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Abstract

Livsic theorem asserts that, for Anosov diffeomorphisms/flows, a Lips-
chitz observable is a coboundary if all its Birkhoff sums on every periodic
orbits are equal to zero. The transfer function is then Lipschitz. We prove a
positive Livsic theorem which asserts that a Lipschitz observable is bounded
from below by a coboundary if and only if all its Birkhoff sums on periodic
orbits are non negative. The new result is that the coboundary can be
chosen Lipschitz. The map is only assumed to be C' and hyperbolic, but
not necessarily bijective nor transitive. We actually prove our main result
in the setting of locally maximal hyperbolic sets for not general C' map.
The construction of the coboundary uses a new notion of the Lax-Oleinik
operator that is a standard tool in the discrete Aubry-Mather theory.

Keywords: Anosov diffeomorphism, discrete weak KAM theory, cali-
brated subactions, Lax-Oleinik operator, Lipschitz coboundary.

1 Introduction and main results

A C" dynamical system, r >, is a couple (M, f) where M is a C" manifold of
dimension dj; = 2, without boundary, not necessarily compact, and f : M — M
on a C" map, not necessarily injective. The tangent bundle 7'M is assumed to be
equipped with a Finsler norm | - | depending C"~! with respect to the base point.
A topological dynamical system is a couple (M, f) where M is a metric space
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and f : M — M is a continuous map. We recall several standard definitions.
The theory of Anosov systems is well explained in Hasselblatt, Katok [§], Bonatti,
Diaz, Viana [1].

Definition 1.1. Let (M, f) be a C" dynamical system and A € M be a compact
set strongly invariant by f, f(A) = A. Let dyy =d* +d*, d* > 1, d* > 1.

i. A is said to be hyperbolic if there exist constants A* < 0 < A%, Cy > 1, and
a continuous equivariant splitting over A, Vx € A, T, M = E}(z) ® E}(z),

{A —  Grass(T'M,d") {A —  Grass(T'M, d°) are (O

T - Ei(x) T Ej(2)
such that

Vaed Tf(E* () = B*(/(2)), Tof(E'(2)) € B*(f ().
Yo A Ym0 { We B(@), [T (W) < Cae™ol,
Vv e Bi(a), |Tof"(0)] = Oyt e o).

ii. A is said to be locally maximal if there exists an open neighborhood U of A
of compact closure such that

(/@) = A

iii. A is said to be an attractor if there exists an open neighborhood U of A of
compact closure such that

fO)cU and [ f(0) = A

n=0

otice that the map f is not assumed to be invertible nor transitive as it is done
Notice that th is not d to be invertibl transiti it is d
usually.)

We also consider a Lipschitz continuous observable ¢ : U — R. We want to
understand the structure of the orbits that minimize the Birkhoff averages of ¢.
We recall several standard definitions.

Definition 1.2. Let (M, f) be a topological dynamical system, A < M be an
f-invariant compact set, U 2 A be an open neighborhood of A, and ¢ : U — R be
a continuous function.



i. The ergodic minimizing value of ¢ restricted to A is the quantity

Pp = lim — mf Z pof (1.1)

n——+0o 1N, TeEA

ii. A continuous function v : U — R is said to be a subaction if
VzeU, ¢(x) — dp = uo f(x) —u(x). (1.2)

iii. A function 1 of the form ¢ = w o f — u for some u is called a coboundary.

iv. The Lipschitz constant of ¢ is the number

Lip(¢) := sup ————,
( ) z,yeU, z+y d(l’,y)

where d(-,-) is the distance associated to the Finsler norm.
Our main result is the following.

Theorem 1.3. Let (M, f) be a C' dynamical system, A = M be a locally mazimal
hyperbolic compact set, ¢ : M — R be a Lipschitz continuous function, and ¢ be
the ergodic minimizing value of ¢ restricted to A. Then there exists an open set )
containing A and a Lipschitz continuous function u : Q@ — R such that

VoeQ, ¢(x)—op=uo f(z)—uz).

Moreover, Lip(u) < KxLip(¢) for some constant Ky depending only on the hyper-
bolicity of f on A. The constant Ky is semi-explicit

(NAS + l)diam(QAS)
EAS

KAZH]&X{ 5 KAps}

where €45, Kaps and Nyg are defined in and[{.4)

Corollary 1.4. Let (M, f) be a C* dynamical system, A = M be a locally mazimal
hyperbolic compact set, and ¢ : M — R be a Lipschitz continuous function. Assume
the Birkhoff sum of ¢ on every periodic orbits on A is non negative. Then there
exist an open neighborhood ) of A, a Lipschitz continuous function u : £ — R,
such that

VeeQ, ¢(xr) —uo f(x) +u(zx) = 0.

3



A weaker version of Theorem |1.3| was obtained in [13], [14], and [12], where the
subaction is only Holder. Bousch claims in [2] that the subaction can be chosen
Lipschitz continuous as a corollary of its original approach, but the proof does
not appear to us very obvious. Huang, Lian, Ma, Xu, and Zhang proved in [10,
Appendix A] a weaker version, namely % Zg:_ol [0 — @] = un o f¥ — uy for some
integer N > 1 and some uy Lipschitz but by invoking again [2]. A similar theorem
can be proved for Anosov flows, see [17].

The plan of the proof is the following. We revisit the Anosov shadowing lemma
in section [2, Theorem [2.3] by bounding from the above the sum of the distances
between a pseudo orbit and a true shadowed orbit in terms of the sum of the
pseudo errors. We improve in section [3] Bousch’s techniques of the construction
of a coboundary by introducing a new Laz-Oleinik operator, Definition [3.1] and
showing under the assumption of positive Livsic criteria the existence of a stronger
notion of calibrated subactions, Proposition [3.3] We then check in section [4] that
a locally maximal hyperbolic set satisfies the positive Livsic criteria and prove the
main result. The proof of Theorem requires a precise description of the notions
of adapted local hyperbolic maps and graph transforms with respect to a family of
adapted charts. We revisit these notions in Appendix [A] Notice that we do not
assume f to be invertible nor transitive.

2 An improved shadowing lemma for maps

We show in this section an improved version of the shadowing lemma that will be
needed to check the existence of a fixed point of the Lax-Oleinik operator.

Definition 2.1. Let (M, f) be a topological dynamical system. A sequence
(x;)o<i<n Of points of M is said to be an e-pseudo orbit (with respect to the
dynamics f) if

Vie[0,n—1], d(f(z;),xit1) <e.

The sequence is said to be a periodic e-pseudo orbit if z,, = x;.
We first recall the basic Anosov shadowing property.

