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Abstract

Consider the extended hull of a weak model set together with its natural shift action. Equip

the extended hull with the Mirsky measure, which is a certain natural pattern frequency measure.

It is known that the extended hull is a measure-theoretic factor of some group rotation, which is

called the underlying torus. Among other results, in the article Periods and factors of weak model

sets we showed that the extended hull is isomorphic to a factor group of the torus, where certain

periods of the window of the weak model set have been factored out. This was proved for weak

model sets having a compact window. In this note, we argue that the same results hold for arbitrary

measurable and relatively compact windows. Our arguments crucially rely on Moody’s work on

uniform distribution in model sets. We also discuss implications for the diffraction of such weak

model sets and discuss a new class of examples which are generic for the Mirsky measure.

1 The result

Throughout this article, we will adopt the setting of [12, 13]. For the statement of our result to be

self-contained, we briefly recall the main notation. Fix locally compact second countable abelian

groups G,H with Haar measures mG,mH , and consider a co-compact lattice L in G × H, that

projects injectively to G and densely to H. A window is a measurable relatively compact set W ⊆

H. By the so-called cut-and-project construction, these ingredients produce a weak model set. Let

us describe this using point measures instead of sets. Consider the compact quotient group X̃ =

(G × H)/L, which is sometimes called the torus. (The torus is denoted by X̂ in [13]. We changed

notation from hat into tilde in order not to get into conflict with the group dual and the Fourier

transform.) Fix x̃ = x + L ∈ X̃. The cut step yields the configuration νW(x̃) =
∑

y∈(x+L)∩(G×W) δy,

where δy puts a unit mass at y ∈ G × H. The projection step maps the configuration νW(x̃) to

G, using the canonical projection πG : G × H → G. This gives rise to a point measure νG

W
(x̃) =

(πG

∗ ◦ νW)(x̃), which has uniformly discrete support. The set ΛW (x̃) = supp(νG

W
(x̃)) is called a weak

model set, and we sometimes abbreviate ΛW = supp(νG

W
(0̃)). The vague closure of νG

W
(X̃) in the

space of regular Borel measures on G is called the extended hull MG

W
. The natural translation

action T on G, given by group addition Tgg′ = g + g′, induces a translation action T̃ on X̃ by

T̃g x̃ = (g, 0) + x̃ and an action S on MG

W
by (S gν)(A) = ν(T−1

g A). Let us denote by mX̃ the

normalised Haar measure on X̃. Since νG

W
is a measurable mapping, (MG

W
, S ) carries a natural

ergodic probability measure QG

W
= mX̃ ◦ (νG

W
)−1, the so-called Mirsky measure.

We have the following new results for the Mirsky measure on the extended hull. These gener-

alise Theorems B1 and B2 from [13], which were formulated for measurable, relatively compact

windows W ⊆ H that are compact modulo 0 [13, Def. 3.5], i.e., there exist a compact set K and set
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N of zero Haar measure such that W = K△N. For the first result, recall that W is Haar aperiodic if

mH((h+W)△W) = 0 implies h = 0. In Euclidean space, any nonempty window is Haar aperiodic.

Theorem B1’. Suppose that W is measurable, relatively compact and Haar aperiodic. Then

(MG

W
,QG

W
, S ) is measure-theoretically isomorphic to (X̃,mX̃ , T̃ ).

For the general case, consider the group HHaar
W

= {h ∈ H : mH((h + W)△W) = 0} of Haar

periods of W. WriteHHaar
W
= {0} × HHaar

W
for the canonical embedding of HHaar

W
into G × H.

Theorem B2’. Suppose that W is measurable, relatively compact and mH(W) > 0. Let X̃′ =

X̃/πX̃(HHaar
W

) with induced G-action T̃ ′ and Haar measure mX̃′ . Then (MG

W
,QG

W
, S ) is measure-

theoretically isomorphic to (X̃′,mX̃′ , T̃
′).

Remark 1.1 (diffraction analysis). The above result implies the known fact that the extended hull

has pure point dynamical spectrum when equipped with the Mirsky measure, compare e.g. [12,

Thm. 2a)]. In addition, the isomorphism in Theorem B2’ explicitly describes the eigenvalues

of the dynamical spectrum. This is particularly useful for diffraction analysis as discussed in

Section 4, compare also the introduction to [12]. Let us mention here that X̃′ characterises the

group generated by the Bragg peak positions in the diffraction spectrum, i.e., that group is given

by the Ĝ-projection of the group dual to X̃′, which is viewed as a subgroup of G × H. For details,

see remarks 4.3 and 4.4.

Remark 1.2 (examples). The above diffraction properties are realised by configurations which

are generic for the Mirsky measure. The precise connection is somewhat subtle, as Mirsky gener-

icity on G and on G ×H have to be distinguished, see Theorem 4.6 and Remark 4.7. For windows

having almost no outer boundary, it is known that maximal density implies Mirsky genericity,

see Remark 2.4 below. Likewise, for windows having almost no inner boundary, minimal density

implies Mirsky genericity. Examples beyond these cases will be discussed in Section 5.

2 Proof ingredients

2.1 Moody’s uniform distribution theorem

We will use a refinement of Moody’s theorem on uniform distribution [18, Thm. 1], which charac-

terises sets of almost everywhere convergence. We first introduce the relevant notation. Consider

any van Hove sequence A = (An)n in G for averaging, see [18, Eq. (4)] for a definition. Recall

that νG ∈ MG

W
is Mirsky generic along A if for every test function φ ∈ C(MG

W
) the ergodic limit

holds for the Mirsky measure QG

W
alongA, i.e., we have

lim
n→∞

1

mG(An)

∫

An

φ(S gν
G) dmG(g) = QG

W
(φ) .

In the sequel, we will consider ergodic limits on subclasses of test functions.

Definition 2.1 (Mirsky k-genericity). Let A = (An)n be any van Hove sequence in G, and let

k ∈ N. We call νG ∈ MG

W
Mirsky k-generic along A, if the ergodic limit holds for the Mirsky

measure QG

W
alongA, for every test function φ ∈ C(MG

W
) of the form φ = φc1

· . . . · φck
∈ C(MG

W
),

with φci
∈ C(MG

W
) given by φci

(ν) = ν(ci) for ci ∈ Cc(G).

