arXiv:2107.08875v1l [math.DS] 19 Jul 2021

A MORSE COMPLEX FOR AXIOM A FLOWS

ANTOINE MEDDANE

ABSTRACT. On a smooth compact Riemannian manifold without boundary, we con-
struct a finite dimensional cohomological complex of currents that are invariant by an
Axiom A flow verifying Smale’s transversality assumptions. The cohomology of that
complex is isomorphic to the De Rham cohomology via certain spectral projectors.
This construction is achieved by defining anisotropic Sobolev spaces adapted to the
global dynamics of Axiom A flows. In the particular case of Morse-Smale gradient
flows, this complex coincides with the classical Morse complex.
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1. INTRODUCTION.

Axiom A flows are a class of dynamical systems introduced by S. Smale [64] to
describe chaotic dynamical systems. This type of flows arises in numerous physical
problems and it contains two very interesting examples: Morse gradient flows and
Anosov flows. On the one hand, the first one is well-known for its link with topology:
notably through the Morse inequalities [52|, stated by Morse in 1920, which relate the
Betti numbers of the manifold and the number of critical points of a Morse function.
Given a Riemannian metric on the manifold, Smale [63] later gave another proof using
dynamical arguments and ideas going back to Thom [65]. On the other hand, Anosov

flows were defined first by Anosov in [1]| to describe the properties satisfied by geodesic
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flows on negatively curved manifolds and their links with the topology of the manifold
are more sublte.

From a purely dynamical point of view, Axiom A flows are interesting because, once
they satisfy a generic condition called the strong transversality assumption, they form
an open subset of the set of vector fields. Precisely, for any vector field on a compact
manifold without boundary, we have the equivalence:

Axiom A + strong tranversality assumption <= C!-structurally stable.

This equivalence is often refered to the Cl-structural stability conjecture which was
solved by Robinson [56] for the first implication and by Wen [68] and Hayashi [43]
for the converse statement. The proof of the Cl-structural stability conjecture for
diffeomorphisms was previously obtained by Robbin [55] for the first implication and by
Mane [51] for the converse statement. A great review on structural stability conjectures
can be found in the book of Wen [68].

In another direction, the concept of currents’ turns out to be very useful in the
study of gradient flows. More precisely, Laudenbach [48] and Harvey-Lawson [42] gave
a new interpretation of Morse homology in terms of currents by proving the following
statement. Let us consider a smooth compact Riemannian manifold (M, ¢) of dimension
n and a smooth Morse function f. If  denotes a critical point of index 1 < k < n, then
the stable manifold W*(x) is an embedded submanifold of dimension k and we have (in
the sense of currents)

oW @] =W ()] = Y nley)[W(y) (1)

ind y=ind z—1
y critical point

for some n(x,y) € 7Z often called the instanton numbers. For every 0 < ¢ < n, the
space D" ¢(M) of current of degree n — { is defined as the topological dual of the
space of differential ¢-forms Qf(M), i.e. the space of smooth sections I'(M; A“T*M).
An equivalent formulation for equation (1) is given as follows

Yw e Q1(M), / dw = Z n(m,y)/ w.
we(z) W2 (y)

ind y=ind x—1
y critical point

This relation is often presented in the following algebraic form. Consider the differential
on the complex of critical points defined by

Or = Z n(z,y).y for every x € Cy(f) = {critical points of index k},

ind y=ind z—1
y critical point

"n coordinates, differential forms with value in the set of distributions. We refer to the book of
Schwartz [61] and the lecture notes of Laundenbach [49] for a comprehensive introduction.
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with the same numbers n(z,y) as before. The cohomological complex (C(f),0d) is
referred as the Morse complex and it is in fact quasi-isomorphic to the de Rham complex,
in the sense that the cohomology groups are the same. A remarkable feature of (1)
is that it gives a representation of this algebraic complex in terms of currents that
are invariant by the gradient flow. Morse inequalities have been generalized to more
general dynamical systems as one can witness in the book of Franks [36]. Yet, to the
best of our knowledge, the previous algebraic procedure does not extend to Axiom
A flows and there is no analogue of its analytical version as it was constructed by
Laudenbach. In this direction, we can mention the article of Ruelle and Sullivan [58] in
which they constructed similar closed invariant currents for Axiom A diffeomorphisms.
Nevertheless, their construction was only local (near a basic set) and was not enough to
recover the whole De Rham cohomology. More recently, Dang and Riviére showed how
to use the theory of Ruelle resonances [2| to define a natural cohomological complex
of currents associated with Morse-Smale and Anosov flows which are two particular
examples of Axiom A flows. In this article, we show how to extend this construction
and we associate a natural cohomological complex to every Axiom A flow verifying
Smale’s transversality assumptions:

Theorem 1. Let V be an Axiom A wvector field which satifies the Smale
transversality assumption (7). For every 0 < k < n, there exists a Hilbert
space QF(M;C) C Hy C D"F(M;C) (with continuous injection) and a positive
integer my(0) such that

= e (0L, ) < e (O ) <

defines a finite dimensional cohomological complex quasi-isomorphic to the De
Rham complex.

Equivalently, this Theorem shows the existence of a finite dimensional complex rep-
resenting the De Rham cohomology and generated by dynamical currents that are
invariant by the Axiom A flow. The Hilbert spaces Hy of the statement are anisotropic
Sobolev spaces adapted to the spectral analysis of transfer operators,

L'(u) =uop™ Yu € C*(M),

as it was initiated by Ruelle [57, 59]. Recall that this operator extends to the spaces of
differential forms by setting

Efk)(u) = (0 *(u), Yu € QF(M).

In order to prove theorem 1, we can introduce the resolvent operator

“+o0
(L +2)! :=/ e (") dt : Q8(M; C) — D (M;C),
0
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which is well-defined for Re(z) > Cy > 1 and which defines a holomorphic function in
that same region. Then, we deduce theorem 1 from the fact that the resolvent operator
(Eg;) + 2)~! admit a meromorphic extension to a halfplane Re(z) > —C, with Cj, > 1
arbitrary large so that 0 belongs to that half plane. Precisely, we prove

Theorem 2. Let V' be an Aziom A vector field which satifies the Smale
transversality assumptions (7). For every 0 < k < n, the resolvent opera-
tor

2 (LW 4+ 2)71 Q5 (M C) — DF(M;C)
extends meromorphically from Re(z) > Cy to the whole complex plane C.

We call resonances the poles of the resolvent operators (ng) + z)~! seen as a mero-

morphic function on all C. In order to prove that (E%f ) +2)~! admits a meromorphic ex-
tension, one needs to find good Hilbert spaces H; on which the Lie derivative operators
L’&f ) have discrete spectrum of resonances. More precisely, using analytic Fredholm the-
ory |28, app. C], we will extend the resolvent operator on the half planes Re(z) > —Cj,
(for arbitrarly large C%) as a meromorphic family of Fredholm operators. In particular,

we will find that the residue of (£§f Nt z)~!at z = 0 is a finite rank projector whose
explicit expression is given by

1

7 = Res.—o(—LF) = 5
in

/ (ng) +2) Mz Qk(M; C) — D/’k(M;(C).
Y0

Here, 7y denotes a positively oriented closed curve which surrounds the resonance 0
and no other resonances. The spaces Ker ((EgC ))mk(o) ‘m) which appear in Theorem 1

are thus defined as the range of the finite rank projectors W(()k) . The quasi-isomorphism

with the De Rham complex is then given by the maps W(()k). Therefore, Theorem 1 will
be deduced from Theorem 2 which relies on the construction of the Hilbert space H,
presented earlier and which is the main technical issue of this article.

1.1. Earlier results on meromorphic continuations for Axiom A flows. These
functional constructions were originally made by Ruelle using Markov partitions in
view of studying the mixing properties of these dynamical systems and the analytical
properties of the zeta functions associated with their periodic orbits. Similar results
have been obtained by Bowen, Fried, Rugh, Dolgopyat and others [8], [38], [60], [22]
also relying on symbolic dynamic.

Building on some earlier work [5] with Blank and Keller for Anosov diffeomorphisms,
Liverani introduced in [50] Banach spaces of distributions with anisotropic Holder regu-
larity adapted to contact Anosov flows. Among other things, these spaces allowed him to
prove the meromorphic continuation of the resolvent in some half plane slightly beyond
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Re(z) = 0. This approach was further developped in subsequent works with Butterley

[11] and Giuletti-Pollicott [39] to show the meromorphic continuation of (ng 4 2)1to
the whole complex plane for every 0 < k < n and for any smooth Anosov flow. We also
refer to [40] for earlier results with Gouézel in that spirit for Axiom A diffeomorphims.
We can also mention [4] for a different approach (still for diffeomorphisms) by Bal-
adi and Tsujii using anisotropic Sobolev spaces and methods from Fourier /microlocal
analysis.

From another direction, the general theory of semiclassical resonances [28|, [44] was
used to derive alternative approaches to construct Hilbert spaces adapted to the dy-
namics. First, for smooth Anosov diffeomorphisms, Faure, Roy and Sjostrand recov-
ered in [30] the existence of a discrete spectrum for the tranfer operator. Then for
general Anosov flows, Faure and Sjostrand constructed in [31] Hilbert spaces, referred

as anisotropic Sobolev spaces, on which the Lie derivative £§9) has discrete spectrum
on a large part of the complex plane. Their analysis used the machinery of microlocal
analysis as a toolbox and it reduced in some sense the problem to a dynamical ques-
tion, i.e. constructing an escape (or Lyapunov) function adapted to the dynamics on
the cotangent space. In [31], the meromorphic extension of the resolvent was obtained
for k = 0 and this result has been extended for every 0 < k < n in [26] by Dyatlov
and Zworski in view of applications to the Ruelle zeta function. More informations
on the spectrum (e.g. band structure) have also been obtained by Faure and Tsujii
[66, 67, 32, 33, 34, 35] in the context of Anosov flows and contact Anosov flows using
these kinds of methods.

Subsequently, the meromorphic extension of the resolvent has been extended to Ax-
iom A flows by Dyatlov-Guillarmou [24, 25| under the assumption that the resolvent
acts on differential forms supported near a fixed basic set. Although this analysis was
enough to prove the meromorphic continuation of the Ruelle zeta function for Axiom
A flows, it does not seem to be sufficient to deduce Theorem 2 (and thus Theorem 1)
which does not require any support restriction. In that direction, Dang and Riviére
[17, 18, 19, 21] proved the meromorphic continuation for globally supported test forms
in the case of Morse-Smale gradient flows, a generic subset of Morse gradient flows which
satisfies a so called transversality assumption. In this series of articles, Dang and Riviéere
gave a complete description of Pollicott-Ruelle resonances, giving a band structure for
the spectrum, computed the dimensions of eigenspaces by expliciting the eigenvectors
in terms of De Rham’s currents and gave a new proof of Morse-Smale inequalities. The
link with the topology was made possible through their global construction of Sobolev
spaces adapted to the dynamics of Morse-Smale flows. In this article, we gathered
the two approaches of Dyatlov-Guillarmou and Dang-Riviére so that we obtain the
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meromorphic continuation of the resolvent acting on globally supported forms for gen-
eral Axiom A flows. Finally, we emphasize that, besides its applications to topology,
Theorem 2 also answers a question raised by Baladi in |3, 4.32, p. 144].

1.2. Back to topology. Recently, the developments of these analytical tools lead to
many progress on the link between the topology of the manifold and the spectrum of
the Lie derivative, at least for the examples where the functional setup was globally
defined, namely Morse-Smale and Anosov flows. We recall here some of these progress.

Contact Anosov flows in dimension 3. In that geometric framework, Dy-
atlov and Zworski 27| computed the dimension of Ker(ﬁgc))mk(o) for every
0 < k < 3 and expressed it in terms of the Betti numbers of the manifold.
They used this to generalize earlier results of Fried [37| on the order of van-
ishing of the Ruelle zeta function. In particular, their computation holds true
for any geodesic flow acting on the unitary cotangent bundle S*¥ =: M of
a compact negatively curved surface ¥. Burns-Weil-Shen [6] extended [27] to
the nonorientable case and Hadfield [41] showed a similar result for compact
negatively curved surfaces with boundaries.

Anosov flows in high dimension. Kiister-Weich [47| computed the dimension

of Ker(/jg,l))ml(o) in terms of the first Betti number for hyperbolic manifolds of
dimension # 3.

Perturbation of Anosov flows. Ceki¢-Paternain [12] gave the first examples
of Anosov flows in dimension 3 which preserves a volume form where the van-
ishing order of the Ruelle zeta function jumps under perturbation of the flow.
Again this was achieved by computing explicitely the dimension of the spaces
appearing in the cohomological complex of Theorem 2. In dimension 5, Ceki¢-
Dyatlov-Kiister-Paternain [13| found a similar result for geodesic flows on nearly
hyperbolic 3-manifold (the unitary cotangent bundle is 5-dimensional).

Fried conjecture [37, 38|. Dang-Guillarmou-Riviére-Shen [16] established,
in the case of Anosov flows, a criterium in terms of the spaces appearing in
Theorem 1 to ensure that the value at 0 of the twisted Ruelle zeta function is
locally constant. It allowed them to prove Fried conjecture on the Reidemeister
torsion for nearly hyperbolic 3-manifolds. This was further pursued by Chaubet
and Dang [14] who used the cohomological complex of Theorem 1 to define a
dynamical torsion for contact Anosov flows in any dimension.

Morse-Smale flows. Dang-Riviére [21] proved Theorem 1 in the case of Morse-
Smale and Anosov flows. In the specific case of Morse-Smale gradient flows [20],
they also considered the Lie derivative operator as a limit of the Witten Lapla-
cian and they obtained the Ruelle spectrum as a limit of the Witten spectrum.
It allowed them to recover the Witten-Helffer-Sjostrand instanton formula and
to prove the Fukaya conjecture on Witten deformation of the wedge product.
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1.3. Outline of the proof. We use the microlocal approach to Pollicott-Ruelle reso-
nances of the Lie derivative operator Ly as it was developped by Faure and Sjéstrand.
Recall that the proof of Theorem 2 relies on the construction of Hilbert spaces adapted
to the dynamics. Following [31], defining such spaces can be reduced through some
microlocal procedure to the construction of an escape function. More precisely, one
has to exhibit a family of functions that are decreasing along the Hamiltonian flow of
H(z,&) =&(V(x)) on the cotangent bundle T*M of M. The existence of such decreas-
ing functions, called energy or Lyapunov functions, is already known for the flow on M
as soon as V' is an Axiom A flow verifying Smale’s transversality assumption. We can
cite for example the articles of Conley [15], Wilson [69] for flows and Pugh-Shub [54] for
Axiom A diffeomorphisms verifying Smale’s tranversality assumptions. One of the main
novelty of this article is to do the same for the induced Hamiltonian flow on T*M. It
was already done by Faure-Sjostrand [31] for Anosov flows, by Dyatlov-Guillarmou [24]
near a basic set and by Dang-Riviére in [17, 18] for Morse-Smale flows. To construct a
decreasing function along this Hamiltonian flow, Dang and Riviére highlighted in the
case of gradient flows [17] that one needs to prove the compactness of the conormal
distribution

U {Ee S;M - (T, W*(x_)) =0, for z_ the critical point s.t x € W*(z_)},

zeM

where W*(z_) denotes the unstable manifold of the critical point x_. Nevertheless, to
do so, they made a restriction on the class of Morse-Smale flows which is the existence
of C!'-linearization charts near critical points. Such a restriction is not avalaible for
more general Axiom A flows and we need to proceed differently. In particular, we note
that our proof allows to remove this linearization assumption in the specific case of
Morse-Smale flows. To prove a similar result for Axiom A flows, we proceed in three
steps.

e We define a transversality assumption for Axiom A flows which generalizes the
one used for Morse-Smale gradient flows.

e Then, we generalize the compactness result for conormal distributions without
using C!-linearizing charts. This step will require a similar analysis than the
local analysis near basic sets performed by Dyatlov-Guillarmou [24].

e We deduce the existence of a global escape functions for Axiom A flows which
satisfies the transversality assumption by adapting the construction of Faure-
Sjostrand [31].

Concerning the proof of Theorem 1, we recall that that there is a strong analogy
with the Hodge-De Rham Laplace operator* A = d o d* 4+ d* o d = (d + d*)? acting on

2The derivatives d* denotes the formal adjoint of d in L2(M; A*T*M).
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differential forms Q*(M) if we remark that
Ly=dowy +iyod= (d+Lv)2.

