phenomenon related to the second law of complexity. Unlike nonequi-
librium thermodynamics [77], the lower limit of the integral in Eq. (4.30) is not negative
infinity but zero because the complexity metric should be non-negative [12].

4.3 Fluctuation-dissipation theorem and complexity

Because we obtained a fluctuation theorem for the complexity in Eq. (4.27), it is interesting
to ask whether it is possible to relate the complexity fluctuation to the cumulative complex-
ity production representing the dissipation of the system A by analogy with thermodynamic
fluctuation-dissipation theorem. To answer this question, we propose a complexity version
of the fluctuation-dissipation theorem in this section.

Let us start by discussing the situation in thermodynamics. Using Eq. (1.2) and the
nonequilibrium work to derive the equilibrium free energy difference, we obtain

− β∆F = log〈exp(−βW )〉. (4.31)

We can expand the series on the left-hand side of this equation to the second-order term.

− β∆F = (−β)〈W 〉+
1

2!
(−β)2[〈W 2〉 − 〈W 〉2], (4.32)

where the second cumulant is

σ2
S ≡ (β)2[〈W 2〉 − 〈W 〉2] (4.33)

as the variance of entropy S. Notably, Eq. (4.33) represents the fluctuation of the entropy
S. The discussion on the entropy production can be alternatively phrased in terms of
dissipation work (i.e., Wdiss = β−1∆iS). From the Callen-Welton theorem [72],

dissipation ∝ fluctuation, (4.34)

the fluctuation-dissipation theorem can be obtained by combining Eq. (4.32) with Eq.
(4.17), namely

2〈∆iS〉 = σ2
S . (4.35)
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This fluctuation-dissipation theorem was studied in [73] and has many potential applica-
tions, including the construction of some hydrodynamic approaches [57].

We now go back to the content of complexity. Eq. (3.32) gives

− η∆Fa = log〈exp(ηC)〉, (4.36)

where the average value of the exponential function on the right-hand side is obtained using
the probability P (C):

〈exp(ηC)〉 =

∫
exp(ηC)P (C)dC. (4.37)

We expand the left-hand side of Eq. (4.36) into an infinite series:

− η∆Fa = ηζ1(C) +
(η)2

2!
ζ2(C,C2) +

∞∑
n=3

(η)n

n!
ζn(C,C2, ..., Cn), (4.38)

where ζn here denotes n-order cumulant20. Among these cumulants, the first and second
order terms are

ζ1(C) = 〈C〉, ζ2 = σ2
C = 〈C2〉 − 〈C〉2, (4.39)

and the second-order cumulant denotes the variance (fluctuation) of the complexity. Recall
that the state space is S = {γ0, γ1, · · · · · · , γN} that contains (N +1) mutually independent
random variables. If we take the limit N → ∞, then P (C) is approximately Gaussian for
the central limit theorem.

P (C) ≈ 1

σ2
C

√
2π

exp

(
−1

2

[C − 〈C〉]2

σ2
C

)
. (4.40)

Moreover, in this case, we can expand Eq. (4.36) only to the second-order terms. Then,
Eqs. (4.38) and (4.24) imply

2〈∆iC〉 = η2σ2
C . (4.41)

This is the version of the fluctuation-dissipation theorem for complexity that connects the
fluctuation of complexity with the dissipation of the auxiliary systemA during the evolution.

Notably, Eq. (4.41) essentially links the fluctuation of the trajectories (each trajectory
corresponds to a specific complexity value) in M with the time-dependent perturbation
applied to the quantum system Q because any trajectory inM is generated by the Hamil-
tonian H(t) of the system Q. This connection implies that Eq. (4.41) may play a vital role
in quantifying holographic fluctuations, which will be discussed in Section 4.4.

4.4 Remarks on holographic fluctuations and complexity

The discussions in this section are inspired by the remarkable work of Chemissany and
Osborne [11], who developed a method for identifying the relation between the fluctuation
of the bulk geometry and the perturbation applied to the boundary quantum system via the
principle of minimal complexity. We argue that the obtained Jarzynski framework provides
a potential tool for quantitatively investigating the holographic fluctuations. We divide this

20Note the distinction between ζn and the positive number ζ in Section 4.2.
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section into two subsections. First, we briefly review the settings and main contribution of
[11]. Second, we give a remark based on the Jarzynski framework obtained in the previous
sections.

4.4.1 Basic settings and construction of the bulk spacetime

The boundary system is a 2-local quantum system comprising K distinct subsystems
(qubits)21, which is initialized in a trivial reference state |Ω〉. We use different numbers
that form a point set {1, 2 · · · ,K} to label different subsystems. A unitary operator U is
generated in a certain time interval T that diagonalizes a Hamiltonian H of the boundary
system. The focus here is the evolution of the unitary operator from I to U . It is equivalent
to the evolution of the trajectory γ of a fictitious particle with unit mass (of the system A)
moving onM from I to U . The time interval T forms another set [0, T ], and a topological
space is appointed as the bulk spacetime, i.e., (X , T ), where X = {1, 2 · · · · · · ,K} × [0, T ]

and T is an undetermined topology denoting the causality of the bulk spacetime. The
point set X corresponds to holographic spacetime with discrete boundary spatial coordi-
nates j ∈ {1, 2, · · · · · · ,K} and “radial” holographic time coordinates as t ∈ [0, T ]. We can
completely identify a bulk spacetime from the trajectories {γ} via the principle of minimal
complexity by determining the topology T [11].