Likewise, we will consider Mirsky genericity and Mirsky k-genericity of ν ∈ MW , i.e., with

respect to the Mirsky measure QW = mX̃ ◦ (νW)−1 along A, whereMW denotes the vague closure

of νW(X̃) in the spaceM of regular Borel measures on G × H.

Remark 2.2 (sets of Mirsky genericity). Fix any tempered van Hove sequence A in G, see [18,

Eq. (5)] for a definition, and consider the set X̃gen = X̃gen(A) of points x̃ ∈ X̃ for which νW(x̃) is

Mirsky generic along A. Note that X̃gen has full mX̃-measure in X̃, which is seen as in the case

of Z-actions, see e.g. [7, Cor. 4.20]. Here we use that G × H is second countable and thatMW is

2



compact metrizable. This allows us to apply the Lindenstrauss ergodic theorem [17, Thm. 1.2],

which holds for van Hove sequences that are tempered. For the existence of such averaging

sequences, see e.g. the discussion in [19, Rem. 2.12 (v)]. In particular, corresponding sets X̃k ⊇

X̃k+1 ⊇ X̃gen for Mirsky k-genericity also have full mX̃-measure, and we have X̃gen =
⋂

k∈N X̃k by

the Stone-Weierstrass theorem. Observe that Mirsky k-genericity of νG

W
(x̃) is inherited from Mirsky

k-genericity of νW(x̃), by continuity of the projection map πG

∗ . Thus all sets of k-genericity for the

Mirsky measure QG

W
are full mX̃-measure sets. Moreover all of the above sets are T̃ -invariant, as

a consequence of the van Hove property.

For the following proposition, note that for η ∈ Cc(H) we have

(η ◦ πH) · νW(x̃) =
∑

y∈(x+L)∩(G×W)

η(yH) · δy ,

where we use the notation y = (yG, yH) for y ∈ G × H.

Proposition 2.3 (Moody’s uniform distribution theorem). Assume that W ⊆ H is relatively com-

pact and measurable. LetA = (An)n be any van Hove sequence in G. Then the following hold.

(a) The configuration νG

W
(x̃) is Mirsky 1-generic along −A if and only if

lim
n→∞

νG

W
(x̃)(An)

mG(An)
= lim

n→∞

νW(x̃)(An × H)

mG(An)
= dens(L) · mH(W) . (2.1)

(b) The configuration νW(x̃) is Mirsky 1-generic along −A if and only if

lim
n→∞

((η ◦ πH) · νW(x̃))(An × H)

mG(An)
= dens(L) · mH(η · 1W ) (2.2)

for any η ∈ Cc(H).

Remark 2.4 (when Mirsky 1-genericity implies Mirsky genericity). Consider any relatively com-

pact and measurable window W ⊆ H. As limiting point frequencies of νG

W
(x̃) always lie between

dens(L) · mH(W◦) and dens(L) · mH(W), see e.g. [9, Prop. 3.4], we say that νG

W
(x̃) has maximal

density alongA if the limit on the lhs in Eq. (2.1) equals dens(L) · mH(W). As discussed in [12,

Rem. 3.16] and [13, Rem. 8.7], maximal density of νG

W
(x̃) along A implies genericity of νW(x̃)

along −A with respect to the Mirsky measure QW on G × H. One concludes that maximal density

of νG

W
(x̃) implies genericity of νW(x̃) with respect to the Mirsky measure QW on G ×H if and only if

the window satisfies mH(W) = mH(W). This is a considerably stronger condition than the window

being compact modulo 0. Likewise, we speak of minimal density if the limit on the lhs in Eq. (2.1)

equals dens(L) · mH(W◦). Minimal density of νG

W
(x̃) along A implies Mirsky genericity of νW(x̃)

along −A if and only if mH(W) = mH(W◦). See [2, Thm. 17, Rem. 5] for a variant of these results.

An extension will be given in Lemma 5.4 and Remark 5.5 below.

Remark 2.5 (Mirsky genericity on G versus G × H). Let us emphasize here that for each W

and d ∈ H we have QG

d+W
= QG

W
, which follows from the invariance of the Haar measure on X̃

under translation by (0, d) + L. Indeed, denoting S (0,d) : G × H → G × H, x 7→ x + (0, d) and

σd :MW →MW , σdν = ν ◦ S −1
(0,d)

, we have

QG

d+W
= mX̃ ◦ ν

−1
d+W
◦ (πG

∗)
−1
= mX̃ ◦ (σd ◦ νW ◦ S −1

(0,d))
−1 ◦ (πG

∗)
−1

= (mX̃ ◦ S (0,d)) ◦ ν
−1
W
◦ (πG

∗ ◦ σd)−1
= mX̃ ◦ ν

−1
W
◦ (πG

∗)
−1
= QG

W
.

On another hand, if νW(x̃) is Mirsky generic, then (2.2) uniquely identifies the measure η 7→

mH(η · 1W) for η ∈ Cc(H), i.e., the Haar measure restricted to W. It follows immediately that

Qd+W = QW if and only if d is a Haar period for W.

The above result can, with some adaptions, be proved as in [18]. We start with the following

lemma which slightly refines [18, Prop. 2].
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Lemma 2.6. Let W ⊆ H be relatively compact and nonempty. Then any point in G has a compact

neighborhood B such that ((B− B) × (W −W)) ∩L = {(0, 0)}. As a consequence, for every x̃ ∈ X̃

and every g, g′ ∈ ΛW (x̃), (g + B) ∩ (g′ + B) , ∅ implies g = g′. The latter statement also holds

with W replaced by −W. Moreover the following are equivalent:

(i) ((B − B) × (W −W)) ∩L = {(0, 0)}.

(ii) πX̃ is one-to-one on B ×W.

(iii) ΛW−W ∩ (B − B) = {0}.

Proof. For the existence statement, take any compact zero neighborhood U ⊆ G and note that

(U × (W −W)) ∩L is finite as L is locally finite. Hence there is a zero neighborhood V ⊆ U such

that (V × (W −W))∩L = {(0, 0)}. The first claim follows after choosing a compact neighborhood

B of the given point in G such that B − B ⊆ V .

