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Abstract

We investigate by means of Monte Carlo simulations the dynamic phase transition of the two-

dimensional kinetic Blume-Capel model under a periodically oscillating magnetic field in the pres-

ence of a quenched random crystal-field coupling. We analyze the universality principles of this

dynamic transition for various values of the crystal-field coupling at the originally second-order

regime of the corresponding equilibrium phase diagram of the model. A detailed finite-size scaling

analysis indicates that the observed nonequilibrium phase transition belongs to the universality

class of the equilibrium Ising ferromagnet with additional logarithmic corrections in the scaling

behavior of the heat capacity. Our results are in agreement with earlier works on kinetic Ising

models.
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I. INTRODUCTION

In the last decades our understanding of equilibrium critical phenomena has developed

to a point where well-established results are available for a wide variety of systems. In par-

ticular, the origin and/or the difference between equilibrium universality classes is by now

well understood. This observation also partially holds for systems under the presence of

quenched disorder. However, far less is known for the physical mechanisms underlying the

nonequilibrium phase transitions of many-body interacting systems that are far from equi-

librium and clearly a solid classification of nonequilibrium phase transitions into universality

classes is missing.

We know today that when a ferromagnetic system, below its Curie temperature, is ex-

posed to a time-dependent oscillating magnetic field, it may exhibit a fascinating dynamical

behavior [1]. In a typical ferromagnetic system being subjected to an oscillating magnetic

field, there occurs a competition between the time scales of the half period of the applied

field t1/2 and the metastable lifetime, τ , which is defined as the average time it takes the

system to leave one of its two degenerate zero-field equilibrium states when a field of mag-

nitude h0 opposite to the initial magnetization is applied. In practice, τ is measured as the

first-passage time to zero magnetization. When t1/2 < τ , the time-dependent magnetization

tends to oscillate around a nonzero value which corresponds to the dynamically ordered

phase. In this region, the time-dependent magnetization is not capable of following the ex-

ternal field. However, for larger values of the half period, the system is given enough time to

follow the external field and in this case the time-dependent magnetization oscillates around

its zero value, indicating a dynamically disordered phase. When t1/2 ≈ τ , a dynamic phase

transition takes place between the dynamically ordered and disordered phases.

Throughout the years, there have been several theoretical [2–22] and experimental stud-

ies [23–27] dealing with dynamic phase transitions and hysteresis phenomena. The main

conclusion is that both the amplitude and period of the time-dependent magnetic field play

a key role in dynamic critical phenomena. Furthermore, the characterization of universal-

ity classes in spin models driven by a time-dependent oscillating magnetic field has also

attracted a lot of interest lately [28–37]. A short listing of the main results is given below:

(1) The critical exponents of the kinetic Ising model were found to be compatible to those

of the equilibrium Ising model at both two (2D) and three dimensions (3D) [28–30, 32].
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(2) Buend́ıa and Rikvold [31] estimated the critical exponents of the 2D Ising model and

provided strong evidence that the characteristics of dynamic phase transition are universal

with respect to the choice of stochastic dynamics. These authors used the so-called soft

Glauber dynamics [38], for which both nucleation and interface propagation are slower and

the interfaces smoother than for the standard hard Glauber and Metropolis dynamics.

(3) The role of surfaces at nonequilibrium phase transitions in Ising models has been

elucidated by Park and Pleimling [33]: The nonequilibrium surface exponents were found to

be different than their equilibrium counterparts.

(4) Experimental evidence by Riego et al. [27] and numerical results by Buend́ıa and

Rikvold [35] verified that the equivalence of the dynamic phase transition to an equilibrium

phase transition is limited to the area near the critical period and for zero bias.

(5) Numerical simulations by Vatansever and Fytas showed that the nonequilibrium phase

transitions of the pure and random-bond spin-1 Blume-Capel model belong to the universal-

ity class of the equilibrium pure Ising model with logarithmic corrections in the disordered

case [36, 37]. Some general and very useful features of the dynamic phase transition of the

pure Blume-Capel model can also be found in Refs. [8, 16, 17, 19, 39, 40].

