
ar
X

iv
:2

10
7.

08
76

4v
2 

 [
m

at
h.

D
S]

  2
8 

D
ec

 2
02

3

GALOIS CONJUGATES FOR SOME FAMILY OF GENERALIZED

BETA-MAPS

SHINTARO SUZUKI

Abstract. A real number β > 1 is called an Yrrap (or Ito-Sadahiro) number
if the corresponding negative β-transformation defined by x 7→ 1 − {βx} for
x ∈ [0, 1], where {y} denotes the fraction part of y ∈ R, has a finite orbit at 1.
Yrrap numbers are an analogy of Parry numbers for positive β-transformations
given by x 7→ {βx} for x ∈ [0, 1], β > 1. In this paper, we determine the
closure of the set of Galois conjugates of Yrrap numbers. In addition, we show
an analogy of the result to the family of piecewise linear continuous maps each
of which is obtained by changing the odd-numbered branches (left-most one
is regarded as 0-th) of the β-transformation to negative ones for β > 1. As
an application, we see that both the set of Yrrap numbers which are non-
Parry numbers and that of Parry numbers which are non-Yrrap numbers are
countable.

1. Introduction

Let β be a real number greater than 1. The so-called β-transformation Tβ :
[0, 1] → [0, 1] is defined by

Tβ(x) = {βx}
for x ∈ [0, 1], where {y} denotes the fraction part of y ∈ R. In case the map has
a finite orbit at 1, it is easily seen that β is an algebraic integer, which relates the
dynamical properties of the map to the algebraic properties of β. In that case, β
is called a Parry number and such numbers have been studied from viewpoints of
number theory and ergodic theory ([5, 8, 9, 10, 12]). One of the natural questions
for Parry numbers is to ask which algebraic integers are actually Parry numbers. It
is well-known that Pisot numbers are Parry numbers (see [11]), although it has not
been known if the same is true for all Salem numbers (see [1, 2]). As a direction
to provide non-Parry numbers, Solomyak [12] determined the closure of the set of
Galois conjugates of Parry numbers using zeros of power series whose coefficients
are in [0, 1], which yields that real algebraic integers greater than 1 whose Galois
conjugates do not belong to that set are non-Parry numbers. In [15], Thompson
extended the result to the case of the family of all generalized β-maps in the sense
of Góra [4], each of whose element is obtained by changing some branches of the
β-transformation by negative ones.

In this paper, we investigate two subfamilies of generalized β-maps in the sense
of Góra. One is the family of negative β-transformations defined by x 7→ 1−{βx},
β > 1, x ∈ [0, 1]. The other is the family of piecewise linear continuous maps
each of which is obtained by changing the odd-numbered branches (left-most one
is regarded 0-th) of the β-transformation to negative ones for β > 1. The first
main result in this paper is an analogy of the result by Solomyak to the family
of negative β-transformations. We recall that β > 1 is called an Yrrap number if
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the corresponding negative β-transformation has a finite orbit at 1. In Theorem
2.3, we determine the closure of the set of Galois conjugates of all Yrrap numbers,
which gives the answer to an open question in [7]. Together with the result by
Solomyak [12], our result yields that the closure of the set of Galois conjugates
of Parry numbers and that of Yrrap numbers are symmetric with respect to the
imaginary axis in the complex plane. As its application, we see that the modulus
of Galois conjugates of Yrrap numbers is less than or equal to the golden ratio
(Corollary 2.4). In addition, we show that the set of Yrrap (resp. Parry) numbers
which are non-Parry (resp. non-Yrrap) numbers is countable in Theorem 2.7.

The second main result is also an analogy of the result by Solomyak to the other
family of piecewise linear continuous maps stated above (Theorem 2.5). Comparing
with the result for all generalized β-maps by Thompson [15], we see that the closure
of the set of Galois conjugates corresponding to that family coincides with that to
the family of all generalized β-maps, although the family of maps we consider is a
special class of generalized β-maps.