The target unitary U form for the boundary system is presented in Eq. (2.1). This ex-
pression can be approximately replaced by a discrete quantum circuit U ≈ V = VT · · ·V2V1,
where Vt, t ∈ {1, 2, · · · · · · , T} denote the gates acting on one or two qubits at a moment.
Therefore, the set X becomes X = {1, 2 · · · · · · ,K}×{1, 2, · · · · · · , T}. This forms a simple
graph in Fig. 4. We put an edge between the two vertices if a two-qubit gate acts non-

Figure 4. Each line represents a qubit and edges connecting two lines refer to local gates.

21For simplicity, we only consider the system has 2-local Hamiltonian. In principle, one can consider a
k-local Hamiltonian for any k.
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trivially on a pair of qubits. To obtain the topology (causality) of the bulk spacetime, we
first sample points from a Poisson distribution on set X with density ρ to give a new finite
set Y. The causality relation on Y is then constructed by sending a detectable signal from
a spacetime point x = (i, s) to another point y = (j, t) via a unitary process γ. We are
allowed to interrupt the evolution of γ by introducing arbitrary fast local interventions22

at any holographic time t = tw. Consequently, this method of building causal structures
connecting with trajectory γ gives us a topology for building the topological space (X , T )

regarded as the bulk spacetime.

4.4.2 Holographic fluctuations and Jarzynski identity

According to the above discussion, any geodesic γ ∈ M gives rise to the bulk spacetime.
Therefore, the fluctuating trajectories inM (i.e., the trajectories with near-minimal com-
plexity) can be interpreted as fluctuations in the bulk geometry considered as holographic
fluctuations. To capture structures of holographic fluctuations, we only need to describe
the structures of the fluctuating trajectories inM based on the three following premises:

1. The complexity, C(γ), is sensitive to the applied 2-local interactions (quantum gates)
between an arbitrary pair of qubits, but not to a particular pair of qubits to which
the unitary gate is applied [11].

2. A complexity functional determines a geodesic in M similar to an action functional
specifies a geodesic in classical mechanics.

3. Any trajectory inM arises from the boundary system via the Q-A correspondence;
thus, perturbing the boundary system by inserting quantum gates is equivalent to
perturbing the trajectory γ inM.

Fig. 5 depicts the structure of the holographic fluctuations summarized as follows: the
trajectories are equal to γ(t) for all t, except at one moment t = tw when a local unitary
gate23 is applied to an arbitrary pair of qubits i and j, followed immediately by its inverse
gate [11]. Because the applied gate generates an instantaneous interaction between qubits
i and j and the inverse gate cancels the interaction effect, a “wormhole” is created between
two points (i, tw) and (j, tw) in the dual bulk spacetime that immediately “evaporates”. In
[11], Eq. (3.9) was introduced to model these fluctuations. Recall that the complexity
has a quadratic action form in Eq. (3.9); hence, the fluctuating trajectories in M can
be understood as the stochastic trajectories of the Brownian motions in M and are the
solutions of Eq. (2.22) invoked as a toy model of the black hole in [46]. In summary,
the bulk geometry modeled by Eq. (3.9) constitutes a spacetime where “wormholes” are
fluctuating in and out of existence between all pairs of spacetime points [11].

Now, we make a remark on the holographic fluctuations from the perspective of the ob-
tained Jarzynski framework. Applying the results we obtained in the previous sections helps
us obtain a better quantitative realization of the holographic fluctuations and several clues

22Local unitary operations introduce these interventions [11].
23One can regard this gate as the arbitrary fast local intervention.

– 29 –



Figure 5. This can be seen as the structure of holographic fluctuation which is composed of qubits
(lines) and gates (connections between lines). The red part represents a fluctuation, that is, in a
time-slice, a 2-local gate is applied to an arbitrary pair of qubits followed by its inverse.

strengthen our confidence about that. First, the holographic fluctuation follows a stochastic
process inM, which means that we can introduce a partition function Eq. (3.9) using the
path integral approach to model its structure. Because we have the partition function, the
Jarzynski identity Eq. (3.32) can be obtained to further give a framework that provides us
with a version of the fluctuation theorem for complexity, Eq. (4.27), which describes the
complexity fluctuations. Second, the complexity fluctuations can equivalently describe the
fluctuations of trajectories inM based on the second premise, and the fluctuating trajec-
tories can give rise to the bulk spacetime. Therefore, the fluctuation theorem describes the
fluctuations of complexity and bulk geometry. Third, the fluctuation-dissipation theorem
connects the average cumulative complexity production with fluctuations of complexity,
which is usually used to study the response of a system to external influences. Thus, Eq.
(4.41) may be applicable to detect the response of the bulk geometry to some perturba-
tions applied to the boundary quantum system. In particular, this equality can be used to
quantitatively measure the fluctuations of the complexity by capturing the information on
the average cumulative complexity production.

