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Abstract. We extend the classical van der Corput inequality to the real
line. As a consequence, we obtain a simple proof of the Wiener-Wintner the-
orem for the R-action which assert that for any family of maps (Tt)t∈R acting
on the Lebesgue measure space (Ω,A, µ) where µ is a probability measure
and for any t ∈ R, Tt is measure-preserving transformation on measure space
(Ω,A, µ) with Tt ◦ Ts = Tt+s, for any t, s ∈ R. Then, for any f ∈ L1(µ),

there is a a single null set off which lim
T→+∞

1

T

∫ T

0
f(Ttω)e

2iπθtdt exists for all

θ ∈ R. We further present the joining proof of the amenable group version
of Wiener-Wintner theorem due to Weiss and Ornstein.

1 Introduction

In this paper, using our generalization of van der Corput inequality for the
real line, we present a simple proof of Wiener-Wintner theorem for the flows.
We further present the joining proof of the amenable groups version of it due
to Ornstein and Weiss [O-W]. This accomplished by applying the Fursten-
berg joinings machinery. The classical Wiener-Wintner theorem [W-W] as-
sert the following.
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Theorem. Let (Ω,A, µ, T ) be a dynamical system where µ is a probability
measure. Then, for any f in L1(µ), There is a set Ω′ of full measure such
that for any ω ∈ Ω′ the sums

1

N

N−1∑

0

f(T nω)zn

converge for all z in the unit circle C = {z ∈ C : |z| = 1}.

The original proof can be found in [W-W]. Subsequently, Furstenberg
in [F1] obtain a joining proof of Wiener-Wintner theorem. Later, I. Assani
[A], A. Below & V. Losert [B-L] proved the stronger version of this theorem.
This stronger version is due to Bourgain [B]. Theirs proofs is based on the
Hellinger integral (Known also as affinity principale). In [L1], E. Lesigne
generalize Wiener-Wintner theorem to the polynomial case. His proof is
based on the Furstenberg’s joinings technique. Afterwards, in [L2], using
van der Corput inequality and the spectral theory of skew products, he ex-
tended the stronger version of polynomial Wiener-Wintner theorem to the
case of weak-wixing dynamical systems1.

In this paper, we extend van der Corput inequality to the continuous
time and we give a simple proof of the flow version of Wiener-Wintner theo-
rem. We further present the Ornstein-Weiss’s joining of the amenable group
version of this fundamental theorem in ergodic theory. The proof is based
on Furstenberg’s joinings machinery combined with the recent result of E.
Lindenstrauss [Li].

The plan of the paper is as follows. In Section 2, we state and prove
the continuous van der Corput inequality and the flow version of Wiener-
Wintner theorem. In section 2, we state and prove the amenable group
version of Wiener-Wintner theorem.

1Seven year after this note was written , M. Lacey and E. Terwilleger [L-T] produce
an oscillation proof of the Hilbert version of Wiener-Wintner theorem.
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2 van der Corput for real line

In this section, we state our first main result.

Theorem 2.1 (Theorem (van der Corput).) Let (u(t))t∈[0,T ] be an inte-
grable complex valued function and let S ∈ (0, T ]. Then

∣∣∣
∫ T

0
u(t)dt

∣∣∣
2
≤
S + T

S2

∫ S

0

∫ S

0

∫ T

0
u(t+ s′ − s)u(t)dsds′dt. (1)

Proof: We start by noticing that we have

S

∫ T

0
u(t)dt =

∫ T+S

0

∫ S

0
ũ(t− s)dsdt, (2)

where ũ stand for

ũ(t) =





0 if t ≤ 0,
u(t) if 0 ≤ t ≤ T,

0 if not.