Lemma 2.2 (Anosov shadowing lemma). Let (M, f) be a C' dynamical system
and N = M be a compact hyperbolic set. Then there exist constants €as > 0,
Kas = 1, and Aag > 0, such that for every n = 1, for every eas-pseudo orbit
(:)o<i<n of the neighborhood Qs = {x € M : d(x,\) < €ag}, there exists a point
y € M such that

max d(z;, f'(y)) < Kas max d(f(xr_1), %) (2.1)

0<isn 1<k<sn



Equation (2.1) is the standard conclusion of the shadowing lemma. We say
that the orbit (v, f(y),..., f"(y)) shadows the pseudo orbit (z;)i,.

Theorem 2.3 (Improved Anosov shadowing lemma). Let (M, f,A) as in Lemma
2.2. Then one can choose €exg > 0, Kas = 1, 45 >0, and y € M so that

Vie [0,n], d(z;, f(y Z f(zp—1), x) exp(—Aaslk —1i|), (2.2)

Z (xwfZ Z xk 1 ) (2.3)

Equations and are new and fundamental for improving Bousch’s
approach [2]. The heart of the proof is done through the notion of adapted local
charts. In appendix [A] we recall the notion of adapted local dynamics in which
the dynamics is observed through the iteration of a sequence of maps which are
uniformly hyperbolic with respect to a family of norms that are adapted to the
unstable/stable splitting and the constants of hyperbolicity.

The following Theorem is the technical counterpart of Theorem [2.3] We
consider a sequence of uniformly hyperbolic maps as described more rigorously in

Appendix [A]
Ji: Bl(p) - Rd7 Bl(p) c R = EZU@E;S H—l DE H—lv A =Tofi,

where E;' /* are the unstable/stable vector spaces, A; is the tangent map of f; at
the origin which is assumed to be uniformly hyperbolic with respect to an adapted
norm | - [l; and constants of hyperbolicity o® < 1 < ¢%, n > 0 is the size of the
perturbation of the non linear term (fi(v) — f;(0) — A; - v), p > 0 is the size of
the domain of definition of f;, B;(p) is the ball of radius p for the norm | - [|;, and
1£:(0)]; < €e(p) is the size of the shadowing constant with €(p) « p.

Theorem 2.4 (Adapted Anosov shadowing lemma). Let (f;, A;, E;“/s, |- 1= be
a family of adapted local hyperbolic maps and (c*,0°,m, p) be a set of hyperbolic
constants as in Definition[A. 1. Assume the stronger estimate

/(1= 0%% 0% —1
7 < min ( : )
12 6
Define A\r and Kr by,

o® + 31 1 5
) >7 KF = 3 -
1 =3n o"—3n (1 —exp(=Ar))

exp(—Ar) = max (
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Let (q;)1-, be a “pseudo sequence” of points in the sense

Vie[0,n—1], g¢e€ Bz<g) and  fi(q) € Bz‘+1<g>-
Then there exists a “true sequence” of points (pi)i—y, pi € Bi(p), such that
i. Yie[0,n—1], fi(p:)) = pis1, (the true orbit),

ii. Vi e [0,n], o — pili < Ko Y 1fia(an1) — auliexp(=Aelk — i),
k=1

i1 Z |lg; — pilli < Kr Z | fr—1(qr=1) — arlx,
i=0

k=1
w. max g — pilli < K max | fi-1(gr-1) = axl-
Moreover assume (f;, A;, Eiu/s, |- :)iez is n-periodic in the sense
fin = fis Airn = Aiy B = B - fiwn = |- i

assume in addition that (q;)ez s a periodic pseudo sequence in the following sense

VZEZ Qi+n = i, QzEB< ) fz 1(% 1)63(5)
Then there ezists a periodic true sequence (p;)icz Salisfying

v. VielZ, fi(pi) = Di+1, Di+n = Di,

n—1 n
vt Z lgi — pills < Z | fe-1(gr-1) — @illx,
i=0 k=1
with Kp := Kr(1 4 exp(—=Ap))/(1 — exp(—Ap)).
Proof. Let P*, P be the projections onto E}, E¥ respectively. Let
0= b= sl — ale

o% —of

Notice that the proof of items [il] and [iv] follows readily from item il We prove
only item [ii]

Step 1. We construct by induction a grid of points
Qz(]a k) € BZ(p) for i€ [[O,?’L]], j € [[07n - Zﬂa and k€ [[0,’&]]

in the following way (see Figure [1)):



ii.

iii.

QO"'EB Q1+Ei q,+E,

f\(: q,) P f\1‘<ql)xxx'\2
: R A o XXX‘\ @ XK KK
R N,
q0 Qo(5,0)=p0 4,
g:+E;  qtEfS <
NN <~ S
S - o i ps ANO5(0,5
A EQ)E/Q) K *\p """"""
c/x/O\ e o
Y 7
oltoeserie 2 1o s 4(a)
\ P \ : \
S S S S R - .- 25

*—X - % -
T\q3 g, +E" T\q4 q.+E. 45/

Figure 1: A schematic description of the grid Q(i,j) for n = 5.

. For all i € [0,n], let G, : B{*(p) — B;(p) be the horizontal graph passing

through the point ¢;,
Yve B (p), Gio(v) = P’q.

For all i € [1,n] and k € [1,i], let G;x : Bj(p) — Bi(p) be the graph
obtained by the graph transform (see Proposition , iterated k times, of
Gi ko,

G = ()i 0 0 (T)ik(Gizko)-

Notice that |G, x(0)|; < p/2 and Lip(G; ) < a.
For all i € [0,n] and k € [0,¢], let Q;(0,%) be the point on Graph(G, )

whose unstable projection is Pg;, or more precisely,
Qi(0,k) = P'q;i + Gix(P'q)-

Let ¢ € [[1,n] and assume that the points Q;(j, k) have been defined for all
j € [0,n—i] and k € [0,4]. Let j € [1,mn — ¢+ 1] and k € [0,7 — 1], then
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Qi-1(7, k) is the unique point on Graph(G;_; ) such that
fi—l(Qi—l(jv k)) = QZ(] - 17 k+ 1)
For 7 = 0, the points @;_1(0, k) have been defined in item ii.

We will then choose p; = Q;(n — i,1).
Step 2. Let hyj := | Pf[Qi(4,0) — Q;(j,7)] ;. We show that, for all i € [1,n],

« 0'5+377:|5A 0+377h »

hio < |(1+ )+
0 (1+a) 1—a?20"—3n 11—«

Proposition with slope o = 6n/(c" — ¢°) for the unstable graphs show that

| P7[Qi(0,0) — Qi(0, )] i < |1PPai — fir(ai—1)] i + |P7[fi1(gi—1) — Qi(0,1)] |
< 0+ CYHPz'u[fi—l(Qi—l) —Qi(0, 1)] li
< 0+ CYHPz'u[fi—l(Qi—l) - Qz‘] li < (14 a)d;.