This paper is organized as follows. In Section 2, we introduce basic notions used
throughout this paper and state the main results precisely. Section 3 is devoted to
giving all the proofs of the main results.

2. Preliminaries and Main results

In the following, we denote by N the set of all non-negative integers and assume
that β > 1 is a non-integer.

Let E = (E(0), E(1), . . . , ) ∈ {0, 1}N be an infinite 0-1 sequence. Set Iβ(x) = [βx]
for x ∈ [0, 1], where [y] denotes the integer part of y ∈ R. We define the piecewise
linear map on the unit interval τβ,E : [0, 1] → [0, 1] by

τβ,E(x) = E(Iβ(x)) + (−1)E(Iβ(x))Tβ(x)

for x ∈ [0, 1]. Note that the definition of the map τβ,E is slightly different from
the original one in that a 0-1 sequence in [4] is defined as a finite sequence with
([β] + 1)-terms. In our definition, actually, the map τβ,E depends only on the first
([β] + 1)-terms in E for β > 1. The reason why we define a 0-1 sequence as an
infinite sequence is to consider a family of generalized β-maps {τβ,E}β>1, in which
E is defined independently of the integer part of β > 1.

As in the case of β-transformations, we can consider an expansion of numbers in
[0, 1] using the map τβ,E as follows. For x ∈ [0, 1] and every non-negative integer
n ≥ 0, we define the digit function dn(β,E, x) and the sign function en(β,E, x) by

dn(β,E, x) = E(Iβ(τ
n
β,E(x))) + Iβ(τ

n
β,E(x)),

en(β,E, x) = (−1)E(Iβ(τ
n
β,E(x))),

and the cumulative sign function sn(β,E, x) by

sn(β,E, x) =

{

1, n = 0,
∏n−1

i=0 ei(β,E, x), n ≥ 1.
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By definition we can represent x ∈ [0, 1] by

x =
s0(β,E, x)d0(β,E, x)

β
+

s1(β,E, x)τβ,E(x)

β

=
s0(β,E, x)d0(β,E, x)

β
+

s1(β,E, x)d1(β,E, x)

β2
+

s2(β,E, x)τ2β,E(x)

β2

= · · ·

=

n−1
∑

i=0

si(β,E, x)di(β,E, x)

βi+1
+

sn(β,E, x)τnβ,E(x)

βn

for every positive integer n ≥ 1 (see Proposition 1 in [4]). Since τnβ,E(x) ∈ [0, 1]

and sn(β,E, x) ∈ {−1, 1} for n ≥ 0, taking n → ∞ in the right side of the above
equation yields

x =

∞
∑

n=0

sn(β,E, x)dn(β,E, x)

βn+1
.

We call the above series the τβ,E-expansion of x and the sequence of integers
{sn(β,E, x)dn(β,E, x)}∞n=0 the coefficient sequence of the τβ,E-expansion of x. Set
the monotone pieces of the map τβ,E as

Ji =

{

[ iβ ,
i+1
β ) (0 ≤ i ≤ [β]− 1)

[ [β]β , 1] (i = [β])

and denote by EP the set of all end points of Ji’s except 0 and 1, that is, set

EP =
{ 1

β
, . . . ,

[β]

β

}

.

If there exists a positive integer n ≥ 1 such that τnβ,E(x) ∈ EP , we have

x =

n−1
∑

i=0

si(β,E, x)di(x)

βi+1
+

sn(β,E, x)n0

βn+1
,

where n0 = βτnβ,E(x) ∈ {1, · · · , [β]}. In this case, we call the τβ,E-expansion of x
finite.

In the case of β-transformations (resp. negative β-transformations), recall that
β is called a Parry (resp. Yrrap) number if the set of the orbit of 1 by the corre-
sponding map is a finite set. In particular, β is called simple if the orbit of 1 by
the map eventually falls to EP (see [15], [6]). Similarly, for E ∈ {0, 1}N, we call β
a generalized Parry number with respect to (w.r.t) E if the set of the orbit of 1 by
the map τβ,E is a finite set. In particular, we call β is simple w.r.t E if the orbit of
1 by the corresponding map eventually falls to EP .