The above results in 2D and 3D kinetic Ising and Blume-Capel models establish a mapping

between the universality principles of the equilibrium and dynamic phase transitions of

spin-1/2 and spin-1 models. They also provide additional support in favor of an earlier

investigation of a Ginzburg-Landau model with a periodically changing field [10], as well with

the symmetry-based arguments of Grinstein et al. in nonequilibrium critical phenomena [41].

As the vast majority of works in the field deal with pure systems, in the present paper

we attempt to shed some additional light on the effect of quenched disorder on dynamic

phase transitions [37]. We should note here some earlier mean-field and effective-field theory

treatments of the problem where it was shown that the dynamic character of a typical system

driven by a time-dependent magnetic field sensitively depends on the amount of disorder,

accounting for re-entrant phenomena and dynamic tricritical points [42–47].

In this paper we use as a test-case platform for our numerical experiment the square-

lattice Blume-Capel model [48] under a time-dependent magnetic field, diffusing disorder in

the crystal-field coupling [see below Eq. (2)]. This type of randomness has also been used

in the past for the equilibrium version of the model by Branco and Boechat [49], Sumedha

and Mukherjee [50], Vatansever et al. [51] and is much closer to the experimental reality
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as it mimics the physics of random porous media in 3He –4He mixtures [52]. In a nutshell,

our extensive Monte-Carlo simulations for various values of the crystal-field coupling along

the phase boundary indicate that the dynamic phase transition of the model belongs to the

universality class of the corresponding equilibrium Ising model with logarithmic corrections

in the heat-capacity scaling due to the presence of quenched disorder.

The rest of the paper is organized as follows: In Sec. II we introduce the model, provide

details of our simulation protocol and define the relevant thermodynamic observables. The

numerical results are presented in Sec. III and a summary of our conclusions is given in

Sec. IV.

II. MODEL AND METHODS

A. Model

The Hamiltonian of the Blume-Capel model under a time-dependent oscillating magnetic

field reads as

H = −J
∑
〈xy〉

σxσy +
∑
x

∆xσ
2
x − h(t)

∑
x

σx, (1)

where the spin variable σx takes on the values {−1, 0,+1}, 〈xy〉 indicates summation over

nearest neighbors on the square lattice and the coupling J > 0 denotes the ferromagnetic

exchange interactions. ∆x represents the crystal-field strength and controls the density of

vacancies (σx = 0). As mentioned above we choose a site-dependent bimodal crystal-field

probability distribution of the form

P(∆x) = pδ(∆x + ∆) + (1− p)δ(∆x −∆), (2)

where p ∈ (0, 1) is the control parameter of the disorder distribution with µ = ∆(1−2p) and

s = 2∆
√
p(1− p) the mean value and standard deviation of the distribution (2), respectively.

Finally, the term h(t) corresponds to a spatially uniform periodically oscillating magnetic

field, so that all lattice sites are exposed to a square-wave magnetic field with amplitude h0

and half period t1/2 [30–32].

Some useful explanatory comments for the equilibrium (h(t) = 0) version of the model

are in order:
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(1) For ∆ = ∞ the model is equivalent to the random site spin-1/2 Ising model, where

sites are present or absent with probability p or 1− p, respectively [49].

(2) For p = 0 the pure Blume-Capel model is recovered [53–56]. The phase diagram of the

pure (p = 0) and random (p = 1/2) model in the ∆ – T plane is shown in Fig. 1 including

a variety of critical and transition points from the current literature. For small ∆ there is

a line of continuous transitions (in the Ising universality class) between the ferromagnetic

and paramagnetic phases that crosses the ∆ = 0 axis at T0 ≈ 1.693 [54]. For large ∆ the

transition becomes discontinuous and it meets the T = 0 line at ∆0 = zJ/2 [48], where

z = 4 is the coordination number (as usual we set J = kB = 1 to fix the temperature scale).

The two line segments meet at a tricritical point (∆t ≈ 1.966, Tt ≈ 0.608) [55].