Note also that both operators A and £y, commutes with the exterior derivative d. These
analogies are at the heart of the proof of Theorem 1.

1.4. Organization of the article.

e In section 2, we recall the definition of an Axiom A flow and introduce the
dynamical tools we will need. Furthermore, we present in this part a few key
notions for our analysis which turn out to be related: Smale’s order relation on
basic sets, transversality assumption, filtrations (with open sets) and unrevisited
neighborhoods. We also explain how to bypass the C!-linearizing charts used in
Dang-Riviere’s articles.

e In section 3, we present a possible construction of an escape function and we
state a generalization of the compactness result for conormal distributions which
takes into account the neutral direction given by the flow direction. The result
stated in this part were in fact the most challenging ones to prove.

e In section 4, we define anisotropic Sobolev spaces, in which the Lie derivative
operators E%f) have discrete spectrum (see Theorem 4 from which Theorem 2
derives).

e In section 5, we state and prove the main topological result of this article, namely
Theorem 1.

e In section 6, 7 and 8 we give the proof of the dynamical results such as the
construction of energy functions for Axiom A flows, the proof of the compactness
of conormal distributions and the construction of the global escape functions.

1.5. Acknowlegments. The author would like to warmly thank Gabriel Riviére for
many explanations about his work with Nguyen Viet Dang and for his careful reading
and remarks which contributed a lot to improve this paper. This work was partly
supported by the Institut Universitaire de France and by the Agence Nationale de la
Recherche through the PRC project ADYCT (ANR-20-CE40-0017).

2. DYNAMICAL PRELIMINARIES.

In all this paper, we denote by (M",g) a smooth compact Riemannian manifold
without boundary of dimension n > 1 and associated to some smooth Riemannian
metric g. We also denote by d, the geodesic distance associated to the metric g and
by |.l = v/9(.,.) the norm induced on the fibers of the tangent bundle M or of the
cotangent bundle 7*M. To a smooth vector field V' € I'(T'M), we can associate a flow
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(¢")iter which solves the Cauchy problem:

Q..lg‘

to) — t
tOQO (37) = V(‘P (x)) ' (2>
pi(r) =

The system (2) is highly non-linear in general which makes difficult to predict the
large-time behavior of trajectories, especially in the case of hyperbolic dynamics.

Ve e M, Vt € R, {

Definition 2.1. |64, p.796] A point © € M is said to be nonwandering if for every
neighborhood U of x and every T' > 0 there exists ¢ € R such that |[t| > T and
©'(U)NU # (). The nonwandering points form a closed invariant subset of M, called
the nonwandering set, and we will denote it by € := Q(¢").

We refer to appendix A or to the books [53], [46] for a definition of hyperbolic set.

Definition 2.2 (Axiom A flow, [64, p.803|, [54]). A flow ' : M — M is said to be
Axiom A if its nonwandering set {2 is hyperbolic and can be written as 2 = F UK
where

(i) KK = Per(¢?) is the closure of all periodic orbits.
(ii) F is the set of fixed point for the flow ¢, which is assumed to be finite.

It is known from the works of Smale and Bowen that an Axiom A flow has a non-
wandering set which splits into a finite number of hyperbolic invariant compact sets,
which are either reduced to a fixed point or invariant hyperbolic sets called basic sets:

Proposition 2.1 (Spectral decomposition , [64, §8IL.5], [8]). If ¢ is an Aziom A flow,
then its nonwandering set ) decomposes into a finite union of basic sets K;:

Q=K UKyl ---UKy
where K basic means:

e K is compact and hyperbolic.
o K 1is locally maximal: there exists some open set O C M such that

K =()¢"0).

teR

e K est topologically transitive, i.e. there exists a point x € K such that (p*(z))
K.

e K 1is the closure of its periodic orbits which can potentially be reduced to a fived
point, i.e. have period 0.

teRy

From now on, ¢’ will denote an Axiom A flow on (M, g). We call attractor for ¢' a

basic set K which satifies
K= ) ¢0)

teRL
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for some open set O D K. Similarly, we call repeller for ¢! a basic set K which satifies

K = ﬂ ©' (O

teR_

for some open set O D K.

Remark 1. The fixed points are isolated subsets of {2 thanks to the ezpansiveness prop-
erty of the flow on basic sets. See [10, lemma 1 p.181] or [7]| for more details.

2.1. Stable and unstable manifolds. We begin by recalling some well-known facts
concerning uniformly hyperbolic dynamics which can be found in [46] or [23]. Fix a
basic set K. For all ¢ > 0 and all z € K, the stable manifold, local stable manifold and
local weak stable manifold at the point z are defined by

W?(z) = A{x € M : dy(¢'(2), ¢'(2)) — 0}

Wi(z) == A{z € W*(2) : dy(¢'(2),¢'(2)) <&, VEERL}
W(z) :={x € M : dy(¢'(z),¢'(2)) <&, Vt€R,}.

By replacing s by u and ¢’ by ¢ in the previous equalities, we could have defined
similarly the (}/local/local weak unstable manifolds. From this remark, let us only deal
with stable manifolds by keeping in mind that everything can be adapted for unsta-
ble manifolds. Thanks to the Hadamard-Perron theorem, also called stable manifold
theorem, there exists gy < 1 such that, for all z € K, the sets W2/ *°(2) are smooth
submanifolds of M of dimension d,/,, which is constant on each basic set. Precise
statements and proof of this result can be found in [46, thm 6.2.8, p. 242| for the case
of diffeomorphisms and in |23, thm 5, p. 34| for the case of flows. In general, stable
manifolds are not embedded submanifolds but only immersed submanifolds, except in
the case of Morse flows. Moreover, the stable manifold is related to the local stable
manifold thanks to the following formula 23, p. 24]:

Uso—" W2 (¢"(2))), W*(z Uso (W2e(e™(2))), (neN),

which does not depend on gy given by the stable manifold theorem. If K denotes a
basic set, then we define its stable manifold® by

W (K):={x e M: d¢'(x), K) — 0}.

t——+o0

3which is not a submanifold anymore, except in particular cases where for example K is reduced to
a fixed point or a single closed orbit.
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Thanks to the shadowing lemma [46, thm 18.1.6 p. 569] and to the local maximality of
basic sets, this last set decomposes into the stable manifolds of elements of K, namely

W) = [ W ().
zeK
A short proof can be found in [9, prop 3.10, p. 53| or [68, thm 6.26, p. 131] in the case

of diffeomorphisms. The scheme of the proof remains the same in the case of flows. For
every € > (), we can define its local version by setting

W2(K) = |J W) (3)

zeK

Now, let us present a lemma which was originally given by Smale.

Lemma 2.1 (Partition by stable manifolds, [64, lem 2.3, p.753| ). We have the following
decomposition of M in stable manifolds:

M =| |W(K,). (4)

=1

This lemma dictates the behavior of the trajectories outside the nonwandering set.
Precisely, if we take an element € M, then there exists a unique couple (i, j) € [1, N]?
such that x € W*(K;) N W?*(K;) and the decomposition (3) provides elements z_ € K;
and z; € Kj such that x € W*(z_) N W#*(z4). The point x, is unique modulo the
equivalence relation on Kj given by:

2 ~j 2y = 21,20 € Kj and 21 € W¥(2,).

A similar remark holds for z_.

2.2. Lifting the dynamic on the cotangent. Since we will use the analysis through
escape functions developped in [31, p. 329|, we begin by recalling how to lift the
flow as an Hamiltonian flow acting on the unitary cotangent bundle S*M = {(z,§) €
T*M,|£|; = 1}. The cotangent bundle 7% M can be endowed with a symplectic structure
by considering the symplectic form w = da, where d is the exterior derivative and « de-
notes the usual Liouville form on M. In a local trivialization chart q1, -+, ¢n, p1,- -, Pn
of TM, the Liouville one form simply writes a = Y., p;dg; and the symplectic form
becomes w = Y, dp; A dg;. Let us introduce the following maps:

7:T"M — M, (x,§)—zx,

ki TM\ Oy — S™M, @OH( 5)_ (5)

xr. ——
1€l
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Also, we consider the Hamiltonian H(x, &) = &(V(z)) € C>°(T*M;R) and we denote
by Xp the corresponding Hamiltonian vector field, given by the formula —dH = tx,w.
We also denote by ®' the corresponding flow on T* M which has an explicit formulation:

' (z,€) = (¢'(x), (D' (x) ) (€)), V(w,€) € T*M.

Note that the Hamiltonian flow @ extends the flow ¢ to the cotangent in the sense
that mo ® = ' o7 and that it is linear on each fiber. Moreover, the Hamiltonian flow
sends T*M \ 0p; into T*M \ 0y because the matrix D¢’ (z) is invertible. Therefore, it

induces a flow ®' on the unitary cotangent bundle:

5(0.6) = (60 89(0.6) = (o) [ p o S ) o e s

This flow on S*M is generated by a smooth vector field that will be denoted by Xy €
C®(S*M;TS*M). To summarize, we have the following commutative diagrams:

T*M T*M T*M \ Op T*M \ Oy
P! ot
M — M S*M - S*M
® ot

Since our analysis will take place in T*M, we also define the dual distributions
associated with the neutral F,, stable E, and unstable E, distributions® which appear
in the definition of hyperbolicity (see appendix A) at any point z € 2 by

(E5(2))(Eu(z) @ Ey(2)) = 0,
(Eu(2))(Eu(z) ® Eo(2)) =0, (E{(2))(Es(2) © Eo(2)) = 0.
This gives us a hyperbolic splitting of the cotangent bundle:
TIM =FE(2) @ E;(2) ® E)(2).
2.3. Extension of the invariant distributions outside the nonwandering set.

Thanks to the partition’s lemma 4 by stable manifolds, we can extend the previous
definitions outside the nonwandering set.

Definition 2.3. For every x € W*(xy)NW"(z_) with z_ € K; and 2 € K, we define
the following:

ES(x)(T.W*(x4))
B () (T, W (x-))

EL (x)(ToW*(24)) = 0,

0,
0, EL(@)(LW*z ) =0.

40n a basic set K, we also use the notations E, for EX + E¥ and EZ, for EX + E*.
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K4 < Kl > K4 K2 < Kl > K2
T T2 T2
\/ \/ Y // v Y
A A
K3 < Ko > K3 Ky < K > Ky
K4 Kl K4 KQ Kl KQ
(A) Axiom A flow which does not satisfy (B) Axiom A flow which satisfies the transver-
the transversality assumption: existence of a sality assumption.

saddle-connection.

FIGURE 1. Some Axiom A flows on the 2-torus.

Moreover, the definition does not depend on the choice of z; and z_ in W*(zy) N K
and W*(z_) N K; respectively.

Remark 2. e If z is a fixed point, then W*°(x) = W*(x) and consequently E¥(x) =
B2, (x) = E2,(x) N {E(V(2)) = 0}.

e The distributions E7, £, E? and E;  are defined on the whole manifold and are
®'-invariant.

e Recall that fixed points are isolated (remark 1). So if = is not a fixed point then
we get that dim Fy,(z;) = dim Es(xy) + 1 and dim W*°(z,) = dim W*(xy) + 1.
Therefore, we obtain Ef(z) = EX (x)N{{(V(x)) = 0} and dim E? (z) = dim Ef(z)+1.

2.4. Transversality assumption. Forany (z_,z.) € K;xK; and every z € W"(x_)N
W#(z,), we make the following strong tranversality assumption:

T, W™ (x_) + ToW*(2y) = T, M. (6)

which is equivalent to

TWx_) + T, W*(xy) =T, W (x_) + T, W3 (xy) =T, M. (7)

since both spaces T, W"°(z_) and T,W*°(x ) contain the flow direction R.V (z). More-
over, these transversality assumptions do not depend on the choice of z_ € K; and
x4 € K such that x € W*(z_) N W¥(z,).
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FIGURE 3. Order relation be-
tween two basic sets.

FIGURE 2. Order relation be-
tween two hyperbolic fixed
points.

Remark 3. If z_ or x, is a fixed point, which is in particular the case for Morse-Smale
gradient flows [17] where both are fixed points, then the transversality assumption reads

TW*(z_) + T,W*(zx,) = T, M.

From (7) and directly from the definitions, we can deduce the following disjointness
properties:

EXNE; =0and E;, NE; = 0.

From now on, the vector field V' € I'(T'M) will be considered to be Axiom A and to
satisfy the transversality assumption (7). Let us extend the neutral distribution outside
the nonwandering set by fixing, for every x € W*(x_) N W*(x,),

Bi(x) = By (e_) N Elyfwy) = {€ € T*M, €(T,W*(x_) + T,W*(z.)) = 0}

2.5. Order relation. When Smale [64] defined Axiom A flows, he exhibited a partial
order relation between basics sets of an Axiom A flow which satifies the strong tranver-
sality assumption (6). Precisely, for two basic sets K; and K, he defined the relation
<, illustrated in figures 2 and 3, by

< dveM, Irv_,xy) € K; x K, v € W(x_) N W*3(xy). (®)

Theorem 3 (Smale, [64, prop. 8.5, p. 784]). If ©' satisfies the transversality assump-
tion (7), then the relation < defines a partial order relation. Moreover, for every basic
set K, we have

W (K)NW*(K) = K.

We refer to |54, §3-4 p. 152| and [18, app. B, p. 50| for more details about the proof.
As we can see in figure la, relation (8) may not be an order relation if the transversality
assumption does not hold.
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VA 7N\,
\, \,

FIGURE 4. Both graph correspond to the Axiom A flow on the 2-torus of fig. 1b. The
left one has its indices compatible with the graph structure and not the right one.

Proposition 2.2 (Smale, [64, p. 783]). An equivalent definition is given by

We also have

We(K) = | WUK;) and Wo(Kj) = | ) W*(K)).

IHKi>K; 1, K <K;

2.5.1. Graph structure. From the partial ordering on basic sets, one can define a graph
structure as follows. The vertices V' of the graph G are given by elements of [1, N]
while the edges E form a subset of [1, N] x [1, N] which satifies

’L#]andKZSKJ@('L,j)GE

To ensure that the graph does not contain too many edges, we add the following irre-
ducibility assumption: for every integer m > 3 and for every iy, -+ , i, € [1, N],

(il,ig), SN (im—him) c F = (Zl,Zm) ¢ E.
As a direct application of Theorem 3 the oriented graph G has no cycle.

2.5.2. Total order relation. In what follows, we will frequently use mathematical induc-
tion. To do so, we define a total order relation from Smale’s order relation < on the
basic sets as an order relation on [1, N] compatible with the partial order relation <
in the sense that

K, <K;=1i<j. 9)

From now on, we fix a total order relation. Note that U;>;W*"(K;) is compact for

every 1 < i < N but that W*(K;) and U;»;W*"(K;) are not equal in general, see for
example figure 4.

2.6. Filtrations and unrevisited neighborhoods. An important concept in all our
analysis is the concept of filtration. Eventhough the term of filtration usually refers
to an increasing sequence of subcomplexes of a simplicial complex, we give here an
open version deeply related to Morse homology where the subcomplexes are open sets,
i.e. submanifolds of dimension n = dim M with boundary. To see the analogy, let us
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4

FIGURE 5. Example of a filtration on the sphere S2.

consider f : M — R a Morse function which has N critical points xy,--- ,xy that
all satisfy f(x;) = i to simplify. Then, a filtration is given by the family of open sets
(f7H(]—o00,i+3[))o<i<n. For a general Axiom A flow, we give a definition of a filtration
which appeared in the works of Smale [64] and Robbin [55, lem. 7.9, p. 471].

Definition 2.4 (Filtration). Let ¢’ be an Axiom A flow which satisfies the transver-
sality assumption. Let us consider a total order relation on the basic sets in the sense
of (9). A sequence of open sets (O] )o<i<n is said to be a filtration for ! if the
following conditions hold:

(i) The sequence is increasing:
=0, CO;C---COy=M

(ii) For every 1 <i < N, the open sets are ¢~ '-stables: ¢! (0;) C O .
(iii) For every 1 <1i < N, we have K; C O; \ O,_;.