By forward induction, using Lemma [A.§]

Qi-1(J,k) = Qi1 (j", k) € Gy (a) = Qi(j — 1Lk +1) = Qi(j' — Lk +1) € CF(a),
|Qi—1(d, k) — Qi—a (4 k)| < pT— i —Lk+1) Q' = Lk+1).

Then

10:1(0,0) = @11, 0) i1 < ——

1
o —3n

31 HPiu[fi—l(Qi—l) - Qi(Oa 1)] Hz

1
HPiu[fifl(Qifl) - Qi] Hz = pn

0;.

~

By backward induction, using Lemma [A.§]

Qi(j, k) = Qi(j, k) € Cf(a) = Qina(+Lk—=1) = Qia(j+ 1,k = 1) € C7 (o),
1Qi(5, k) = Qi(1, K| < (0° +3n)[Qi—1(j + 1,k — 1) = Qia(j + LK = 1)|.

Then,

hio = 1Qi(0,0) — Qi(0,4)]; = | P[Q:(0,0) — Qi(0,4)] |
< [PE[Qi(0,0) — Qi(0, )] s + | P [Qi(0, 1) — Qs(0,9)] ||
< (1 + 04)51 + (O'S + 37])}7/2‘,1,1.



We estimate h;_;; in the following way,

hi—11 < HP{S—1[Q1'—1(1, 0) — Qi—1(0>0)] izt
+ P71 [Qi-1(0,0) = Qi—1(0,i = 1)] i1
+ P [Qi1(0,4 = 1) = Qia (1, = 1)] i
< hi—l,O + a”Piu—l[Qi—l(O7i - 1) - Qi—l(lyi - 1)] Hi—l-

1P [Qi1(0,i — 1) — Qica(1,i — 1) i1
< 1P [Qic1(0,i — 1) — Qi—1(0,0) ] i1
+ | P [Qi-1(0,0) — Qi—1(1,0)] i1
+ [P [Qim1(1,0) = Qia(L,i — 1)] -1

[P [Qi-1(0,0) — Qi—1(1,0)] i1 < =y i 3T]HPu[fi71(Qifl) —Qi(0, )] [

[P [Qi1(1,0) = Qica(Li = )] i1 < @ P [Qia(1,0) = Qia (1,0 — 1] [ia

”P)zufl[Ql—l((lZ - ]-) - Qi—l(l,i - 1)] Hi—l < ou _ 37752 + ahi—l,l-
Then
1 o'
hio11 < —=h;_ 0,
N (1 —a2)(o* —3n)
and finally

hiop < [(1 + Oz) +

a o'+ 3n o® 4+ 3n
:|6 —hi—lO'
1 —a?20%—3n 1—a? ’

Step 3. We show that, for every i € [0,n — 1],

u : . §i+1 (07
HPZ [QZ<07 Z) - Ql(lvl)] ”2 < (1 _ oﬂ)(o“ — 37]) + 1_ thi,O-

Indeed, using

|P[Qi(1,0) = Qi(1,9)] |
|77 [Qi(0,1) — Qi(1,9)] |

NN

af B [Qi(1,0) — Qi(1,49)] |,
af BQi(0,7) — Qi(1,4)] |li,



we obtain
|P[Qi(0,4) — Qi(1,4)]
1 U
3n P [fz(%) - Qi+1] li+1

+a(IP[Qi(0,0) = Qu(0,)] | + ol P[Qu(0,1) — @:(1.0)] 1),

U : . 5z‘+1 07
Hjjz [QZ(OJZ) - Ql(laz)] HZ < (1 _ a2)(0“ — 37]> + 1_ thi,O‘

<

Step 4. We simplify the previous inequalities

a o°+3n 13
1+ a)+ < —.
(1+a) 1—a?20"—3n 6

3 1
o’ + n . <1, a<-,
—3n 2
Then for every i € [0,n — 1],

n—i—1

| PH[Qi(0,4) — Qi(n —4,9)] | Z |P[Qi(k, i) — Qi(k +1,0)] [

< % (Grmg) IPE@un0si 4 ) = Quaa(Lii + 1] i

< (a“—377>k<(1—a52i;(]::—377) * 1—aa2hi+k’0>'

By using |P[Qi(0,1) — Qi(n —i,0)] i < | P*[Qi(0,4) — Qi(n —1,4)] [, we obtain

for every i € [0, n],

1Q:(0,7) — Q;(n —i,1)

-« i <a“— ) iék

k=i+1
n—1
1

o k—i
+ ( ) o
1—04; o —3n 0

hon = 12:0.0) — Q0. < 2237 (ZE30),
k=1

1—a?

Let




Combining these two last estimates, we obtain

1Qi(0,0) = Qi(n — 4, 0) < Z o+ Za 0,

k=1
n n n k—i _k—I
k—ip 13 k—i k=lg _ 13 |i—i] 9 % \;
k=i k=i 1=1 1=1 k>max(i,l) op
In both cases k =i >1lor k> 1> 1,
k—i k-l k—i _k—l
Or Or  _ _2(k—i) or Or _ _2(k-0)
[1—7| - 7T [l—7| - Ur
Or r

We finally obtain for every i € [0, n],

13 1 &
”pi_%’Hi < ?1 Z | |(5k
F k=1

We conclude by noticing
n n
Z Z |ke— 1| 1+ i+or
=0 kel 1 — JF
Consider now a periodic sequence (g;);ez. For every integer s > 1, consider the

restriction of that sequence over [—sn, sn] and apply the first part with a shift
in the indices i = j + sn. There exists a sequence (p;);2 such that, for every

j € [—=sn,sn—1], f;(p;) = pi;,, and

j=—sn

sn

Ip5 — g5l < Kr > | femr(gr-1) — el exp(=Ar[k — j])
k=—sn+1
n s—1
< Ko ) fica(a—) —ale D) exp(=Acll + hn — j]).

=1 h=—s

Adding the previous inequality over j € [0,n — 1], we obtain

n—1 n
Z Ip5; — 4l \KFZHfl (@1 _QZ”lZ Z exp(—Ar|j + hn —|)
i=0

j=lh=—s—1
n (s+1)n—1
S KFZ | fim1(qi-1) — aqll Z exp(—Ar|l — k).
=1 k=—(s—1)n
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By compactness of the balls B;(5) one can extract a subsequence over the index s
of (p3)it_, converging for every j € Z to a sequence (p;)jez. Using the estimate

= 1+ exp(—Ar
2] exp(=Aelk]) = = =,
k=—0o0 exXp r

we have for every j € Z, fj(pj) = Dj+1,

1+ exp(— "
.l < K _
Ilp; — 4 T exp(—\) exp(— l;”fl (@) — il
Moreover
n—1
1+ exp( /\p

2 Ips = gl < Kepm——% Zufl @) — alis
J=0 — exp(— =1

Let be p; := pjin. As |p; — p;|; is uniformly bounded in j and f;(p;) = Dj+1,

fi(p;) = pj+1, for every j, the cone property given in Lemma implies p; = p;
for every j € Z and therefore (p;);ez is a periodic sequence, p;, = p; for every
je’Z. [l

The proof of Theorem is done by rewriting a pseudo orbit under the dy-
namics of f as a pseudo orbit in adapted local charts.

