
ar
X

iv
:2

10
7.

08
63

3v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

9 
Ju

l 2
02

1

Stochastic dynamics without detailed balance condition connecting simple gradient

method and Hamiltonian Monte Carlo

Akihisa Ichiki1, ∗ and Masayuki Ohzeki2, 3, 4, †

1Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
2Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

3Institute of Innovative Research, Tokyo Institute of Technology,

Oh-okayama, Meguro-ku, Tokyo 152-8550, Japan
4Sigma-i, Co. Ltd., Konan, Minato-ku, Tokyo 108-0075, Japan

(Dated: December 18, 2021)

Sampling occupies an important position in theories of various scientific fields, and Markov chain
Monte Carlo (MCMC) provides the most common technique of sampling. In the progress of MCMC,
a huge number of studies have aimed the acceleration of convergence to the target distribution.
Hamiltonian Monte Carlo (HMC) is such a variant of MCMC. In the recent development of MCMC,
another approach based on the violation of the detailed balance condition has attracted much atten-
tion. Historically, these two approaches have been proposed independently, and their relationship
has not been clearly understood. In this paper, the two approaches are seamlessly understood in
the framework of generalized Monte Carlo method that violates the detailed balance condition.
Furthermore we propose an efficient Monte Carlo method based on our framework.

I. INTRODUCTION

Recently, sampling techniques have become of increas-
ing importance in various fields of science and engineer-
ing. The sampling methods have been developed to nu-
merically examine the equilibrium behaviors of complex
systems such as macromolecules like proteins [1, 2], spin
glasses [3], and glass transitions [4]. In addition to these
traditional applications, with the background of the re-
cent development of machine learning, sampling has be-
come widely used for various purposes such as model
training and its evaluation, and stochastic inference [5, 6].
The most common technique for sampling is provided

by the Markov chain Monte Carlo (MCMC) method.
MCMC is required to quickly sample random variables
that follow an arbitrary target distribution starting from
a given initial state. Since Metropolis et al. suc-
cessfully introduced MCMC to investigate complex sys-
tems [7], many variants have been proposed to accel-
erate the convergence to the target distribution. The
speed-up techniques have been constructed mainly based
on two concepts. One is called the extended ensemble
method [8]. In the extended ensemble method, the state
space is extended by introducing auxiliary variables, and
the convergence is accelerated by a proposal of a path
in higher dimension allowing a rapid transition to the
target distribution. The techniques of extended ensem-
ble are roughly categorized into three groups: the ex-
change Monte Carlo [9], the simulated tempering [10, 11],
and the multicanonical method [12] with the help of
the Wang-Landau algorithm [13]. Hamiltonian Monte
Carlo (HMC), which introduces momenta as auxiliary
variables [14], is also classified as an extended ensemble
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method. The alternative concept for acceleration is based
on an efficient proposal of candidates for the updated
state. Such efficient candidates are generated via the con-
cept of the coarse-graining. The Swendensen-Wang algo-
rithm [15] makes efficient state updates by using clusters
of spins in the Ising model. This algorithm was later ex-
tended by Wolff to XY model [16], and is now extended
to be applied to an arbitrary target distribution [17].
Recently, in addition to the above mentioned two con-

cepts for acceleration, the possibility of detailed balance
violation has been intensively investigated [18–21]. Con-
ventional acceleration algorithms have been developed
within the range of the detailed balance condition. How-
ever, it has been shown that the violation of the de-
tailed balance accelerates convergence to the target dis-
tributions [22]. Based on this result, Ohzeki and Ichiki
proposed a systematic construction of detailed balance-
violating dynamics that converges to any target distri-
bution in a continuous system [23]. The Ohzeki-Ichiki
method duplicates the original system and introduces a
probability current between the two systems. The driv-
ing force producing the probability current causes the ro-
tational evolution of state in the duplicated state space.
This is similar to the symplectic behavior of the Hamilto-
nian dynamics. In this paper, the Ohzeki-Ichiki method
will be generalized, and it will be explained that the gen-
eralized Ohzeki-Ichiki method is indeed seamlessly con-
nected to the Hamiltonian dynamics.
The generalized Ohzeki-Ichiki method provides a fam-