Remark 4. e Any filtration for ¢! induces a filtration for ¢! taking the interior of the

complementary of each open set, i.e. setting O; := Int ((ON%)C) for every 7. Indeed,
from ¢! (O](,ﬂ-) C Oy_;, we deduce

PH(0F) = ¢ (It ((Oy)")) S 9" ((Oy)") € (Ox)"
So, ¢'(O;) is an open subset of ((’)X,ﬂ.)c, and by definition of the interior we get
' (OF) C Int ((Oy_;)°) = O;Ff . Moreover, we still have § = Of C Of C -+ C
Of = M and K, C O%_,,,\ Ofi_,.
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e O; is a neighborhood of U;<;W?*(K;). Indeed, O; contains every basic set K; for
J <iand if z € W*(Kj;) then there exists k € N such that p*(z) € O;. Thus, we
deduce x € o™ *(O;) C O; .

e For every 1 <i < N, let us define the set

V=07 NOY_i4.

One can check that V; is a neighborhood of K; which satisfies V, N Q = K, and the
following property: for all m € N and for all x € V;, if we have x € V; and ¢™(x) € V;
then we must have gpk(x) eV, for all 0 < k < m. In the example presented in figure
5, the basic set K3 belongs to O3 N Oy .

This last remark brings us to the next definition.

Definition 2.5 (Unrevisited set, [55, p.463] and [62]). Let X be a smooth manifold.
A set W C X is called unrevisited for a diffeomorphism f : X — X if for any integer
m € N,

x, f(z) e W = Vk € {0,--- ,m}, f¥(z) € W.

We say that a set is unrevisited for the flow ¢! if it is unrevisited for the time-1 map
©!'. The existence of unrevisited neighborhoods goes back to the work of Robbin in
1971:

Proposition 2.3 (Robbin - Hirsh, Palis, Pugh and Shub, [55], [45, §6 and §7|). Let K
be a basic set and assume that p' satisfies the transversality assumption. Then there
exists arbitrarily small unrevisited neighborhoods V of K.

In Robbin’s article, the proof was given for Axiom A diffeomorphisms and it follows
from a construction of particular neighborhoods of hyperbolic sets given by Hirsh, Palis,
Pugh and Shub [45] who explained how to generalize it for flows. This proposition can
also be deduced from the work of Conley [15] up to a small perturbation of the vector
field. Precisely, up to a small perturbation of the vector field and for every basic set K
there exists an open neighborhood ¥V O K such that for all 7" > 0:

z, 07 () €V =Vt €[0,T], ¢'(z) €V.

In particular, V is unrevisited. Even if this last definition seems to be more natural for
flows, we chose the diffeo-like definition which will be more convenient for the analysis
of the lifted Hamiltonian dynamic on the phase space as we will see later on. From
now on, we assume that o' satisfies the transversality assumption (7). Unrevisited
neighborhoods will be a very important tool of our analysis. They will be a purely
dynamical alternative to the C! linearizing charts near critical points which were used
in [17] for Morse-Smale gradient flows, as we can witness in figure 6. But first, let us
mention some of their properties. All the results mentionned below about unrevisited
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FiGURE 6. Ilustration of some unrevisited neighborhoods near a basic set.

neighborhoods were not precisely stated in the litterature. They should be attributed
to Robbin, Hirsh, Palis, Pugh, Shub, Conley and Easton to the best of our knowledge.

2.6.1. Properties of unrevisited neighborhoods. If V is an unrevisited neighborhood of
K, then

(P1) The intersection of two unrevisited sets is also an unrevisited.
(P2) we have a uniform approximation of the stable and unstable manifolds in the
sense of the following lemma.

Lemma 2.2 (Uniform convergence of unrevisited neighborhoods). Let V be an un-
revisited neighborhood of a basic set K which satisfies ¥V N Q) = K. The sequence of
unrevisited neighborhoods V N e™(V) is decreasing with respect to m € N and converges
uniformly to W*(K) NV as m tends to +oo, in the sense that

sup  dy (y, WY (K)NY) — 0.

yeVNe™ (V) m—+00
A similar relation holds for the stable manifolds if we replace ™ by ¢~ ™.

Proof. Let us prove the relation for the unstable manifold. The other one can be proved
similarly if we replace ¢! by ¢~!. By contradiction, let us assume we can find € > 0
and a sequence of points

Ym € VN ™ (V) such that dy(ym,, W'(K)NV) > ¢
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for every m € N. By compactness of M, one can extract a subsequence (Yo, )& of (Ym)m
which converges to a point y., as k tends to +0o. We have the implication

VEk € N, dy(Ym,, W (K)NV) > e = dy(Yoo, W*(K)NV) > €.

Moreover, the sequence of unrevisited neighborhoods V N ¢™(V) is decreasing with
respect to m € N. So taking the closure, the sequence of compacts set VN ™ (V) is also
decreasing. The limit point 3, belongs to V N ¢™ (V) for every m € N and it follows

that
Yoo € [) #™(V).
meN
It remains to prove that y., lies in the unstable manifold of K. By contradiction, let us
assume that y., ¢ W*(K). Thanks to Lemma 4 which decomposes M into the unstable
manifolds of the basic sets, there exists a basic set K’ distinct from K such that

Yoo € WH(K').

Now, let us fix ¢ > 0 sufficiently small so that W*(K') NV = ). By definition, there
exists m € N such that ¢ ™(y.) € WX(K’) C M \ V. Since M \ V is an open set, the
point ¢~ (y,) does not belong to V for p large enough. In particular, if we choose p
sufficiently large so that p > m then we obtain that ¢ ™™ (y,) € e ™(V N P(V)) C V

and ¢ ™™ (y,) ¢ V. This gives the expected contradiction. O
A direct consequence of this lemma is that
() e (V) =W"(K)nV. (10)
meN

Of course the previous lemma can be adapted for the stable manifold and it gives
similarly

() e V) =WHEK)nV.

meN
Another way to look at these relations is to think about the exit time of V. For every
xr €V, we have

Card{m € N, " (z) € V} =+o0o <=z € WY K)NV
and similarly
Card{m e N, o™"(z) € V} =400 <=2 € W¥(K)NV.

(P3) Moreover if VN Q = K then (P1) + (P2) implies that the sequence (¢™(V) N
© "™(V))men converges uniformly to

(W3 (K)NV) N (WHE)NY) = (WHE)AWYK)NY = K

in the sense of Lemma 2.2.
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Remark 5. e Note that we used the transversality assumption twice for (P3): one
time for the existence of unrevisited neighborhoods and a second time for relation
Ws(K)NW*(K) = K. Also, (P3) is related with the local maximality of basic sets.
Indeed, from (P3) we deduce

("W ne™W) = [)¢"(V) =K,

meN meZ
and thus we recover the local maximality of K:
EC()emc )¢V =K
teR meZ

e We will see in Section 6 (Lemma 6.3) that the existence of unrevisited neighborhoods
implies the existence of a filtration.

Let us present another result which describes the closure of the stable and unstable
manifold of a basic set on an unrevisited neighborhood.

Lemma 2.3. Let K be a basic set and V be some unrevisited neighborhood of K such
that YV N Q= K. The following equalities hold:

Ws(K)NV =W*K)NV and W«(K)NV=W*“K)NV.

Proof. Let us prove the equality for the unstable manifold, the other one is proven
similarly if we replace ¢' by ¢t. The only nontrivial thing to show is the inclusion
Wu(K)NY C W% K)NYV. By contradiction, assume there exists a sequence (r,), of
points in W*(K) NV which converges to an element x., ¢ W*(K)NV. Since x, € V
for all p € N, we must have ., € V and thus z,, ¢ W*(K). Moreover, thanks to the
decomposition of M into the unstable manifold of the basic sets given by Lemma 4,
there exists a basic set K’ such that

Too € WH(K').
Now, let us choose ¢ sufficiently small so that the following equality hold:

WHK)YNY =0
By definition of W*(K’), there exists an integer m € N such that ¢~ () € WX (K').
Since ¢~ (z,) converges to ¢ " (xs) € M\ V as p — 400 and since M \ V is open,
there exists py € N such that for every p > py,

v " (xp) E V.

This gives the expected contradiction as V is unrevisited and x, € W*(K)NV. O

Eventhough we have W*(K) = Uj; x,<xW?*(K}), we can deduce from the previous

lemma that W2(K) C W*(K) for ¢ sufficiently small, see figure 7.
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FIGURE 7. Illustration of Lemma 2.4.

Lemma 2.4. Fore < 1, we have W(K) C W5 (K).

Proof. Let us consider an unrevisited neighborhood V of K such that VN Q) = K and
assume that € is chosen sufficiently small so that W (K) is well defined and

By(K,2¢) C V,
where B, (K, 2¢) denotes the set of point at (geodesic) distance at most 2¢ of K. There-
fore, we can deduce the result from Lemma 2.3. 0

Now, let us present another property of the local stable manifold of a basic set which
also uses unrevisited neighborhoods.

Lemma 2.5 (Uniform convergence). Let K be a basic set. For every 0 < g5 < g1 < 1,
there exists a constant T :=T(e1,e2) > 0 such that

" (W2 (K)) CW(K), ¢ T (WEK)) CWE(K)

Proof. This can be proved by contradiction using the Lemma 2.4 and the definition 3
of the local stable manifold of K. O

3. ESCAPE FUNCTIONS FOR AXIOM A FLOWS

Following the strategy of Faure and Sjostrand [31], we will construct some function,
called an escape function, which will allow us to define anisotropic Sobolev spaces on
which the Lie derivative operator —Ly has nice spectral properties. This function is
related to the construction of energy functions (also called Lyapunov functions) whose
existence will be stated in paragraph 3.2 and proved in Sections 6 and 7.

According to the strategy of [31], we need to construct an energy function on the
unitary cotangent bundle S*M which is increasing along the (projected) Hamiltonian

flow ®'. We choose here to split its construction into the one of two energy functions
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that are slightly easier to build independently: one on the base manifold M and one on
the fibers of S*M.

3.1. Energy functions on M. It is known from the work of Conley [15] that any
continuous flow on a compact manifold behaves like a gradient flow outside an invariant
set called the chain recurrent set (see for instance [53| for a definition). For example, it is
the case for gradient flows of Morse functions where the chain recurrent set equals the set
of hyperbolic fixed points and an energy function is given by the Morse function itself.
Axiom A flows are type of flows where the chain recurrent set equals the nonwandering
set. The following proposition was originally proved by Conley [15] and Wilson [69]
(in a slightly better version). Yet, for the sake of completness and since its proof will
be very instructive for the construction of energy fonctions on S*M, we will provide
another proof using filtrations and unrevisited neighborhoods in Section 6 for the next
proposition and in Section 7 for the analysis on S*M.

Proposition 3.1 (Energy function for Axiom A flows). Let ¢ be an Aziom A flow
which satisfies the transversality assumption (6). For every e > 0 and for every family
of pairwise distinct real numbers (X\;)1<i<n compatible with the graph structure in the
sense that

Ki < Kj; = A <\,

there exists an enerqy function E € C*°(M), e-neighborhoods N; of K; and a constant
n > 0 such that:

LvE >0 on M, and LyE >n on M\ (UY,N) .
Moreover, for all 1 < i < N, the map E is close to \; on each Nj in the sense that
E =\ on K; and sup |E(z) — N| <e(Ay — A1).

xE./\/i

3.2. Energy functions for the Hamiltonian flow. Let us define the following Pt
invariant subset of S*M:

S = J #(EL@), o= |J r(Ei@),

zeM xeM
Se= Jw(E@),  Se= | r(ELW@),
zeM xeM

where k denotes the projection on the unitary cotangent bundle defined in (5). They
will be our basic ingredients to construct energy functions on S*M. Indeed, following
the ideas of Faure-Sjostrand [31] and Dang-Riviere [17, 18], we will see that (3., Xs)
and (X,,Y,) are both a couple of repelling and attracting compact invariant sets for
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the Hamiltonian flow ®¢. It will be enough to construct an energy function on the fiber.
First, let us recall that our transversality assumption implies that

YN =0=%,NX%,.
The following lemma proved in §7.4 tells us that they are indeed attracting and repelling

sets for the Hamiltonian flow:

Lemma 3.1. For every (z,£) € S*M \ (X5 UX,,), we have

dsens (EISt(x,g),zS) =0 and ds-u (ZIS—t(:c,g),zuo) 0.

t——+o0

Similarly, for every (x,&) € S*M \ (X5, U X,), we have

dgens (@(x,g),zw) —= 0 and dg-yy (Efrt(a;,g),zu) )

t——+00

Moreover, contrary to Anosov flows for which it is rather immediate, we need to
make sure that these sets are compact sets. The next proposition is similar to the
compactness result of Dang and Riviére [17, lem. 3.7, p.15]. The proof is given in §7.3.

Proposition 3.2 (Compactness). Let us assume that @' satisfies the tranversality as-

sumption (7). Then, the subsets ¥y, Yo, 2so and g of S*M which are dt-invariant
compact sets.

To construct energy functions, we also need the existence of arbitrarily small stable
neighborhoods. The proof of next lemma is given in §7.5.

Lemma 3.2 (Invariant neighborhoods). For every € > 0, there exist e-neighborhoods
Us* (resp. UY") of Sg/s0 (T€SP. Sujuo) which are ®-stable (resp. ®~'-stable).

As a consequence of these three results, we obtain energy functions on the fiber of
S*M. The proof of the following proposition is given in §7.6.

Proposition 3.3 (Energy functions for the Hamiltonian flow). Let ¢ be an Aziom
A flow which satisfies the tranversality assumption (7). For every e > 0, there exist
energy functions Ex € C*(S*M:[0,1]), e-neighborhoods W3/*° of Ys/s0; Wuelv of Yuo/u
and a constant n > 0 such that:
Lx,E.>0o0nS"Mand Lx,Ey >nonS*M\ (W' UW?),
Lx,E_>0o0nS"Mand Lx,E_>n on S*M\ (W"UW??).

Moreover, the map E4 are constant on each ¥, and we have the estimate

sup  |Es(z,6) 0| <e and  sup |Bu(r,6)— 1 <e,
(Z‘{)EWU/“‘) (337§)€WS/S°
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3.3. The escape functions. Next, we give a global escape function which extends
the construction of Dyatlov and Guillarmou [24] to the whole manifold and coincide
with the one of Dang and Riviére [17] for Morse-Smale gradient flows and the one of
Faure-Sjostrand [31] for Anosov flows. The proof of next proposition is given in Section

8.

Proposition 3.4 (Escape function). Let u,s,ng € R such that u < 0 < ng < s. There
exists a smooth function m(z,&) € C(T*M) called an order function and an escape
function G,, € C*(T*M) defined by:

Gm(7,§) = m(z,§)log V1 + f(x,£)?

where f € C®(T*M) is positive everywhere and homogeneous of degree 1 in & as soon
as |€| > 1 and where m is defined by m(z, &) = x(|€]?)E(x, é—‘) with x being a smooth
cut-off function such that x =0 on ] —o00,1/2], x =1 on [1,+00[, x > 0 everywhere
as in figure 8§ and E being a linear combination of previous energy functions:

E(z,8) .= —E(x)+ s+ (u—mn9)Ei(x,&) + (ng — s)E_(z,£).
Moreover, we have the following estimates:
(1) There exist conical neighborhoods N'*/°/* of Userr E2/07u() \ Oar such that f =
[E(V)| on N and for ] = 1,

1 ~
§n0§m§n0 on N°,

s ~ u ~
mZZ on N°, and m§§ on N'*“.

Also, the open sets can be chosen arbitrarily close to the invariant distributions
E?, EY and E}; as in Proposition 3.3.

(2) The map G, is strictly decreasing along the flow ®' except at points (x,§) where
|€] is small or where x is in a small neighborhood of the nonwandering set
and & is in a conical neighborhood of E%: for all 1 < i < N, there exist an
open neighborhood N of K; and a radius R > 0 such that for all (z,§) €
Ugeun, T2 M \ N® such that |€] > R and for all (z,€) € Uzgun; T M such that
€l > R

X(Gp)(z,€) < —cmin(s, |u|) =1 —Cp, <0

with ¢ > 0 which is independent of the constants u,ng,s and of the size of the
conical neighborhoods.
(3) More generally, for every (x,£) € T*M such that |£| > R, we have

X(G)(2,6) <0.
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FIGURE 8. cut-off function x

4. ANISOTROPIC SOBOLEV SPACES

The purpose of this section is to construct some Hilbert spaces in which the operator
G acting on sections of A¥T*M ® C has good spectral properties. For k& = 0 and
for Anosov flows, Faure and Sjostrand defined an anisotropic Sobolev space which can
be roughly written as exp(G,,(z,—iD))"*L?(M;C) using the escape function G,, of
Proposition 3.4. In this part, we recall the definition of these Hilbert spaces starting
from our escape function and we extend it for 0 < k < n as in [26]. More precisely, we
construct a pseudodifferential operator acting on sections of A¥T*M ® C using the map
eCm . First, let us define

Ap(z,8) = exp(Gp(7,§)) € C (T M),

with G, being the escape function obtained in Proposition 3.4. We consider for every
0 < k < n the vector bundle &, := A¥T*M ® C of complex-valued differential k-forms®.