Proof of Theorem 2.3l Let I'y = (I, E, F, A, N) be a family of adapted local
charts and (0", 0%, 7, p) be a set of hyperbolic constants as defined in [A.4 We
assume that 7 is chosen as in Theorem We define Q = Uzeav.(B:(p)), we
denote by Lip(f) the Lipschitz constant of f over €, by Lip(I'y) the supremum of
Lip,(7,) and Lip, (7, ') over x € A with respect to the adapted norm || - ||,. Let

€(p)
(14 Lip(I'a))*(1 + Lip(f))

Let Qus = UwenVa (Bo(€as)) and (), be an esgs-pseudo orbit in Q5. Let
(z})izo be a sequence of points in A such that z; € v,/ (B (€as)). Then
d(f(x}), f(x:)) < Lip(f)d(z7, ;) < Lip(f)Lip(I's)eas,
d(f(w), zis1) < €as,

d<xi+17 3:;-1-1) < Lip(FA)EAS7

€As =

which implies

d(f(x}), 2311) < [Lip(Ua)(1 + Lip(f)) + 1 eas < €(p)/(1 + Lip(L)),
d(f (i), zi1) < (1+ Lip(I'a))eas < €(p)/(1 + Lip(I'a)),
f@i), f(@}) € v, (Buy,, (e(p))).

12



We have proved that, Vi € [0,n — 1], 2 o x;,, is an admissible transition. Let
qi € By (eas) such that v, (¢;) = ;. Then ¢; € By (§) and fur v (¢:) € Ba (5).

Let B/ = E;‘;’S, - lle =1 Nz fi = S, = 7‘;;11 o for, Ai = Ay ur,, then
(fi, Ai, B} /s, | - |l;) satisfies the hypothesis of Theorem . There exists a sequence
(pi)izo of points p; € By (p) such that for every i € [0,n — 1], for 2 (i) = pis1,
and for every i € [0, n],

x < KF Z Hf:c?g_l,x;c(Qkfl) - Qka;C eXP(_)\F’k - ZD)
k=1

=0 k=1

H%’ — Di

max |lgi = pilley < Kr max |fo o (Gr-1) = @il

We conclude the proof by taking y = v, (po),
KAS = Llp(FA)2Kp and /\AS = )\F- ]

Using the second part of Theorem [2.4] we improve the Anosov shadowing
property for periodic pseudo orbits (instead of pseudo orbits).

Proposition 2.5 (Anosov periodic shadowing lemma). Let (M, f) be a C' dy-
namical system and A < M be a locally maximal hyperbolic set. Then there exists
a constant Kaps = 1 such that for every n = 1, for every periodic € ag-pseudo
orbit (x;)o<i<n 0f the neighborhood Qag := {x € M : d(x,\) < eas}, there exists a
periodic point p € A of period n such that

S d(ws, f10) < Kaps 3 d(f (2-), 25), (2.4)
i=1 k=1
jmax d(z;, ['(p)) < Kaps | max d(f(ey), 2rs), (2.5)

1 _ . )
where Kapg = KAg%, and €45, Kas, Aag, are the constants given in
Theorem [2.3.

Proof. The proof is similar to the proof of Theorem [2.3] We will not repeat it. [

3 The discrete Lax-Oleinik operator

We extend the definition of the Lax-Oleinik operator for bijective or not bijective
maps and show how Bousch’s approach helps us to construct a subaction (item
of Definition . We actually construct a calibrated subaction as explained
below that is a stronger notion.
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Definition 3.1 (Discrete Lax-Oleinik operator). Let (M, f) be a topological dy-
namical system, A © M be a compact f-invariant subset, 2 > A be an open
neighborhood of A of compact closure, and ¢ € C°(Q,R). Let C > 0 be a nonneg-
ative constant, and ¢, be the ergodic minimizing value of the restriction ¢ to A,
see (|1.1)).

1. The Discrete Laz-Oleinik operator is the nonlinear operator T acting on the
space of functions u : {2 — R defined by

Va' € Q, Tlu(z') := inf {u(z) + ¢(z) — ¢a + Cd(f(z), ")} (3.1)

€S

ii. A calibrated subaction of the Laz-Oleinik operator is a continuous function
u : £ — R solution of the equation

T[u] = u. (3.2)

The Lax-Oleinik operator is a fundamental tool for studying the set of minimiz-
ing configurations in ergodic optimization (Thermodynamic formalism) or discrete
Lagrangian dynamics (Aubry-Mather theory, weak KAM theory), see for instance
[4, [7, 15, I1]. A calibrated subaction is in some sense an optimal subaction. For
expanding endomorphisms or one-sided subshifts of finite type, the theory is well
developed, see for instance Definition 3.A in Garibaldi [7]. Unfortunately the
standard definition requires the existence of many inverse branches. Definition
.1 is new and valid for two-sided subshifts of finite type and more generally for
hyperbolic systems as in the present paper.

Following Bousch’s approach, we define the following criteria. A similar notion
for flows can be introduced, see [17].

Definition 3.2 (Discrete positive Livsic criteria). Let (M, f, ¢, A,Q, C) be as in
Definition [3.1] We say that ¢ satisfies the discrete positive Livsic criteria on
with distortion constant C' if

inf inf "Z—: (¢(x;) — o + Cd(f (), 241)) > —00. (3.3)

nzl (zg,x1,...,zn)eQn+1

The discrete positive Livsic criteria is the key ingredient of the proof of the ex-
istence of a calibrated subaction with a controlled Lipschitz constant. Here Lip(¢),
Lip(u), denote the Lipschitz constant of ¢ and u restricted on €2 respectively.

Proposition 3.3. Let (M, f,¢,A,Q,C) be as in Definition [3.1. Assume that ¢

satisfies the discrete positive Livsic criteria. Then

i. the Laz-Oleinik operator admits a C° calibrated subaction,
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i. every C° calibrated subaction u is Lipschitz with Lip(u) < C.

Notice that conversely the discrete positive LivSic criteria is satisfied whenever
¢ admits a Lipschitz subaction u with Lip(u) < C. When C' = 0 and the infimum
in is taken over true orbits instead of all sequences, there always exists a
lower semi-continuous subaction as it is discussed in [16].

We recall without proof some basic facts of the Lax-Oleinik operator.