For the second claim let g, g′ ∈ ΛW(x̃) such that (g + B) ∩ (g′ + B) , ∅. Then there exist

h, h′ ∈ H such that (g, h), (g′, h′) ∈ (G × W) ∩ (x + L). As (g + B) ∩ (g′ + B) , ∅, this implies

(g − g′, h − h′) ∈ ((B − B) × (W −W)) ∩L. Hence g = g′. Note that replacing W by −W does not

alter the argument.

(i)⇒ (ii) : Consider (g, h), (g′, h′) ∈ B ×W such that (g, h) = (g′, h′) + ℓ for some ℓ ∈ L. We then

have (g − g′, h − h′) ∈ ((B − B) × (W − W)) ∩ L. Hence (g − g′, h − h′) = (0, 0), and the claim

follows.

(ii) ⇒ (iii) : Let g ∈ ΛW−W ∩ (B − B). Then there exists h ∈ H such that (g, h) ∈ ((B − B) ×

(W − W)) ∩ L. Then g = b − b′ for some b, b′ ∈ B and h = w − w′ for some w,w′ ∈ W, and

(b,w) = (b′,w′) + ℓ for ℓ = (g, h) ∈ L. Hence (b,w) = (b′,w′), which implies g = 0.

(iii)⇒ (i) : Assume (g, h) ∈ ((B − B) × (W −W)) ∩ L. Then g ∈ ΛW−W ∩ (B − B), which implies

g = 0. As πG×H is 1-1 on L, this implies h = 0, and the claim follows.

�

Proof. (Proof of Proposition 2.3) We treat assertion (b) first. By a standard denseness argument,

it suffices to consider functions c ∈ Cc(G ×H) of product type c = ψ ◦ πG · η ◦ πH where ψ ∈ Cc(G)

and η ∈ Cc(H). Recalling φc(ν) = ν(c), we have for ỹ = y + L = (yG, yH) + L that

φc(νW(ỹ)) =
∑

z∈(y+L)∩(G×W)

ψ(zG) · η(zH) =
∑

ℓ∈L

c(y + ℓ) · 1W(yH + ℓH) = f̃ (ỹ) ,

where f̃ ∈ L1(X̃,mX̃) denotes the projected L-periodisation of the function y 7→ f (y) = c(y) ·

1W (yH). Using the extended Weil formula [20, Thm. 3.4.6], we thus get

∫

MW

φc dQW =

∫

X̃

φc(νW(ỹ)) dmX̃(ỹ) =

∫

X̃

f̃ (ỹ) dmX̃(ỹ) = mX̃( f̃ )

= dens(L) · mG×H( f ) = dens(L) · mG(ψ) · mH(η · 1W) .

Next, consider the G-orbit of any x̃ ∈ X̃. Here we assume without loss of generality that ψ ∈ Cc(G)

has sufficiently small support such that B = supp(ψ) satisfies the assumption in Lemma 2.6. (The

general case of arbitrary compact support can be treated using a partion of unity by functions of

small support.) Write Y = B × W ⊆ G × H and define Ỹ = πX̃(B × W) ⊆ X̃. It is readily seen

that T̃g x̃ ∈ Ỹ if and only if g ∈ −ΛW (x̃) + B. In particular, in that case there exists ℓ ∈ L such that

(x + ℓ)G ∈ ΛW (x̃), g ∈ −(x + ℓ)G + B, and f̃ (T̃g x̃) = ψ((x + ℓ)G) · η((x + ℓ)H) · 1W ((x + ℓ)H) as πX̃

is 1-1 on Y. Note that −ΛW(x̃) + B is a pairwise disjoint union of translates of B, which follows

from Lemma 2.6 as −ΛW(x̃) = Λ−W (−x̃). As S gνW(x̃) = νW(T̃g x̃), we thus have by the van Hove

4



property of (−An)n that

lim
n→∞

1

mG(An)

∫

−An

φc(S gνW(x̃)) dmG(g) = lim
n→∞

1

mG(An)

∫

−An

f̃ (T̃g x̃) dmG(g)

= lim
n→∞

1

mG(An)

∑

yG∈ΛW (x̃)∩An

η(yH) · mG(ψ)

= mG(ψ) · lim
n→∞

((η ◦ πH) · νW(x̃))(An × H)

mG(An)
,

provided that the above limit exists. Now the claim in part (b) is obvious.

The proof of (a) is analogous: reread the above proof of (b) for η ≡ 1, considering functions

c ∈ Cc(G) and 1-genericity with respect to QG

W
. �

2.2 Haar periods and periods

For the following recall the notion of period group HW = {h ∈ H : h+W = W} and of Haar period

group HHaar
W
= {h ∈ H : mH((h + W)∆W) = 0}. Then W is called (Haar) aperiodic if its (Haar)

period group is trivial. In order to apply the techniques from [13] with only minimal changes,

we will circumvent the notion of Haar regularity [13, Rem. 3.12], which relies on compactness.

Instead we will construct a measurable version Winv of W, which coincides with W up to measure

zero, but is strictly invariant under translation by any h ∈ HHaar
W

.

We start by reviewing some simple properties of HHaar
W

, which are listed in [24, Lem. 7.1], see

also [2, Fact 2]. For completeness we include the straightforward proofs. First, let us recall that

for a measurable relatively compact set W ⊆ H, its covariogram function cW is defined via

cW := 1W ∗ 1−W , (2.3)

where ∗ denotes convolution. Note that cW is a positive definite function, which is continuous by

[22, Thm. I.1.6 (b)], [20, Prop. 3.6.3] and obviously has compact support. A simple computation

yields for any h ∈ H the relation

mH((h +W)△W) = 2 · mH(W \ (W + h)) = 2 · (cW (0) − cW (h)) . (2.4)

We have the following characterisation of HHaar
W

.

Lemma 2.7. [24, Lem. 7.1] Assume that W ⊆ H is relatively compact and measurable. Then

HHaar
W = {h ∈ H : ‖1W − Th1W‖1 = 0} = {h ∈ H : cW (h) = cW(0)}

= {h ∈ H : ThcW = cW } ,

where (Th f )(y) = f (y − h) denotes translation in H. In particular HHaar
W

is a compact group.