Now, we briefly recall how to define pseudodifferential operators on vector bundles
- see for instance |26, app. C.1, p.29| and [18, §9.2 p.40| for more details. Let us
consider a finite cover (U;);e; of M by contractible open sets and local trivializations
xXi : Elu, = Ui x R? x RFG=R! where U; is an open subset of R”. We define pseudo-
differential operators on & using the Weyl quantization in these local trivialization
charts. In other words, we define the operator Op;(4,,) : Q*(U; C) — QF(M;C) by
the formula

Xi © Op;(An) o x; H(fdx™ A -+ Ada'™) = Op™(A)(f)dz™ A--- Ada',
®Note that a Hilbert structure on L2 (M; &) can be defined by setting

(0, )% = /M<m,ﬁ<x>>g®kdvozg<z>,

where (.,.),or denotes the scalar product induced by the Riemannian metric ¢®* on the bundle
AF(T*M) — M and ¢g®* denotes the metric on A*(7*M) taking k-times the tensor product of g.
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where Op” denotes the usual Weyl quantization on R” - see [70, chap. 4, p.56] for a
definition. Now, if we consider a partition of unity (; € C(U;; [0, 1]) associated to (U;),
ie. supp¢(; C U; and ), ¢; = 1 on M, and functions ¢; € C*(U;) such that ¢; = 1 on
supp (;, then we define the pseudodifferential operator Agf) : QF(M; C) — QF(M; C) by
setting:

1 1 '

(k) — = . R . ,

A = 9 Z ¥; Op;(A)Gi + 5 (Z (& Opi(Am)CZ> ,

iel iel

where (3 ,.; ¥ Op;(A45,)¢)" denotes the formal adjoint ) ., 1; Op;(Ay, )G given by the

Hilbert structure (., >(Lk2) of L?*(M;&;). Note that the symbols A, belong to a class of

symbols with variable order whose properties are discussed in the appendix of [30].
The operator Agjj) has for principal symbol A,,(z, £) Ideg, (z), where Idg, () denotes the

identity map on each fiber & (z) = C, ® A*(T; M), and it is elliptic in the sense of [30,

def. 8, p. 40|. Therefore, there exists a smoothing operator 7 : D"*(M; C) — QF(M;C)

~ (k
such that A,(n) = Aﬁf) +7: QF(M;C) — QF(M;C) is formally self-adjoint, elliptic and

~(k
invertible - see [30, lem. 12, p. 42]|. Thus, we choose (Ain))_1 to be a representant of
the inverse of Affj) modulo smoothing operators by setting

A7) = (AR )

Following [30], [31], we define the anisotropic Sobolev space

Hy = (A

) LM &)

The space H}' can be endowed with the following Hermitian structure which makes
it isometric to the space L?(M;C ® A¥T*M): for every u,v € H,

~(k)  ~(k
(u, V) = (A;)u,A;)wgﬂQ).

Moreover, the space HI" is isomorphic® to the space Hy* @ QF(M; C) and the following
inclusion

QF(M;C) C H}» C D"*(M;C).
are continuous, where D"*(M; C) is endowed with the weak topology - see [61].
6The idea is that any current u € D"*(M) writes in coordinates as a k-form with coefficients in

D'(M), ie. u= > u .. ;idx"™ A--- Adx' where u;, ... ;, € D'(M). A partition of unity argument
gives the result.
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Figure 9. Hlustration of Pollicott-Ruelle resonances of fﬁgd on the anisotropic

Sobolev space H}*. The fact that 0 is a resonance or not depends on k.

4.1. Spectral properties. Adapting the proof of [31, Theorem 1.4] to the case of
vector bundles and using the properties’ of the escape function stated in Proposition
(which is the exact analogue of Lemma 1.2 in [31]), one can establish the existence of

a discrete spectrum on these anisotropic Sobolev spaces:

with domain

escape function G,,) such that

—£§f) has empty spectrum on Re(z) > Cj

where C,, > 0 is the constant given by Proposition 3.4.

Theorem 4 (Discrete spectrum). Let o' be an Aziom A flow verifying the
transversality assumption (6). Let G, be an escape function. For every 0 <

k < n, the operator —Egﬁ) defines a mazximal closed unbounded operator on H}"

D(—LY = {ue ) —LPueH} and LY : D(—LP) c 1y — 1

Moreover, there exists a constant Coy € R (which depends on the choice of the

and there exists constants C,, > 0 (given by Proposition 3.4) and Cy > 0
(which only depends on the vector field V' and the metric g) such that

—ng) has discrete spectrum on Re(z) > —C,, + C1,

"These are the only properties used in the proof of [31].
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The eigenvalues of _ng) on the anisotropic Sobolev space are called the Pollicott-
Ruelle resonances of —£§f ). There are many (equivalent) definitions of resonances. In

particular, they can be viewed as the poles of the resolvent operator (—Lgf) —z) b
QF(M;C) — D"*(M;C). Let us make a few remarks about them:

Remark 6. e The discrete spectrum of —ng ) is intrinsic in the sense that it does not
depend on the escape function and the essential spectrum can be chosen as far as we
want to the origin by taking m such that C,, > 1. We refer to [31, Thm. 1.5, p. 134]
for a proof in the case of Anosov vector fields.

e The set of resonances is symmetric along the real axis since the vector field V' is real.

e When k£ = 0, the resonances are included in the set {Re(z) < 0} and the point z =0
is a resonance since the constants are solutions of L£yu = 0. This fact is not true in
general for £ > 0 and the optimal constant A € R such that there is no spectrum in
the set Re(z) > h is related to the topological entropy of the basic sets.

e From the previous remark, we can see that the resonance 0 is somehow related to
Morse inequalities:

dim(Ker(Ly)) > by = dim Ho(M),

where by (M) is the number of connected components of M and where Ker £y denotes
the kernel of the Lie derivative viewed as an unbounded operator on H;'".

e From the first point, we can deduce that the space Ker((ﬁgf))e) does not depend on
the espace function m for any ¢ € N (provided m is chosen such that —C,,, + C; < 0).
Before going deeper into topological considerations, let us recall some useful proper-

ties of the operators —Exf .

Remark 7. « When proving the discrete spectrum theorem for Anosov vector fields,
precisely in [31, lem. 3.3, p. 343|, Faure and Sjostrand obtained a bound on the

resolvent operator which remains true in our context. For every z such that Re(z) >
Cy, we have

(k) -1
[(Ly" + 2) ||71£7f—>7—[21 < m-

An application of Hille-Yosida theorem [29, cor. 3.6, p. 76| gives that
(™)t HY = My, V=0,

generates a strongly continuous semi-group whose norm is bounded by et
Therefore, for every z such that Re(z) > Cy we can write the resolvent as follows:

+o0
(L +2)7 = / e (T dt s H — H
0

where the integral converges absolutely. Note that it is convenient to use the conven-
. (k)
tion ()" = e v HP — HI
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e If z; is any resonance of —ng) such that Re(zg) > —C,, + C, then we can define the
Riesz projector

1
ng) = —/ (£§f) +2) My HP — HY
2im ),
Z0
where the integral is over a positively oriented closed curved +., which surrounds the
resonance zp and no other resonances. Moreover, it commutes with ng) and it has
finite rank. Note that this definition still makes sense when zy is not a resonance
and in that case, wﬁ’g) is identically 0. Note also that ngg) commutes with the exterior
derivatives d because ng ) commutes with d thanks to the Cartan formula.

e The resolvent operator writes as a Laurent series near z:

mg(20)

£ 4 -1,
k) -1 _ 2 : 1 -1 (Ly 4R,
( %4 + Z) — ( ) (Z o Zo)l + OJi’(Z)

where R, is holomorphic near z.

5. CONSTRUCTION OF THE MORSE-DE RHAM COMPLEX

Let us define Res, (V') as the set of resonances z € C of the operator —[,%f ) ie. the set
of points zy € C such that we can find an escape function G,, with Re(zy) > —C,, + C}

and such that the algebraic multiplicity of zy, denoted by my(2o), verifies my(zy) # 0.

We can then define C%(z;) as the range of the projector ng(f) defined on the space of

k-forms QF(M; C). Equivalently, we have

C‘]f—(zo) = Ker ((,C%/’f) + Zo)mk(z0)> 7

and since Wélg) has finite rank, the vectorial spaces C%(z) are finite dimensional.
Recall that this space is independent of the choice of the escape function used to define
Hilbert spaces.

Recall now that the sequence of De Rham complex is defined as

0-% QM) -5 Q' (M) -5 - L ar) L o

We will denote by H(C7,(0),d) the cohomology of the spectral complex associated
with the eigenvalue 0 and by H*(M; C) the complex k-th De Rham cohomology:

k(v _ Ker(d kg o — Ker(d .
H*(C5(0),d) = er( C‘IC/(O))/Ran(dC‘k/l(o)) and H*(M;C) = er( ‘Qk(M’C))/Ran(d\qu(M;(c))'

Theorem 1 of the introduction is a consequence of the next Theorem.
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Theorem 5. Suppose that the vector field V generates an Aziom A flow which
satisfies the transversality assumption (6). For every 0 < k < n, the map

W(()k) : QF(M;C) — CE(0)
induces an isomorphism between H*(M;C) and H*(C:(0), d).

Its proof is based on the following De Rham theorem:

Theorem 6 (De Rham). Let u be an element in H}' satisfying du = 0.
(1) There exists w € Q*(M;C) such that u — w € d (HH' (M;C)).
(2) If u = dv with u € Q¥(M;C) and v € D"*71(M;C), then there exists
w € QFY(M;C) such that

u = dw.

Remark 8. e We give a short proof of De Rham Theorem in appendix B for the sake
of completeness. We follow the lines of the proof presented in |21, p. 16| and [61, p.
355].

Proof of theorem 5. Our goal is to prove that the following diagram is well defined, com-

mutes and induces a map W(()k) which is an isomorphism from H*(M; C) to H*(C}(0), d):

(k)
T
Ker(d) N Q*(M;C) Ker(d) N C&(0)
b1 - P2
)
0
H*(M;C) H*(C7(0),d)

Let us recall that the projector W(()k) is defined on the anisotropic Sobolev space H}"

which contains Q¥(M;C). Thus, it induces a map by restriction that we will still

denoted by W(()k). Also, since d commutes with the projectors 7T(()*), in the sense that

do W(()k_l) = ﬂék) o d, we get that ﬂ(()k) sends the space Ker(d) N QF(M;C) into the

space Ker(d) N CE(0). To prove the existence of the map Wék) and in the same way its

injectivity we will check the following equality:

Ker(ps o W(()k)) N Ker(d) N Q*(M;C) = Ran(d) N Q*(M;C). (11)
Since we have d o = W((]k) o d, we can deduce the inclusion Ker(ps o ﬂék)) B)
Ran(d) N QF(M;C). Let us prove the other one. Consider u € QF(M;C) such that

(k—1)
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du =0 and ps o Wék) (u) = 0. By definition of p,, there exists v € CE'(0) such that
() =dv in DFM;C).

In order to apply part (2) of De Rham theorem (Thm 6), we will show that

7&(u) and u are in the same cohomology class (in D"*(M;C)),

and apply the theorem to u. But first, let us note that Eif) is invertible in the Hilbert
space
H;' N Ker W(()k) = (Idparrs mec —Wék))H}?

and for our u € QF(M;C) C H* we have

u=my" () + (Idgrreprac —m4) (1)
=70 (u) + LY o (L)) (1dperearoc —m ) (u)
= 75" (u) + (d oty + 1y 0 d) o (L) (Idper-prac —m5 ) (1) (12)
= 7 (u) +d o R®(u) + R o Ju,
dv 0

dw -+ R (w)) € d (D' (M:0))

where
R® () = 1y o (LP) ™ Adprre prae —75) (u). (13)

We also used the Cartan formula ,Cgf) =do iy + ty od and the fact that d commutes
with ng ) and therefore with (Lgf ))_1 and W(()k). Finally, we can apply the point (2) of
the De Rham theorem and we obtain the existence of w € Q¥~1(M; C) such that

u = dw € Ran(d) N Q*1(M;C).

So, equation (11) holds and the universal property of the quotient gives us the existence

of the linear map 7T(()k). In order to prove that it is an isomorphism, we need to show

that it is onto.
The map W(()k) is onto. By definition of C£(0) the projector Wék) CHT — CR(0)
is onto. Let us take 7 € HF(C%(0),d) and consider v € Ker(d) N CE(0) such that

v = po(v). Applying De Rham theorem to v € H}', we obtain the existence of w €
QF(M;C) NKer(d) and v' € H"!! such that

v=w+dv and U = py(v) = pa(w) + po(dv') = pa(w).
0
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F1GURE 10. Illustration of an attractor-repeller system.

Note that the expression ps(dv’) only makes sense for dv' € H}'. Using a similar
computation that in (12) on w, we deduce that

v =m0 (W) + d(R® (w) + ).

Now, using the explicit expression of the operator R*) given in (13) together with the
fact that (Lgf ))_1(IdAkT* MaC —W(()k)) is a pseudodifferential operator of order —1, we get
that

RM(w) € H !

and therefore

p2 o (w) = 7.

Finally, if we define @ = p;(w) € H*(M;C) then we obtain

m (@) =v

and thus the surjectivity of W(()k) . O

6. ENERGY FUNCTIONS AND APPLICATION TO AXIOM A FLOWS

6.0.1. A useful lemma. In this part, we recall a general analysis introduced in [31] which
will be applied to both flows ¢! : M — M and &' : S*M — S*M.

Let us consider v € I'(T'X') some smooth vector field on a compact manifold X and
let us denote by exp(t.v) the flow generated by v. A couple of compact sets (K, K_) is
said to be attractor-repeller for the flow exp(t.v) on X if it satisfies the two following
conditions:

i) Ve € X\ (K_UK,), d(exp(£t.v)(z), Ky) — 0.

t—+oo
ii) There exists open neighborhoods V. of K. stable by exp(£1.v) such that V_ N
Vi =0.
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Remark 9. From conditions i) and ii) we can deduce that the time spent outside V_UV,.
is uniformly bounded: if we define the map

T(x) =Card{m € Z: ¢™(x) ¢ V_UV,},

then we get the existence of an integer T > 0 such that 7(x) < T for every x €
M. Indeed, by contradiction, if the map was not bounded then we could find (by
compactness) a point x € X ¢ (V_ UV, ) which satisfies ¢"'(z) € X ¢ (V- UVy) for
all m € N. It is in contradiction with condition 1i).

Lemma 6.1 (Faure-Sjostrand, [31]). Let (K_, K\) be an attractor-repeller couple for
the flow exp(t.v) on the compact manifold X and fix e > 0. There exist e-neighborhoods
Wi C Vi of Ky, an energy function m € C>®(X;[0,1]) and a constant n > 0, which
depends on €, such that v(m) > 0 everywhere and v(m) > n outside W_UW,. More-
over, we have m >1—¢c on W, and m =1 on K,. Similarly, we have m < & on VW_
and m =0 on K_.

This lemma proves similarly to Lemma 2.1 of Faure-Sjostrand [31, p. 336]. For the
sake of completeness, let us recall the main lines of the proof:
e First, we consider 7" > 0 large enough so that exp(7T.v) (X \ V_) C V,,
exp(—T.v) (X \ V4) C V_ and we define

W_ =X \exp(—Tw)(Vy) and W, =X \exp(T.w)(V-).

e Then, we fix a map ¢ € C>°(X) which has value 1 on V_ and 0 on V; and we
define the energy function m € C*(X) by

() = o / olesp(t0)(w)i.

e Finally, by noticing that Z(z) := {t € R : exp(tw)x € X \ (V- UV,)} is
uniformly bounded in the sense that

Ir >0, Vz € X, |max(Z(z)) — min(Z(z))| < 7,

one can deduce the estimates on m for T sufficiently large (which depends on
e, 7 and the size of V). We refer to [31] for complementary details.