Lemma 3.4. Let T be the Laz-Oleinik operator as in Definition |3.1l. Then
i if up < ug then Tlup] < Tlus],
ii. for every constant c€ R, T|u + ¢] = T[u] + ¢,
iii. for every sequence of functions (uy,)n=o0 bounded from below,

T|inf u,] = iggT[un].

n=0
Proof of Proposition|3.5. Define

V:U,yéffl l;@ﬂ,y)I::¢($)'—>$A>+—(7d(f($),y%
and

I := inf inf Z E(x;,xiy1)-

nzl (zg,x1,...,zn)eQn+1

Part 1. We show that T'[u] is C-Lipschitz whenever u is continuous. Indeed if
2,y € Q are given,

Tlu](z') = u(z) + E(z,2'), for some x € Q,
Tlu](y') < uly) + E(y,y'), for every y € Q.
Then by choosing y = x in the previous inequality, we obtain
Tlul(y) - Tlul(2') < E(z,y) — E(z,y) = Cld(f(2).y) — d(f(2),y)] < Cd(y,y).

Part 2. Let v := inf,>oT"[0]. We show that v is C-Lipschitz, non positive,
and satisfies T[v] = v. Indeed we first have

n—1
Vn>1, Vo' e Q, T'[0)(2') = inf > E(wiz41) > 1.
i=0

o
LOseeey Tp=2T" *

Moreover v is C-Lipschitz since T"[0] is C-Lipschitz thanks to part 1. Finally we

have
T[v] = T[inf T"[0]] = inf T"*'[v] = v.

n=0 n=0
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Part 3. Let u := sup,>oT"[v] = lim,_, 40 T"[v]. We show that u is a C-
Lipschitz calibrated subaction. We already know from parts 1 and 2 that T"[v] is
C-Lipschitz for every n > 0. Using the definition of ¢, we know that, for every
n > 1 there exists x € A such that Zz;é (¢ o fi(z) — ¢a) <0, and using the fact
that T"[v] is C-Lipschitz, we have

T [v](f" (= ZEfl ), () = +2 (¢o fH(x) — Gr) <O
T [v](2") < Cd(2, f*(z)) < Cdiam(Q), V:c e Q.

Since T[v] > v, we also have T[u] > u. We next show T[u] < u. Let z’' € Q be
given. For every n > 1, T[T"[v]] = T""[v] < u, there exists x,, €  such that

T"[v](xn) + E(zn,2') < u(z).

By compactness of Q_, (n)n>1 admits a converging subsequence (denoted the same
way) to some x,, € ). Thanks to the uniform Lipschitz constant of the sequence
(T™[v])n=1 and the fact that lim,_, o, 7"[v] = u, we obtain,

Va' e Q, T[u](z') = inf{u(x) + E(z,2")} < u(zy) + E(Tw,2") < u(z’).

e

We have proved T'[u] = u and u is C-Lipschitz. O

4 The discrete positive Livsic criteria

Let (M, f) be a C! dynamical system, A = M be a locally maximal hyperbolic
compact subset, and ¢ : M — R be a Lipschitz continuous function. A calibrated
subaction v (3.2)) is in particular a subaction (|1.2])

VeeQ, wo f(x) - u(z) < d(z) - da.

Theorem is therefore a consequence of Proposition provided we prove that
f satisfies the discrete positive Livsic criteria (3.3)).

Proposition 4.1. Let (M, f,¢,A,Q,C) be as in Definition . Then ¢ satisfies

the discrete positive Livsic criteria.

For a true orbit instead of a pseudo orbit, the criteria amounts to bounding
from below the normalized Birkhoff sum + =30 (gb fi(x)— ¢) As we saw in [16],
this is equivalent to the existence of a bounded lower semi-continuous subaction.
To obtain a better regularity of the subaction we need the stronger criteria .
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We first start by proving two intermediate lemmas, Lemma for periodic
pseudo-orbits, and Lemma [£.4] for pseudo-orbits. Denote

Qe) :=={xe M :d(x,\) <e}.

We recall that €45, Qa5 = Q(€as), and K4pg, have been defined in Theorem
and Proposition [2.5]

Lemma 4.2. Let C > KapsLip(¢). Then for every periodic €as-pseudo orbit
(xixlo QfngS:

2 — Ga + Cd(f (z:), x141)) > 0.

Proof. Proposition tells us that there exists a periodic orbit p € A, f™(p) = p,
such that

n—1 n—1
M d(f (@i f1(p)) < Kaps Y. d(f (), wis1)-
i=0 i=0

Then

— ¢a + Cd(f(2:), 7i41))

HM|

(6o Fin 2 —bo filp) + C(f (1), 2ie))

3]‘
LOM'
3 .
[
_ o

>, (60 f'(n) - 2 = Lip(¢)d(xs, '(p)) + Cd(f(x:), 7i11))
ni<¢of<>—¢‘>A)>o. .

-
| |

Lemma 4.3. Let N, = 1 be the smallest number of balls of radius €/2 that can
cover Q. Let (z;), be a sequence of points of Q.. Then there exists r € [1, N]
and times 0 =19 <1 < --- < 7. =n such that,

i. Vke[l,r—=1], Vie [0,k —1], Yj€ [th,n—1], d(zj, ;) =€,

it. Yke[l,r—1], if 76 = 76—1 + 2 then d(z,—1,25_,) <€,

iii. either d(z,.—1,2,,_,) <€ ord(z,.,x,_,) <E€.

17



Figure 2: The schematic r returns of Lemma |4.3|

Proof. We construct by induction the sequence 7. Assume we have constructed
Tr < n. Define

={jelm+1,n]: dxj,z,) <Ee}
T =, choose 111 = 7.+ 1; if T+ ¢ and max(7T') < n then 75,1 = max(7T)+1,
d(r,1-1,%n,) < € and for every j > 741, d(xj,2,,) = € if max(T) = n then

Tk+1 = n. Since (x4, )j_ %) are € apart, r < N.. O
Lemma 4.4. Let C = KapsLip(¢) and Nag be the smallest number of balls of
radius €45/2 that can cover Qag. Let 045 := Nagdiam(Qag). Then for every

eas-pseudo orbit (x;) o of Qas,
Z — Ga + Cd(f(2:), 7141)) = —Lip()das.

Proof. We split the pseudo orbit (x;)77) into r < Nug segments of the form

(xl)ji;;“ according to Lemma , for 0 < k<r—-1withO=m<mn <

- < 71, = n. To simplify the notations, denote
¢i = ¢(x;) — da + Cd(f (), Tiz1)-
Notice that for every i € [0,n — 1]
¢; = —Lip(¢)diam(Q4s).