ily of dynamics including the gradient method and the
HMC. To show this fact, after reviewing the gradient
method in section II, the HMC in section III, and the
Ohzeki-Ichiki method in section IV, respectively, we will
see that the generalized Ohzeki-Ichiki method contains
the gradient method and the HMC as specific limits. In
section V, the generalized Ohzeki-Ichiki method is nu-
merically compared to other methods with respect to
the speed of convergence to the target distribution. Sec-
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tion VI is devoted to a summary and discussion.

II. GRADIENT METHOD

The simplest dynamics converging to the target dis-
tribution is given by a gradient method. The gradient
method satisfies the so-called detailed balance condition.
Physically, the dynamics with the detailed balance condi-
tion is relaxed to a steady state in which no macroscopic
heat is generated. Such a special steady state is called
an equilibrium state. By the gradient method, the Gibbs
distribution

π(x) = exp [−U(x)/T ] /Z (1)

with a partition function Z is achieved with the balance
between the energy gradient and the diffusion due to
noise. The following dynamics gives the simplest gradi-
ent method in which the N -dimensional continuous state
x converges to the Gibbs distribution:

dxi(t) = − ∂U

∂xi

dt+
√
2TdWi(t) , (2)

where, dxi is the displacement of xi during an infinites-
imal time dt, and U(x) and T correspond to the poten-
tial and temperature, respectively. Wi(t) is a standard
Wiener process that satisfies

〈dWi(t)〉 = 0 , (3)

〈dWi(t)dWj(t
′)〉 = δijδ(t− t′)dt , (4)

where δij and δ(t) denote Kronecker and Dirac delta
functions, respectively, and 〈·〉 represents an expecta-
tion. The Fokker-Planck equation corresponding to the
Langevin equation (2) is given as

∂P (x, t)

∂t
= −

∑

i

∂

∂xi

[

−∂U(x)

∂xi

–T
∂

∂xi

]

P (x, t) . (5)

It is straightforwardly confirmed that the Gibbs distri-
bution (1) is the steady solution satisfying the Fokker-
Planck equation (5).
It is guaranteed by the H-theorem that the dynam-

ics (2) converges to a unique steady distribution (1) as
an equilibrium distribution regardless of an initial con-
dition. Therefore, the target Gibbs distribution can be
obtained by providing U(x) and T in the simple gradient
dynamics (2). However, since the simple gradient method
updates the state along the gradient of the potential U ,
the update becomes inefficient when the state is trapped
in a local minimum of the potential, where the gradient
vanishes. To escape from such a local minimum, noise is
exploited in MCMC algorithms. However, if the poten-
tial around the local minimum is steep, it takes a long
time to escape from the local minimum. In the history of
MCMC studies, various techniques have been proposed
to avoid such a bottleneck restricting the relaxation to
the target distribution.

III. HAMILTONIAN MONTE CARLO

We have seen that, in the simple gradient method, the
state is updated in the direction along the gradient of the
potential, which is normal to the energy surface. With
such a method, it is difficult to avoid to be trapped in
the local minimum of the potential. To overcome this
difficulty, it has been proposed to add extra degrees of
freedom to the original system to make new directions
to escape from the local minimum of the potential. This
idea is called an extended ensemble method. A method
called Hamiltonian Monte Carlo (HMC) is one of the real-
izations of the extended ensemble methods. In the HMC,
in addition to the original state variable x, a momentum
p is introduced as an auxiliary variable. By introducing
the momentum, the dimension of the dynamical system
doubles, and it becomes easier to escape from the local
minimum of the potential. In other words, when the ki-
netic energy exceeds the energy gap between the local
minimum and the local maximum of the potential U(x),
the state can escape from the local minimum of the po-
tential. The basic concept of the HMC is that the Gibbs
distribution