(3) With the inclusion of disorder (p > 0) the critical temperature of the system rises

– see the yellow filled squares in Fig. 1. For further explanations and simple arguments

explaining this behavior we refer the reader to Ref. [51].

B. Numerical approach

We performed Monte Carlo simulations with periodic boundary conditions using the

single-site update Metropolis algorithm [57–59]. This approach, together with the stochastic

Glauber dynamics [60], consists the standard recipe in kinetic Monte Carlo simulations [31].

Let us briefly outline below the steps of our algorithm:

(1) A lattice site is selected randomly among the N = L× L options.

(2) The spin variable located at the selected site is flipped, keeping the other spins in the

system fixed.

(3) The energy change originating from this spin flip operation is calculated using the

Hamiltonian of Eq. (1) via ∆H = Ha − Ho, where Ha denotes the system’s energy after

the trial switch of the selected spin and Ho corresponds to the total energy of the old spin

configuration. The probability to accept the proposed spin update is given by

Π (σx → σ′x) =

exp(−∆H/kBT ), if Ha ≥ Ho

1, if Ha < Ho.
(3)

(4) If the energy is lowered, the spin flip is always accepted.

(5) If the energy is increased, a random number R is generated, such that 0 ≤ R < 1: If
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R is less than or equal to the calculated Metropolis transition probability the selected spin is

flipped. Otherwise, the old spin configuration remains unchanged. Note that all transitions

among the three spin states {−1, 0,+1} are allowed in our numerical protocol.

Using the above scheme we simulated the model of Eqs. (1) and (2) at ∆ = 0.5, 1, and

∆ = 2, fixing the control parameter p to the value 1/2, guided by the analysis of Ref. [51].

System sizes varied within the range L = 32− 512 and for each linear size an average over

500 independent realizations of the disorder was performed. The first 103 periods of the

external field were discarded during the thermalization process and numerical data were

collected and analyzed during the following 11× 103 periods of the field. Note that the time

unit in our simulations is one Monte Carlo step per site (MCSS) and that error bars were

estimated using the jackknife method [59]. Appropriate choices of magnetic-field strength,

h0 = 0.3, and temperature, T (∆) = 0.8 × Tc(∆), ensured that the metastable decay of the

system following field reversal occurs through nucleation and growth of many droplets of

the stable phase, i.e., the multidroplet regime. This point was already emphasized by Sides

et al. in 1998 [28] – see also Ref. [32]. Here, Tc(∆ = 0.5) = 1.6854, Tc(∆ = 1) = 1.6473,

and Tc(∆ = 2) = 1.4907 are the equilibrium critical temperatures of the random p = 1/2

Blume-Capel model defined in Eqs. (1) and (2) [51].

Finally a comment on the fitting process discussed below in Sec. III: We employed the

standard χ2 goodness of fit test [61]. Specifically, the Q-value of our χ2-test is the probability

of finding a χ2 value which is even larger than the one actually found from our data. We

consider a fit as being fair only if 10% ≤ Q ≤ 90%.

C. Observables

In order to determine the universality aspects of the kinetic random Blume-Capel model,

we consider the half-period dependencies of various thermodynamic observables. The main

quantity of interest is the period-averaged magnetization

QL =
1

2t1/2

∮
M(t)dt, (4)

where the integration is performed over one cycle of the oscillating field. Given that for finite

systems in the dynamically ordered phase the probability density of QL becomes bimodal,

one has to measure the average norm of QL in order to capture symmetry breaking so
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that 〈|Q|〉L defines the dynamic order parameter of the system. In Eq. (4), M(t) is the

time-dependent magnetization per site

M(t) =
1

N

N∑
x=1

σx(t). (5)

To characterize and quantify the transition using finite-size scaling arguments we must

also define quantities analogous to the susceptibility in equilibrium systems. The scaled

variance of the dynamic order parameter

χQL = N
[
〈Q2〉L − 〈|Q|〉2L

]
(6)

has been suggested as a proxy for the nonequilibrium susceptibility, also theoretically justi-

fied via fluctuation-dissipation relations [18].