Let I ⊂ R be a bounded interval and let D be the open unit disk in C. Set

FI =
{

1 +

∞
∑

n=1

anz
n ; ai ∈ I for i ≥ 1

}

and

GI = {z ∈ D ; ∃f ∈ FI such that f(z) = 0}.
For an infinite 0-1 sequence E ∈ {0, 1}N, denote by Φ(E) the closure of the set of

Galois conjugates of all simple generalized Parry numbers w.r.t E and by Φ̂(E) the
closure of the set of Galois conjugates of all generalized Parry numbers w.r.t E.
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We define the formal power series φβ,E(z) by

φτβ,E
(z) =

N−1
∑

n=0

sn(β,E, 1)dn(β,E, 1)zn+1 + k0sN (β,E, 1)zN+1

if β is simple, where N = min{n ≥ 1; τnβ,E(1) ∈ EP} and k0 = βτNβ,E(1), and by

φτβ,E
(z) =

∞
∑

n=0

sn(β,E, 1)dn(β,E, 1)zn+1

if β is non-simple. Note that the convergence radius of this power series is greater
than or equal to 1 since the coefficient sequences {sn(β,E, 1)dn(β,E, 1)}∞n=0 is
bounded. In case that β is a generalized Parry number, the power series φτβ,E

can
be extended to a rational function, and otherwise has the unit circle as its natural
boundary by Szegö’s theorem, which states that if the coefficients {bn}∞n=0 of the
power series

∑∞
n=0 bnz

n line in some finite set in C, then either it has the unit circle
as its natural boundary or bn is eventually periodic (see [14]).

Set

Φ∗(E) = clos({z−1 ∈ C ; ∃β > 1 such that 1− φτβ,E
(z) = 0}),

where clos(A) denotes the closure of A ⊂ C. Since 1− φτβ,E
(β−1) = 0 for β > 1, it

is easily seen that Φ(E) ⊂ Φ̂(E) ⊂ Φ∗(E).
In the following, we set

E0 = (0, 0, 0, · · · ), E1 = (1, 1, 1, · · · ) and Ealt = (0, 1, 0, 1, 0, 1, 0, · · · ).
Notice that {τβ,E0

}β>1 is the family of all β-transformations and {τβ,E1
}β>1 is

that of all negative β-transformations. For β > 1 the map τβ,Ealt
is the continuous

piecewise linear map obtained by changing the odd-numbered branches (left-most
one is regarded as 0-th) of the β-transformation by negative ones. For a set of
complex numbers A ⊂ C, let A−1 = {z−1 ∈ C ; z ∈ A} and −A = {−z ∈ C ; z ∈
A}. In [12], Solomyak determine the closure of the set of all Galois conjugates of
(simple) Parry numbers:

Theorem 2.1 (Theorem 2.1 in [12]).

Φ(E0) = Φ̂(E0) = Φ∗(E0) = clos(D) ∪ G−1
[0,1].

As its generalization, Thompson [15] determined the closure of the set of Galois
conjugates of all generalized Parry numbers by extending Parry’s criteria (Theorem
3 in [8]) to the case of generalized β-maps under some conditions.

Theorem 2.2 (Theorem 5.7 in [15]).
⋃

E∈{0,1}N

Φ(E) =
⋃

E∈{0,1}N

Φ̂(E) =
⋃

E∈{0,1}N

Φ∗(E) = clos(D) ∪ G−1
[−1,1].

The first main theorem in this paper is an analogy of the result by Solomyak to
negative β-transformations:

Theorem 2.3.

Φ(E1) = Φ̂(E1) = Φ∗(E1) = clos(D) ∪ −G−1
[0,1].
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Together with Theorem 2.1, we can see that Φ(E1) = −Φ(E0), which means that
these sets are symmetric with respect to the imaginary axis in the complex plane.