6.1. Energy functions for Axiom A flows. In this part, we explain how to con-
struct an energy function for the flow ¢! from the previous lemma. More precisely, we
will prove Proposition 3.1. We will use strongly the order relation property, thus the
transversality assumption. From now on, we consider a total ordering of the basic set
in the sense of §2.5.2. The construction of an energy function presented here splits in
two parts:

e First, we prove that for every 1 < j < N the couple (Ug>;W*(K}), Ui, W*(K;))

is an attractor-repeller couple.



34 ANTOINE MEDDANE

e Then, as a consequence of Lemma 6.1 we obtain a family of energy functions FE;
and a linear combination of them gives the global energy function for ¢’

Lemma 6.2 (Invariant neighborhoods on the base). For every1 < j < N, U;;W?*(K;)
and Uy>;W*(K},) are disjoint invariant compact sets such that:

Ve g (WK, d@ (@), Uiy WKL) 0 (14)
and
Vo g WKL), dle™ @), Ui W) 3,0 (15)

Proof. The fact that these sets are disjoint and compact is a direct consequence of the
order relation’s properties. Now, consider = ¢ J,_ ; W?#(K;). From the decomposition
(4) of M into unstable manifolds of the basic sets, there exists 1 < k < N such that
r € W¥(K}). Thanks to our choice of a total order relation in the sence of §2.5.2, we
have necessarily k& > j. It proves the convergence (14). Up to replacing the flow ' by
™", we also get the convergence (15). O

Now the key point is to prove the second property of an attractor-repeller. This is
given by the next lemma which is slightly more precise.

Lemma 6.3. For every e > 0, there exists a filtration (O} )1<i<n on M for ¢=' which

Ji<e<
is within a distance € of the stable manifolds, i.e. ¥j € [1, N],

sup d, (y,UWS(KZ-)> <e.

veo; i<j

Similarly, there exists a filtration (O )1<i<nx on M for o' which is within a distance &
of the unstable manifolds, i.e. Vj € [1, N],

sup dy <y, U we( Kk))

veOX 11 k>j

Note that the filtration (Of )1<,<n is not obtained by taking the complementary of
O, )i<v<n but by exchanging the sense of times.
¢ )1<e< y gimg

Proof. Let us proceed by induction to construct a filtration on M stable by ¢'. The

following arguments adapt easily to construct a filtration ¢'-stable if we change ¢! by

o'

Base case (construction of Of). Fix & > 0. Since the indices of (K;);<;<y have
been chosen compatible with the relation <, the basic set Ky must be an attractor. So
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if we consider some unrevisited neighborhood Vy of Ky such that Vy N Q = Ky, then
Vy is pl-stable and we will simply define

Of = VN N gp"(VN)

for a large enough value of n. Indeed, thanks to Lemma 2.2 we can choose n so
that sup, ey, rpny) dg(y, W (Ky) N Vy) < e. Since Ky is an attractor, the equality
W*(Ky) = Ky holds and it implies

sup dy(y, Ky) < ¢

y€(9+

Induction step. Fix ¢ > 0 and assume that the open sets Of C OF C ... C
O;r 1 € (’)+ to be constructed for some 1 < j < N so that it defines a filtration for
the family of basic sets (Kn_i)o<i<j—1 which is e-close to the unstable manifolds, in the
sense that, for every 1 <i < j,

sup d, (y, U w( Kk)) < e.

yeo;f E>N—it1

We want to construct a ¢'-stable neighborhood O} of U y_; W*(K}). To lighten
the proof, let us denote by K the basic set Ky_;. If K is an attractor, then we can
proceed exactly as in the base case and take the union of this open set with (’)j*. So let
us assume that K is not a attractor, i.e. W*(K) # K, and take some small unrevisited
neighborhood V of K in the sense that VNQ = K. Let us define the following “annulus”
of K for every m € N:

A(m) = (" V)NV \ (" (V) e (V).

We refer the reader to the figure 6. Thanks to Lemma 2.2, the decreasing sequence
©™(V)NV of unrevisited neighborhoods converges uniformly to W*(K)NY and therefore

A(m) converges uniformly to W*(K) N (V\ ¢~ '(V)) (16)

as m tends to +o00.

Before proceeding to the construction of (’)J 1, we need to prove a few properties: (1)
show that for every m € N we have A(m) # 0 and W*(K)NA(m) = W*(K)N.A(0), (2)
find for every x in W*(K) N .A(0) an integer mg > 0 such that we have ™ (z) € O,
(3) prove that mg can be chosen uniformly in z € W*(K) N .A(0) and (4) prove that
@™ (x) belongs to O] for all x in A(m) with m large enough.

(1) Since the relations W*(K)Ne™(V)NY = W*K)NV and W*(K) Ne™(V)N
e '(V) =W*K)NVNe (V) hold from (10), we must have

W*K)NnAm) =W*“K)NA0) ={zc WYK)NYV, ¢'(x) ¢ V}
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(2)

(3)
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for all m € N. Let us prove that the last set is non-empty. If x belongs to
W*K)NV\ K # 0 as K is not an attractor, then one can find an integer
ko > 0 such that o (x) € W*(K)NV and ¢ (z) ¢ V by fixing ky = sup{k €
N, p*(x) € V} which is finite thanks to the definition of z.

A straightforward application of Lemma 6.2 gives us the result:

Vo € W*(K) N A(0), 3mg €N, st ¢ (z) € OF. (17)
Let us prove that there exists my € N such that for every z € W*(K) N .A(0)
we have ™0 (x) € (’);L. By contradiction, let us assume that for every integer
m € N* there exists an element z,, € W*(K) N A(0) such that ¢"(z,,) ¢ O
By compactness of V, we can extract a subsequence (z,,, Jxeny Which converges to
an element z, € V. According to Lemma 2.3, we must have x,, € W*(K)NV.
Also, by definition of A(0), the elements ©'(z,,, ) belong to M \ V. So, letting
k tends to +oo, we deduce that ¢!'(z.) € M \ V. Therefore, we have z,, €

W*(K)N.A(0) and the step (2) implies that
" (2o0) € OF.

However, by definition of our sequence (z,,, )x and due to the stability of O;T, we
must have ™ (z,,, ) ¢ O; for k sufficiently large. Letting k tends to +oc in the
last relation gives a contradiction with the fact that ¢ (z,) € (9;7. Therefore,
the integer mg can be chosen uniformly with respect to x in W*(K) N .A(0).
Since A(m) converges uniformly to W*(K) N (V\ ¢7(V)) as m tends to +oo
in the sense of Lemma 2.2, we deduce by continuity the following statement:
there exists m; € N such that

Ym > my, Yo € A(m), ¢ (x) € OF. (18)

Finally, for every m > my, we define

mo—1

Ofa(m) =0 U ([ (") V).

It remains to prove that O, (m) is @'-stable for every choice of m > m;. Let us
consider y € ¢*(¢™(V) N V) for some 0 < k < my — 1. By definition, there exists

e

(V) NV such that y = p*(x). We have two cases to deal with.

e 15t case: z € " (V) N ' (V). Then, we have

el(z) € " V)INY C (V)N V.

e 27 case: x € (" (V)NV)\ (¢™(V)Np L (V)) = A(m). Since z € (V) NV

we get p*(z) € pF(™(V)NV) for every k € [0,mo — 1] and the statement (18)
gives us "™ (z) € Of .
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Finally, we get that for every m > m; and every £ > 0, we have ¢’(z) € Of,(m). In
particular, we deduce that for every £ > 0, we have ¢(y) € O]+1( m). So, Of,,(m) is p'-

stable. Now, if we choose m sufficiently large so that d, (U, "¢ (™ (V)NV), W*(K)) <
g, then it ensures that

sup d, (y, U w( Kk))

+
GO]+1 k>N—j

It ends the induction and the proof. OJ

Remark 10. Thanks to the total order relation (9), the compact sets U;<;WW*(K;) and
Uk>; W"(K},) intersect on Kj, i.e

Uwe ) n [ wH(Ky) = K;.

i<j k>j
Recall from Remark 4 that the set V; := Oy N Oy _;,, is an unrevisited neighborhood
at distance (at most) ¢ of Kj.

A direct application of these lemmas gives what we were looking for.

Proposition 6.1. For every 1 < j < N, (Up>;W*(K}),Uic;W?*(K;)) defines an
attractor-repeller couple.

Proof. 1t is a direct application of Lemmas 6.2 and 6.3 once we have chosen £ < 1 small
enough to ensure that

By (Ugs W"(Kr), 26) [ By (Uic;W?(K;), 26) =0, V1<j<N,
where By (K, 2¢) denotes the geodesic ball at distance 2¢ to the compact set K. 0
Now, we are ready to construct an energy function for ¢'.

Proof of proposition 3.1. Let € > 0 as in the previous proof and fix a sequence of pair-
wise distinct real numbers (\;)1<;<ny compatible with the graph structure in the sense
that \; < )\, <= K; < K,. Up to a permutation of the indices of the basic sets,
we can assume that Ay < Ay < --- < Ay. Indeed, there exists a one to one map
o:[1,N] — [1, N] such that A\;-1(1) < Ag-1(2) < -+ < Ap-1(n). The map o is given by

o(j) = Card {i € [1, N]] i < )\}.

If we rename K,-1(;) by K; and A1) by A;, then we obtain a total order relation on
the basic sets glven by the usual order relation on [1, NJ.

In order to find an energy function £ such that £ = \; on K, we will apply Lemma
6.1 for each attractor-repeller given in Proposition 6.1. Thanks to Lemma 6.3, there
exists filtrations (which depend one) Oy C Oy C--- C Oy and OF D -+~ D OF D Of
which are respectively p~l-stable and (!-stable. Thanks to Lemma 6.1, we obtain
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for every 1 < j < N a smooth energy function E; € C*(M;|0,1]), e-neighborhoods
W; C O; and W) C Of of U,; W*(K;) and U, W"(K}) respectively, a constant
Mo > 0 (Whlch only depends on ¢) such that Ly (E;) > 0 on M and

o Ly(E;) >mo on M\ (W, UW]),

e F; <eon W, and F; =0 on U W#(K;). In particular, we have E; = 0 on

1<j
U'L<] K
o Bj>1—con W and Ej = 1 on ., W*(K}). In particular, we have E; = 1
Urs; K-

We define a global energy function £ € C*(M) as a linear combinaison of previous
energy functions:

N
E=X+) ()
j=2

Thanks to the analysis of Lemma 6.3, we deduce that

Ly(E)= Z()\ —Aj—1)Lv(E;) > min (Aj — Aj_1)mo =:n on <ﬂ(WJUWJ+)) :

1<j<N .
7j=1 j=2

It remains to proof that ﬂ;yZQ(Wj_ UW;) is an e-neighborhood of the nonwandering
set and that F is close to A\; near K; with equality on K;. One has:

N

N N N
Aw;uwh = | WV =UN=J W nnwfnwr,n--nwy).
j=1 =1

Jj=2 7:[1,N]—{£} j=2

using the convention N; = Wy N --- N W5. Note that the second equality is a direct
consequence of the next fact which holds for ¢ < 1:

N
if 2 <i < j and (7(i),7(j) = (=, +) then YW/ =0

Jj=2

Moreover, we have on each K;:

E = A1+Z /\1+Z D6<i = Ais

It remains to prove that F is close to \; on the nelghborhood N; of K;. To that aim,
let us note that for every x € M and for every 1 < ¢ < N, we have

>\\<Z = Aj—1) | By (@) — dj<il-
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For any 1 < j < N and x € N; we will bound |E;(z) — d;<;| by a small quantity
independent of x in N;. We have two cases to deal with:
e If i < j, then §,<; = 0 and |E;(z) — 0| = E;(z) < € by definition of E;.
e If i > j, then d;<; = 1 and |Ej(x) — 1| = 1 — E;(z) < € again by definition of
E;.
Finally, we obtain the upper bound

N
sup sup |E(z) — N < SZ()\]' —Ajm1) < (An — Ap)e.
1<i<N zeN; =

O

Now, the idea will be to perform the same analysis for the Hamiltonian flow ®! acting
on S*M. However, in that case, proving that one has an attractor-reppeler structure
for (X...) reveals to be more challenging because we need to understand what happens
to the fiber part of ®'(z,¢) when the orbit of (z,£) comes close to a basic set. The
next part is devoted to the local analysis of the Hamiltonian near basic sets in view
of applications to the proofs of Proposition 3.1, Lemmas 6.2 and 6.3 and finally the
existence of the energy function on S*M.

7. COMPACTNESS RESULT AND ENERGY FUNCTIONS FOR THE HAMILTONIAN FLOW

On a basic set K, one can define conical neighborhoods of the unstable distributions
E* and E¥, which are stable under the Hamiltonian flow ®* as soon as ¢ > 0, under
some assumptions on the conical neighborhood. In particular, they are ®' stable and
this property should extend “by continuity” to a small neighborhood of K. In this part,
we will make sense of the term “by continuity”.

7.1. Adapted metric on a basic set. From the fixed Riemannian metric g on M,
we can define on any basic set K the following new metric called adapted metric
for the flow ¢'. More precisely, for every z € K and every v = v, + v, + v, €
Ei(z)® Eu(x) ® Ey(x) =T, M, we set

f](U, U) = g(vsa Us) + Q(Uu, Uu) + g(vo;vo)

“+o00 —+o0
= / e’\t/2(4pt*g)(vs, vg)dt + / e/\t/g(go_t*g)(vu, Uy)dt + g(v,, V,),
0 0

where A denotes the hyperbolic exponent on the basic set K, see Appendix A. This new
metric is well defined thanks to hyperbolicity and to the invariance properties of the
vector bundles on K. It also depends continuously on the point x € K, even if the vector
bundles depend smoothly on the point z. Recall also that the distributions Fy, F, are
only Holder continuous in general. Precisely, ¢ will be seen as a continuous section of
the vector bundle of metrics (i.e. symmetric (2, 0)-tensors) ®2,, TM — M defined on

(19)
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the compact set K. Let us denote by |.|; the norm induced by g, i.e. |v|; := v/§(v,v).
The metric is said to be adapted due to the following hyperbolic estimates: for every
r e K,

|De! (2)vs]5 < e 2|ug g, Vit >0, Yus € Eq(x)
Do~ ()valy < e M2 vyl5, vVt >0, Vo, € E,(z) (20)
| D' (2)v]5 = |00l Vit € R, Y, € Ey(z).

7.2. Extension of the invariant distributions near basic sets. In order to analyse
the dynamics near basic sets, it will be convenient to extend the previous hyperbolic
estimates in some neighborhood of K. To that aim, we need to extend the distributions
Es, E,, E, and |.|; near each basic set. This can be achieved thanks to the following
lemma:

Lemma 7.1 (Extension lemma, [45, lem. 4.4 p. 128]). Let X be a smooth manifold
and let m : E — X be some vector bundle over X. If s : K — E denotes a continuous
section defined on a compact set K C M, then s extends as a continuous section

5: N — E on a neighborhood N of K.

7.2.1. Extension of the adapted metric near a basic set. Let us apply this Lemma with
X =M and E=T"M Qgy, T"M.

The Riemannian metric g can be seen as a continuous section g : K — E. Since the
basic set K is a compact subset of M, the lemma applies and it allows to extend ¢
continuously on an open neighborhood Ny of K. Up to considering smaller Ny, we
can assume that the extended metric remains Riemannian on N as positivity and
semidefiniteness are open conditions. Since we can do this extension near each basic
and since the metric g is Riemannian, a partition of unity argument allows to prove

Lemma 7.2. For any Aziom A flow on a compact manifold, there exists a continuous
Riemannian metric (globally defined) which is adapted to the dynamics on each basic
set, in the sense that (20) holds on each basic set.

In what follows, we will always assume that g is a continuous Riemannian metric
adapted to the dynamics on each basic set and we will denote by |.| its norm on the
fibers of T'M and T*M to lighten notations.

7.2.2. Extension of distributions. We now apply Lemma 7.1 in order to extend the
distributions E£* defined on K on a neighborhood of K. Note that we already explained
that £, £, ... are well defined all over M using the partition into unstable manifolds.
The point of this new extension based on the bundles on K (and not on the global
dynamics) is that we expect that these new bundles have good hyperbolic properties in
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the sense of (20). We will also need to make sure that our local analysis is related to
the invariant distributions E* 0 and E , defined all over M.