Proof. The first equality follows immediately from the observation ‖1W − Th1W‖1 = mH(W∆(h +

W)), while the second one follows from Eq. (2.4). For the last equality, the inclusion ⊇ is obvious,

while ⊆ is an immediate consequence of Krein’s inequality | f (y−h)− f (y)|2 ≤ 2 f (0)( f (0)−Re f (h))

for positive definite functions f , see e.g. [5, Ch. I.3.4]. Finally, since cW is a continuous function

of compact support, its period group is closed and relatively compact, hence compact. �

We can now prove the existence of the measurable version Winv of W.

Lemma 2.8. There exists a measurable set Winv ⊆ H such that

(a) mH(W△Winv) = 0 and

(b) Winv + h = Winv for all h ∈ HHaar
W

.

5



Proof. Abbreviate H0 := HHaar
W

and denote by mH0
the normalized Haar measure on the compact

abelian group H0. Define ψ : H → R as the H0-periodisation of 1W , i.e.,

ψ(h) :=

∫
1W(h + h0) dmH0

(h0) ,

and let Winv := {h ∈ H : ψ(h) = 1}. As mH0
is translation invariant, we have ψ(h + h0) = ψ(h) for

all h0 ∈ H0, and assertion (b) follows at once.

We turn to assertion (a). For measurable A ⊆ H with mH(A) < ∞ and all h0 ∈ H0 we have:

mH(A ∩W) = mH(A ∩ (W − h0)) =

∫

A

1W (h + h0) dmH(h) .

Hence, using Fubini,

mH(A ∩W) =

∫ (∫

A

1W(h + h0) dmH(h)

)
dmH0

(h0)

=

∫

A

(∫
1W(h + h0) dmH0

(h0)

)
dmH(h) =

∫

A

ψ dmH .

As mH isσ-finite and this holds for all A ⊆ H of finite measure, it follows that 1W ·mH = ψ·mH , i.e.,

1W = ψ on a measurable set H1 ⊆ H with mH(H \H1) = 0. It follows that W∩H1 = Winv∩H1. �

The lemma has the following immediate corollary.

Corollary 2.9. (Periods and Haar periods)

We have HHaar
W
= HHaar

Winv
= HWinv

. In particular W is Haar aperiodic if and only if Winv is aperiodic.

�

Let H′ := H/HWinv
and denote by ϕ : H → H′ the canonical projection. Consider W′ :=

ϕ(Winv) and note ϕ−1(W′) = Winv.

Lemma 2.10. W′ ⊆ H′ is Borel measurable and Haar aperiodic in H′.

Proof. We first show measurability of W′. Let W′′ := ϕ(H \Winv). Then W′ ∪W′′ = ϕ(H) = H′,

where W′ ∩ W′′ = ∅. Indeed, otherwise there are h1 ∈ Winv and h2 ∈ H \ Winv such that

ϕ(h1) = ϕ(h2). Then h2 − h1 ∈ HWinv
, so that Winv + (h2 − h1) = Winv. In particular h2 =

h1 + (h2 − h1) ∈ Winv, a contradiction. As W′ and W′′ = H′ \ W′ are both analytic sets [11,

(14.4)ii)], they are Borel sets in view of Souslin’s theorem [11, (14.11)]. In order to show Haar

aperiodicity, suppose that mH′ ((W
′
+h′)△W′) = 0 for some h′ = ϕ(h) ∈ H′, where mH′ = mH ◦ϕ

−1.

Then 0 = mH((Winv + h + HWinv
)△Winv) = mH((Winv + h)△Winv), so that h ∈ HHaar

Winv
= HWinv

, see

Corollary 2.9. Hence h′ = ϕ(h) is the neutral element in H′. �

3 Proofs

3.1 Haar aperiodic windows

Our proof of Theorem B1’ uses Mirsky 1-generic configurations on G × H along some fixed

tempered van Hove sequence. Recall that the set X̃1 ⊆ X̃ from Remark 2.2 has full mX̃-measure

and is T̃ -invariant.

Lemma 3.1. Take x̃, ỹ ∈ X̃1 such that νG

W
(x̃) = νG

W
(ỹ). Then νW(ỹ) = σdνW(x̃) for some d ∈ H,

where (σdν)(A) = ν(A − (0, d)) for all Borel subsets A of G × H. Moreover d is a Haar period of

W.

6



Proof. Proposition 2.3 (b) shows that for each x̃ ∈ X̃1 the sequence of measures (µn(x̃))n, defined

by

µn(x̃)(η) :=
1

dens(L)

((η ◦ πH) · νW(x̃))(An × H)

mG(An)
(3.1)

for η ∈ Cc(H), converges weakly to mH |W . Take x̃, ỹ ∈ X̃1 such that νG

W
(x̃) = νG

W
(ỹ). Then,

by [13, Lem. 4.4], there is d ∈ H such that νW(ỹ) = σdνW(x̃). As both sequences (µn(x̃))n and

(µn(ỹ))n converge weakly to mH |W and as the translation σd is weakly continuous, this shows that

σd(mH |W ) = mH |W , in particular mH((W−d)∩W) = mH(W). As mH(W) = mH(W−d), this proves

mH((W − d)△W) = 0, i.e., d is a Haar period of W. �

Lemma 3.2. DefineM′
W
⊆ MW byM′

W
= νW(X̃1). If W is Haar aperiodic, then πG

∗ |M′W : M′
W
→

MG

W
is 1-1 .

Proof. Take x̃, ỹ ∈ X̃1 such that νG

W
(x̃) = νG

W
(ỹ). Then by Lemma 3.1 we have νW(ỹ) = σdνW(x̃) for

some Haar period d of W. As W is Haar aperiodic, we get d = 0, that is νW(x̃) = νW(ỹ). �

Proof. (Proof of Theorem B1’) πG

∗ is 1-1 at QW-a.a. ν ∈ MW by Lemma 3.2 and the fact that X̃1

has full mX̃-measure by Remark 2.2. As X̃1 is T̃ -invariant, we conclude that πG

∗ : (MW ,QW , S ) →

(MG

W
,QG

W
, S ) is a measure-theoretic isomorphism (observe the Lusin-Souslin theorem [11, Thm. 15.1]).