πx,p(x, p) = exp [−H(x, p)/T ] /Zx,p , (6)

H(x, p) = U(x) +
∑

i

p2i
2mi

(7)

is invariant under the Hamiltonian dynamics

ẋi =
pi
mi

, (8)

ṗi = −∂U(x)

∂xi

, (9)

where Zx,p :=
∫

dxdp exp [−H(x, p)/T ] is a partition
function. Here, mi represents the mass of the i-th de-
gree of freedom. The target Gibbs distribution π(x) =
exp [−U(x)/T ]/Z is acquired as a marginal distribution
π(x) =

∫

dp πx,p(x, p) via the Gibbs distribution (6).
The algorithm of the HMC consists of the following

steps. (i) Sample the momentum p′i (i = 1, · · · , N) from
the Gaussian distribution

PG(p
′
i) =

1√
2πmiT

exp

[

− p′2i
2miT

]

. (10)

This procedure changes the state from (x, p) to (x, p′).
(ii) Evolve the state for waiting time τ starting from
the initial state (x, p′) according to the Hamiltonian
dynamics (8) and (9). We denote the obtained
state as (x′′, p′′). (iii) According to the Metropolis-
Hasting rule [7, 24], the state obtained in the step
(ii), (x′′, p′′), is accepted with the acceptance rate
min [1, exp {− [H(x′′, p′′)–H(x, p′)] /T }]. Otherwise, the
state remains at (x, p′). The algorithm of the HMC con-
sists of a repetition of these three steps.
Note that the Gibbs distribution (6) is invariant under

the Hamiltonian dynamics (8) and (9). In particular, the
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Gaussian distribution (10) gives the steady state distri-
bution for the momentum. In step (i), the momentum p is
sampled from this invariant distribution. The advantage
of the HMC is that the Gaussian random variables can
be easily generated in numerical manners. In step (ii),
the state update is ballistic on the energy surface. Even
if the state is located at the local minimum of the poten-
tial U(x), it is possible to escape from it by the effect of
kinetic energy. The rejection in step (iii) is exploited to
eliminate nonphysical time evolution [25]. Since the total
energy is conserved under the Hamiltonian dynamics, the
acceptance rate is theoretically always unity. However,
naive numerical calculations have been reported to show
an increase in total energy. The step (iii) is introduced
to eliminate this possibility to guarantee the calculation
accuracy. Thus, step (iii) is extra and can be omitted
when the time evolution of the Hamiltonian dynamics is
calculated with sufficiently high accuracy.
In the simple gradient method (2), the state update

in the normal direction of the energy surface is ballis-
tic. The update on the energy surface is diffuse, since
the state update on the energy surface is caused only
by noise. On the other hand, in the HMC, the update
in the normal direction of the energy surface is caused
only by the random sampling of momentum. However,
the update on the energy surface is ballistic since the
state evolves according to the Hamiltonian dynamics.
The Gibbs distribution obeys the principle of equal a
priori weights for states with equal energy. The HMC is
expected to quickly satisfy the principle of equal a pri-
ori weights by the ballistic state updates on the energy
surface.

IV. OHZEKI-ICHIKI METHOD

The violation of the detailed balance condition was
shown to accelerate relaxation to the steady state due to
the eigenvalue shit for the Fokker-Planck operator [22].
In order to systematically introduce the violation of the
detailed balance condition, Ohzeki and Ichiki have pro-
posed to duplicate the original system to introduce a
rotating probability current between the two duplicated
systems:

dxi(t) = −∂U(x)

∂xi

dt+ γ
∂U(y)

∂yi
dt+

√
2TdW x

i (t) ,(11)

dyi(t) = −∂U(y)

∂yi
dt− γ

∂U(x)