Fix a basic set K and recall that the dlmensmn of the distributions F,, F,, E, are
constant on K. We denote by d, = dim F/; and d, = dim E, their dimension on K.
According to Lemma 2.4, the inclusions W2 (K) C W5 (K) and W2(K) C W3L(K) hold
for € small enough. Now, if we apply Lemma 7.1 for the continuous® section

s: Ws(K) — Gy(M)

with value in the Grassmann vector bundle of subspaces of dimension d, then we obtain
an open set N, D W#(K) and an extension E, of the distribution Ueims Es(z) on N

If we replace s by u in the previous construction then we obtain similarly a continuous
exten&gn E, of U, ez Eu(@) on a neighborhood N, of Wi(K). Next, we define E7,

(resp. EI.) by taking the dual orthogonal of E, (resp. Eu) The notation E;‘O can seem
a little ambiguous at first, because we extend first and then take the dual orthogonal.
Yet, everything is consistent here since E;‘o also extends continuously the distribution
U.eivsimy Eeol@). A similar remark holds for E7,. Moreover, by setting E* := E* N{¢ €
T; M, §(V(x)) = 0} we obtain a continuous extension of J, ey £ (). The different
steps can be summarized in the next diagram (which of course also hold if we replace

s by u):
U Ey(x) --» Ey —-» E¥, --» E*.
zeWs(K)

Moreover, the distributions E;‘O /s extend E /s 0N 2 neighborhood of the local stable
manifold of K:

Vo € Wi(K), El(x) = EL(z) and E}(x) = EX().

Similarly, we have

Vo e WH(K), Ej,(x) = Ej,(x) and Ej(x) = Ey(x).

These two last statement will be crucial in the proof of the compactness Proposition
3.2.
Finally, in order to extend continuously the neutral direction, we define for all x €

N =N, ON,,
Ey(w) = {¢ € ToM, ¢ (Eiw) + Eu(w)) = 0},

8The continuity follows from an adaptation of the proof of Lemma 4.2 of [23] using the exponential
estimates on T, W*(z) and T, W*¥(z) for every z € K which can be found in [24, Lemma 2.10, p. 13].
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N

N/
W (K)

W2(K)

£

FI1GURE 11. Illustration of some neighborhoods used in the extension of distributions

Remark 11. It is important to note that for every z € W2(K) NN, we have E(z) C
E% (z). Similarly, we have for every x € W*(K) NN, the inclusion EX(x) C EZ ().

Up to considering smaller A/, we can assume that
EX(z)® Ef(z) ® EX(z) = T'M, Nz eN. (21)

Note that this decomposition of the cotangent space is not invariant by the flow
®' in general. Despite that, hyperbolic estimates as well as stability of good conical
neighborhoods of these bundles should extend by continuity on a neighborhood of K.

7.2.3. Stability of conical neighborhoods near a basic set. We set for all § > 0 and all
xeN,
Culw) = {& € TIM, l&u]* > & + [&]*}
Coo(@) = {x € Ty M, 8(|&ul* + [&]%) > 1617}
where we used the decomposition (21) on the fibers, i.e. € = & + & + &, € EXz) @

E*(z) ® E*(z). If we replace s by u in (22), then we can define similarly the stable and
weak-stable conical neighborhoods C? and C2, on N. The main technical statement of
this section is

(22)

Lemma 7.3. Let K be a basic set and let N be the open neighborhood appearing in
(21). There exists g > 0 such that, for every unrevisited neighborhood V C NNy 1 (N)
contained in an go-neighborhood of K, the following hold:

(i) For every 0 < 6y < 1, one can find ms, > 0 so that, for every 9 < § < 1, for
every m > mg, and for every x € ¥V N ™ (V), one has the inclusions

! (Co() CCI(P' (@), @' (Coul)) C Cool' (@) (23)
where §' = e~*3§ and with X being the constant appearing in the definition (19).
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(ii) Moreover, there exists 0 < & < 1 such that for every § < 61, one can find
mgs > 0 so that, for every m > mg, for every x € V N @™ (V) and for every
¢ € C(x), we have

(@' (@, ) > e,
Proof. Hyperbolic inequalities on the unstable manifold of K. Let us denote
by m, the continuous projector on EZ for each a € {s,0,u} and let us define
Va, B € {s,o,u}, A.p:=m,0 oo g and Bag := g © P 1o 3.

We will also use the notation & for 1, o ®1(€). For every x € N N o Y(N), we have
§ =&t & +6& € Eiz) ®El(x) ® Ej(x) = TM and 9(¢) = &+ € +& €
Ex (o z))® E* (o' (x)) @ EZ(p'(x)). The dynamics of ®! and ®* can be encode within
the two following matrices of linear morphisms:

y Aw Aow An [&u Eu Buuw Bou Bu (&
; - Auo Aoo Aso 60 and go - Buo Boo Bso ;
; AUS AOS ASS fs 58 Bus Bos Bss ;

To be more preciese, we should have written A,z(z) and Bug(¢'(z)) to indicate that
§ € Ty M. In the particular case where x € W*(K) NN N~ (N), both matrices are

upper triangular block matrices thanks to our definition of E* E* and E* ie.
Auo:Aus:Aos:Buo:Bus:Bos:OOHWU( )ﬂ./\fﬂgo (N)

However, on the whole open set N'N ' (N) this is not the case anymore’. Now, we
extend the hyperbolic estimates (20) on the unstable manifold of K. For every € > 0,
we define the set AV(g) of points y € NN~ (N) on which we have for all £ € T M,

[Awa(&a)] 2 (¥ = )l&ul,  1Bus(&)] 2 (¥ = 2)I&l,

[ Aoo(60)] > (1= &)|&ol, 1Boo(5)] > (1 —2)I&, | (24)
[Aoull < e, [Asull < e, | Asol| <,
[ Boull < ¢, | Baull < e, | Bsoll < e,
Auo = Aus = Aos = Buo = Bus = Bos = 0.
where ||.|| denotes the operator norm defined by:
Va8 e (0.5}, NAugli=  sup (elbell

IV 3

Note that the map A,z and the norm |.|| depend on the point y, but we will not
preciese the point y if everything is clear. For every ¢ > 0 and for every unrevisited

9t follows from the fact that in the general case (where E* and E, are both non trivial) any of
the extended distribution E* E* or E* is invariant by ®° on N, except on the stable and unstable
manifold W*/*(K) NN
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neighborhood V sufficiently close to K, we have V N W*(K) C N(g). Let first check
that the inclusions (23) hold on the unstable manifold of K for some & < de~*? as
soon as ¢ is sufficiently small. The result on the whole neighborhood will then follow

by continuity.
e First inclusion, on unstable cones C°. Let us fix 0 < d < 1, x € W*(K) N
NN ™ (N) and € € C%(z). Our goal is to find a parameter &' < de~*/2 such

that &' := ®L(¢) € C?(¢'(x)). The first step consists in computing |¢1[2 in order
to find a lower bound which essentially depends on |,|. Precisely, we have

2 ’AU’M€U|2 + lAS’U,é-S + AO’U4£0|21+2\<AUU§’UJ ASU&S + AOU§O>7

Vv Vv
>0 1

where the bracket and the norm are the one induced by the extended adapted
metric on the fiber. By Cauchy-Schwarz inequality and thanks to (24),we get

1112 = A&l Al = |Au&all An&ol = el Awéal? = SU& + &)
and therefore, for ¢ < % and thanks to our assumption § < 1, we obtain
Sl€.? > o(1 — 25)!Auu£u|2 — de(|&)7 + 1&1%)
> (1= 2e)(M? = 2)?8)? — de(|&[* + |&)
<1—%x@” (&I + &) — e (&l + 16 )
Ci(e

)& + 16 1%).-

The second inequality is obtained thanks to the estimate on A,, in (24) and the
third one follows from our choice of € € CS(z). Note that we implicitely show
the following estimate which will imply the exponential estimate (as we will see
later on):

(25)

[6a” > (1= 26)(eY? = £)® = de) |&u]? = Cu(e) &, (26)
since 6 < 1. Now, let us do a similar computation for the matrix B. This time,
we aim to find a lower bound for |&|? + |&,|*:

|§S|2 + ‘50’2 - |BSS£;|2 + ‘BSOQ + Booaﬂz
> |Bo&i” + | Boobh? +1Booka* + 2 (Buofs, Bookl) -
>0 J

Again by Cauchy-Schwarz inequality on J and using again estimates (24), we
deduce

9
> —|Buoksl[Buoos| > =5 (161 + [ Boos )
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Then, it gives
66”4 16]* > [Buss* + (1 = &) Book,|* — el
> (M2 — | P+ (L= )(1 — )6 — eléal? (27)
> [(1—e)* —e] (16" + &) = Ca(e) (& + &%)
Putting together equations (25) and (27), we deduce
0eul* > Ci(e)Cale) (1€ 1" + 1€,
Finally, we obtain &' = ®L(¢) € C¥'(o'(x)) for

B )
- Cl (5)02(8) ’

0'(e)

where the polynomial functions C and Cy (with respect to the variable €) satisfy
Ci(e) < et forevery 0 < e < % and

Ci(e) P e and Cy(e) J 1.

If we fix € sufficiently small so that ¢ be sufficiently small so that
Ci(e)Cy(e) > M2, Cy(e) > M2, (28)
then we get for every 0 < ¢ < 1 and for every 2 € N (e) the inclusion
' (Ca(w)) S CY (o' ()
for §'(¢) < de~*?, and we deduce from (26) the bound
€a? = M2l (29)

Second inclusion, on weak unstable cones C°,. Let us fix x € W*(K) N
NNt (N) and € € C_(x). By definition of the conical neighborhood, we now
only have 0(]€,]* + &%) > |£|>. The idea of the proof is exactly the same as for
the conical neighborhood CS. However, we won’t have an exponential estimate

because of the neutral direction Ej; Let us check the computations for this case.
First, we have

(€217 + 1621 = [Awubu + Asubs + Avulol® + | Asobs + Aol
> |Aubul® + [Asu€s + Aoubol® +2 (Auwuu, Asubs + Aoubo)
>0 I
[ Aols? ] Apolol? + 2 (Agols, Aoolo),
~—— —_——

=20 I
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Using Cauchy-Schwarz inequality on each term I; and I, we deduce
€ €
I >_Auuu2__ 02__ 52
1] > ~elAuwbal? — SI6f - Sle
€ €
I >__A0002__ 52-
1] >~ Aol - el
With e < § and thanks to the estimates (24),
|§1i|2 + |£g|2 > (1 - 25)|Auugu|2 + (1 - 5)|A0050|2 - 5|§O|2 - 25|€S|2
> (1— 25)(6>\/2 - €>|§u|2 +(1 - 8)2|§O|2 - 6|§0|2 - 25|€8|2
> [(1-26)(1 = &) — e] (|&ul* + &) — 2¢& .

Now, multiplying by 6 < 1 on both side of previous inequalities and using
§ € Cpol@), we get

O(€ul* +1601) = [(1 = 26)(1 — &) = Be] [&,[* =: Cs(e) & (30)

It remains to find a lower bound for |£|. This case is much simpler since we
have

6] = 1Bos&sl? = (2 = | = Cale)les (31)
Putting together equations (30) and (31), we get
O(|6ul” + 161%) = Cs(e)Cale)l€s .
Therefore, we have ¢! = ®L(¢) € C¥ (¢! (z)) for
)
~ Cy(e)Cale)’

where the polynomial functions C3 and Cy (w.r.t the variable ¢) satisfy |Cs(e)| <
1 for every 0 < & < 1 and Cj(¢) = 1 and Cy(¢) = e*. For ¢ sufficiently small
e— e—

so that

0'(e)

Cy3(e)Cy(e) > M2, (32)
we get for every 0 < 0 <1 and for every x € N(g) the inclusion
o' (Ch, (7)) C Clyl9' (2)),

with ¢’(¢) < de 2. It ends the proof of the inclusions along the unstable
manifolds.

Now, fix a value of ¢ > 0 sufficiently small so that (28) and (32) are verified. There

exists g9 > 0 such that VN W*(K) C N (g) hold for every unrevisited neighborhood V
contained in a gg-neighborhood of K. Let V be an unrevisited neighborhood contained
in a gg-neighborhood of K. Thanks to our choice of ¢, the inclusions (23) are verified
on VN W*(K) and we would like to extend them to ¥V N¢™ (V) as stated in (23).
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Recall that V N ¢™(V) converges uniformly to V N W*(K) as m — +oco in the sense
of Lemma 2.2. The remaining of the proof consists in extending the inclusions (23) by
continuity on ¥V N ¢™(V) for m large enough. Fix 0 < dp < 1. Let us define for every

r € pl(N)Np H(N) and every £ € S:M such that (&,,&,) # 0 and & # 0 the following

contraction rate )
|£s|2+|§o|2) (|§§|2+|£3|2>

He.8) = ( &P &P

The map I is continuous by definition. Moreover, for every z € W*(K) NV and for
every £ € CL(x) \ C%(x) there exists 6 > 0 such that dy < § < 1,

|€5|2 + ’§0|2 — 5
|&ul? ’

and our previous analysis on stability of conical neighborhoods allows to obtain
(xz,€) < e 2, (33)

Let us prove by contradiction that there exists ms, € N such that for every =z €

VN ™o (V) and for every & € Cl(z) \ C%(x),
D(z,6) < 3.

The conclusion will then follow as V N ¢™ (V) is a decreasing sequence of neighbor-
hoods. By contradiction, assume that for every m € N there exist z,, € V N ¢"™(V)
and &,, € Cl(z,,) \ C®(z,,) with (zyn,&n) € S*M such that T'(z,,,&,) > eV By
compactness of S*M, we can extract a subsequence (2, , &m, )r Which converges to an
element (2oo,8oc) € S*M. Since V N ™ (V) converges uniformly to V N W*(K) as
m — 400 in the sense of Lemma 2.2, we must have z,, € W*(K)NV. By continuity,
we also get £ € Cl(7no) \ C (o). Moreover, we deduce from (33) the inequality

[(Zoo, £50) < M2, However, by construction of the sequence (,,, &y )m and by conti-
nuity of I' on the set

| s:mn (c;(x) \cgo(x)) c U {eeTM g #0and (&,&) #0}
z€Y z€PL(N)Np~1(N)

for m sufficiently large, we must have I'(zo,¢s) > e M2 > e7*2 which gives the

expected contradiction. So, we have proved that for every 0 < d§y < 1, there exists
ms, € N such that for every z € ¥V N ™% (V), we have the inclusions

Vi <o <1, @ (Chx) \CP(x)) S CY (0 (2)), (34)
with ¢’ = de~*3. With a similar argument using the continuity of the map

112 1|12
A(.I,g) — ’65”5—;2'&0’ ’
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we can assume, up to choosing a larger constant ms,, that
O (C(2)) S CR (e () (35)

is verified on VN ™% (V) for &) = doe™/3. Finally, putting (34) and (35) together gives
the expected inclusions for the unstable cones. For the weak unstable cones, we can
proceed similarly using the following maps

- &2 -1 €12 _ €12
Tz, €) = (m) (m) and A(z,§) = m

Up to choosing a larger mg,, it ends the proof of ().

Exponential estimate (proof of (ii)). Applying (i) to 0 < §p = d < 1, we get the
existence of ms € N such that the inclusions (23) are verified on VN¢™# (V). Extending
(29) by continuity, we can find my € N such that for every z € V N ¢™°(V) and for
every £ € C%(x), we have

€l = eVleu .

Up to considering a larger mg, we can assume that ms > mg. The exponential estimate
follows by equivalence of the norms |£], := |£,| and |.| on the conical neighborhoods
Co(x) and C°(p'(x)). Indeed, we have &' € C(*(z)) thanks to our previous analysis
and therefore

B (O = e = E
T = —
’ — 146

for every § < 6; := min(1,e*** — 1) and every z € V N ™5 (V).

€17 > Mg

OJ

The following corollary states in a quantitative manner that, if the trajectory of a
point (x,&) stays for a long time near a basic set, then the fiber part of ®'(z,£) gets

attracted to the E; or E;  distribution:

Corollary 7.1. Let K be a basic set and let N be the open neighborhood appearing in
(63). There exists €y > 0 such that, for every unrevisited neighborhood ¥V C ¢*(N) N
0 Y (N) contained in an q-neighborhood of K, the following hold:

o For every 0 < &' < 6§ <1, one can find mg > 0 such that, for every m > my
and for every x € o >™(V) NV, one has

£ ¢ Clops(a) = O (2,€) € Cy (0™ ().

so/s u/uo

o For every 0 < § < 1, there exists C' > 0, my € N such that, for every m > my,
for every x € o~ (V)NV and for every & € T*M such that £ ¢ C° (x), we have
the inequality

[D*™(&)] > Ce™[¢], (36)
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with X\ being the constant appearing in the definition (19).