Also note that νG

W
: (X̃,mX̃ , T̃ ) → (MW ,QW , S ) is a measure-theoretic isomorphism by [12,

Thm. 2a)]. Here we use mH(W) > 0, which follows from Haar aperiodicity of W. Hence the

claim is shown. �

3.2 General windows

Our proof of Theorem B2’ proceeds by reduction to the Haar aperiodic case. The construction of

factoring out topological or measure-theoretic periods has been described in detail in Chapter 6

and 7 of [13] for compact windows. The same constructions can be used in the non-compact case.

Since the group of Haar periods is closed, the quotient X̃′ = X̃/πX̃(HHaar
W

) is a compact abelian

group.

Proof. (Proof of Theorem B2’) Assume first that W = Winv. The set W′ = ϕ(W) is Haar aperiodic,

see Lemma 2.10. Also note (MG

W
,QG

W
, S ) = (MG

W′
,QG

W′
, S ), which follows with the same proof as

in Proposition 6.10 in [13]. Now the claim of the theorem follows from Theorem B1’. In the

general case, note that (MW ,QW , S ) is measure-theoretically isomorphic to (M,QW , S ). As the

present theorem applies to the regularized window Winv, it suffices to show that QW = mX̃ ◦ (νW)−1

equals QWinv
= mX̃ ◦ (νWinv

)−1 onM. But this follows from the observation

{
x̃ ∈ X̃ : νW(x̃) , νWinv

(x̃)
}
⊆ πX̃


⋃

ℓ∈L

((G × (W \Winv)) − ℓ)

 ,

and this is a set of mX̃-measure zero, becauseL is countable and mH(W\Winv) = 0 by Lemma 2.8a).

�

4 Consequences for diffraction

We discuss implications of our results for diffraction analysis of configurations, compare [3, 15].

In particular, we discuss Besicovitch almost periodicity [16], which links our approach to that in

[24]. Whereas in the latter reference the Mirsky measure is constructed using Besicovitch almost

periodic configurations, compare [16, Thm. 6.13], we take the Mirsky measure for granted and

investigate when projections of Mirsky generic configurations are Besicovitch almost periodic.

We assume that the reader is familiar with Remark 8.8 in [13], where the notions of autocorrelation
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measure, diffraction measure, diffraction spectrum and generic configuration are discussed in the

present framework.

The link between dynamical and diffraction properties is well understood, see for example [3,

Sec. 6-8]. Let us specialise this to our needs.

Fact 4.1 ([3], Sec. 6-8). (MG

W
,QG

W
, S ) has discrete dynamical L2-spectrum. It also has pure point

diffraction spectrum, i.e., its autocorrelation measure γQG
W

, which is characterised via γQG
W

(c1 ∗

c2) = QG

W
(φc1
· φc2

) for c1, c2 ∈ Cc(G), has a Fourier transform γ̂QG
W

that is a point measure. The

group S ⊆ Ĝ of dynamical eigenvalues of (MG

W
,QG

W
, S ) is generated by the set of Bragg peak

positions, i.e., by those characters χ ∈ Ĝ for which γ̂QG
W

({χ}) , 0.

Indeed, as (MG

W
,QG

W
, S ) is a factor of the system (X̃,mX̃ , T̃ ) with factor map νG

W
, see [12, Thm. 2],

and as the latter system has discrete dynamical spectrum, the same is true for (MG

W
,QG

W
, S ), and

pure point diffraction spectrum as well as the remaining assertions follow from [3, Thms. 7, 9]

and the Dworkin type calculation in the proof of Theorem 5 (a) from [3].

In [15], this link is analysed in more detail. Consider an eigenvalue χ ∈ S and denote by

Eχ the projection to the subspace of L2(MG

W
,QG

W
) generated by an eigenvector having eigenvalue

χ. If cχ(νG) := (Eχφχ·σ)(νG) does not vanish almost surely, it gives a corresponding measurable

eigenfunction, compare the proof of Theorem 3 in [15]. Here σ ∈ Cc(G) is any function satisfying

mG(σ) = 1. Let us define Eχ = 0 if χ < S. Then, for any χ ∈ Ĝ, the function |cχ| is QG

W
-almost

surely constant by ergodicity.

Next, consider any van Hove sequenceA = (An)n in G. For an individual configuration νG ∈

MG

W
, the point part in its diffraction is often inferred from the so-called Fourier-Bohr coefficients

alongA, which are for χ ∈ Ĝ defined by

aAχ (νG) = lim
n→∞

1

mG(An)

∫

An

χ(t) dνG(t) , (4.1)

whenever that limit exists. We have the following result.

Fact 4.2 ([15], Thms. 3 and 5). Consider any χ ∈ Ĝ. We then have γ̂QG
W

({χ}) = 〈cχ, cχ〉, where

〈·, ·〉 denotes the scalar product on L2(MG

W
,QG

W
). Moreover, for any tempered van Hove sequence

A = (An)n, the limit aAχ along A in Eq. (4.1) exists in L2(MG

W
,QG

W
). In fact aAχ = cχ holds

QG

W
-almost surely. �

Remark 4.3. An eigenvalue χ ∈ S may satisfy γ̂QG
W

({χ}) = 0, in which case χ is called an

extinction position. Extinction positions have been observed for the Fibonacci chain, see e.g. [1,

Sec. 9.4.1], where they reflect an inflation symmetry of the underlying point set. Note that by

Fact 4.2, if χ ∈ S is not an extinction position, i.e., if χ ∈ S is a Bragg peak position, then

νG 7→ aAχ (νG) defines the eigenfunction cχ for χ. On the other hand, if χ ∈ S is an extinction

position, then by Fact 4.1, there exist χ1, . . . , χk, χk+1, . . . , χn ∈ S which are Bragg peak positions

so that χ = χ1 · . . . · χk · χ
−1
k+1
· . . . · χ−1

n . In this case, an eigenfunction c̃χ is given by c̃χ =

cχ1
· . . . · cχk

· cχk+1
· . . . · cχn

.

Remark 4.4. Note that Theorem B2’ explicitly describes the group of eigenvalues of (MG

W
,QG

W
, S ),

compare [15, Ch. 7]. To explain this, denote by L
◦ ⊆ Ĝ × Ĥ the annihilator of the lattice

L ⊆ G × H, which is isomorphic to the group dual to X̃. Further, denote by L
◦′ ⊆ L

◦ those

characters whose Ĥ-component is HHaar
W

-invariant, i.e., we have L
◦′
= L

◦ ∩ (Ĝ × (HHaar
W

)◦),

where (HHaar
W

)◦ ⊆ Ĥ is the annihilator of HHaar
W

. Note that L◦′ is isomorphic to the group dual

to X̃′. The same statement holds for its projection πĜ(L◦′), as L◦ projects injectively to Ĝ. Now

Theorem B2’ implies that the group of eigenvalues is πĜ(L◦′). Theorem B2’ also provides a way

to compute the eigenfunctions via the torus parametrisation map, compare the above discussion.