In [12] and [3], it was shown that G[0,1] includes the open disk whose radius is

(
√
5 − 1)/2 and the value of its radius is best possible. This immediately implies

the following corollary:

Corollary 2.4. If z ∈ C is a Galois conjugate of an Yrrap number, then its modulus

is less than or equal to the golden ratio (1 +
√
5)/2.

The second main theorem in this paper is also an analogy of the result by
Solomyak to the maps {τβ,Ealt

}β>1.

Theorem 2.5.

Φ(Ealt) = Φ̂(Ealt) = Φ∗(Ealt) = clos(D) ∪ G−1
[−1,1].

Together with Theorem 2.2, this theorem shows that Φ(Ealt) = ∪E∈{0,1}NΦ(E),

although Ealt is just an element in {0, 1}N.
In [4], Góra defined a generalization of Chebyshev maps Fβ : [−1, 1] → [−1, 1]

by
Fβ(x) = cos(β arccosx)

for x ∈ [−1, 1], where β > 1. If β is a positive integer, the map is the well-known
Chebyshev polynomial of β-th order. He showed that it is topologically conjugate to
the map τβ,Ealt

(see Proposition 17 in [4]) and the Tβ-invariant density is expressed
as a function associated with the orbit {Fn

β (−1)}∞n=0. As an application of Theorem
2.5, we have the following result:

Corollary 2.6. The set of Galois conjugates of β’s such that the orbit of −1 by

Fβ is a finite set is equal to clos(D) ∪ G−1
[−1,1].

Finally, as a relevant work, we investigate the set of all Parry numbers and that
of all Yrrap numbers. In [6], Liao and Steiner gave two examples of β’s such that
one is a Parry number but a non-Yrrap number and the other is a Parry number
but a non-Yrrap number (see Proposition 6.1 and 6.2 in [6]). As an application of
Theorem 2.1 and 2.3, we construct countably many such β’s.

Theorem 2.7. Let P be the set of all Parry numbers and let Y be the set of all

Yrrap numbers. Then P ∩ Y c and P c ∩ Y are countable sets.

3. Proofs of Main results

This section is devoted to giving the proofs of the main results stated in the
previous section. First, we provide the proof of Theorem 2.3 in the same analogy
of the result for β-transformations by Solomyak via the following two lemmas. The
first lemma, proved by Thompson in [15], provides a sufficient condition for β to
be a simple generalized Parry number.

Lemma 3.1 (Theorem 5.5 in [15]). For a positive integer N ≥ 2, suppose that

M(0), . . . ,M(N) are distinct non-zero integers such that |M(i)|+1 < M(0) for all

i ≥ 1 and |M(j)| 6= |M(k)| − 1 for j, k with j 6= k. Then the equation

1 =
M(0)

x
+ · · ·+ M(N)

xN+1

has a solution β > 1 which is a simple generalized Parry number.
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Remark 3.2. Note that the original theorem in [15] states that the solution β above
is only a generalized Parry number. By Lemma 5.4 in [15], this solution is in fact
a simple generalized Parry number, i.e., τNβ,E(1) ∈ EP . Furthermore, by Lemma

5.3 in [15], we know that |M(n)| = dn(β,E, 1) and sign(M(n)) = sn(β,E, 1) for
0 ≤ n ≤ N , where sign(x) denotes the function defined by sign(x) = 1 if x > 0 and
sign(x) = −1 if x < 0 for x ∈ R.

The next lemma relates the generating function for the coefficient sequence of
the τβ,E-expansion of 1 to that for the orbit {τnβ,E(1)}∞n=0.

Lemma 3.3 (Proposition 4.1 in [13]). For z ∈ C with |z| < 1, we have

1−
N
∑

n=0

sn(β,E, 1)dn(β,E, 1)zn+1 = (1 − βz)

N
∑

n=0

sn(β,E, 1)τnβ,E(1)z
n,

where N is the minimal number such that τNβ,E ∈ EP , regarded as +∞ if no such

N exists.