Indeed, we have

∫ T+S

0

∫ S

0
ũ(t− s)dsdt =

∫ S

0

∫ T+S−s

−s
ũ(t)dtds (3)

=
∫ S

0

∫ T

0
u(t)dtds (4)

= S

∫ T

0
u(t)dt. (5)

Whence,

S2
∣∣∣
∫ T

0
u(t)dt

∣∣∣
2
=

∣∣∣
∫ T+S

0

∫ S

0
ũ(t− s)dsdt

∣∣∣
2
. (6)

Now, applying Cauchy-Schwarz inequality, we obtain

S2
∣∣∣
∫ T

0
u(t)dt

∣∣∣
2
≤ (T + S)

( ∫ T+S

0

∣∣∣
∫ S

0
ũ(t− s)ds

∣∣∣
2
dt

)
. (7)
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But

∣∣∣
∫ S

0
ũ(t− s)ds

∣∣∣
2

=
∫ S

0
ũ(t− s)ũ(t− s′)dsds′ (8)

=
∫ S

0
ũ(t− s)ũ(t− s′)dsds′ (9)

=
∫ S

0
ũ(t + s′ − s)ũ(t)dsds′ (10)

Whence

∣∣∣
∫ T

0
u(t)dt

∣∣∣
2
≤
S + T

S2

∫ S

0

∫ S

0

∫ T

0
u(t+ s′ − s)u(t)dsds′dt. (11)

This achieve the proof of the theorem.

Theorem 2.2 (Limit version of continuous van der Corput theorem.)
Let (u(t))t∈R be a bounded complex valued function. Then

lim sup
T→∞

∣∣∣
1

T

∫ T

0
u(t)dt

∣∣∣
2

≤ lim sup
S→∞

1

S2

∫ S

0

∫ S

0
lim sup
T→∞

1

T

∫ T

0
u(t+ s′ − s)u(t)dsds′dt. (12)

Proof: Straightforward from Theorem 2.1.

Now, let us state the continuous version of Wiener-Wintner theorem.

Theorem 2.3 (Continuous version of Wiener-Wintner theorem.) Let
(Tt)t∈R be a maps acting on the Lebesgue measure space (Ω,A, µ) where µ is a
probability measure and for any t ∈ R, Tt is measure-preserving transforma-
tion on measure space (Ω,A, µ) with Tt◦Ts = Tt+s, for any t, s ∈ R. Then, for

any f ∈ L1(µ), there is a a single null set off which lim
T→+∞

1

T

∫ T

0
f(Ttω)e

2iπθtdt

exists for all θ ∈ R.

We will assume without loss of generality that µ ergodic. Indeed, other-
wise, on can use the ergodic decomposition of µ. So, it is sufficient to prove
the following :
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Theorem 2.4 For any f in L2(µ), there is a set Ω′ of full measure such

that the sums lim
T→+∞

1

T

∫ T

0
f(Ttω)e

2iπθtdt converge to 0 for all θ in R, where

e2πiθ 6∈ e(T ) and ω ∈ Ω′. e(T ) stand for the set of eigenvalue of the Koopman
operator UT : g 7→ g ◦ T.

Before proceeding to the proof of Theorem 2.4, let us notice that it suffices
to prove it for a dense class of functions (L2 functions for instance). Indeed,
Put

R(ω, f) = lim sup
T−→+∞

∣∣∣
∫ T

0
f(Tt(ω))e

2πitθdt
∣∣∣,

and assume that g in the dense class for which theorem holds. Then

R(ω, f) = R(ω, f − g).

and then

µ{ω : R(ω, f − g) > ǫ} ≤
||f − g||1

ǫ
.

We thus get by the density of L2(µ) in L1(µ), that there exist g in L2(µ)
such that : ||f − g||1 < ǫ2. Then

µ{ω : R(ω, f − g) > ǫ} ≤ ǫ.

Since ǫ is arbitrary, we see R(ω, f) = 0 a.e., where the null set excluded is
independent of z.

We start by recalling that by Bochner theorem, for any f ∈ L2(X), there
exists a unique finite Borel measure σf on R such that

σ̂f (t) =
∫

R

e−itξ dσf(ξ) = 〈Utf, f〉 =
∫

Ω
f ◦ Tt(ω) · f(ω) dµ(ω).