Although the notion of Besicovitch almost periodicity for a measure is known for quite some

time [14, 8, 4], it has only recently systematically been studied, in conjunction with other types of
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almost periodicity [16]. Fix any van Hove sequenceA = (An)n in G and consider the seminorm

‖ · ‖2,A, which is for any f ∈ L2
loc

(G) ∩ L∞(G) defined by

‖ f ‖2,A = lim sup
n→∞

(
1

mG(An)

∫

An

| f (t)|2 dt

)1/2

.

Then f is called Besicovitch almost periodic alongA if f can be approximated by trigonometric

polynomials with respect to ‖ · ‖2,A, see Definition 3.1 and Proposition 3.7 in [16]. A translation

bounded measure νG ∈ MG is called Besicovitch almost periodic alongA if the function ϕ ∗ νG is

Besicovitch almost periodic for any ϕ ∈ Cc(G), see Definition 3.30 and Remark 3.31 in [16]. The

space of Besicovitch almost periodic measures is denoted byBapA(G). This space is important in

mathematical diffraction theory as it characterises pure point diffractive measures in the following

sense [16, Thm. 3.36]. We recall the definition of the autocorrelation γνG of νG alongA,

γνG := lim
n→∞

1

mG(An)
νG |An

∗ ν̃G |An
, (4.2)

whenever that limit exists. Here measure reflection is defined by µ̃( f ) = µ( f̃ ), where f̃ (x) =

f (−x).

Fact 4.5 (cf. Theorem 3.36 in [16]). Fix any van Hove sequenceA = (An)n in G and let νG ∈ MG

be a translation bounded measure. Then νG ∈ BapA(G) if and only if the following properties

hold.

(i) νG has autocorrelation γνG alongA, and γ̂νG is a pure point measure.

(ii) The Fourier-Bohr coefficients aAχ (νG) alongA exist for all χ ∈ Ĝ.

(iii) The consistent phase property γ̂νG ({χ}) = |aAχ (νG)|2 holds for all χ ∈ Ĝ.

�

We can now prove a strengthened version of Theorem 4.1 from [24]. In order to simplify

notation, we denote weighted model combs by

νG

h
(x̃) =

∑

y∈(x+L)∩(G×H)

h(yH) · δyG
.

In particular we have νG

W
(x̃) = νG

1W
(x̃).

Theorem 4.6 (cf. Theorem 4.1 from [24]). Let W ⊆ H be a relatively compact measurable

window in some cut-and-project scheme (G,H,L), where both G and H are second countable.

LetA = (An)n be any van Hove sequence in G. Then the following hold.

(a) νG

W
(x̃) is Mirsky 1-generic along −A if and only if νG

W
(x̃) satisfies uniform distribution along

A, i.e., if we have

lim
n→∞

1

mG(An)
νG

W
(x̃)(An) = dens(L) · mH(W) .

(b) νG

W
(x̃) is Mirsky 2-generic along −A if and only if νG

W
(x̃) has an autocorrelation γνG

W
(x̃) along

A of the form

γνG
W

(x̃) = dens(L) · νG

cW
(0̃) ,

where cW ∈ Cc(H) is the covariogram function of Eq. (2.3).

(c) If νG

W
(x̃) is Mirsky 2-generic along −A, then the Fourier transform of γνG

W
(x̃) is given by

γ̂νG
W

(x̃) = dens(L)2 ·
∑

χ∈πĜ (L◦)

cW

∧

(η) · δχ ,

where η ∈ Ĥ is uniquely determined by (χ, η) ∈ L
◦, and cW

∧

(η) = 0 if χ ∈ πĜ(L◦ \ L◦′),

compare Remark 4.4 for notation. Observe also that cW

∧

(η) = |1W

∧

(η)|2.
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(d) νW(x̃) is Mirsky 1-generic along −A if and only if, for any χ ∈ πĜ(L◦), the Fourier-Bohr

coefficient of νG

W
(x̃) alongA exists and is given by

aAχ (νG

W
(x̃)) = dens(L) · χ(xG) · η(xH) · 1W

∧

(η) . (4.3)

Here x̃ = (xG, xH) + L, and η ∈ Ĥ is uniquely determined by (χ, η) ∈ L
◦, compare Re-

mark 4.4 for notation.

(e) Assume that νG

W
(x̃) is Mirsky 2-generic along −A and νW(x̃) is Mirsky 1-generic along −A.

Then νG

W
(x̃) is Besicovitch almost periodic along A if and only if aAχ (νG

W
(x̃)) = 0 for all

χ ∈ Ĝ\πĜ(L◦).

Remark 4.7 (relation to dynamical diffraction). The proof of Theorem 4.6 (b) shows that the

autocorrelation γνG
W

(x̃) agrees with the autocorrelation γQG
W

of (MG

W
,QG

W
, S ) from Fact 4.1 if and

only if νG

W
(x̃) is Mirsky 2-generic along −A.

In dynamical diffraction analysis, people often consider the hull {S gνG : g ∈ G} associated

to a configuration νG. For any configuration νG

W
(x̃) that is Mirsky generic along −A, its hull

MG

W
(x̃) = {S gν

G
W(x̃) : g ∈ G} has full Mirsky measure QG

W
(MG

W
(x̃)) = 1. This is seen as in the proof

of [12, Thm. 5c)]. Thus in that case, the systems (MG

W
(x̃),QG

W
, S ) and (MG

W
,QG

W
, S ) are measure-

theoretically isomorphic.

Proof. (Proof of Theorem 4.6) Part (a) is Proposition 2.3 (a).