∂xi

dt+
√
2TdW y

i (t) ,(12)

where xi and yi are degrees of freedom belonging to the
original and the replicated system, respectively. W x

i and
W y

i are independent standard Wiener processes:

〈

dW x
i (t)dW

x
j (t

′)
〉

= δijδ(t− t′)dt , (13)
〈

dW y
i (t)dW

y
j (t

′)
〉

= δijδ(t− t′)dt , (14)
〈

dW x
i (t)dW

y
j (t

′)
〉

= 0 . (15)

This system has the steady state distribution of Gibbsian
form

πx,y(x, y) = exp {−β [U(x) + U(y)]} /Zx,y , (16)

where β = 1/T , and Zx,y is a partition function.
Then, the target distribution π(x) = exp [−U(x)/T ] /Z
is acquired as the marginal distribution π(x) =
∫

dy πx,y(x, y). Note that this system violates the de-
tailed balance condition, but satisfies the balance condi-
tion

∑

i

∂

∂xi

ux
i π(x, y) +

∑

i

∂

∂yi
uy
i π(x, y) = 0 , (17)

where the driving force

ux
i = γ

∂U(y)

∂yi
, (18)

uy
i = −γ

∂U(x)

∂xi

(19)

yields the probability current characteristic to the vio-
lation of the detailed balance. The introduction of the
driving force satisfying the balance condition remains the
Gibbs distribution (16) to be the steady state distribu-
tion. Although the two duplicated systems affect each
other via the driving force, the steady state distribution
for each system is independent.
In the Ohzeki-Ichiki dynamics (11) and (12), the same

form of the potential in the original x-system is cho-
sen as that in the duplicated y-system. However, there
is arbitrariness in the choice of the potential in the y-
system, since y is an auxiliary variable and the tar-
get distribution is given as the marginal distribution
π(x) =

∫

dy πx,y(x, y). Therefore, the potential in the
y-system does not have to be the same as that of the
x-system. Consider the following dynamics:

dxi(t) =

[

−∂Hx(x)

∂xi

+ γ
∂Hy(y)

∂yi

]

dt+
√
2TdW x

i (t) ,

(20)

dyi(t) =

[

−∂Hy(y)

∂yi
− γ

∂Hx(x)

∂xi

]

dt+
√
2TdW y

i (t) ,

(21)

where Hx(x) = U(x) is the potential in the original x-
system, and the energy Hy(y) in the y-system can be
in the form of an arbitrary function. This system has
the following steady state distribution independent of the
value of γ:

πx,y(x, y) = exp {−β [Hx(x) +Hy(y)]} /Zx,y . (22)

Therefore, the target distribution is obtained as a
marginal distribution π(x) =

∫

dy πx,y(x, y) for an ar-
bitrary form of Hy.
Consider the change of variables in dynamics (20) and

(21) as γ = γ̃T , t̃ = γ̃T t. Then the dynamics

dxi(t̃) =
∂Hy(y)

∂yi
dt , (23)

dyi(t̃) = −∂Hx(x)

∂xi

dt (24)
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is obtained in the limit of γ̃ → ∞. Note that Hx

and Hy play the roles of potential and kinetic energies
in this dynamics, respectively. In fact, the choice of
Hy(y) =

∑

i y
2
i /2mi reproduces the Hamiltonian dynam-

ics (8) and (9). In dynamics (20) and (21), the driving
force proportional to γ causes the violation of the detailed
balance condition. The case of γ = 0 corresponds to the
simple gradient method. On the other hand, the dynam-
ics in the limit γ → ∞ corresponds to the Hamiltonian
dynamics. Thus, it is concluded that the dynamics (20)
and (21) seamlessly connects the gradient method and
the Hamiltonian dynamics that is the basis of the HMC.