The idea of the proof is the following. Thanks to Lemma 7.3, we know that the
conical neighborhoods are ®!-stable near the unstable manifold of the basic set, so our
goal is to use the different unrevisited neighborhoods represented in figure 6 to show
that we can iterate the lemma.

Proof of the corollary. Fix 0 < §’ < 0 < 1 and let V be some unrevisited eg-neighborhood
of K contained in ¢'(N) N ¢~ (N) so that we can apply Lemma 7.3 for the flows '
and ¢! (with gq given by the lemma). Doing so for the flows ¢’ and ¢!, we obtain the
existence of an integer mg as in the statement of the lemma (we take dy := ¢’ and we
assume that mg is the same integer obtained for ¢' and ¢~ *). Now, fix mg > mgs which
will be chosen sufficiently large later on. For all m > mg and all z € V N 2"(V), we
have the inclusions

Vk € [0,mo],  ¢*(2) € (V)N V) CVNpT™(V)
and

Vk € [mo.2m], ¢*(x) € " (V) N2 EYV) C ™ (V)N Y,
see figure 6. The remaining of the proof consists in interating 2m times the lemma for
(z,€) € T*M such that z € VN ¢~?™(V) with m > mg and 5 ¢ CSO/S( x): mg times for
the backward flow p~* when the orbit of z belongs to VN =™ (V) and 2m — mq times
for ¢ when the orbit of z goes in ™ (V) N V. For m sufficiently large, we will get the

result. Let us consider (z,€) as above. Two analysis are needed: first for 0 < k < my
and then for my < k < 2m.

e First, since ¢*(z) € VN ™ (V) Cc VN ™ (V) forall 0 < k <my—1, a
straight application of the lemma for the flow ¢! instead of ¢’ gives us

£¢Co () = O™ (x,6) & Crf (g™ (x))
where 6,,, = min(e*™/34,1). So, by choosing mg € N large enough so that
e—m())\/?) S 5/7
we get in particular that d,,, = 1,
O"0(x,¢) ¢ Cso/s( mo(z)) and thus ™ (z, &) € Cl/ua( "0(z)).

e For every mg < k < 2m — 1, we can apply the lemma'® for the flow ¢ and it
gives

k mq k—mg+1

PHz) eVnem(V), oMz, ) el (0" (@) = & (z,8) €C, (0" (2)),

ONote that we use here the uniformity in § € [¢,1] stated in Lemma 7.3.
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N2m—m0

with = e=3. Finally, we obtain ®*"(z,¢) € C (*™(x)). Thanks to our
choice of mg, we have p2m=0 < "0 = ¢=moA3 < §' Tt gives the first point.

u/uo

To prove the exponential estimate (36), we need to introduce first the constant 0 <
91 < 1 given by the point (i7) of Lemma 7.3. From the above analysis, there exists an
integer m; 2 myg such that, for every m > my and for every m; < k < 2m, we have
Pk (x,€) € Cu/uo( *(z)). The result is a direct application of the point (7) of Lemma
7.3 and the constant C' is obtained by continuity of ®™. 0

7.3. Proof of proposition 3.2: compactness. We are now in position to prove
the compactness of ¥,/,. The compactness of ¥/, can be proved similarly if we
exchange o' by ¢!, Let us assume the indices to be ordered in the sense of §2.5.2. Let
((Zm, &m) Jmen be a sequence of elements in 3, /,,. Up to extraction of a subsequence, we
can assume that there exists an integer 1 < j < N such that every point x,, belongs to
W#(K;). Up to another extraction, we can suppose that ((,,&n))m has a limit in S*M
that we denote by (Zs,&s0) € S*M. Our goal will be to prove that (x4, &) belongs to
Yiujuo- First of all, we know from our assumption on z,, that the limit x,. must lie in
the closure of the set W*(K), i.c. 2o € W3(K;). Since W3(K;) = Uijo, 5o <16 W2 (Ko),
we can find some integer j, < j such that z,, € W*(Kj,). Now, let us assume by
contradiction that (Toc, &) & Lu/uo-

To obtain a contradiction, we split the analysis in three steps. First, when j # jo,
we will construct by induction a family of integers Jo < Jj1 < --- < j¢=7j such that for
each 1 < k < ¢ one can find an element (:coo B ) with %) e We(K;,) N W™K, )

(k) (k)>

and a sequence (zm’,&m’) = P+ (zp, &), for some parameter 7, > 0 verifying

Tmk+1 — Tk m_>—+>oo +00, which converges to (xé’é),gé’é)) as m tends to infinity. In a

second part, we will apply our previous analysis near basic sets from Corollary 7.1 to
prove that if (mgﬁ),fg)) does not belong to ¥, /.., then we have (xé’é“), C(Jéﬂ)) € Yso/s
which is disjoint to 3,/,, thanks to the transversality assumption (7). Finally, we will
obtain the expected contradiction.

First, let us see how the first two steps yield the contradiction. At the end of the
induction, we will get (22, ¢9) € Yiso/s With 29 e W*(K;) as well as 2\ e W*(K;)

for every m € N. However , we also have the convergence

Eu/uo = (Igﬁ)af%)) = &I)Tm’é (:L‘mafm) — (xg))aféﬁ)) € Eso/sa
N—— M—>+00

EEu/uo
which is in contradiction with the continuity of 3, /., on WZ(Kj) for ¢ < 1. Indeed, if
29 e W#(K;) and if € > 0 is a small parameter (that will be fixed later on), then there
exists T > 0 (which depends on ¢) such that ¢7(z%) € W2(K;). Since 2 e We(K;)
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F1GURE 12. Tllustration of some element used in the proof

and the sequence (xff;))meN converges to xg? as m tends to +o0o, we can find an integer

mo > 0 such that ¢”(z,) € WE(K;) for every m > my. Now, if we choose ¢ small
enough in order to have the continuity of E} and E} on W2(Kj), then we find that

(a:((f;) , é?) € Yu/uo- Therefore, we get the contradiction

(:Eg;)a 5&?) € Eu/uo N Z]so/sa

which is empty from the transversality assumption (7).

Step 1: construction of the sequence by induction. Since j, has already been
defined, we just have to set (xé?,gég)) = (Zoo, &) to end the base case. Now, let
us assume the integers j; < jo < -+ < jx(< j), the elements of the unitary cotangent
bundle (:cg?, 5&1;)), cee (:cgé), fg’é)) and the constants 7,1, - - - , 7ok t0 be constructed as in
the above discussion. Our goal is to define a sequence (a:ﬁ,’fﬂ), frlfﬂ)) = Ok (1, ),
the constants 7,, y+1 > 0 such that 7,, y41 — T tends to +oo as m goes to +oo and to

exhibit a new accumulation point (:cgéﬂ), é’é“)) with 25 ¢ W (K;,) NW?3(Kj,,,).
Definition of 7,,;41: let us consider an unrevisited neighborhood V of K so
that V N = Kj, and sufficiently small to be in the range of application of Corol-

lary 7.1. Recall that 2% belongs to W*(Kj,), so there exists ' > 0 such that
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%) (CIZOIZ) e W*(Kj,)NV. Since every :zzgk),xék), o2 are in W#(K;) and the
sequence converges to ¥ asm — ~+00, there exists an integer mgy > 0 such that for
every m > mg we have o7 (zF)) € W*(K ;)NV. To lighten notations, let us denote by y,
the point ¢7 (z{%)) and by n,, the cotangent vector r (DT (zF)~1)T(¢¥)) € Sy M for
every m € NU {oo}. For every m > my, we can define the exit time of the unrevisited
set V for the point y,, as follows:

=inf{p €N, ¢"(yn) €V} — 1.

It is well defined by definition of ¥, and it depends on k. Note that 7, is finite since

ym ¢ W?*(Kj,) thanks to the unrevisited neighborhood’s property (P2) of V. Also,

the convergence y,, —+> Yoo € W*(K,) implies that 7, goes to +00 when m tends
m——+00

to +0o. Now, we define y&) = ©™ (ym) and Sy = k(D™ (Y)Y " (nm)). Up to

extraction, we can assume that (yﬁ), 77,(,1)) converges to an element (yg), ng)) € S*M by

compactness of S*M. Let us define (x (kD) ,(qfﬂ)) = (yg),ng)) = Tkt AT (g e
for every m € NU {oo} and therefore

Tmkt+1 °= T + T + 1 > 0.

Thanks to Lemmas 2.2 and 2.3, the point 4% belongs to Wu(K; )NV =W4K,;)NV.
Indeed, it follows from the convergence y%) — yg) together with the fact that

m——+00

yh) € o™ (V) NV and 7, T, oo Moreover, we have ©'(yt)) ¢ V and thus

¢ K . because ¢ (ym ) € V by definition. It ends the induction step. Note that the
algorlthm stops once we have reached Kj, i.e. we have defined jy < j; <--- < jy = J.
Step 2: the local analysis near a basic set. For every 0 < k < E, we will prove
the implication

(xg:))> ) ¢ by u/uo and Tm,k+1 — Tm,k — +00 =— ( (L) f(k—H ) S E50/5' (37)

m—-+00

Let us fix 0 < k < £. To simplify, we will use the same notations as the one used in

the previous induction. By definition, we have (:céf;“), é’éﬂ)) € Y5 if and only if

s e E*/ua(yoo ). Since yo, € W*(K;, )NV, since 25 = e WH(K; )NV \ e (V)
and since the conical neighborhoods C? are well-defined on V, we have by construction

:o/s<y00) = E:o/s<y00) and E*/uo<yc(>o)) - Z/uo(yc(x;))

Assume that 9. ¢ E7,, (yo) and let us prove that ns belongs to E* /uo(yoo)) or equiv-
alently: that for any ¢’ > 0, we have

) € Cl(ud). (38)



A MORSE COMPLEX FOR AXIOM A FLOWS 53

Fix 0’ > 0. By hypothesis, we can find a small constant 6 > 0 such that

Moo ¢ Cgo/s(y00>

Since Ty gt1 — Tmre —> 400, we can apply Corollary 7.1 which gives (38) and thus

m——+00
($(012+1), goﬂ_l)) S E50/5-

Conclusion. We started with a point (a:é?, (()2)) ¢ Xy /uo- Thanks to (37), we have
(a;f;,), 5&?) € Y0/s Which is disjoint to X/, according to the transversality assumption.

Therefore, we can iterate (37) by induction to finally get (mé@,ﬁé@) € Y05 and this
concludes the proof after application of the third step to end up the induction. O

Let us state a corollary which will be used to construct the map f which appears in
the definition of the escape function - see Proposition 3.4.

Corollary 7.2. For every € > 0, there exists € > 0 such that, for every point x which
is €' -close to K,

dS*M </€< Z/uo(x)) ’ U K“( ':/uo(z))) <Eé.
zeK
where the distance should be understood as a distance between compact subset of S*M

associated with the geodesic distance for the Sasaki metric on S*M.

Proof. By contradiction, assume that there exists ¢ > 0 such that for every m € N*,
there exist z,, and &, € K (E* /uo(:z:m)) which verify

u

dy(xm, K) <1/m and dgy ((mm,fm), U K ( ::/uo(z))) > e. (39)

By compactness of S*M, we can extract a converging subsequence ((Z,, , &m,,))r which
converges to an element (z..,&x) € S*M as k — 4o0o0. Taking the limit in the in-

equalities (39) implies that z,, € K and & ¢ R(E:/uo(a:oo)) However, the set
Es/so =R <E*

- /m) is a compact set thanks to the compactness Proposition 3.2. There-

fore, we must have (2,&x) € Xs/50 Or equivalently . € K (E*

u/uo

(:1700)) which gives
the contradiction.

7.4. The compact sets are attracting and repelling sets for the Hamiltonian
flow. Now that we have proved the compactness of ¥,/ and ¥/, it remains to
show that (X,/5, Xuo/u) defines an attractor-repeller couple. Equivalently, we have to
prove Lemmas 3.1 and 3.2. In the upcoming argument, we generalize the convergence
presented in figure 13 to Axiom A flows satisfying the transversality assumption (6).
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Fa(' (g Ca(2)
T g Py ¢ P (%)
t=0 t>1 t = +oo

FiGUrE 13. Convergence of the dual unstable distribution. The point z denotes an
hyperbolic fixed point and the point x belongs to the stable manifold of z.

The proof is very similar to the one given in [24, lemma 2.10 assertion 4, p.13| except
we authorize our phase point £ to have a neutral component, i.e. £(V') can be non zero.

Proof of Lemma 3.1. Let us take (x,&) € S*M such that (z,§) ¢ .0/, and let us prove
that &Dt(x,{) tends to X5, as ¢ — +00. The case ¢ — —o0 is obtained by applying
the result to the vector field —V. From the spectral decomposition of M (Lemma 2.1),
we have M = UY W*(K;) and consequently there exists a unique integer 1 < i < N
such that x € W*(K;). Let V be an unrevisited neighborhood of K; sufficiently small
to be in the range of application of Corollary 7.1. Also, there exists T" > 0 such that
o' (x) € W (K;) NV for every t > T. Now, let us recall that for every y € W*(K;) NV
we have B B
E(y) = Ei(y) and  Eg(y) = E.(y)
by construction. Since ¥,y is Cft—invariant, the condition (x,§) ¢ ¥,/ implies that

P'(z,€) ¢ Yuofu = K(EL,),) for every t > 0. Therefore, there exists § > 0 such that
®T(2,€) ¢ €% and Corollary 7.1 implies that

so/s

ds-nr (5%9:,&), U n(czi'/uxz))) — 0, V>0,

t——+oo
zeK;

or equivalently that

dseas (&S'f(x,g), U :/uo<z>>> = 0.

zeK;
It ends the proof. O
7.5. Proof of Lemma 3.2: invariant neighborhoods for the Hamiltonian flow.

Now, we need to find invariant neighborhoods of ¥/, and X,,/,, i.e. we have to prove
Lemma 3.2. The idea of the proof follows from two remarks:
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e In the case where K is an attractor, we can construct a d!-stable neighborhood
of {(x,£) € Es/s0 : @ € K} as follows: if V is an unrevisited neighborhood of K

small in the sense that the conical neighborhood C? are well-defined on V, then
for all 0 < § <1 the sets

U K (Cﬁ(m)) and U K (Cia(x))
zeV zeV
are ®'-stable neighborhoods of {(z,£) € X, : # € K} and {(z,£) € Sy : © €
K}.
e In the gerenal case, thanks to Lemma 7.3 we can note that if V) is an unrevisited
neighborhood of K (to be in the setting of this lemma), then the set

U k (Cg/uo<x))

€™ (V)NY

defines an unrevisited neighborhood of Uxewu( L ( E*

u/uo(x)> for every 0 <
0 <1 and every m > 1.

Our strategy will be to construct invariant neighborhoods 3, /4, and /4, by induc-
tion similarly to what we did when proving Lemma 6.3 for the flow ¢’ on M. Indeed,
in this lemma, we saw that the existence of unrevisited neighborhoods is deeply related
to the existence of filtrations. In the upcoming proof, we contruct a filtration'! of open
set for the Hamiltonian flow ®' starting from the filtration on the base.

Proof of Lemma 5.2. Let us only treat the case of X,/,,, as the other cases can again
be treating similarly by reversing the sense of time. Recall that, thanks to Lemma 6.3,
we are given a filtration Oj+ of the manifold M which is arbitrarly close to the unstable
manifolds. Using a total order relation on the indices of the basic sets Kj;, we will

proceed by induction to construct a filtration for the diffeomorphism P!