For part (b) abbreviate ωG := νG

W
(x̃) and recall that Mirsky 2-genericity of ωG along −A can be

characterized as

lim
n→∞

1

mG(An)

∫

−An

φc1
(S gω

G) · φc2
(S gω

G) dmG(g) = QG

W
(φc1
· φc2

)

for all c1, c2 ∈ Cc(G), while the existence of an autocorrelation γωG alongA satisfying (c1 ∗ c̃2 ∗

γωG )(0) = QG

W
(φc1
· φc2

) for all c1, c2 ∈ Cc(G) is equivalent to

lim
n→∞

1

mG(An)

(
ωG |An

∗ ω̃G |An

)
(c1 ∗ c̃2) = QG

W
(φc1
· φc2

) (c1, c2 ∈ Cc(G)) .

The equality of these two limits, provided one of them exists, is shown in the proof of Theorem

5 (a) in [3]. (Note that the latter equation appears in that paper on the last line of p. 1881.) The

identity QG

W
(φc1

φc2
) = dens(L) · (c1 ∗ c̃2 ∗ ν

G

cW
(0̃))(0) can be checked similarly to the calculation for

two-point patterns in the proof of Remark 3.12 in [12], compare [18, Prop. 3].

Part (c) follows from (b) for χ ∈ πĜ(L◦) instead of χ ∈ πĜ(L◦′), e.g. by the Poisson Summation

Formula as in [21, Thm. 4.10]. Also note that, since cW is HHaar
W

-periodic, cW

∧

is supported inside

(HHaar
W

)◦, see e.g. [5, Prop. 6.4]. Therefore, cW

∧

(η) = 0 if χ ∈ πĜ(L◦ \ L◦′).

Part (d) is a consequence of Proposition 2.3 (b). Indeed, for each (χ, η) ∈ L◦, consider y = x+ ℓ ∈

x + L and note

η(yH) = η(xH + ℓH) = χ(xG)χ(xG)η(xH)η(ℓH) = χ(xG)η(xH)χ(yG) ,

where we used χ(ℓG)η(ℓH) = 1. Then

((η ◦ πH) · νW(x̃))(An × H)

mG(An)
=

∑
y∈(x+L)∩(An×W) η(yH)

mG(An)

= χ(xG)η(xH)

∑
y∈(x+L)∩(An×W) χ(yG)

mG(An)
=
χ(xG)η(xH)

mG(An)

∫

An

χ(t) dνG

W
(t) .

Now, if νW(x̃) is Mirsky 1-generic along−A, Proposition 2.3 (b) applied to any functionψ ∈ Cc(H)

that agrees with η on W gives (4.3). Conversely, assume that (4.3) holds for all (χ, η) ∈ L◦. Then
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(2.2) holds for all ψ ∈ Cc(H) which agree on W with some η ∈ πĤ(L◦), and hence for all linear

combinations of such functions. The density of πĤ(L◦) in Ĥ implies that the set

A := {ψ ∈ Cc(H) : ∃n ∈ N, c1, . . . , cn ∈ C, (χ1, η1), . . . , (χn, ηn) ∈ L0

such that ψ(h) =

n∑

k=1

ckηk(h) for all h ∈ W}

is an algebra separating the points and hence is dense in C0(H). This immediately implies that

(2.2) holds for all η ∈ Cc(H), giving Mirsky 1-generiticity for νW(x̃).

Part (e) follows from (b)-(d) and Fact 4.5. �

5 A class of examples

This section focusses on cut-and-project schemes (G,H,L) with relatively compact Borel window

W′ = W \ V , where V,W ⊆ H are compact sets satisfying V ⊆ W. Within that setting, one may

construct configurations that illustrate the statements of Theorem B2’ and Theorem 4.6, without

having a window being compact modulo 0 or without being of extremal density.

5.1 Results for the general setting

In order to apply Theorem B2’, one needs to determine the Haar periods of W′. In that context,

the following notion appears to be relevant.

Definition 5.1 (Haar thinness). Let H be an LCA group with Haar measure mH . Consider Borel

sets V ⊆ W ⊆ H. We say that V is Haar thin in W if for all open U ⊆ H such that mH(U ∩ V) > 0

we have mH(U ∩ V) < mH(U ∩W).

Lemma 5.2. If V is Haar thin in W and mH(V) > 0, then W \ V is not compact modulo 0.

Proof. Suppose for a contradiction that W \ V = K modulo 0 for some compact K ⊆ H. For any

open U ⊆ H, by Haar thinness mH(U ∩ K) = mH(U ∩W \ V) = 0 if and only if mH(U ∩W) = 0.

As H is second countable, this implies K = W modulo 0, i.e. mH(V) = 0 in contradiction to the

assumption mH(V) > 0. �

Lemma 5.3 (Haar periods). Let H be an LCA group with Haar measure mH . Let W ⊆ H be

compact and assume that the Borel set V ⊆ W is Haar thin in W. Then W′ = W \ V satisfies

HHaar
W′ = HHaar

W ∩ HHaar
V .

Proof. Recall h ∈ HHaar
W

if and only if mH((W+h)\W) = 0. The inclusion HHaar
W
∩HHaar

V
⊆ HHaar

W′

can be inferred from the standard estimate (W′ + h) \W′ ⊆ ((W + h) \W) ∪ (V \ (V + h)). For the

reverse inclusion fix arbitrary h ∈ HHaar
W′

and note

mH((W + h) \W) = mH((W′ + h) \W) + mH((V + h) \W) = mH((V + h) \ V) ,

where we used mH((V + h) ∩ W′) = mH((V + h) ∩ (W′ + h)) = 0 in the second equation. To

conclude the argument, note first 0 = mH(W′ \W) = mH((W′ + h) \W). As V is Haar thin in the

compact set W, by shift invariance of mH this implies 0 = mH((V + h) \W) = mH((W + h) \W).

Hence h ∈ HHaar
W
∩ HHaar

V
. �

One may now consider examples νG

W′
(x̃) constructed from maximal density configurations

νG

W
(x̃) and νG

V
(x̃). As their diffraction can be explicitly computed in particular examples such

as k-free integers, see e.g. the references given in [9, Sec. 5], these may serve to illustrate the

statements in Theorem 4.6.
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Lemma 5.4 (diffraction). Let (G,H,L) be a cut-and-project scheme with two compact windows

V ⊆ W ⊆ H. Assume that, for given x̃ ∈ X̃, both νG

V
(x̃) and νG

W
(x̃) have maximal density along the

same averaging sequence, i.e., there exists a van Hove sequenceA = (An)n in G such that

lim
n→∞

1

mG(An)
νG

V
(x̃)(An) = dens(L) · mH(V) ,

lim
n→∞

1

mG(An)
νG

W
(x̃)(An) = dens(L) · mH(W) .