σf is called the spectral measure of f . If f is eigenfunction with eigenfre-
quency λ then the spectral measure is the Dirac measure at λ.

We need also the following fundamental results.
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Theorem 2.5 Let (Ω,A, µ, (Tt)t∈R) be an ergodic dynamical flow. Then, for
any S > 0 and all f, g ∈ L2(X), for almost all ω ∈ Ω, we have

lim
τ→+∞

1

τ

∫ τ

0
f(Tt+sω) · g(Ttω) dt =

∫

Ω
f ◦ Ts · g dµ

uniformly for s in the interval [−S, S].

This yields the exact result need it.

Corollary 2.6 Let f ∈ L2(µ). There exist a full measure subset Ωf of Ω
such that, for any ω ∈ Ωf and any s ∈ R, we have

lim
τ→∞

1

τ

∫ τ

0
f(Tt+sω) · f(Ttω) dt =

∫

X
f ◦ Ts · f dµ.

Proof: [ of Theorem 2.4] Let f in L∞(µ) and ω ∈ Ωf as in Corollary 2.6,
then we have

lim
τ→∞

1

τ

∫ τ

0
f(Tt+sω) · f(Ttω) dt =

∫

X
f ◦ Ts · f dµ (13)

def
=< f ◦ Ts, f > . (14)

Put
u(t) = f(Ttω)e

2πitθ,

and apply further van der Corput’s inequality (Theorem 2.1) to get
∣∣∣ 1
τ

∫ τ

0
f(Ttω)e

2πitθdt
∣∣∣
2

≤ S+τ
τS2

∫ S

0

∫ S

0
e2πi(s−s′)θ 1

τ

∫ τ

0
f(Tt+s−s′)f(Ttω)dtdsds

′. (15)

We thus deduce that for almost all ω and all θ ∈ R, we have

lim supτ→∞

∣∣∣ 1
τ

∫ τ

0
f(Ttω)e

2πitθdt
∣∣∣
2

≤ 1
S2

∫ S

0

∫ S

0
e2πi(s−s′)θ

(
lim
τ→∞

1

τ

∫ τ

0
f(Tt+s−s′)f(Ttω)dt

)
dsds′. (16)

This combined with Corollary 2.6 gives

lim supτ→∞

∣∣∣ 1
τ

∫ τ

0
f(Ttω)e

2πitθdt
∣∣∣
2

≤ 1
S2

∫ S

0

∫ S

0

( ∫

R

e2πi(s−s′)(θ−γ)dσf (s− s′)
)
dsds′, (17)
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where σf stand for the spectral measure of f . But, since

1

S2

∫ S

0

∫ S

0
e2πi(s−s′)(θ−γ)dsds′ =

∣∣∣
1

S

∫ S

0
e2πis(θ−γ)ds

∣∣∣
2

(18)

if θ 6= γ, we have

lim
S→∞

1

S2

∫ S

0

∫ S

0
e2πi(s−s′)(θ−γ)dsds′ = 0. (19)

Whence, if e2πiθ is not a eigenvalue of (Tt), we have

lim
S→∞

1

S2

∫ S

0

∫ S

0

( ∫

R

e2πi(s−s′)(θ−γ)dσf (s− s′)
)
dsds′ = 0.

Since all the sums are bounded, we deduce from Lebesgue theorem that for
almost all ω, and for all θ in R, where e2πiθ 6∈ e(T ),

lim
τ→∞

1

τ

∫ τ

0
f(Ttω)e

2πitθdt = 0,

and this finish the proof of the theorem.