V. HYBRID USE OF GRADIENT METHOD

AND HAMILTONIAN DYNAMICS

In the previous section, we have introduced the dy-
namics, which incorporates the simple gradient method
and the Hamiltonian dynamics. By the simple gradient
method, the state update on the energy surface is re-
alized diffusely, and it takes a long time to satisfy the
principle of equal a priori weights. On the other hand,
in the HMC, the state update on the energy surface is
so ballistic that the principle of equal a priori weights
is quickly satisfied. However, since the total energy is
conserved under the Hamiltonian dynamics, transitions
between energy surfaces are prohibited. For this rea-
son, the HMC requires resampling of momentum from
the Gaussian distribution (10) which is realized in the
steady state.
Consider the case of finite γ in the dynamics (20) and

(21) with harmonic Hy that connects the simple gradi-
ent method and the Hamiltonian dynamics. In such a
dynamics, the state update on the energy surface, which
has been a bottleneck of relaxation to the steady state
in the simple gradient method, is realized to become bal-
listic. In addition, the effects of gradients and noise au-
tomatically enhance transitions between energy surfaces.
Therefore, it is not required to resample the momentum,
unlike the case of conventional HMC.
To demonstrate the performance of our proposed

method, i.e., the dynamics with harmonic Hy, we first
deal with a toy model of a one-dimensional double-well
potential:

U(x) =
1

4
x4 − 1

2
x2 . (25)

The initial condition is set to be in one of the poten-
tial wells at x = 1. Thus, the system must go be-
yond the potential hill at x = 0 to realize the steady
state. In our numerical calculations, we set the tem-
perature as T = 1.0. The infinitesimal time-step is set
to be dt = 1.0 × 10−4. We compare the performance
of the simple gradient method, the conventional HMC,
the conventional Ohzeki-Ichiki method, namely, the dy-
namics (20) and (21) with Hx(x) = Hy(x) = U(x), and
the proposed dynamics (20) and (21) with Hx(x) = U(x)
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FIG. 1. (Color online) Time evolution of the state 〈x〉 (left
panel) and the internal energy (right panel). The black
cross marks, blue dots, green triangles, and red circles indi-
cate the results of the simple gradient method, conventional
HMC, conventional Ohzeki-Ichiki method, and the proposed
method, respectively. The error bars indicate variances.

and Hy(y) = y2/2m. The time evolution of the Langevin
equations is calculated by applying the Heun scheme [26].
The time evolution of the Hamiltonian dynamics in the
HMC is calculated using the leapfrog method [25]. Other
parameters are set as follows: In the HMC, the particle
mass is set as m = 1. In the algorithm of the HMC, it is
necessary to evolve the Hamiltonian dynamics by a cer-
tain waiting time τwait before resampling the momentum.
We set the waiting time as τwait = 0.01. In the Ohzeki-
Ichiki method, the parameter γ characterizing the viola-
tion of the detailed balance condition is set as γ = 10.0.
In the generalized Ohzeki-Ichiki method where Hy(y) is
harmonic, the particle mass is set as m = 1.0. The value
of γ = 10.0 is also chosen in this dynamics. Figure. 1
shows the numerical results averaged overNsample = 1000
independent runs taking time average during ∆t = 0.1.
The Ohzeki-Ichiki method shows faster convergence to
the steady state than the simple gradient method because
of the detailed balance violation. Furthermore, it can be
seen that the convergence of the proposed dynamics with
harmonic potential for y is faster than the Ohzeki-Ichiki
dynamics, since the potential of the y-system is compli-
cated in the conventional Ohzeki-Ichiki method. In the
HMC, relaxation depends on the waiting time τwait. The
larger τwait, the smaller the number of Monte Carlo steps
is required for convergence. However, as seen in Fig. 1,
it requires a longer calculation time, which is given by
the product of τwait and the Monte Carlo steps in HMC,
than other methods. As seen in the previous section,
the timescale conversion in the Ohzeki-Ichiki dynamics
reproduces the Hamiltonian dynamics. Due to the limit
of this timescale conversion, it is difficult to make a di-
rect comparison between the HMC and the Ohzeki-Ichiki
method. In fact, in the limit of γ̃ → ∞, dt̃ corresponding
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to the infinitesimal time step dt diverges. This means
that one Monte Carlo step in the Ohzeki-Ichiki method
should be compared with the result of the HMC with the
limit of long waiting time τwait → ∞.
We also evaluate the integrated auto-correlation time

τint :=
∫∞

0
dt′

[

〈x(t)x(t + t′)〉 − 〈x〉2
]

/
[

〈

x2
〉

− 〈x〉2
]

.