5 Example: transverse field Ising model

The obtained Jarzynski framework gives us few interesting conclusions that need testing.
Camilo and Teixeira [74] studied the complexity of the transverse field Ising model (TFIM).
We follow their steps to numerically test two of our main proposals, Eqs. (4.24) and
(4.25). For simplicity, we only consider two phases with the ferromagnetic order along the
z direction (FMZ) and the paramagnetic phase (PM). We do not focus on the detailed
derivation here but will only present a brief review of the derivation with minimal efforts.
One can refer to [72] for a detailed derivation.
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5.1 Model settings

The TFIM is determined as follows by the time-dependent Hamiltonian

H(t) = −J
N∑
j=1

σ3
jσ

3
j+1 − g(t)

N∑
j=1

σ1
j , (5.1)

where J denotes the definite numbers representing couplings and σ3
j and σ1

j are the Pauli
matrices acting on the jth lattice site. g(t) = g0+g1(t)cos(ξt) is the transverse field denoting
the perturbation comprising a constant g0 and monochromatic driving term with frequency
ξ. Assuming that the system is a closed lattice with periodical boundaries σαN+1 = σα1 ,
restricting N to be even and applying the Fourier transformation, the Hamiltonian can be
rewritten as follows in terms of Jordan-Wigner fermions cq = ei

π
4√
N

∑
q∈B cke

ikq as H(t) =∑
k>0Hk(t):

Hk(t) = [2g(t)− ωk](c†kck + c†−kc−k) + ∆k(c
†
kc
†
−k + c−kck)− ωk, (5.2)

where B = {± π
N ,±

3π
N ,±

5π
N , · · · · · · ,±

(N−1)π
N } denotes the Brillouin zone, ωk = 2Jcosk,

∆k = 2Jsink, and the trivial contribution −2Ng(t) is neglected. Eq. (5.2) is called the
Bogoliubov-de Gennes (BdG) Hamiltonian which conserves momentum and parity; the
latter implements the Z2 symmetry resulting in a decomposition of the Hilbert space into
a direct sum of Neveu-Schwarz (NS) sectors. The system evolution dynamically obeys the
Schrödinger’s equation. The dynamics is confined to the two-level Nambu subspace spanned
by {|0−k0k〉 , |1−k1k〉}. The system state at any time t will acquire the following form:

|Ψ(t)〉 = ⊗k>0[uk(t) |1−k1k〉+ vk(t) |0−k0k〉], (5.3)

where the coefficients follow the Schrödinger equation, and the spinor is denoted by the
symbol Ψk(t) ≡ [uk(t) vk(t)]

T.
Imagine that the system is initialized in state |Ω〉 = ⊗k>0 |0−k0k〉 at t = 0 and evolves

during a time interval T to a target state |Ψ(T )〉 = U |Ω〉 through a specific unitary operator
U = γ(T ) = ⊗k>0Uk, where Uk represents the kth momentum sector of U . The boundary
conditions γk(0) = I and γk(T ) = Uk are fixed. The application of the Bogoliubov trans-
formation suggests that the complexity metric for each momentum sector is presented as
follows in terms of Hopf coordinates (φ1, φ2, ω)

ds2|k = dω2 + cos2ωdφ2
1 + sin2ωdφ2

2, (5.4)

where φ1 and φ2 correspond to two phases and

ω(t) =
t

T
×

∣∣∣∣∣arcsin

(
∆kθ

(l)

ε(k,l)
sin(ε(k,l)t)

)∣∣∣∣∣ , t ∈ [0, T ] (5.5)

denotes the linear profile, where l ∈ Z. The anisotropic parameter [75, 76] and the eigen-
values of BdG Hamiltonian are represented by

ε(k,l) =

√
(δg

(l)
0 − ωk)2 + (∆kθ(l))2, θ(l) = (−1)lJl

(
4g1

η

)
, (5.6)
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respectively. They are obtained from the Bogoliubov transformation and the high-frequency
driving approximation [74]. Here Jl(x) represents the Bessel functions and δg(l)

0 ≡ g0− lξ/4
is called the detuning parameter. After summing over all k for Eq. (5.4), from Eq. (2.18),
the complexity is derived in the following form:

C(t) = inf
γ

∑
k>0

Ck(t)

≡ 1

2

∑
k>0

∣∣∣∣∣arcsin

(
∆kθ

(l)

ε(k,l)
sin(ε(k,l)t)

)∣∣∣∣∣
2

,

(5.7)

where Ck is defined as the complexity of the kth momentum sector solely.
A numerical simulation is performed after the parameters N , l, J gl, and δg

(l)
0 and the

η value (η = 1) are set. We use time-average instead of ensemble-average in the simulation
because the motion on M satisfies ergodicity. Therefore, we take the limit T → ∞ and
precisely replace the ensemble-average with the time-average:

〈Qa〉ensemble = 〈Qa(T )〉time ≡ lim
T→∞

1

T

∫ T

0
Qa(t)dt, (5.8)

where Qa represents two related quantities, that is, complexity C and the cumulative com-
plexity production ∆iC.