2. Joining’s proof of Wiener-Wintner Theo-

rem for action of amenable group

In this section, we deal with actions on Lebesgue spaces, that is, given a
locally compact groupe G and the a Lebesgue space (X,A, µ), a G−action is
a measurable mapping G×X → X , (g, x) 7→ g.x, such that for all g, h ∈ G,
g.(h.x) = (gh).x and e.x = x for almost all x ∈ X ( where e is the identity
in G). Furthermore, Tg : x 7→ g.x is measure -preserving for every g ∈ G.
We will mainly concerned with G which is amenable group ( locally compact
second countable) or the subclass of locally compact abelian groups.
We recall that G is an amenable group if for any compact K ⊂ G and δ > 0
there is a compact set F ⊂ G such that

hL(F∆KF ) < δhL(F ), (20)

where hL stand for the left Haar measure on G. It is well known that the
amenability is equivalent to the existence of Følner sequence (Fn), that is,
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(Fn) is a sequence of compact subsets of G for which for every compact K
and δ > 0, for all large enough n we have that Fn satisfy (20). Assume
further that (Fn) satisfy the so-called Shulman Condition ,that is, for some
C > 0 and all n

hL

( ⋃

k≤n

F−1
k Fn

)
≤ C.hL

(
Fn

)
. (21)

Under this assumptions, E. Lindenstrauss proved that the Birkhoff pointwise
ergodic theorem holds, that is, Then for any f ∈ L1(µ), there is a G-invariant
f ∗ ∈ L1(µ) such that

lim
1

hL(Fn)

∫

Fn

f(gω)dhL(g) = f ∗(ω) a.e..

To formulate the G-version of Wiener-Wintner theorem, we replace the
group rotations by homomorphisms Θ from G to a finite dimensional unitary
group Ud. The canonical action in this case is given by g.u = Θ(g).u, u ∈ Ud

and g ∈ G. The invariant measure is the Haar measure on Ud. In this setting,
we formulate the Wiener-Wintner theorem as follows:

Theorem 2.7 (Group version of Wiener-Wintner theorem) Let G be
an amenable group acting on a Lebesgue space (Ω,A, µ) and assume that G
satisfy Shulman condition. Let f ∈ L∞(µ). Then, there is a set Ωf of full
measure such for any ω ∈ Ωf

1

hL(Fn)

∫

Fn

f(gω)φ(Θ(a)u)dhL(g)

converge for all finite dimensional unitary representation Θ of G into Ud (all
d), all continuous function φ on Ud and all u ∈ Ud. We further have that the
limit on the orthocomplement of the space spanned by the finite dimensional
invariant subspaces is zero.

Before proceeding to the proof let us recall some important tools.

A joining of two actions of the same group X = (X,A, µ, G) and Y =
(Y,B, ν, G) is the probability measure λ on (X×Y,A×B) which is invariant
under the diagonal action of G (g.(x, y) = (g.x, g.y)) and whose marginals on
(A×Y ) and (X×B) are µ and ν respectively (i.e. if A ∈ A, λ(A×Y ) = µ(A);
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and if B ∈ B, λ(X ×B) = ν(B)). The set of joinings is never empty. (Take
µ×ν). As we deal with Lebesgue spaces, a joining λ of two ergodic G-actions
X and Y has the property that there exists a Lebesgue space Ω and the prob-
ability P on Ω such that λ =

∫
λωdP(ω), where λω is ergodic. (This is just

the ergodic decomposition of λ, and as the marginals of λ are ergodic a.e.,
λω is joining). Therefore the set of ergodic joinings is never empty.2

Historically, joinings were introduced by H. Furstenberg in his paper [F2]
on disjointness. In particular, he defined the important notion of disjointness
for Z-action in the following way : (X,A, µ, T ) and (Y,B, ν, S) is disjoint if
the only joining between them is the product joining. In the case of G-action
we have the following definition.

Definition 2.8 Let X and Y be two actions of the same group G. X and
Y are disjoint if the only joining between them is the product joining. We
denote this disjointness by X ⊥ Y.

In the case of Z-actions, H. Hahn & W. Parry obtain in [H-P] that if two
transformations have mutually singular maximal types, then they are dis-
joint. But, As for the joinings theory, the spectral theory of Z-actions can
be extended to the case of locally abelien G−actions. Therefore, we have the
following group version of Hahn-Parry theorem.