The integrated auto-correlation time for each dynamics
is evaluated by the empirical average after the conver-
gence to the steady state. We obtain τint = 2.00 for
the simple gradient method, which corresponds to the
dynamics with γ = 0, τint = 0.19 for the conventional
Ohzeki-Ichiki method with γ = 10.0, and τint = 0.14
for the proposed hybrid use of the gradient method and
the Hamiltonian dynamics with γ = 10.0, respectively.
In addition to the convergence of 〈x〉 and 〈U(x)〉 shown
in Fig. 1, these results imply that the proposed method
leads the significant reduction of the relaxation time to
the steady state.
To demonstrate the removal of the critical slow-

ing down in our method, we next deal with the two-
dimensional XY model on a square lattice:

U(x) = −
∑

〈i,j〉

cos (xi–xj) , (26)

where the sum is taken over all pairs of the near-
est neighboring sites. The two-dimensional XY model
exhibits the Kosterlitz-Thouless transition at Tc =
0.89213(10) [27]. At temperatures below Tc, magneti-

zation m =
∑N

i=1 sinxi/N exhibits slow relaxation fol-
lowing the power law decay [28]. Since the critical slow-
ing down is a bottleneck for convergence to the targeted
steady state, it is preferred to avoid such slowing down
behaviors.
We compare the convergence performance of the gradi-

ent method, the Ohzeki-Ichiki method, and the proposed
method, in which the potential of the y-system is given

by Hy(y) =
∑N

i=1 y
2
i /2mi. In our numerical calculations,

the number of spins is set to be N = 10× 10. According
to the finite size correction, the effective critical tempera-
ture for this system is evaluated as Tceff ∼ 0.975 [29]. To
demonstrate the removal of the critical slowing down, the
temperature is set to be T = 0.5 < Tceff . Other parame-
ters are set as follows: the mass in the proposed dynamics
is set as mi = 1.0 for each i = 1, · · · , N . The parame-
ter γ = 5.0 is chosen for both cases of Hy(y) = U(y)

and Hy(y) =
∑N

i=1 y
2
i /2mi. The state with all spins in

up-state, i.e., xi = π/2 for all i = 1, · · · , N is chosen as
the initial state. The infinitesimal time step is set to be
dt = 1.0 × 10−4. The Langevin equations are integrated
by the Heun scheme.
Figure 2 shows the results averaged over Nsample =

1000 independent runs taking time average during ∆t =
0.1. Although the simple gradient dynamics exhibits the
critical slowing down, the Ohzeki-Ichiki and our pro-
posed dynamics show faster convergence. The conven-
tional Ohzeki-Ichiki method provides faster relaxation
than the gradient method, and the significant improve-
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FIG. 2. (Color online) Time evolution of the magnetization
(left panel) and internal energy (right panel) of XY model.
The black cross marks, green triangles, and red circles indicate
the results of the gradient method, conventional Ohzeki-Ichiki
method, and the proposed method, respectively. The error
bars indicate variances.

ment is achieved by the proposed method. In the pro-
posed method, both magnetization and internal energy
rapidly converge to the steady state values, and the crit-
ical slowing down appears to be eliminated.