5.2 Numerical results

Two features of the numerical simulation support our previous analytical results:

1. The computational free energy difference provides an average complexity upper bound,
which is not violated. This supports Eq. (4.25).

2. The non-negative average cumulative complexity production supports Eq. (4.24),
which is the mathematical expression corresponding to the “Kelvin-Planck-like” state-
ment of the second law of complexity.

The Hamiltonian Eq. (5.1) corresponds to various regimes according to the different
values of the detuning parameter δg(l)

0 . The phases can be changed from the FMZ phase
through a quantum critical point (QCP) to the PM phase by varying δg(l)

0 from 0 to J
and to 2J [74]. For simplicity, we do not consider the critical behavior of the QCP herein
and use Eq. (5.8) to calculate the time-averaged values of the complexity-related quantities
for the FMZ and PM phases. Recall that δg(l)

0 = {0, 2J} correspond to the FMZ and
PM phases. We plot the complexity C, time-averaged complexity 〈C〉, computational
free energy difference −∆Fa, and average cumulative complexity production 〈∆iC〉, as a
function of time interval T in Figs. 6(a) and 6(b).

The FMZ and PM phases present an approximately linear growth initially but sub-
sequently show distinct behaviors. Because the FMZ phase is susceptible to the time-
dependent transverse field, its complexity finds it hard to maintain stability and violently
fluctuates around a certain value for a long time interval (Fig. 6(a)). In contrast, the com-
plexity of the PM phase will remain stable around a certain value with time interval (Fig.
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(a) Evolution of Ferromagnetic Phase (b) Evolution of Paramagnetic Phase

Figure 6. Here C, 〈C〉, ∆Fa and 〈∆iC〉 represent complexity, average complexity, the computa-
tional free energy difference and the average cumulative complexity production, respectively, and
the parameters are set to η = 1, N = 1000, l = 2, J = 0.01Ω, g1 = Ω, and δg

(l)
0 = {0, 2J}

that correspond to the ferromagnetic phase along the z direction and the paramagnetic phase,
respectively.

6(b)). The average cumulative complexity production of the PM phase gradually becomes
more negligible and eventually turns to zero. Physically, this comes from the disordered
character of the PM phase: “non-local operations are required to create order in a state of
the PM phase, but local operations would maintain disorder of such a state. Consequently,
the influence of the transverse field is suppressed to prevent the system from creating non-
local gates to order the system when g0 is large [74].” However, for the FMZ phase, even
though the average cumulative complexity production will gradually decrease, it will not
drop to zero for a long period. The computational free energy differences are obtained by
applying the Jarzynski identity corresponding to the changes for the FMZ and PM phases
shown in Figs. 6(a) and 6(b), respectively.

We have simulated the dissipation for the FMZ (Fig. 6(a)) and PM (Fig.6(b)) phases
and obtained a fluctuation-dissipation for the complexity. Therefore, in Eq. (4.41), we
can make some further discussions about the dissipative behaviors of the two phases and
their relation with the holographic fluctuations. First, let us discuss the evolution of the
average cumulative complexity production (dissipative behaviors) for the large T regime,
where P (C) is simply Gaussian because of the central limit theorem. Fig. 6(a) depicts
that for the FMZ phase, no steady state can be found in a short period (the complexity
violently fluctuates) and its average cumulative complexity production always takes large
values. Meanwhile, the average cumulative complexity production of the PM phase (plotted
in Fig. 6(b)) shows a downward trend and tends to be zero for T → ∞, indicating that
the dissipation vanishes for large T . Physically, this means that the quantum system Q
reaches its average complexity upper bound (i.e., 〈C〉 → −∆Fa), such that no resource can
be extracted from the system Q due to the breaking of the time-asymmetry for any possible
trajectory inM [28], and reversibility holds for all possible trajectories. Additionally, since
〈∆iC〉 = 0 can only be obtained when T →∞, we assume T →∞ as a complexity quasi-

– 33 –



static limit analogous to thermodynamics. By taking this limit, Eq. (4.25) takes the equal
sign and the average complexity of system Q reaches its upper bound24. As mentioned in
Section 4.4.2, the complexity fluctuations can be regarded as bulk geometry fluctuations
and the fluctuation-dissipation theorem states that 〈∆iC〉 ∼ σ2

C ; hence, theoretically, we
can construct a bulk spacetime from a topological space and simulate its fluctuation using
Eq. (4.41). In particular, let the TFIM be our boundary quantum system Q with a time-
dependent perturbation (transverse field). Note that the transverse field in the system Q
causes the geodesics inM to fluctuate. We can then utilize the method of [11] to construct
a dual topological space from the TFIM as our bulk spacetime. The geometric structures of
the bulk spacetime are changed because the transverse field affects the complexity to vary.
We leave the exploration of this part to our future work.