Similarly, one may also measure the scaled variance of the period-averaged energy

χEL = N
[
〈E2〉L − 〈E〉2L

]
, (7)

so that χEL can be considered as the respective heat capacity. Here E denotes the cycle-

averaged energy corresponding to the cooperative part of the Hamiltonian (1). With the

help of Q we may also define the fourth-order Binder cumulant [28, 29]

UQ
L = 1− 〈|Q|

4〉L
3〈|Q|2〉2L

, (8)

a very useful observable for the characterization of universality classes [62].

III. RESULTS

As a starting point let us describe shortly the mechanism underlying dynamic ordering

in kinetic ferromagnets as depicted in Figs. 2 - 4 below. In all these plots results for a single

realization of the disorder are shown of a system size L = 192 and for ∆ = 1. Similar results

were obtained also for the other ∆ values but are omitted for brevity.

Figure 2 presents the time evolution of the magnetization and Fig. 3 the period depen-

dencies of the dynamic order parameter Q of the kinetic random Blume-Capel model. For

rapidly varying fields, Fig. 2(a), the magnetization does not have enough time to switch

during a single half period and remains nearly constant for many successive field cycles, as

also illustrated by the black line in Fig. 3. On the other hand, for slowly varying fields,
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Fig. 2(c), the magnetization follows the field, switching every half period, so that Q ≈ 0, as

also shown by the blue line in Fig. 3. Thus, whereas in the dynamically disordered phase

the ferromagnet is able to reverse its magnetization before the field changes again, in the dy-

namically ordered phase this is not possible and therefore the time-dependent magnetization

oscillates around a finite value. The competition between magnetic field and the metastable

state is captured by the half period t1/2 (or by the normalized parameter Θ = t1/2/τ [32]).

Obviously, t1/2 plays the role of temperature in the equilibrium system. Now, the transition

between the two regimes is characterized by strong fluctuations in Q, see Fig. 2(b) and the

evolution of the red line in Fig. 3. This behavior is indicative of a dynamic phase transi-

tion and occurs for values of the half period close to the critical one tc1/2 (otherwise when

Θ ≈ 1). Of course, since the value t1/2 = 66 MCSS used for this illustration is slightly

above tc1/2 = 65.96(6), see also Fig. 11 below, the observed behavior includes as well some

nonvanishing finite-size effects.

Some additional spatial aspects of the transition scenarios described above via the config-

urations of a local order parameter {Qx} are shown in Fig. 4. Below tc1/2, see panel (a), the

majority of spins spend most of their time in the +1 state, i.e., in the metastable phase dur-

ing the first half period, and in the stable equilibrium phase during the second half period,

except for fluctuations. Thus, most of the Qx ≈ +1 and the system lies in the dynamically

ordered phase. On the other hand, when the period of external field is selected to be bigger

than the relaxation time of the system, above tc1/2, see panel (c), the system follows the

field in every half period with some phase lag, and Qx ≈ 0 at all sites x. The system in

this case is in the dynamically disordered phase. Near tc1/2 and the expected dynamic phase

transition, there are large clusters of both Qx ≈ +1 and −1 values within a sea of Qx ≈ 0,

as shown in panel (b).

At this point we would like to scrutinize the effects of the zero spin state σx = 0 and (ran-

dom) crystal-field coupling ∆, in comparison to the well established picture of the standard

Ising ferromagnet. Although there is no doubt that the local order parameter of most inter-

est is {Qx}, yet, it can not distinguish between random distributions of σx = ±1 and regions

of σx = 0. To bring out this distinction, we present in Fig. 5 configurations of the dynamic

quadrupole moment {Ox} over a full cycle of the external field, where O = 1
2t1/2

∮
ρ(t)dt and

ρ(t) = 1 − 1
N

∑N
x=1 σ

2
x denotes the order parameter conjugate to the crystal-field coupling

∆. Moreover, in analogy to Figs. 2 and 3, the additional Figs. 6 and 7 present the time evo-
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lution of ρ(t) and the period dependencies of the quadrupole moment of the kinetic random

p = 1/2 Blume-Capel model. In all Figs. 5 – 7 simulation parameters are exactly the same

to those used in Figs. 2 – 4 above.