VI. SUMMARY AND DISCUSSION

We have seen that the Ohzeki-Ichiki method seam-
lessly connects the simple gradient method with the
Hamiltonian dynamics. The Hamiltonian dynamics cor-
responds to a specific limit of the generalized Ohzeki-
Ichiki method. The HMC does not satisfy the detailed
balance condition in general. In the HMC, the candidate
of the updated state depends on the waiting time, which
defines a leapfrog operator L̂. Even if the updated state
(x′, p′) = L̂(x, p) is proposed starting from the current
state (x, p) by the leapfrog operator, the reverse transi-
tion (x′, p′) → (x, p) is not necessarily proposed. In other

words, (x, p) = L̂(x′, p′) is not satisfied in general. The
HMC with the detailed balance condition can be real-
ized using a leapfrog operator L̂ adaptively defined with
an appropriate waiting time [30]. In contrast, our pro-
posed method does not constrain any leapfrog operator.
The detailed balance condition is not satisfied, but the
balance condition is in any timescale.
The convergence performance of the HMC strongly de-

pends on the waiting time. The method called No-U-
Turn Sampler (NUTS) adaptively determines the wait-
ing time and efficiently proposes the updated state [31].
This technique accelerates the convergence speed to the
steady state with respect to Monte Carlo steps. How-
ever, in the HMC, a sufficient number of Monte Carlo
steps are required for convergence, since the transition
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between energy surfaces occurs only when the momen-
tum is resampled every single Monte Carlo step. Con-
versely, to shorten the simulation time, it is required to
shorten the time of single Monte Carlo step, i.e., the wait-
ing time. Note that the simulation time is proportional
to the actual calculation time. Due to the trade-off rela-
tionship between the waiting time and Monte Carlo steps
in the HMC, it takes a long simulation time to converge
to the steady state. In contrast, our proposed method
shows faster relaxation in simulation time. Therefore, it
is concluded that our method shows better performance
than the HMC with respect to actual calculation time.

It is worth mentioning that our method can be used in
combination with other methods. For example, it can be
used with the exchange Monte Carlo method and coarse-
grained dynamics. In addition to this advantage, our
proposed method can be easily applied to existing algo-
rithms with detailed balance condition to improve their
convergence speed. It is required only to add the driving
force generating probability current and momentum dy-
namics to the original dynamics with the detailed balance
condition.

In the conventional Ohzeki-Ichiki method, the steady
state distribution for the auxiliary variable y has the
same form as that for the original system. Thus, y can
be directly used to evaluate expectations for the target
distribution. Note that the auxiliary variable y doubles
the number of samples in the procedure for evaluating
the expectation in empirical manner. The obtained em-
pirical average has less variance than that obtained by
the dynamics with Hy(y) 6= U(y). On the other hand,
the choice of harmonic Hy exhibits faster convergence,

but the auxiliary variable y cannot be directly used to
evaluate the expectations for the target distribution.
Since our method exploits the violation of the detailed

balance condition, the probability current is generated
in the system. The probability current realizes a bi-
ased sampling, resulting in accelerated convergence to
the target distribution [32]. It is known in such a system
that the convergence of the long-time average of physical
quantities, namely, the empirical average, to the ensem-
ble average is accelerated [33].
Note that the choice of Hy still has some arbitrariness.

In the conventional Ohzeki-Ichiki method, Hy is chosen
as the potential of the original system. In the method
proposed in this paper, Hy is chosen as a harmonic one,
which is the bridge between the gradient method and
the HMC. However, Hy(y) can be a function of an ar-
bitrary form. We have seen that Hy(y) = U(y) and
Hy(y) =

∑

i y
2
i /2mi show different convergence perfor-

mance to the target distribution. The performance of
the dynamics (20) and (21) depends on the choice of Hy.
Since the harmonic Hy has only a single energy valley, it
is expected to be relaxed quickly. Thus, the relaxation of
the variable x belonging to the original system is also ex-
pected to be accelerated. However, a detailed discussion
of the optimal Hy is a matter for the future. For exam-
ple, it remains an open problem whether the optimal Hy

for convergence depends on Hx.
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