If 7hy1 = 7o +2and k € [0,r —1[ then d(z,,, 2,,,, 1) < €as, (a:z):iji_l is a periodic
pseudo orbit as in Lemma and

Th41—2 Te41—1
Z ¢ = 0, Z ¢; = —Lip(¢)diam(Q4s).
=T T=Tg

If 7, > 7,1 + 2 then either (z;)7 ' or (a;)

i is a periodic pseudo orbit. In
both cases we have

T=Tr—_1

Tr—1

Z ¢; = —Lip(¢)diam(Q4g).

Z’T»,-l
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If 7p41 = 7 + 1 then

Tk+1—1

Y, i = 6r, = —Lip(¢)diam(Q4s).

=T
By adding these inequalities for & € [0,r — 1], we have

Tr—1

3 ¢ > ~Lip(¢) Nysdiam(Qas): -

1=T0

We recall that K 4pg, €as, have been defined in Theorem [2.3] Proposition 2.5
and Nag, 049, in Lemma [4.4]

Proof of Proposition 4.1 Let (x;)", be a sequence of points of Q45. We split

. . 1
the sequence into disjoint segments (:ch):iﬁ; 0= <7 < < Tp < T <

-+ < 7. = n, having one of the following form.
Segment of the first kind: 7,41 = 7, + 1 and d(f(2,), 25,,,) = €as. Then

¢(x7'k) - &A = _Lip(¢)diam(QAS)7 d(f(x‘%)?wﬂe-i-l) = €AS-

By choosing C' = Lip(¢)diam(Q4s)/€as, we obtain

¢(x7'k) - &A + Cd(f(l‘Tk), x7k+1) = 0.

Segment of the second kind: 1,41 = 1 + 2 and

{ Ve <0S Tear — 2, d(f(2), 2501) < eas,
d(f(x7k+1—1)7$7—k+1) = €AS-

Then (xl):fﬂtfl is a pseudo orbit. By using Lemma [4.4|and C' > K apgLip(¢), we
have

Tk+1—2

D1 (Sl@i) = da + Cd(f (1), wi41)) = —Lip(¢)das,

1=T}

¢(x7k+1—1) - gbA + Od(f(x7k+1—1), m7k+1) = —Llp(gb)dlam(QAS) + CEAS~
By choosing C' = Lip(¢)(das + diam(Q4s))/eas, we obtain
Tp+1—1
> (6(w) — da + Cd(f(w:),7i11) > 0.

=T}
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Tr
1=Tp—1

Segment of the third kind: if it exists, this segment is the last one and (z;)
is a pseudo orbit. By using again Lemma [£.4]

Tr—1

DT (@) = da + Cd(f (1), 2i41)) = —Lip(¢)das.

1=Tr_1

Notice that we can choose K, := max(Kapg, (Nag + 1)diam(4s)/€as) in Theo-

rem [I.3] O

Proof of Theorem 1.3l The proof readily follows from the conclusions of Propo-
sitions 3.3 and [A.11 O
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Appendices

A Local hyperbolic dynamics

We recall in this section the local theory of hyperbolic dynamics. The dynamics is
obtained by iterating a sequence of (non linear) maps defined locally and close to
uniformly hyperbolic linear maps. The notion of adapted local charts is defined in
In these charts the expansion along the unstable direction, or the contraction
along the stable direction, is realized at the first iteration, instead of after some
number of iterations. It is a standard notion that can be extended in different
directions, see for instance Gourmelon [5].

A.1 Adapted local hyperbolic map

We recall in this section the notion of local hyperbolic maps. The constants
(0%, 0% n, p) that appear in the following definition are used in the proof of Theo-
rem 2.4

Definition A.1 (Adapted local hyperbolic map). Let (¢%, %, 7, p) be positive real
numbers called constants of hyperbolicity. Let R = E* ® E* and R? = E'® E*
be two Banach spaces equiped with two norms |- | and || - | respectively. Let
P*:R? - E* and P*: RY — E* be the two linear projectors associated with the
splitting R? = E* @ E* and similarly P* : R? — E* and P : R — E* be the two
projectors associated with R? = E* @ E*. Let B(p), B“(p), B*(p) be the balls of
radius p on each E, E", E® respectively, with respect to the norm |- |. Let B(p),
B*(p), B*(p) be the corresponding balls with respect to the norm || - |. We assume
that both norms are sup norm adapted to the splitting in the sense,

Yo,we E* x E*, |v+ w| = max(|v], |w|),
Vo,we B" x E°, o+ w| = max(|lv], [w]).

In particular B(p) = B“(p) x B*(p), B(p) = B*(p) x B*(p). We also assume

ov*—1 1-0°
6 ' 6

o —1 108)

), e(p):zpmin( 5 R

o' >1>0° 77<min<

An adapted local hyperbolic map with respect to the two norms and the constants
of hyperbolicity is a set of data (f, A, E¥*, E*/* | -], | -||) such that:

i. f:B(p) — R?is a Lipschitz map,
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ii. A:R?— R?is a linear map which may not be invertible and is defined into
block matrices

4 [AY D (v,w)e B* x E*, o = A% + D"w € E",
| DS A A(v +w) = 0 + w, W = D*v + A%w € E¥,

that satisfies

(oo ot > lel, g ([P Lo 4 <
Ve B, [Au] < o*ful, D <, 1£(0)] < el)

where the Lip constant is computed using the two norms | - | and | - |.

The constant o is called the expanding constant, o° is called the contracting
constant. The constant p represents a uniform size of local charts. The constant
e(p) represents the error in a pseudo-orbit. The constant 7 represents a deviation
from the linear map and should be thought of as small compared to the gaps % —1
and 1 — o*. Notice that ¢(p) is independent of . The map f : B(p) — R? should
be considered as a perturbation of its linear part A.

A.2 Adapted local graph transform

The graph transform is a perturbation technique of a hyperbolic linear map. A
hyperbolic linear map preserves a splitting into an unstable vector space on which
the linear map is expanding, and a stable vector space on which the linear map
is contracting. We show that a Lipschitz map close to a hyperbolic linear map
also preserves similar objects that are Lipschitz graphs tangent to the unstable
or stable direction. The operator A may have a non trivial kernel, and we don’t
assume [ to be invertible.

Definition A.2. Let (o“,0%,7,p), R = E*® E* = E*® E* be as in Definition
We denote by ¢* the set of Lipschitz graphs over the unstable direction £*
with controlled Lipschitz constant and height. More precisely

g ={[G: B*(p) ~ B ()] - Lin(C) < - |a(0)] < £},

O—u_O-S

We denote similarly by 4* the set of Lipschitz graphs

Ju . __ . pu s T (O 67} ~ B
7= {[G: B*(p) » B(p)] : Lin(C) < ———, |G(0)] < 5},
The graph of G € 4" is the subset of B(p):
Graph(G) := {v+ G(v) : ve B*(p)}.
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Notice that Lip(G), Lip(G) < 1 for every (G, G) € 9" x G, thanks to the
assumptions on 7. Notice also that the Lipschitz constant of G goes to zero as f
becomes more and more linear, as n — 0, independently of the location of f(0)
controlled by ¢(p) depending only on (o%, o, p).