Of course, the dynamic quadrupole moment is always 0 for the kinetic spin-1/2 Ising

model, because σx = ±1 in this case. For the spin-1 Blume-Capel model the density of

vacancies is controlled by the crystal-field coupling ∆ and, thus, the value of O changes

depending on ∆. When the value of ∆ increases, starting from the Ising limit (∆→ −∞),

the number of vacancies increases as well in the system, so that O tends to increase from its

minimum value. For the case of the kinetic random p = 1/2 Blume-Capel model at ∆ = 1,

as depicted in Figs. 4 and 5, one may conclude that the effect of vacancies is not significant.

Moreover, for this particular case of ∆ = 1 we have performed a quantitative comparison

among the pure (p = 0) and random (p = 1/2) model and did not observe any significant

differences in the configurations of the local dynamic order parameter Q and quadrupole

moment O that are worth to be noted. On the other hand, we expect to see more prominent

effects in the small-p and high-∆ limits that correspond to the ex-first-order transition regime

of the equilibrium model’s phase diagram [51]. In fact, the set of parameters p = 0.02 and

∆ = 2 may be a promising choice and we present in Figs. 8 and 9 three sets of configurations

for both the local dynamic order parameter and quadrupole moment, below, around, and

above the dynamic phase transition. These snapshots fully corroborate our claim that in

this regime the underlying phenomena are indeed controlled by the vacancies, as expected.

To further explore the nature of dynamic phase transitions encountered in the above

disordered kinetic model we performed a finite-size scaling analysis based on the observables

outlined in Sec. II C. Previous studies in the field indicated that although finite-size scaling

is a tool that has been designed for the study of equilibrium phase transitions, it can be

successfully applied as well to far from equilibrium systems [28–32].

As an illustrative example we present in Fig. 10 the finite-size behavior of the dynamic

order parameter (main panel) and the emerging susceptibility (inset) – see also Eq. (6) – for

the case ∆ = 1 and for two characteristic system sizes. The dynamic order parameter starts

off from a finite value and approaches zero as the half period increases, showing a sharp

change for a range of t1/2 values that correspond to the respective peak in the dynamic

susceptibility. These maxima locations of χQL , denoted hereafter as (χQL )∗, may be used

to define suitable pseudocritical half periods t∗1/2. In full analogy we may also denote the

9



heat-capacity maxima as (χEL )∗.

We start the presentation of our finite-size scaling analysis with a characteristic deter-

mination of the critical half period tc1/2 and the exponent ν for the system with ∆ = 1.

A similar analysis was performed for the other values of ∆ as well and a summary of our

findings is given in Tab. I. The main panel of Fig. 11 illustrates the shift behavior of the

peak locations t∗1/2 of the dynamic susceptibility and heat capacity as a function of 1/L.

The solid lines are a joint fit of the form [63–65]

t∗1/2 = tc1/2 + bL−1/ν . (9)

The obtained values for the critical parameters are tc1/2 = 65.96(6) and ν = 1.03(3). Clearly,

the value of ν is in very good agreement with the value of ν = 1 in the 2D equilibrium Ising

universality class [66].

Additional evidence of universality may be obtained from the fourth-order Binder cumu-

lant UQ
L defined in Eq. (8) for the case of the dynamic order parameter. In the inset of Fig. 11

we present our numerical data of UQ
L for ∆ = 1 and a wide range of sizes studied. The verti-

cal dashed line marks the critical half-period value of the system tc1/2 as estimated from the

analysis of Eq. (9) and the horizontal dashed line the universal value U∗ = 0.610 6924(16) of

the 2D equilibrium Ising model [67]. Certainly, the crossing point is expected to depend on

the lattice size L (as it is also shown in the figure) and the term universal is valid for given

lattice shapes, boundary conditions, and isotropic interactions [68, 69]. However, the data

shown in the inset of Fig. 11 support, at least qualitatively, another instance of equilibrium

Ising universality, since the crossing point is consistent to the value 0.610 6924. We should

note here that Hasenbusch et al. presented very strong evidence that the critical Binder cu-

mulant of the equilibrium 2D randomly site-diluted Ising model maintains its pure-system

value [70]. In this respect, a dedicated study along the lines of Ref. [70] for an accurate

estimation of U∗ in kinetic random Ising and Blume-Capel models would be welcome.