U* e-close to U K (Ey o)) - (40)

g u
2E€Ups vy WH(Kk)

For j = 1, we define L{f/so as a neighborhood of the attractor |, # (E;/uo(x)> by
fixing
= U R ().
z€p™(VN)NVN
where Vy denotes an unrevisited neighborhood of the attractor Ky sufficiently small to
be in the range of application of Corollary 7.1 and where m is an integer. By choosing &

HEven if the definition of filtration was given for the flow ¢!, it can be adapted for the Hamiltonian
without too much effort, see Shub [62].
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small enough and then m sufficiently large, i.e m > ms, then the conical neighborhoods
and U* are ®'-stable and we can assume that

ds s <Z/{f/so7 U Es/so(l’)> < €.

zeKN

Note that this construction only uses the fact that Ky is an attractor.
Now, let us deal with the induction step and assume that we can find for every ¢ > 0

some open sets Z/{; /50 satisfying (40) for any j < i. Fix ¢ > 0. We want to construct
U,

First, consider an unrevisited neighborhood V of K := Ky_;,; small enough so that

we can apply Corollary 7.1. As in the proof of Lemma 6.3, we define the annulus

A(m) =V Nne" M)\ (¢ V) Ne™ (V).
We recall that it satisfies the following properties (16), (17): A(m) # 0, A(m) N
W*K) = A(0) N W*(K) for every integer m > 0 and V N ¢™(V) (resp. A(m))
converges uniformly to V N W*(K) (resp. A(0) N W*(K)) in the sense of Lemma 2.2.

By the compactness Proposition 3.2 and thanks to Lemma 3.1, there exists an integer
mo > 0 such that:

Ve |J  w(E). o™ euly. (41)

€ A0)NW(K)

Indeed, the fact that (41) holds ponctually for each (z,&) follows from and a direct
application of Lemmas 6.2 and 3.1. Furthermore, the constant mg can be chosen uni-
formly using the fact that ¥/, and X/, are disjoint compact sets. By continuity and

since Z/{f_/ 1” is an open set, we can extend (41) on small conical neighborhoods: there
exists dp > 0 such that

Ve U mChe) e euly

€ A0)NWH(K)
Let us define for all m > 0 and all 0 < § < 1 the set

W(m7 5) = U K(Ci/uo(x))

z€VNE™ (V)
According to Lemmas 2.2 and 7.3, for every § > 0 there exists an integer m(d) > 0

such that for all m > m(¢d) the open set W(m, d) is an arbitrarily small (as m — +oo
and ¢ — 0) unrevisited neighborhood of U,y (k) & (E*/uo(x)> Actually, we have

u

something better. For every m > m(d), the conical neighborhood CS Juo 18 Pl-stable on
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VY N e™(V) in the sense that for all £ € N,
(,€) € W(m, ), ¢'(z) € VN ™(V) = Yk € [0,4], ®*(x,6) € W(m,5).  (42)

From (16) as mentionned before, A(m) converges to A(0) NW*(K) as m — 400, so
for every § < do, there exists an integer m(0) > m(4) such that for all m > m(J),

Ve |J wClhole), @8 euly. (43)
zE€A(m)
Therefore, we define for all § < §y and all m > m(d) the set
mo—1

U-S/50<m7 5) — uzi/‘;o U U &)k(w(ma 5))
k=0

()

It is ®'-stable from (43). Indeed, let us consider (y,7) € ®*(W(m,d)) for some 0 <

k < mg — 1. There exists (x,£) € W(m, ) such that (y,n) = ®*(z,£). We have two
cases to deal with.

e 15t case: z € (¢"(V)NV)\ (¢™ (V)N 1 (V) = A(m). Since z € "(V) NV
we get pP(z) € P(™(V) NV) for every p € [0,mg — 1] and the statement
(18) together with (42) gives us ®™(z,¢) € U",. Therefore, we deduce that
P (x,£) € U™ (m, §) for all p € N.

e 27 case: z € ¢™(V) N '(V). Then, we have

plx) €™ V)NV C V)NV
and thanks to (42) we get that ®!(z,&) € W(m,8) C L{f/so(m,5). Fix d > 0
such that ¢%(z) € A(m(d)). A direct application of (42) gives that ®%(z,¢) €
W(m, §) and the first case applied to ®%(z, £) implies that ®(z, &) € U™ (m, §)
for all p € N.

Finally, choosing ¢ small enough and then m large enough, we can assume L{is/ **(m,9)

to be a e-neighborhood of Uerj>N—iWu(Kj) K <E;/uo(x)> It ends the induction and the
proof.

Note that at the end of the induction (which finishes), we constructed an arbitrarily
small neighborhood Z/{]‘i,/so of X /0. O

Remark 12. We can note that the set Llfv/so constructed in the previous proof defines
an arbitrarily small neighborhood of ¥/, which is stable by o1

7.6. Proof of Proposition 3.3: energy function for the Hamiltonian flow.
Thanks to Proposition 3.2, Lemmas 3.1 and 3.2, we deduce that (3,,, ¥s) and (2,, Xs,)

define attractor-repeller couples. Therefore, a straight application of Lemma 6.1 gives
the result.
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8. CONSTRUCTION OF THE ESCAPE FUNCTION: PROOF OF PROPOSITION 3.4.

Let us begin with some candidate for the escape function that depends on two aux-
iliary functions. We will see how the properties of the maps F and f will be related to
the ones of the escape function. First of all, let us assume that the maps F and f have
been defined properly and recall the expression of the escape function:

Gm(z,§) = m(z,§)log 1+ f(z,£)?,

with m(z,§) = FE (x, é—|> x(J€]?). To lighten notations, we will use the japanese bracket

(r) := /T + 72 and the shortcut ¢ for é—| Now, let us compute Xy (G,,), for ||£]| > 1

Xp (G(,€)) = Xu(E(,€)) log(f (w,€)) + E(w,€) X (log(f(x,€)))

Our goal is to make sure that this quantity is nonpositive and is negative outside a
conical neighborhood of E.
Definition of E. Fix ¢ > 0. We define £ € C*(S*M) as follows:

E(x,€) = —E(x) + 5+ (u—n0) By (z,8) + (no — s) E_(x,§)

where E € C*(M) denotes the energy function on the basis given by Proposition

3.1 for some parameter ¢ > 0 (which will be fixed later on) and Ay = 0,--- ,\; =
Z?J(\?:ll)), -+, Ay = 5. Thus, the map E(x) has value in the interval [0, %] and there

exists a family N; of ¢’-neighborhoods of K; and a constant 79 > 0 (which only depends
on ¢') such that'?

N
: o
_ﬁv(E) < — 1I<rjl'1§nN()\j — )\jfl)ﬁo < —mﬁo, on M \ Z:L-JIM

Moreover, from Proposition 3.3, there exist smooth energy functions Fy € C*(S*M, [0, 1]),
small neighborhoods W#/%° of ¥ /50> wolu of Yiuo/u and a constant > 0 such that:

N
Lg,Er>00nS*"Mand Lg, EL >non S™M\ | |wWuw?),

=1

N
Lz E->0o0nS"Mand Lz FE_>nonS*M\ |_|(W“ U wWw#).

=1

2We make the assumption that N > 2. The case N = 1 corresponds to the Anosov case.
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K(E7)
WSO
Wu
/{( K(E *
’ R(E7)
FIGURE 14. Illustration of some elements used in the proof. Inspired from the picture

of [31, Fig. 6].

We also have the estimates £y > 1 —con W*, E, <eon W E_>1—¢ on W
and F_ < e on W*". In order to use these estimates together, let us introduce new open
sets in S*M:

Ns = Ws m WSO, N’o = Wso ﬂ Vvuo7 Nu = Wuo m Wu

Let us introduce another notation which will be useful: for any open set U in S*M, we
denote by C(U) the conical neighborhood® of U in T*M \ 0j;. In particular, the sets
C(N?®), C(N?) and C(N*) define conical neighborhoods of Uyep Ef (), Uperr EX(2)
and U, F () respectively (outside the null section).

e On NV°*, we have
E(z,§) < —E(z)+s+ (u—no)(1 —¢) + (no — s)(1 —¢)
<0
<se+u(l—e) < g,

for € small enough.
e On N“, we obtain

E(z,§) > —E(x)+s+ (u—ng)e + (ng — s)e
——
>—s/4
> s(1 1) tue > 2
> s e— ) tue=,
for € small enough.

Bdefined by C(U) = {(x,\¢) € T*M, A € R*, (,£) € U}.
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e On N, we obtain (again for £ small enough)
% < —%mou — &) +ue < B(x,€) < np(1 — €) + s¢ < np.

We now explain how to construct the function f following the strategy of [31, 26].
We want to construct a function f € C°(T*M) which is a homogeneous polynomial of
degree 1 for €] > 1, so that Lx,,(f) is a bounded function. Since we want Lx,,(G,,) to
be negative everywhere, we need to make sure that our definition of f gives the right sign
in the term E.Lx, (log(f)). We will also choose f such that Lx,, (f) vanishes near E*.
Moreover, we set f(x,€) = x(|€]*)|¢]f(z,€) with x as before and with f € C>(S*M)
that is to be define. We can already check that Lx,, (log(f)) is a bounded function on
T*M for |£]| > 1. Take an arbitrary basic set K.

e On U,k {(2,6) € N*}, we define the map f by

f(,¢€) ::/0 O (2, €)|dt.

Thanks to the hyperbolicity of ¢! on the basic set K;, we have for T sufficiently
large

Ly (F)(@,6) = |07 (2,6)| — €] > CTIg| - [¢] > 2[¢].

Also, f is a homogeneous polynomial of degree 1, so we can find a constant
¢ > 0 such that 0 < ¢ '[¢] < f(2,£) < c[§| on N*. For [{| > 1, we get

Lxu(f) = XUEP)Lxy(f) = Lxu(f) = 2cl€] = 2] = 2f. Therefore, there
exists a universal constant v > 0 such that
f
_EXH (f ) >

‘CXH (1Og<f>) = <f>2
o On U, {(2,¢) € N}, we define similarly

L _>5>0. (44)

T
fa.) = [ 10w lar
0
With the same remark, up to reducing the constant v, we obtain

Lx, (log(f)) < —v <0, (45)

as soon as |£| > 1.
e We extend the bound (44), (45) by continuity on a neighborhood of K;. Pre-
cisely, there exists 9 > 0 such that for every point (z, &) € S*M which is g¢-close

t0 User {(2,6) € N} (resp. U,ex {(2.€) € A™}), we have

Ly, (log(f)) = 3 >0 (resp. L, (log(f)) < 2 <0). (46)
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If we choose ¢ sufficiently small then we can assume that ¢ < 3. Now, from
Corollary 7.2, there exists ¢/ > 0 (now ¢’ is fixed) such that for every x such
that d,(z, K;) < ¢ we have

dg= s </<c( ;/S(x)), U /i( Z/s(z))> <é&g—e.

zeK;

Thus, we deduce

dg+ 1 U {(z,8) e N*/"} | U K (Eyu(2) | <eo

dg(z,K;)<e’ z€EK;

and that (46) hold on Uy, (, x,)<e {(z,€) € N*/*}. In particular, since A} is an
e’-neighborhood of K, the inequalities (46) are verified on |, {(z,€) € Ny
o On U cn {(2,6) € N7}, we fix f(x,€) = |€(V(x))|. This ensures that

Lx,(log(f)) = 0.

e On U cppn {(2,6) € S* M\ (N UN°UN")} and on Usguin; SeM, we let f
take arbitrary positive values on S*M.

It now remains to show that G,, has the expected decaying properties (namely points
(2) and (3)) of Proposition 3.4.

Decaying estimates. To compute the derivative of the map F along the flow Pt
we will need at some point the next relation:

,C)ZHE = —Ev(E) + (U — Tlo)ﬁ)’zHE_i_ + (n() — S)‘CXHE—

and we can already see that it is nonpositive everywhere. For |{| > 1, we can estimate
the quantity Lx, G, in different directions.

e On N*:=C (U {(z,6) € N*}), we get
Lx,Gm =Lz, (B)log(f)+ E(x,€) Lx, (log(f))
M~ M —

<0 >0 <u/2 >v/2
Y
e On N :=C (Useon, {(z.6) € N}), we get
LxyGm = Lz, (E)log(f) + E(w,&) Lx,, (log(f))
M~ M —

<0 >0 >s/4 <—v/2

Y
< ——=s.
8
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e On N°:=C (Usen, {(2,6) € N°}), we obtain Lx, G, = Lz, (E)log(f) <O0.

e On C (U.eun {(2,6) € S*M\ (N*UN°UN™)}). Or equivalently, for z €
Ujicien Ni with (z,8) ¢ COV°UW") or (z,€) ¢ C(OV°* UW"). Since E and
Xy (log(f)) are bounded and f is 1-homogeneous w.r.t &, there exist constants
C1,Cy > 0 such that for all || > 1,

Lxy(Gm) = Lz, (E)log([]Ch) + Cs.

Moreover, according to the construction of E, one can find a positive constant
n > 0 such that ,CXH(E)(x,f) < —n < 0. Therefore, there exists a positive
radius R > 0 such that for every (z,§) € T*M \ (C(N*) UC(N°)UC(N™))
with z € ;o5 N and |{] > R, we have

Lo, (G) < —% min(s, [u]). (47)

Therefore, we define Cy,, := § min(s, |ul).
e Outside a small neighborhood of the nonwandering set, i.e. for z € M\ (UYL, \}).

This time we have L5 (E) < —%m < 0. So, using a similar argument than
the previous point, we deduce that equation (47) still holds far away from the
null section. O

APPENDIX A. HYPERBOLIC SETS

In this appendix, we recall the definition of a hyperbolic set.

Definition A.1. A ¢'-invariant compact set K is said to be hyperbolic for the flow
o' on M if
e For each = € K, we have the following decomposition

T.M = Eu(z) ® Es(x) ® Eo() (48)

where Ey(x) = RV (z) and FEy (resp. FE,) is called the stable (resp. unstable)
distribution.
e The decomposition (48) is invariant by the flow ¢

Vo € K, (D:¢")(Eu(r)) = Eu(¢'(2)) and  (Dop')(Es(2)) = E(¢'())

e There are constants C' > 0 and A > 0 such that for every x € K and for every
vVt > 0, the following inequalities are verified

‘D:rgpt(vs)‘g < Cei)\tlvs‘ga Yus € ES(Q})

’ 49
Dop(@woly < Ce vy, Voo € Eula). (49)
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When K is reduced to a singleton {z}, we must have V(z) = 0 and thus E,(z) = {0}.
In that case, we say that z is a hyperbolic fixed point. When the whole manifold is a
hyperbolic compact set on which the vector field V' never vanishes, the flow is said to
be Anosov. It was first introduced by D. Anosov in [1] and this formal definition of
hyperbolicity was motivated by the properties of the geodesic flow on negatively curved
manifolds. Another famous example of Anosov flow is given by the suspension of an
Anosov diffeomorphism. The notion of hyperbolicity was later extended by Smale who
defined the notion of Axiom A flows which are at the heart of this article. There are
many other examples of hyperbolic sets and we refer the reader to [46] and [53| for a
comprehensive study of hyperbolic dynamics. We also refer to [23] for the case of flows.

Remark 13. e The definition of hyperbolicity does not depend on the continuous metric
g on M. Indeed, if ¢’ denotes another smooth metric then, by compactness of M, ¢
is equivalent to g and (49) still holds for some constant C’ instead of C.

e The distributions E, and E, are only Holder-continuous in general. Let d,(z) and
ds(z) be the dimensions of F,(z) and F4(x) at any point x € K. The maps d; and
d, do not depend on x € K and E, (resp. E;) define a Holder-continuous section of

the Grassmann bundle G, ,, (resp. Gg, ) of vector subspaces of dimension d,, (resp.
ds).

APPENDIX B. PROOF OF DE RHAM’S THEOREM

As we shall see, a short proof consists in using the fact that eigenvectors of Hodge-De
Rham Laplace operators A®) = (d + d*)? acting on L?>(M; A*T*M ® C) are smooth by
elliptic regularity. Let us only prove the first point. A proof of the second point can be
found in [61, p. 355]. If we denote by 7y the spectral projector onto the eigeinspace of
the eigenvalue 0, then we have for all 0 <k <n and all u € H}"

u = mo(u) + (Id —mp) ()
= mo(u) + Ao A o (Id —mp) () (50)
=mo(u) +do R(u) + Rod(u).
Here, R denotes the homotopic operator defined by R : u € H* — d* o A™' o
(Id —mo)(u) € d* (H*?) < HPY! where we used that A~' o (Id—m) is a pseudo-
differential operator of order —2. The last equality is obtained using commutativity of

d with A= and 7y (which follows from the commutativity of d and A). Now, fix an
element u € H}* such that du = 0. We deduce from (50) the identity

u = mo(u) +do R(u).

By setting w := mo(u) € QF(M;C) which is indeed smooth by smoothness of the
eigenvectors of A®) we obtain the result.
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