We end this section with a remark. In the sense of average, Eq. (5.8) may not be
sufficiently accurate to describe behaviors of small T regime because it holds strictly only
when T → ∞. Therefore, performing the time average might not be the best approach
to run simulations. In comparison, employing the Metropolis algorithm over Monte Carlo
sweeps may be more practical in analogy with the cases of performing ensemble average,
which has already been used to model a similar scenario of the common Jarzynski identity
[77].

6 Conclusions and Outlooks

This study is motivated by the Nielsen’s complexity geometry and the elegant proof of
the Jarzynski identity done by Hummer and Szabo. We introduced the path integral in
the context of the complexity geometry and used it to derive a complexity version of the
Jarzynski identity. In addition, we made remarks on different complexity-related topics
based on the obtained identity. The first remark is that exp(−ηFa(T )) = 〈exp(−ηR(T ))〉 =

〈exp [−η(Cmax − C(T ))]〉 provides us a new evidence of the existence of a well-defined re-
source theory of uncomplexity [18, 68]. The second and most crucial remark is an extension
of the proposal made by Brown and Susskind, that is, the second law of complexity [18].
Our focus was slightly different from theirs such that the quantum system Q we consid-
ered is governed by a time-dependent Hamiltonian that forms a classical auxiliary system
A with stochastic features. However, Brown and Susskind considered a quantum system
with a time-independent Hamiltonian forming a chaotic auxiliary system. We extended
their original second law to the case involving a stochastic auxiliary system. Based on the
trajectory thermodynamics, we argued that the complexity version of the Jarzynski identity
provides two mathematical expressions of the second law of complexity. Third, we derived
a fluctuation-dissipation theorem for complexity by analogy with thermodynamics, which
links the fluctuation of complexity to a crucial quantity, namely the average cumulative com-
plexity production. The last remark is on holographic fluctuations. Because any geodesic
in the space of unitary operators encodes a bulk spacetime with an extra dimension via

24Brown and Susskind called this “complexity equilibrium” [18]. However, because “equilibrium” is usually
used to describe macroscopic quantities in thermodynamics, to avoid confusion, we do not use this word in
this study.
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the principle of minimal complexity [11] and any geodesic in the space of unitary operators
corresponds to a value of complexity, the complexity fluctuations can play the role of bulk
geometry fluctuations. Furthermore, our framework connects with the complexity fluctu-
ations, therefore, our results can provide us with a new perspective on the exploration of
holographic fluctuations by applying the complexity version of the Jarzynski framework.

We only touched some aspects of these issues, and extensive topics are waiting to be
tackled. Several of them are presented below:

• To explore the holographic fluctuations, one must sample points from the Poisson
distribution on point set X , which is a discrete process. Consequently, integrals in
M are hard to solve. It is significant to ask if there is a proper continuum limit.
Moreover, taking the continuum limit, the resulting bulk spacetime for CFTs should
then converge to AdS [11].

• In our discussions, the considered boundary system is a normal quantum system com-
prising qubits but not a standard quantum field theory. The path integral complexity
[79, 80] should be a candidate for generalizing our formalism to the quantum field
theory. Choosing a suitable definition of quantum complexity would facilitate di-
rectly linking the quantum computational complexity with holographic complexity
[81]. This generalization may provide us with deeper insights into the AdS/CFT du-
ality, e.g., for Complexity=Action [9, 10] and Complexity=Volume conjectures [6–8].

• We chose the TFIM as an example. One would like to know if our results are applicable
for other models, such as the SYK model [37–40], or if we can directly simulate
Quantum Brownian Circuit. The Quantum Brownian Circuit is quite complicated,
and a quantum simulation might be needed. As a reference, [82] recently proposed a
quantum simulation for calculating the Jarzynski identity.
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A Fokker-Planck equations

The time-dependent operators Lt in Eqs. (2.23) and (3.12) are Fokker-Planck operators.
Hence, understanding the derivation of the Fokker-Planck equations is helpful [83]. We first
review the common derivation of the Fokker-Planck equation and generalize it to the cases
in a curved space equipped with a non-Euclidean metric [84]. The latter can be directly
used in Eq. (2.23).

Let us consider the stochastic differential equations (SDEs)

dx(t) = f(x, t)dt+ g(x, t)dB(t), (A.1)
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where x denotes a stochastic variable, f and g are the functions of x, and dB(t) denotes the
independent Brownian motion with unit variance per unit time. We introduce an arbitrary
function h(x) and use the Ito’s rule to derive the Fokker-Planck equation:

dh(x) =

(
dh

dx

)
f(x, t)dt+

(
d2h

dx2

)
g2(x, t)

2
dt+

(
dh

dx

)
g(x, t)dB(t). (A.2)

If we take averages on both sides, we immediately obtain:

d〈h(x)〉
dt

=

〈
f(x, t)

(
dh

dx

)〉
+

〈
g2(x, t)

2

(
d2h

dx2

)〉
=

∫ ∞
−∞

[
f(x, t)

(
dh

dx

)
+
g2(x, t)

2

(
d2h

dx2

)]
P (x, t)dx,

(A.3)

where P (x, t) represents the distribution function satisfying P (x → ±∞, t) = 0 and∫∞
−∞ P (x, t)dx = 1. Using the part-by-part integration, and 〈h(x)〉 =

∫∞
−∞ P (x, t)h(x)dx,

we obtain∫ ∞
−∞

h(x)
∂P (x, t)

∂t
dx =

∫ ∞
−∞

h(x)

{
− ∂

∂x
[f(x, t)P (x, t)] +

1

2

∂2

∂x2

[
g2(x, t)P (x, t)

]}
dx,

(A.4)
where h(x) is independent of t. This equality can be transformed into the Fokker-Planck
equation, i.e.