In this final part we investigate the finite-size scaling behavior of the dynamic suscepti-

bility and heat-capacity maxima. In particular we present in Fig. 12 the size evolution of

the dynamic susceptibility peaks in a log-log scale for all three values of ∆ considered. The

solid lines are a fit of the form [71]

(χQL )∗ ∼ Lγ/ν , (10)
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providing estimates for the magnetic exponent ratio γ/ν in excellent agreement with the

Ising universality class value of 7/4 – see also Tab. I below. At this stage, it would be ideal

to also observe the possible double logarithmic scaling behavior of the heat-capacity maxima

(χEL )∗, as predicted by Ref. [72] for the disordered Ising ferromagnet. Indeed, as it is shown

in Fig. 13 the data for L ≥ 64 are fairly good described by a fit of the form

(χEL )∗ ∼ ln [ln (L)]. (11)

IV. CONCLUSIONS

We investigated, using extensive Monte Carlo simulations, the effect of quenched disorder

in the crystal-field coupling on the dynamic phase transition of the square-lattice Blume-

Capel model under a periodically oscillating magnetic field. At a first qualitative level,

the role of vacancies and the crystal-field coupling has been scrutinized by examining the

configurations of the dynamic order parameter and quadrupole moment of the system for

a wide range of simulation parameters. At a second stage, the application of finite-size

scaling techniques allowed us to probe with good accuracy the values of critical exponents

describing this dynamic phase transition, all of which were found to be compatible with

those of the equilibrium Ising ferromagnet. An additional study of the scaling behavior of

the heat capacity revealed a double logarithmic divergence, as expected for the disordered

Ising ferromagnet. To conclude, although universality is a cornerstone in the theory of critical

phenomena it stands on a less solid foundation for the case of nonequilibrium systems under

the presence of quenched disorder. We hope that our contribution will stimulate further

research in this direction.
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FIG. 1. Phase diagram of the pure (p = 0) and random (p = 1/2) square-lattice Blume-Capel

model in the ∆ – T plane showing the ferromagnetic (F) and paramagnetic (P) phases that are

separated by a continuous transition at small ∆ (solid line) and a first-order at large ∆ (dotted

line). The line segments meet at a tricritical point (∆t, Tt) marked by a black rhombus. Numerical

data shown are selected estimates from previous studies, as indicated also in the panel.

TABLE I. A summary of critical parameters describing the dynamic phase transition of the square-

lattice kinetic Blume-Capel model in a quenched random crystal field. Note that the values of ∆

considered in the current work, given the randomness distribution (2) with p = 1/2, correspond

to the second-order transition regime of the model’s equilibrium phase diagram. One needs very

small values of p, i.e., p ≤ 0.1, in order to reach the originally first-order transition regime at high

values of ∆ ≈ 2, see Figs. 9 - 13 in Ref. [51].

∆ tc1/2 ν γ/ν

0.5 72.41(9) 1.00(3) 1.75(1)

1 65.96(6) 1.03(3) 1.76(1)

2 47.61(7) 1.05(7) 1.75(2)
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FIG. 2. Time series of the magnetization (red solid curves) of the kinetic random p = 1/2 Blume-

Capel model under the presence of a square-wave magnetic field (black dashed lines) for L = 192 at

∆ = 1, for three values of the half period of the external field: (a) t1/2 = 20 MCSS, corresponding

to a dynamically ordered phase, (b) t1/2 = 66 MCSS, close to the dynamic phase transition, and

(c) t1/2 = 100 MCSS, corresponding to a dynamically disordered phase. Note that for the sake of

clarity the ratio h(t)/h0 is displayed.
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FIG. 3. Period dependencies of the dynamic order parameter of the kinetic random p = 1/2