Consider W′ = W \ V. Then the following hold.

(a) νG

W′
(x̃) is Besicovitch almost periodic alongA.

(b) νG

W′
(x̃) has Fourier–Bohr coefficients alongA given by

aAχ (νG

W′
(x̃)) =

{
dens(L) · χ(xG) · η(xH) · 1W′

∧

(η) if χ ∈ πĜ(L◦)

0 otherwise
.

(c) νG

W′
(x̃) has autocorrelation and diffraction alongA given by

γνG

W′
(x̃) = dens(L) · νG

cW′
(0̃) , γ̂νG

W′
(x̃) = dens(L)2 ·

∑

χ∈πĜ (L◦′)

cW′

∧

(η) · δχ .

Remark 5.5 (Mirsky genericity). In conjunction with Theorem 4.6, the previous result implies

that νW′ (x̃) is Mirsky 1-generic along −A, and that νG

W′
(x̃) is Mirsky 2-generic along −A. Using

approximation by regular model sets as in [2, 24], one may in fact show that νG

W′
(x̃) is Mirsky

generic along −A, without resorting to Besicovitch almost periodicity.

Proof. (Proof of Lemma 5.4) By [16, Prop. 3.39], both νG

W
(x̃) and νG

V
(x̃) are Besicovitch almost

periodic. Hence νG

W′
(x̃) = νG

W
(x̃) − νG

V
(x̃) is Besicovitch almost periodic, compare [16, Prop. 3.8].

This proves (a).

As to part (b), note that we have

aAχ (νG

W′
(x̃)) = aAχ (νG

W
(x̃)) − aAχ (νG

V
(x̃)) .

Hence (b) follows from [16, Cor. 3.40] applied to νG

W
(x̃) and νG

V
(x̃).

The proof of part (c) only uses the validity of parts (a) and (b) but not the maximal density

assumptions of the lemma: The diffraction formula

γ̂νG

W′
(x̃) = dens(L)2 ·

∑

χ∈πĜ (L◦)

cW′

∧

(η) · δχ

follows from (a), (b) and Fact 4.5. On the other hand, Lemma 3.6 and Theorem 4.10 from [21]

give that γ = dens(L) · νG

cW′
(0̃) is Fourier transformable and

γ̂ = dens(L)2 ·
∑

χ∈πĜ (L◦)

cW′

∧

(η) · δχ .

We thus get γ = γνG

W′
(x̃) from double Fourier transformability [21, Thm. 4.12]. Since cW′ is HHaar

W′
-

periodic, we can restrict the summation over πĜ(L◦) to πĜ(L◦′). This proves (c). �

5.2 An example from B-free sets

Assume that H is compact. Then any weak model set is a subset of the lattice ΛH . The trivial

choice W = H leads to comparing a weak model set ΛV to its lattice complement ΛH\V . This
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applies to so-called sets of multiples, which are usually studied dynamically through their com-

plementary B-free sets, see [6] and [10].

For an example beyond extremal density, let us consider the set of cube-free integers that

are not square-free. An appropriate cut-and-project scheme (Z,H,L) has compact internal space

H =
∏

p∈P Z/(p3
Z), with P denoting the set of all primes. Moreover L = {(n,∆(n)) : n ∈ Z},

where ∆ : Z → H denotes the natural embedding ∆(n) = (n, n, n, . . .) ∈ H. Consider the compact

sets V ⊆ W ⊆ H given by

W =
∏

p∈P

(
Z/(p3

Z) \ {0}
)
, V =

∏

p∈P

(
Z/(p3

Z) \ {0, p2, 2p2, . . . , (p − 1)p2}
)
.

Then ΛV and ΛW are the sets of square-free integers and cube-free integers, respectively, and ΛW′

is the set of integers that are cube-free but not square-free.

Note that W′ is Haar aperiodic and fails to be compact modulo 0. Together with Lemma 5.3

and Lemma 5.2, this is an immediate consequence of the following result. Recall that W is Haar

regular if U ∩W , ∅ implies mH(U ∩W) > 0 for any open U ⊆ H, see [13, Def. 3.10].

Lemma 5.6. Both V and W are Haar regular, and V is Haar thin in W. Moreover W is Haar

aperiodic.

Proof. Both Haar regularity and Haar thinness can be checked by restricting to open cylinder sets

US (h) ⊆ H as defined in [10], for h ∈ H and finite S ⊂ {p3 : p ∈ P}. But for those cylinder

sets the claims are obvious due to the product structure of mH . For Haar regularity of W, note

mH(W) > 0 by positive density of cube-free integers. Thus mH(US (h) ∩ W) > 0 for h ∈ W, as

intersecting by US (h) affects only finite many coordinates. An analogous argument shows Haar

regularity of V . A similar argument also shows Haar thinness, noting that mH(W) > 0 implies

mH(W′) > 0. As W clearly is aperiodic, Haar aperiodicity follows from Haar regularity by [13,

Rem. 3.12]. �

Note further that both ΛV and ΛW are weak model sets of maximal density with respect to

An = [−n, n], see e.g. [9, Sec. 5.2] and references therein. Moreover the window W′ satisfies

(W′)◦ = ∅ and W′ = W. For the latter claim, note that due to W′ ⊆ W = V ∪ W′ it suffices to

show V ⊆ W′. But this is obvious as V is Haar regular and Haar thin in W.

To summarise, the example ΛW′ of cube-free integers that are not square-free has a window

W′ that is not compact modulo 0. As W′ is Haar aperiodic, Theorem B1’ applies. Thus the dy-

namical spectrum of the Mirsky measure QG

W′
equals πĜ(L◦). It thus coincides with the dynamical

spectrum of the Mirsky measure QG

W
of cube-free integers. Note that the dynamical spectrum can

be identified with the discrete group Ĥ. WhereasΛW′ fails to have extremal density alongA, both

Theorem 4.6 and Remark 4.7 apply to ΛW′ , due to Lemma 5.4 and Remark 5.5.
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