Proof of Theorem 2.3 We first see that Φ∗(E1) \ clos(D) ⊂ −G−1
[0,1]. By Lemma

3.3, we have that

1− φβ,E1
(z) = (1 − βz)

(

1 +

N
∑

n=1

(−1)nτnβ,E1
(1)zn

)

.

By the definition of Φ∗(E1), if z0 ∈ Φ∗(E1) \ clos(D), then z−1
0 is a convergent

of zeros of 1 − φβ,E1
(z) for β > 1 except 1/β. This ensures that z−1

0 is also a

convergent of zeros of 1 +
∑N

n=1 τ
n
β,E1

(1)(−z)n, which means that −z−1
0 ∈ G[0,1],

together with τ iβ,E1
(1) ∈ [0, 1] for i ≥ 1. That is, we have z0 ∈ −G−1

[0,1].

We next see that −G−1
[0,1] ⊂ Φ(E1) \ clos(D). Take a polynomial f(z) of the form

f(z) = 1 +
∑N

n=1 anz
n, where N ≥ 1 and an ∈ (0, 1) for 1 ≤ n ≤ N with ai 6= aj if

i 6= j. Note that it is sufficient to show that for every positive number ε > 0, there
exists a simple β > 1 such that

(3.1) |τnβ,E1
(1)− an| < ε

for 1 ≤ n ≤ N and

xN − d0(β,E1)x
N−1+ · · ·+ (−1)N−1dN (β, 1)(3.2)

= zN(1− β/z)

(

1 +

N
∑

n=1

τβ,E1
(1)
(−1

z

)n
)

is an irreducible polynomial. In fact, the irreducibility of the polynomial (3.2)

ensures that the reciprocal of every zero of 1 +
∑N

n=1 τ
n
β,E1

(1)(−z)n is a Galois

conjugate of β. Furthermore, the inequality (3.1) ensures that any coefficient an of
the power series f(z) can be approximated by τnβ,E1

(1) for simple β, which implies

that there is a sequence {βm}∞m=1 of simple numbers such that 1+
∑N

n=1 τβm,E1
(1)zn

converges to f(z) uniformly on compact subsets of D as m → ∞. By Hurwitz’s
theorem, we have that every zero of f(z) in D is obtained as the limit of zeros of
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1+
∑N

n=1 τβm,E1
(1)zn as m → ∞. Since the set of all polynomials of the form f(z)

is dense in the set F[0,1] with uniform topology, we get the conclusion.
Set a0 = 0, aN+1 = 1 and δ = min0≤i,j≤N+1 |ai − aj|. For a positive integer

M ≥ 1, we can see that Iβ(an) ∈ {IM (an), IM (an) + 1} for β ∈ (M,M + 1)
and 1 ≤ n ≤ N . Take an odd integer M so large as M > max{7/δ, 5/ε}. Let
D(0) = M + 1. For 1 ≤ n ≤ N − 1, set D(n) = IM (an) if IM (an) is even and
D(n) = IM (an) + 1 if IM (an) is odd. Note that each D(n) is an even integer with
0 ≤ D(n) − IM (an) ≤ 1. Define the even integer D(N) by D(N) = IM (aN ) + k,
where

k =



















2, (IM (aN ) ≡ 0 mod 4)

1, (IM (aN ) ≡ 1 mod 4)

0, (IM (aN ) ≡ 2 mod 4)

−1. (IM (aN ) ≡ 3 mod 4)

By definition, D(N) ≡ 2 (mod 4) and |D(N)−IM (aN )| ≤ 2. Note that byM > 7/δ,
we have

|D(i)−D(j)| ≥ |IM (ai)− IM (aj)| − 3 ≥ M |ai − aj | − 4 ≥ 3

for 0 ≤ i, j ≤ N with i 6= j. By Lemma 3.1 and 3.2, the equation

1 =
D(0)

x
− D(1)

x2
+ · · ·+ (−1)N

D(N)

xN+1

has a unique positive solution β0 ∈ (M,M + 1), which is a simple Yrrap number
with

dn(β0, E1, 1) = D(n)

for 0 ≤ n ≤ N .
Since every D(n) is even for 0 ≤ n ≤ N and D(N) ≡ 2 (mod 4), the polynomial