∂P (x, t)

∂t
= LtP (x, t) = −∇ · [f(x, t)P (x, t)] +

1

2
∇2
[
g2(x, t)P (x, t)

]
, (A.5)

where the time-dependent operator Lt refers to the Fokker-Planck operator and∇ represents
the Nabla operator. Eq. (2.23) is the Fokker-Planck equation for a vector Ito stochastic
equation, in which x→ ~x, f → ~f and g(x, t) become a matrix with the same dimensions of
~x.

In the context of the complexity geometry, the configuration space is the group man-
ifold M equipped with a non-Euclidean metric, Eq. (2.15). Thus, we must introduce
some modifications to derive the Fokker-Planck equation governing the time evolution of
distributions on a Riemannian manifold. The first modification denotes the volume element

d~x→ [dγ], (A.6)

where [dγ] denotes the Haar measure, namely Eq. (3.1), which makes the volume element
independent of the choice of coordinate systems. The gradient, divergence, and Laplacian
(or Laplacian-Beltrami operator [84]) are modified accordingly.

∇h→ grad(h)M ≡ GMN∂
Nh, (A.7)

∇ · ~f → div
(
~f
)
≡ ∂MfM , (A.8)

where fM denotes the component of vector ~f ∈M and

∇2h→ div (grad(h)) ≡ |GMN (γ)|−
1
2∂M

(
|GMN (γ)|

1
2GMN∂Nh

)
. (A.9)
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h represents an arbitrary function. Applying these modifications to the Fokker-Planck
equation yields

∂P (γ, t)

∂t
= LtP (γ, t) = −div

[
~f(γ, t)P (γ, t)

]
+

1

2
div
{

grad
[
g2(γ, t)P (γ, t)

]}
, (A.10)

as the Fokker-Planck equation for the group manifoldM, where ~f is the vector inM. We
generally regard Eq. (A.10) as the general form of the Fokker-Planck equation governing
the time evolution of distributions in any curved space by considering γ as a vector in that
space.

We provide a special example, i.e. Eq. (2.22), to obtain a better understanding of the
Fokker-Planck equation. Note that i√

8K(K−1)

∑
j<k

∑3
αj ,αk=0 σ

αj
j ⊗ σ

αk
k is independent of

γ; thus, we use g = g(γ, t) to represent it. Recall that g is a generalized Pauli matrix that
is an anti-Hermitian operator. Hence, the square of g is given as follows:

g2 =

 i√
8K(K − 1)

∑
j<k

3∑
αj ,αk=0

σ
αj
j ⊗ σ

αk
k

† i√
8K(K − 1)

∑
j<k

3∑
αj ,αk=0

σ
αj
j ⊗ σ

αk
j

 .

(A.11)
We notice that ~f(γ, t) = −1

2γ. Substituting ~f and Eq. (A.11) into Eq. (A.10), we finally
obtain the Fokker-Planck equation governing the time evolution of the distributions of the
Quantum Brownian Circuit inM.

B Path integral in M

A path integral measure is required to do path integrals inM which is a curved manifold
equipped with the complexity metric. This measure generally contains an additional cur-
vature modification on its exponent because the vector operation of the two points onM
is involved in the derivation of the path integral. However, because the additional term
cannot be included in the measure, this takes the form of a partition function varying from
Eq. (3.9). [52] provided a method for doing the path integral in a curved space without
any additional curvature modification on the exponent. [52] introduced a factor that is
contained in the measure. Therefore, we briefly introduce this method here.

For consistency, we set |γ, t〉 as the eigenstates of the position operators denoted by
symbol X̂M .

X̂M |γ, t〉 = XM (t) |γ, t〉 . (B.1)

We consider that a particle in the system A evolves from γ1 ∈ M at t = t1 to γ2 ∈ M at
t = t2. Before deriving a more general case, we first assume that ifM is flat, the complexity
metric reduces to the standard inner-product metric. We also suppose that a source term
J(t) is added to contribute to the complexity. The complexity C then becomes CJ .