Proposition A.3 (Forward local graph transform). Let (¢, 0%, 7, p, €), R = E“®
E* =FE"® E*®, and (A, f) be as defined in . Then

i. For every graph G € 4% there exists a unique graph G € Gv such that

{%66@%%3M68%M,6=Pﬁ@+G@»
(7) = P*f(v+ G(v)).

ii. for every Gy, Ga € 9* and Gy, Gs the corresponding graphs,
Hél - éQ”oo < (0'5 + 27’]) ‘Gl — Gg‘oo.

1. the map .
w._ ) GG
(g)’{GHa

15 called the forward graph transform.

iv. for every G € 4", f(Graph(G)) = Graph(G) ,
V41,42 € Graph(G) n f 1 (Graph(G)), [f(a1) = f(a2)] = (0" = 3n) |1 — gal.

For a detailed proof of this proposition we suggest the monography by Hirsch,
Pugh, Shub [9].

A.3 Adapted local charts

We consider in this section a C! dynamical systems (M, f) on a manifold M of
dimension d > 2 without boundary, A € M a hyperbolic f-invariant compact set,
and 2 > A an open neighborhood of A of compact closure. Let \* < 0 < A%,
Cr = 1, and TyM = Ej(x) ® E3(x) as in Definition [I.I] We show that we
can construct a family of local charts well adapted to the hyperbolicity of A. The
existence of such a family depends only on the continuity of x € A — E}(z)®FE; (2)
and the C* regularity of f.

Definition A.4 (Adapted local charts). Let (M, f) be a C' dynamical system,
U < M be an open set, and A € U be an f-invariant compact hyperbolic set with
constants of hyperbolicity (A", A*). A family of adapted local charts is a set of data
'y = (I, E,N, F,A) and a set of constants (¢%,c° n,p) satisfying the following
properties:
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ii.

1il.

1v.

vi.

vii.

. The constants (o, 0%, 1, p) are chosen so that,

exp(N) < o® <1 <" <exp(A\)
o*—11-0° . (o"—=11-0°
). o= pmin )

6 ' 6 2 78
where A%, \* are the constants of hyperbolicity of A as in Definition [1.1
Notice that €(p) < p/8.

n<min<

' = (V2)zen 18 a parametrized family of charts such that for every = € A,
7. : B(1) € RY - M is a diffeomorphism from the unit ball B(1) of R?
onto an open set in M, 7,(0) = z, and such that the C* norm of ~,,~; ' is
uniformly bounded with respect to x.

E = (E;L/ *)eea is a parametrized family of splitting R = E* @ E? obtained
by pull backward of the corresponding splitting on Ty M by the tangent map
Ty, at the origin of R?,

E; = (Toy.) ' Ex(2), Ej:= (Toy.) " Ex(2),
and by Id = P} + P, the corresponding projectors onto E¥, E? respectively.

N := (| - |+)zen is a C° parametrized family of norms. The adapted local
norm is a sup norm adapted to the splitting E* @ E? that satisfies

Voe By, we ES, v+ w|, = max(||v]., |w].)-

The ball of radius p centered at the origin of R? is denoted by B, (p).

. The constant p is chosen so that v,(B.(p)) < U and

Vao,ye N, [f(z)en(Byp) = f(1(Bulp) < %(B(1)].

F = (fry)eyer is a family of C' maps f,, : B.(p) — B(1) which is
parametrized by couples of points (x,y) € A satisfying f(z) € ~v,(B,(p)).
The adapted local map is defined by

Vv e Bulp), foy(v):=7,"0fo(v).

A = (A.,)ryen is the family of tangent maps A,, : R — R? of f,, at
the origin, that is parametrized by the couples of points x,y € A satisfying

f(x) €y (By(p)). Let
A,y = Df,,(0),

where Df, ,(0) denotes the differential map of v — f,,(v) at v = 0.
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viil. For every x,y € A satistying f(x) € v,(By(€)), the set of data

(fx,ya A:ﬂ,w EWS? E;/Sa H ) Hm H ’ Hy>

xT

is an adapted local hyperbolic map with respect to the constant of hyper-
bolicity (0%, %, 7, p) as in Definition [A.1] We have

A — [P;AwP;j P;AWP;]
YT PSA B PSA, P

Vve Ey, [Agyvlly = o¥|v]., HP;Ax,yP;Hx,y <,
Vve E;, [Azyvly < 0®|v]e, 7 HP;Ax,yP;HI,y <1,

{ I fey(0)]y < €(p),
Vv e B.(p), Hsz,y@) - Aw,y”z,y <7,

where |||, denotes the matrix norm computed according to the two adapted
local norms | - ||, and | - ||,

Definition A.5 (Admissible transitions for maps). Let I'y be a family of adapted

local charts as given in Definition . Let z,y € A. We say that x 5y y is a
I'A-admissible transition if

f(x) € w(By(elp)) (= fay(0) € By(e(p)) )-

A sequence (x;), of points of A is said to be I'y-admissible if x; Ty x;41 for every
0<i<n.

The existence of a family of adapted local norms is at the heart of the Definition
We think it is worthwhile to give a complete proof of the following proposition.

Proposition A.6. Let (M, f) be a C* dynamical system and A = M be a compact
f-invariant hyperbolic set. Then there exists a family of adapted local charts I'y =
(T, E, N, F, A) together with a set of constants (o, 0,1, p) as in Definition [A.])
Proof. The proof is done into several steps.

Step 1. We first construct an adapted local norm. We need the following notion
of (n, R)-chains. Let n > 1 and R € (0,1). We say that a sequence of points in A,
(x0,...,2n), is an (n, R)-chain,

VO<k<n, f(zr) € Yap,, (B(R)).
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An (n,0)-chain is a true orbit, VO < k < n, f(xg) = xp41.
Then we choose A € (0,1) small enough so that,

Va,ye A, [f(z) e(B(A) = f(r(B(A)) <y (B1))].
We choose N > 2 large enough such that,

2Cy exp(N)X?) < exp(Nk*),
20 exp(—N)*) < exp(—NK"),

We choose R € (0, A) small enough such that, for every (N, R)-chain (zo, ..., zy),
VO<k <N, f* (7 (B(R)) S 72, (B(A)).