(3.2) for β0 is irreducible by Eisenstein’s criterion. By definition,

Iβ0
(τnβ0,E1

(1))

β0
≤ τnβ0,E1

(1) <
Iβ0

(τnβ0,E1
(1)) + 1

β0

and
Iβ0

(an)

β0
≤ an <

Iβ0
(an) + 1

β0

for 1 ≤ n ≤ N . This shows

|τnβ0,E1
(1)− an| ≤

|Iβ0
(τnβ0,E1

(1))− Iβ(an)|+ 1

β0
.

Since D(n) = dn(β0, E1, 1) = Iβ0
(τnβ0,E1

(1))+1, |D(n)−IM (an)| ≤ 2 and Iβ0
(an) ∈

{IM (an), IM (an) + 1} for 0 ≤ n ≤ N , we have

|Iβ0
(τnβ0,E1

(1))− Iβ(an)| ≤ |D(n)− IM (an)|+ 2 ≤ 4,

which yields

|τnβ0,E1
(1)− an| ≤

5

β0
<

5

M
< ε,

as desired.
Finally, we see that clos(D) ⊂ Φ(E1). Note that each zero of a polynomial of

the form fr(z) = 1 + z/r + · · · + zN/rN , where N ≥ 2 and r ∈ (1,+∞) can be
approximated by Galois conjugates of elements in Φ(E1) as in the above argument.

Since the set of all zeros of fr(z) is equal to the set {re2πin/N}N−1
n=0 , we can conclude
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that clos(D) ⊂ Φ(E1) by the fact that the set ∪r>1 ∪N≥1 {re2πin/N}N−1
n=0 is dense

in {z ∈ C ; |z| ≥ 1}, which finishes the proof. �

Remark 3.4. In the second part of the above proof, we take a simple Yrrap number
satisfying (3.1) and (3.2) so that its integer part is odd. Then the proof in fact
yields the stronger result: Denoting by Φodd(E1) the closure of the set of all Galois
conjugates of simple Yrrap numbers each of whose integer part is odd, we have
Φodd(E1) = clos(D) ∪−G−1

[0,1].

Next we show Theorem 2.5 with some modifications of the above proof.

Proof of Theorem 2.5 As in the first part of the proof of Theorem 2.3, the
equation by Lemma 3.3

1− φβ,Ealt
(z) = (1− βz)

(

1 +

N
∑

n=1

sn(β,Ealt, 1)τ
n
β,Ealt

(1)zn

)

,

where N is the minimal number with τNβ,Ealt
(1) ∈ EP regarded as +∞ if no such

N exists, yields that Φ∗(Ealt) \ clos(D) ⊂ G−1
[−1,1].

We shall show that G−1
[−1,1] ⊂ Φ(Ealt) \ clos(D). Let f(z) be a polynomial of the

form

f(z) = 1 +

N
∑

n=1

cnanz
n,

where N ≥ 2, cn ∈ {−1, 1} and an ∈ (0, 1) for 1 ≤ n ≤ N with ai 6= aj for
1 ≤ i < j ≤ N . As in the same reason for the proof of Theorem 2.3, it is sufficient
to show that for every positive number ε > 0, there exists a simple β0 > 1 such
that

(3.3) sn(β0, Ealt, 1) = cn, |τnβ,E1
(1)− an| < ε

for 1 ≤ n ≤ N and

xN − s0(β0, Ealt, 1)d0(β0, Ealt)x
N−1 − · · · − sN (β0, Ealt, 1)dN (β0, Ealt, 1)(3.4)