CJ(γ, γ∗) = C(γ) +

∫ t2

t1

JM (t)
(
XM (t)−XM

∗ (t)
)

dt (B.2)
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by introducing a fixed point γ∗ ∈ M , where
(
XM (t)−XM

∗ (t)
)
represents the tangent

vector to the geodesic from γ to γ∗. To generalize Eq. (B.2), we replace this vector with
the geodesic interval λ(γ∗; γ) [55, 56]. By definition, it is presented in the following form:

(
XM
∗ (t)−XM (t)

)
→ λ(γ∗; γ) ≡ 1

2
D2(γ∗; γ), (B.3)

where D(γ∗; γ) is the relative geodesic length between points γ and γ∗; thus, the tangent
vector to the geodesic at γ∗ refers to

λM (γ∗; γ) = GMN (γ∗)
δ

δXN
∗
λ(γ∗; γ). (B.4)

Because the source J(t) transforms like a covariant vector at γ∗ independent of γ, Eq. (B.2)
is changed to

CJ = C(γ)−
∫ t2

t1

JM (t)λM (γ∗; γ)dt. (B.5)

Moreover, the Schwinger action principle [84, 85] states that

δKa(γ2, t2; γ1, t1)[J ] = i 〈γ2, t2|δCJ |γ1, t1〉 [J ] = 0, (B.6)

from which the equation of motion may be inferred as

δC

δλM
(J) = JM . (B.7)

We follow by expanding Ka(γ2, t2; γ1, t1)[J ] in the Taylor series about JM = 0 as

Ka(γ2, t2; γ1, t1)[J ] =

∞∑
n=0

1

n!
JM1JM2 · · · JMn

δn 〈γ2, t2|γ1, t1〉
δJM1δJM2 · · · δJMn

[J = 0]

=
∞∑
n=0

1

n!
(−i)nJM1 · · · JMn

〈
γ2, t2|P(λM1 · · ·λMn)|γ1, t1

〉
[J = 0]

=
〈
γ2, t2|P

{
exp(−iJMλM )

}
|γ1, t1

〉
[J = 0].

(B.8)

We acquire the following functional-differential equation by combining Eq. (B.7) with Eq.
(B.8):

δC

δλM
(J)Ka(γ2, t2; γ1, t1)[J ] = JM 〈γ2, t2|γ1, t1〉 [J ], (B.9)

whose integration gives rise to the path integral. If we integral over all λM with boundary
conditions λ(γ∗; γ) ≡ λ(γ∗; γ1) at t = t1 and λ(γ∗; γ) ≡ λ(γ∗; γ2) at t = t2 to solve Eq.
(B.9), we will find that

Ka(γ2, t2; γ1, t1)[J ] =

∫
M

dim(M)∏
M

dλMei(C−JMλ
M ), (B.10)
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where, any vector inM has dim[M] components. Changing the integral variables by general
rule, namely

dim(M)∏
M=1

dλM =

dim(M)∏
N=1

dXN

∣∣∣∣det
δλM

δXN

∣∣∣∣
=

dim(M)∏
M

dXM

√
GMN (γ)√
GMN (γ∗)

|∆(γ∗; γ)|,

(B.11)

where |∆(γ∗; γ)| is defined in Eq. (3.6) as the Van Vleck-Morrete determinant. The original
Haar measure Eq. (3.1) becomes

[dγ]→ Nc|∆(γ∗; γ)|√
GMN (γ∗)

[dγ]. (B.12)

Assuming that J = 0 for Eq. (B.10), we substitute Eq. (B.11) into Eq. (3.4) and ultlize
the following property

Ka(γN , tN ; γ0, t0) =

N−1∏
i=0

Ka(γi+1, ti+1; γi, ti) (B.13)

to obtain Eq. (3.9) by absorbing all factors into the path integral measure.

C Principle of minimal complexity and second law of complexity

Analogous to the relationship between the least action principle and the maximum entropy
suggested by the thermodynamic second law discussed in [87], we will provide herein re-
marks on the connection between the principle of minimal complexity and the second law
of complexity. We first need to identify a stationary distribution P (γ). According to the
principle of Jaynes, the entropy of the auxiliary system (i.e., the Shannon entropy of A)
can be maximized under two certain constraints, namely

〈C〉 =

∫
M
P (γ)C(γ)Dγ and

∫
M
P (γ)Dγ = Constant (C.1)

to obtain the optimal distribution, where the first constraint is satisfied by the ergodicity
and the second constraint is a normalized condition. The entropy of A is denoted by symbol
Sa. Using the Lagrange multiplier method to maximize Sa, we obtain

δ

[
−Sa + α

∫
M
P (γ)Dγ + η

∫
M
P (γ)C(γ)Dγ

]
= 0, (C.2)

where α and η are Lagrangian multipliers25. The entropy is given as

Sa ≡ −
∫
M
P (γ)logP (γ)Dγ, (C.3)

25The stationary distribution requires η to be strictly greater than zero and a constant [86].

– 39 –



where η is a positive constant number. The following distribution is stationary, namely Eq.
(3.11). By substituting the stationary distribution into the Eq. (C.3), we find that

Sa ∝ 〈C〉 (C.4)

because Na and η are constants. The average complexity is maximized when system A
reaches its thermal equilibrium (corresponding to the state with the largest Sa). This is in
line with the description of the second law of complexity [18].