Theorem 2.9 ((Hahn & Parry) If two G-actions X and Y have mutually
singular maximal spectral types, then they are disjoint.

Proof: Let recall that the spectral measure of a function f ∈ L2(X)
under the operators Ug ( defined on L2(X) by Ug(f) = f ◦Tg) is the measure

σf on
∧

G (dual group of G, i.e., the set of all continuous characters of G)

where its Fourier transform
∧
σf is given by

∧
σf (g) =< Ugf, f). Now, we

follows the proof given in [Th]. In X×Y endowed with a joining measure λ,
consider f1 ∈ L2(X) and f2 ∈ L2(Y ) and consider Hf1 the L2(λ) closure of
the linear span of the functions (Ug(f1)−

∫
f1dµ)×1Y , g ∈ G. The projection

2see [D-R], for instance.
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of 1X × f2 on Hf1 will have a spectral measure absolutely continuous with
respect to the spectral type of Ug on L2(X) and thus has to be 0. Therefore
1X × f2 ⊥ (f1 −

∫
f1)× 1Y , and

∫
f1(x)f2(y)dλ(x, y) =

∫
f1dµ

∫
f2dν.

From this theorem we have the following.

Corollary 2.10 Let χ0 be a non trivial character and define the action of G
on torus T by (g, eix) 7→ χ0(g)e

ix. Assume that for any n ∈ Z, the character
χn
0 define on G by g 7→ χ0(g

n) is not eigenvalue of the G-action on X . The
the G-action on T and the G-action on X are disjoint.

Proof: Let recall that χ0 is a eigenvalue of G- action if there exist a
eigenfunction f ∈ L2(X, µ) such that f ◦ Tg = χ0(g) f. We deduce that the
spectral measure of f is ||f ||22δχ0

(δχ0
is the Dirac measure on χ0). Since

for any n ∈ Z, χn
0 is not eigenvalue of G-action on X , we conclude that the

maximal spectral types of this two G-actions are mutually singular. Now
apply the Hahn-Parry theorem to complete the proof.

For the general case of amenable group which satisfy Shulman condition, we
have the following lemma from [O-W].

Lemma 2.11 Let U be the closure of Θ(G) in Ud. Then, if the product
(U,Θ, G)× (Ω,A, µ,G) is ergodic then there is only on G-invariant measure
on U × Ω that projects onto µ on Ω.

Proof: [ of Theorem 2.7 ] We start by assuming without lost of generality
that the action on (Ω,A, µ, ) is ergodic and by presenting the proof for the
case when G is locally abelien group. Let f ∈ L∞(µ) and φ continuous
function. Then, by the pointwise theorem there is a set of full measure of ω.
Assume that ω is in this subset and let χ0 ∈ Ĝ such χ0 is not eigenvalue.
Then, the product (U,Θ, G) × (Ω,A, µ,G) is ergodic. Moreover, by taking
a subsequence (nk), we can assume that

lim
k−→+∞

1

hL(Fn)

∫

Fn
k

f(gω)φ(Θ(a)u)dhL(g) = λ(f ⊗ φ).

It follows that λ is a joining and by Corollary 2.10 λ = dh× µ. We end the
proof by noticing that there is a countable of eigenvalue. The general case
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follows in the same manner by taking

F (ω) =
∫
ψ(u)I(u1ω)du,

where I is a bounded invariant functions on U × Ω and ψ is any positive
continuous function on u. Therefore, transforming F by g is the same as
transforming ψ by Θ(g). We thus have that a non-constant I will give rise
to finite dimensional invariant subspaces for G on Ω. Moreover, by taking
(U,Θ, G) not in in the list of countable representations (Uj,Θj , G), the con-
dition of Lemma 2.11 is satisfied and therefore as before the only joining is
the product measure, and we are done.

Question 2.12 We ask on the possible extension of van der Corput inequal-
ity to the locally compact group and its application to obtain produce a direct
proof of the group version of Wiener-Wintner theorem.
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