= xN (1− β/x)(1 +

N
∑

n=1

sn(β0, Ealt, 1)τ
n
β0,Ealt

(1)(1/x)n

is an irreducible polynomial. Set a0 = 0, aN+1 = 1 and δ = min0≤i,j≤N+1 |ai − aj |.
Take an even integer M so large as M > max{7/δ, 5/ε}. Define the sequence of
even integers {D(n)}Nn=0 by D(0) = M ,

D(n) =

{

IM (an) if IM (an) is even,

IM (an) + 1 if IM (an) is odd,

for 1 ≤ n ≤ N − 1 and D(N) as the even positive integer with D(N) ≡ 2 (mod 4)
with |D(N) − IM (aN )| ≤ 2. Then we can see in the same way of the proof of
Theorem 2.3 that the sequence {cnD(n)}Nn=0 satisfies the assumptions of Lemma
3.1. Hence there are a simple β0 > 1 and some 0-1 sequence E′ ∈ {0, 1}N such
that the inequality (3.3) holds for 1 ≤ n ≤ N and the polynomial (3) for (β,E′) is
irreducible with dn(β0, E

′, 1) = D(n) and sn(β0, E
′, 1) = cn for 1 ≤ n ≤ N .
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In fact, we can replace E′ by Ealt from the following argument. Since everyD(n)
is even and en(β0, E

′, 1) = sn(β0, E
′, 1)sn+1(β0, E

′, 1) = cncn+1 for 1 ≤ n ≤ N by
definition, we have

Iβ(τ
n
β0,E′(1)) = D(n) is an even integer if en(β0, E

′, 1) = +1

and

Iβ(τ
n
β0,E′(1)) = D(n)− 1 is an odd integer if en(β0, E

′, 1) = −1

for 0 ≤ n ≤ N . This means that E(τnβ0,E′(1)) = 0 if Iβ(τ
n
β0,E′(1)) is even and

E(τnβ0,E′(1)) = 1 if Iβ(τ
n
β0,E′(1)) is odd. Therefore, we conclude that τnβ0,E′(1) =

τnβ0,Ealt
(1) and sn(β0, E

′, 1) = sn(β0, Ealt, 1) for 1 ≤ n ≤ N , which allows us to

replace E′ by Ealt.
We can show clos(D) ⊂ Φ(Ealt) by the same argument as the last part of the

proof of Theorem 2.3. �

Finally, we prove Theorem 2.7 as an application of Theorem 2.3.

Proof of Theorem 2.7 Let f ∈ F[0,1]. By the definition of F[0,1], the power series

f has the form f(z) = 1 +
∑∞

n=1 anz
n, where an ∈ [0, 1] for n ≥ 1. Since f has the

convergence radius greater than or equal to 1 and an ∈ [0, 1] for n ≥ 1, we have that
f(t) = 1+

∑∞
n=1 ant

n ≥ 1 > 0 for 0 < t < 1, which means that G[0,1]∩ (0,+∞) = ∅.
Together with Theorem 2.1, we have that every Parry number has no positive Galois
conjugate greater than 1. In addition, we note that the set G[0,1] has a ‘spike’ on

the negative real axis, which means that G[0,1] ∩ (−1, 0] = (−1,−(
√
5 − 1)/2] and

there is 0 < C < (
√
5 − 1)/2 such that every z ∈ G[0,1] \ (−1, 0] satisfies |z| < C

(see Corollary 2.3 and Lemma 4.1 in [12] ). Since Φ(E1) ⊃ −G−1
[0,1] by Theorem 2.3,

there are countably many distinct Yrrap numbers one of whose Galois conjugates
lies in (1, (

√
5 + 1)/2). Together with G[0,1] ∩ (0,∞) = ∅, we have that they are

non-Parry numbers, ensuring the set P c ∩ Y is countable. Similarly, Φ(E0) ⊃ G−1
[0,1]

by Theorem 2.1, there are countably many distinct Parry numbers one of whose
Galois conjugates lies in (−(

√
5 + 1)/2,−1). Together with −G[0,1] ∩ (−∞, 0) = ∅,

we have that they are non-Yrrap numbers, ensuring the set P ∩Y c is countable. �
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