We now focus on the principle of minimal complexity. We consider the perturbation
of the distribution as δP (C(γ)); however, we obtain the following because P (C(γ)) is
stationary, such that δP (C(γ)) = 0:

δP (C(γ)) = −ηP (C(γ))δC(γ) = 0. (C.5)

δC = 0 gives rise to the Euler-Lagrange equation, that is, Eq. (2.19), which meets the
requirement of the principle of minimal complexity. Fig. 7 illustrates the core idea.

Figure 7. Only the trajectories with minimal complexity (denoted by solid lines) contribute to the
path integral, the contribution of the trajectory with large complexity (denoted by red dotted line)
is exponentially suppressed by the factor e−ηC in Eq. (3.9).

Combining the above discussions, we learned that averaging over the trajectories sat-
isfying the principle of minimal complexity directly produces the maximum average com-
plexity based on the second law of complexity. One may argue that we can only identify
trajectories with extreme values from the first-order variation that δC = 0 but not the min-
imal values. However, since the probability of each trajectory is weighted by a factor e−ηC

in Eq. (4.7), when a trajectory’s complexity is large, its contribution is almost negligible.
Then, these trajectories satisfy the principle of minimal complexity. In other words, we do
not need to test the second-order variation to find the minimal complexity in the average
sense.

D Glossary and some clarifications

We provide some supplementary explainations to the text here to help readers clearly un-
derstand the content of this paper.
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Notations: The uppercase letters Y , M , N , and S used in this paper denote the
components of vector γ ∈ M. xi and xj represent the components of vector ~x. Subscript
k, i, and j in Section 4.4 and Eq. (2.22) depict the sites k, i, and j affected by the local
gate. In Section 5, subscript k indicates the k momentum sector.

Generalized Pauli matrices: The generalized Pauli matrices throughout this paper have
the same meaning as in [18], specifically footnote 5 of [18].

k-local Hamiltonian: The k-local Hamiltonian only contains terms acting on k or fewer
qubits. For example, Eq. (5.1) is a 2-local Hamiltonian.

Irreducible Markov chain: A Markov chain is irreducible if a chain of steps exists
between any two states with a positive probability [88].

Relationship between complexity and entropy : This relationship is explored in [18, 67].
The content mainly includes the following points:

• The entropy of the auxiliary system A is proportional to the ensemble-averaged com-
plexity of quantum system Q.

• The physical law of the complexity operates on a vastly longer time than the entropy,
such as the recurrence phenomenon.

• The complexity along the particle trajectory is equal to the entropy of a black hole
in Rindler units if the energy of the particle in the system A is conserved.

Constant η and computational free energy Fa: In Section 3.2.1, we mentioned that η
can be seen as the inverse temperature 1/Ta of system A or a positive Lagrangian multiplier
(Appendix C). By considering η as a small inverse temperature, Eq. (3.20) represents the
thermodynamic free energy of the systemA. In [29], Feynman has discussed the relationship
between thermodynamic free energy and the free energy obtained through path integral.
To better understand the point, we assume that M = SU(2), which corresponds to a
nonrelativistic free particle moving in a three-dimensional (3D) configuration space, and
choose the standard inner-product metric instead of the complexity metric for simplicity.
The partition function26 is directly written as follows:

Zth
a =

(
Ta
2π

) 3
2

. (D.1)

The metric we chose is the standard inner-product metric that forms an Euclidean space.
Hence, we take the Gaussian integral of Eq. (3.9), which is the path integral in 3D Euclidean
space [58], to give

Za =

(
1

2πηT

) 3
2

, (D.2)

26The general expression of thermodynamic partition function of a three-dimensional free particle reads:
Zth =

(
(mkBTth)/(2π~2)

) 3
2 , where m, kB and Tth represent the mass of the particle, Boltzmann constant

and the thermodynamic temperature, respectively. However, for simplicity we set ~ = 1 and kB = 1 in our
work.
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where T denotes the time interval. If we let η = 1/Ta and set T = 1, Eq. (D.2) then
coincides with Zth

a . Accordingly, the computational free energy Fa obtained from Eq.
(D.2) is equivalent to the thermodynamic free energy of the system A. Consequently, from
Eq. (4.25) the computational free energy difference −∆Fa(T ) = Fa(0) − Fa(T ) can be
explained as the possible maximal value of the average computational work available for
extraction by the system A in a certain time interval T = 1. For such a perspective, the
temperature of the system A is considered to be determined in several ways [18]. The
simplest choice presented in [18] only depends on the number of qubits and the locality
parameter k (k-local):

Ta ∝
1

Kk−1
. (D.3)

Note that Ta is the temperature of system A, but not the temperature of quantum system
Q.

Boltzmann and Gaussian distributions: Boltzmann distributions with a quadratic Hamil-
tonian are also Gaussian distributions by considering the velocity as a stochastic variable.

Quasi-static limit : In Section 5, T → ∞ corresponds to the reversible limit, which is
similar to the “quasi-static” limit in thermodynamics. Discussing the thermodynamics of
the auxiliary system A, this limit can be regarded as the quasi-static limit of system A.
Note that we can only talk about such a limit for the classical system A but not for the
quantum system Q.
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