Blume-Capel model for L = 192 at ∆ = 1. Results are shown for the three characteristic cases of

the half period of the external field, following Fig. 2.
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FIG. 4. Configurations of the local dynamic order parameter {Qx} of the kinetic random p = 1/2

Blume-Capel model for L = 192 at ∆ = 1. The “snapshots” of {Qx} for each regime are the

set of local period-averaged spins during some representative period. Three panels are shown: (a)

t1/2 = 20 MCSS < tc1/2 – dynamically ordered phase, (b) t1/2 = 66 MCSS ≈ tc1/2 – near the dynamic

phase transition, and (c) t1/2 = 100 MCSS > tc1/2 – dynamically disordered phase.
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FIG. 5. In full analogy with Fig. 4 we show snapshots of the period-averaged quadrupole moment

conjugate to the crystal-field coupling ∆. Simulation parameters are exactly the same as those

used in Figs. 4(a)–4(c).
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FIG. 6. Time series of the order parameter conjugate to the crystal field ρ(t) (solid blue curves)

of the kinetic random p = 1/2 Blume-Capel model under the presence of a square-wave magnetic

field (black dashed lines) for L = 192 at ∆ = 1, for three values of the half period as in Fig. 2: (a)

t1/2 = 20 MCSS, (b) t1/2 = 66 MCSS, and (c) t1/2 = 100 MCSS. Again for the sake of clarity the

ratio h(t)/h0 is displayed.

20



0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 00 . 0 8

0 . 0 9

0 . 1 0

0 . 1 1

0 . 1 2

 t 1 / 2  =  2 0    M C S S
 t 1 / 2  =  6 6    M C S S
 t 1 / 2  =  1 0 0  M C S S

 

 

O(
n)

#  p e r i o d s

FIG. 7. Period dependencies of the dynamic quadrupole moment O of the kinetic random p = 1/2

Blume-Capel model for L = 192 at ∆ = 1. Results are shown for the three characteristic cases of

the half period of the external field, following Fig. 6.
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FIG. 8. Configurations of the local dynamic order parameter {Qx} of the kinetic random Blume-

Capel model for L = 192, p = 0.02, and ∆ = 2. Note that for this set of (p, ∆)–parameters

we approximated the critical half period of the system to be tc1/2 ≈ 53, from the peak positions

of the corresponding dynamic susceptibility and heat-capacity curves. Three panels are shown:

(a) t1/2 = 20 MCSS < tc1/2 – dynamically ordered phase, (b) t1/2 = 53 MCSS ≈ tc1/2 – near the

dynamic phase transition, and (c) t1/2 = 100 MCSS > tc1/2 – dynamically disordered phase.
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FIG. 9. In full analogy with Fig. 8 we show snapshots of the period-averaged quadrupole moment

conjugate to the crystal-field coupling ∆. Simulation parameters are exactly the same as those

used in Figs. 8(a)–8(c).
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FIG. 10. Typical dynamic order parameter 〈|Q|〉L (main panel) and susceptibility χQL (inset) curves

of the kinetic random p = 1/2 Blume-Capel model at ∆ = 1 and for two systems with linear sizes

L = 64 (open black squares) and L = 128 (filled red circles).
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FIG. 11. Shift behavior of the two pseudocritical half periods t∗1/2 corresponding to the maxima of

the dynamic susceptibility (filled black squares) and heat capacity (filled red circles) of the kinetic

random p = 1/2 Blume-Capel model at ∆ = 1. The inset illustrates the half-period dependency

of the corresponding fourth-order Binder cumulant UQL .
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FIG. 12. Finite-size scaling behavior of the dynamic susceptibility maxima (χQL )∗ of the kinetic

random p = 1/2 Blume-Capel model. Results for three values of ∆ are shown in a log-log scale.
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FIG. 13. Double logarithmic scaling behavior of the heat-capacity maxima (χEL )∗ of the kinetic

random p = 1/2 Blume-Capel model for three values of ∆, as indicated in the panel.
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