We equipped R? with the pull backward by Ty, of the initial Finsler norm on
each T, M that we call | -|z. Thanks to the equivariance and the continuity of
E}(x) @ Ef(z), we may choose R sufficiently small such that,

zn‘reN—1,2Nt xn_1 T Ttz Pro i pollzg, ey exp k™),
IP5 A, o PE e PS AL L Pt < exp(NKS)
H(qu‘LNAIN—hINP;N_l T P;iLlAIOaIIP;())_IH;me < exp(_NK’u)

The adapted local norm | - |, is by definition the norm on E* @ E? defined by,

. Voe EY, we B, |v+w|, = max(|v]., |w].),

1. HUHQU ‘= MaX k<N Sup(mk ..... zN), (N — k, R)-chain, z y=x

(”UH’ ||(P;JNA90N71790NP;:LN71 o Pﬂ?}eﬂAm,xm—lPg}g)il?}”;k,xl\re(]\fik)nu>7
ii. |wl|, := maxjcp<n SUD (4. 0, (k, R)-chain, o=

(el 1P A P+ Pl Awr Pyl ).

Tk—15Lk~ Tp_1 Z0,T1+ 9
where the supremum is taken over all (N — k, R)-chains (x,...,zy) ending at x
for the unstable norm, and (k, R)-chains (xy, ..., z) starting from x for the stable

norm, of any length 1 < k < N. Let B,(e) be the ball of radius € for the norm
| |2 We finally choose p < R small enough so that for every x € A,

By(p) = B(R),
and for every x,y € A satistying f,,(0) € By(p),
Vv € By(p), |Dfey(v) = Avyley <n

Thanks to the equivariance of the unstable and stable vector bundles, we choose
p small enough so that

1P3 Ay Py < and [ PY AL, iy <.

26



Step 2. We prove the inequalities,
Vve By, |Agyvly = 0"v]e and Voe B [[Azyvly < o®fvla.

We prove the second inequality with ¢®, the other inequality with ¢ is similar.
Let v € Ej of norm |v|, =1 and w = P; A, ,v. We discuss 3 cases.
Either |wl, = |w|, (x,y) is an (1, R)-chain, then

lwly = 1Py Ay Prvll = (1) Ay Prvle™ )e™ < [vloe™

Or there exists 1 < k < N —1 and an (k, R)-chain (yo, ..., yx) such that y = y
and
Py PP Ay P wle ™

HwHy H yk Ly d yn_q yo.y1 4 yo
Then (x,y,y1,...,yx) is an (k; + 1, R)-chain of length k + 1 < N,
[wl, = | P; Pr P Ay Po Ay o P e 05X < o],

yk LYE™ Yr—1 Y0,Y1+ yo

Or there exists an (N — 1, R)-chain (yp, ..., yn—1) such that yp = y = and

HwHy H YN_1 yN 2,YN— 1P;N 2 ’nglAyo,yl yowH@_(N_l)”s-

Then (x,yo,...,yn—1) is an (N, R)-chain, and by the choice of N
Py .P.;lAZO’CElP;oA:E»IOH < eNRS'

H TN—1 -TN 2, EN—-1" TN_2

We thus obtain

lwlly < TPy Ay o en- 1P§N s P Ay Py A |l TV o
< vl e” < ol e®
In the 3 cases we have proved |Ps A, v, < |v].€" or |PfAyyPslay < 0°. O

A.4 Adapted local unstable manifold

We review in this section the property of stability of cones under the iteration
of a hyperbolic map. We recall the forward stability of unstable cones, and the
backward stability of stable cones.

Definition A.7 (Unstable/stable cones). Let R = E*@®E*® be a splitting equipped
with a Banach norm |- |. Let a € (0,1)

i. The unstable cone of angle « is the set

¢"(a) ;== {we R : |Pw| < a| P wl|}.
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ii. The stable cone of angle « is the set

¢*(a) := {weR?: |P"w| < a|P°wl|}.

Notice that the unstable cone €*“(«) contains the unstable vector space E* and
similarly for the stable cone.

Lemma A.8 (Equivariance of unstable cones). We consider the notations of Def-
imnation where (0%, 0%, p,n) are the set of hyperbolic constants, RY = E* @ E*

and RY = E*@ E* are two Banach spaces with norms |-| and || - | respectively, and
(A, f,E¥* E¥5 ||| - |) is an adapted local hyperbolic map. Let
6 4+ 3
o€ < 1 ,1> and f = 040—~|—77‘
ot —o® o' —3n

Then < « and, for every a,be B(p) = B“(p) + B*(p),
i. ifb—ae € (a), then
f0) = fla) e €“(8) and |P*(f(b) = f(a)] = (o" = 3n)|P"(b - a),
i. if f(b) — f(a) e €°(c), then
b—ae@ () and |P*(f(0) — f(a)] < (o° +3n)|P*(b—a)].
We recall the existence of local unstable manifolds. We are not assuming f
invertible. In particular the local stable manifold may not exist. We choose a

sequence of admissible transitions and prove the equivalence between two defini-
tions.

Definition A.9. Let I'y be a family of adapted local charts. Let z = (x;);cz be
a sequence of I'y-admissible transitions, Vi € Z, x; Oy Tit1. Denote f; := fo, 2,015

EY* = B and ||-|; = |||s,. Then (f;, 4;, EY*,|-|;) is an adapted local hyperbolic
map. The local unstable manifold at the position i is the set

Wi(z) = {q € Bi(p) : Haw)r<i> ¢ = ¢ Yk <4, g€ Be(p), and fi(qe) = et}

where B;(p) = Bf(p) ® B (p) is the ball with respect to the adapted local norm

-l

The following theorem shows that, observed in adapted local charts, the local
unstable manifolds have a definite size and the local maps expand uniformly.
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Theorem A.10 (Adapted local unstable manifold). Let 'y be a family of adapted
local charts, and x = (x;);cz be a sequence of I'y-admissible transitions. Let f; =
Jai i, e the local maps, | - ||; be the local norms, and " be the set of Lipschitz

graphs as in Definition[A.3,

g = {0 BY(p) — Bi(p)] : Lin(@) < 2. |G(O)]: <

¢ ot — g3’

N

Let 0F be the null graph in the ball B;(p), and
G = (T)ioo(T)fpi 0 (F)i,(0,)-
Then
i. (GM)ps1 converges uniformly to a Lipschitz graph [GY : B¥(p) — Bi(p)].
it. The local unstable manifold defined in[A.9 coincides with Graph(GY):
Wit(z) = Graph(GY) = {v + Gi(v) : v e Bi(p)}-
114. The local unstable manifold is equivariant in the sense:
VieZ, f;(Graph(G¥)) = Graph(GY,,),
or more precisely (7 ) (GY) = G, 4.
w. The local unstable manifold is Lipschitz:

6n

O—u_o-s'

Lip(Gf) <

v. The adapted maps are uniformly expanding:

VieZ, Yq,q € Graph(G}), | fi(q) — fi(d)|liv1 = (" = 3n)|q — |-
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