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In this study, we present a determination of the unpolarized gluon Ioffe-time distribution in the
nucleon from a first principles lattice quantum chromodynamics calculation. We carry out the lattice
calculation on a 323×64 ensemble with a pion mass of 358 MeV and lattice spacing of 0.094 fm. We
construct the nucleon interpolating fields using the distillation technique, flow the gauge fields using
the gradient flow, and solve the summed generalized eigenvalue problem to determine the gluonic
matrix elements. Combining these techniques allows us to provide a statistically well-controlled Ioffe-
time distribution and unpolarized gluon PDF. We obtain the flow time independent reduced Ioffe-
time pseudo-distribution, and calculate the light-cone Ioffe-time distribution and unpolarized gluon
distribution function in the MS scheme at µ = 2 GeV, neglecting the mixing of the gluon operator
with the quark singlet sector. Finally, we compare our results to phenomenological determinations.

I. INTRODUCTION

Gluons, which carry color charge and serve as the mediator bosons of the strong interaction, play a key role in the
nucleon’s mass and spin. Confinement in quantum chromodynamics (QCD) ensures that no free quarks or gluons have
been observed, so analyses of hadrons involving high energy scattering rely on QCD factorization [1]. Factorization
separates the perturbatively-calculable hard-scattering quark and gluon dynamics from the non-perturbative collinear
dynamics, described by parton distribution functions (PDFs) of the relevant hadrons.

There are long-standing efforts to conduct global analyses [2–6] of data from available deep inelastic scattering
(DIS) and related hard scattering processes to explore the nature of the PDFs. It is essential to have a clear and
precise understanding of the gluon PDF in order to calculate the cross-section for Higgs boson production [7] and jet
production [8] at the Large Hadron Collider (LHC), and J/ψ photo production [9] at Jefferson Lab. Future colliders,
such as the Electron Ion Collider (EIC) [10–12], which is to be built at Brookhaven National Lab, and the Electron
Ion Collider in China (EicC) [13], are expected to make significant impact on the precision of the gluon PDFs. While
the precision of the extracted gluon distribution x g(x) has been improved over the last decade, several issues remain
unresolved; for example, the suppression in the momentum fraction region 0.1 < x < 0.4 when ATLAS and CMS jet
data are included [3] and how to obtain a more precise determination of g(x) are subjects of ongoing efforts.

The determination of PDFs from lattice QCD is of particular theoretical interest to directly explore the non-
perturbative sector of QCD from the first principles. To achieve this goal, there have been several proposals for the
extraction of the x-dependent hadron structure from lattice QCD calculations, such as the path-integral formula-
tion of the deep-inelastic scattering hadronic tensor [14], the operator product expansion [15], quasi-PDFs [16, 17],
pseudo-PDFs [18], and lattice cross-sections [19, 20]. Lattice QCD is formulated in Euclidean space, so the bilocal
light-cone correlators that are necessary to extract the PDFs cannot be evaluated directly, because they require op-
erators containing fields at light-like separations, z2 = 0, which cannot exist in Euclidean space. The quasi-PDF
framework [16] circumvents this drawback by calculating matrix elements associated with equal time and purely
space-like field separations with hadron states at non-zero momentum, pz. The corresponding quasi-PDFs can be
matched to the light-cone PDFs when the hadron momentum is large, by applying the Large Momentum Effective
Theory (LaMET) [17]. These calculation techniques have been explored extensively in numerical lattice calculations.
(For recent reviews see [21, 22] and the references therein.)

There have been significant achievements in lattice QCD calculations of x-dependent hadron structure: the nucleon
valence quark distribution using pseudo-PDFs [23], the calculation of the pion valence distribution using the lattice
cross section, quasi-PDF and pseudo-PDF frameworks [24–28], the kaon PDF calculation using the quasi-PDF for-
malism [29], nucleon unpolarized and helicity distributions within quasi-PDF formalism [30–32], the unpolarized and
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helicity GPD calculation of the proton [33], and a quasi-TMD calculation in the pion [34]. However, there are fewer
lattice calculations of gluon distribution functions than that of quark distributions. Lattice calculations include the
gluon momentum fraction [35, 36], the gluon contribution to the nucleon spin [37], gluon gravitational form factors
of the nucleon and the pion [38]. Recently, there have been attempts to calculate gluon PDFs in the nucleon [39, 40]
and in the pion [41].

In this work, we apply the pseudo-PDF approach [18] to extract the gluon PDF in the nucleon. We calculate the
Ioffe-time pseudo-distribution function (pseudo-ITD), M(ν, z2) [18, 42, 43], where the Ioffe-time [44] is a dimensionless
quantity that describes the length of time that the DIS probe interacts with the nucleon, in units of the inverse
hadron mass. The related pseudo-PDF, P(x, z2) can be determined from the Fourier transform of the pseudo-ITD.
The pseudo-PDF and the pseudo-ITD are the Lorentz invariant generalizations of the PDF and of the Ioffe-time
distribution function (ITD) [45] to non-zero separations, z2 > 0, respectively. In renormalizable theories, the pseudo-
PDF has a logarithmic divergence at small z-separations that corresponds to the DGLAP evolution of the PDF.
The pseudo-PDF and the pseudo-ITD can be factorized into the PDF and perturbatively calculable kernels, similar
to the factorization framework for experimental cross-sections. There have been a number of lattice calculations
implementing the pseudo-PDF method [46–51]. Our calculation applies the reduced pseudo-ITD approach, in which
the multiplicative UV renormalization factors are canceled by constructing a ratio of the relevant matrix elements [48].
This ratio, the reduced pseudo-ITD, removes the Wilson-line related divergences, as well as various other systematic
errors. We determine the gluon PDF from the reduced pseudo-ITD through the short distance factorization (SDF).

The unpolarized gluon PDF must be extracted from our lattice results by inverting the convolution that relates the
PDF to the lattice matrix elements. We have access to a limited number of discrete and noisy values of the matrix
element on the lattice, so this inversion problem is ill-posed. A number of techniques have been proposed to overcome
this inverse problem [52], such as discrete Fourier transform, the Backus-Gilbert method [51, 52], the Bayes-Gauss-
Fourier transform [30], adapting phenomenologically-motivated functional forms [24], and finally the application of
neural networks [53, 54], which provide more flexible parameterizations of the PDFs. Here, we parameterize the
reduced pseudo-ITD using Jacobi polynomials [23, 55]. We vary the parameterization of the lattice matrix elements
to incorporate different correction terms and to compare multiple functional forms for the gluon PDF to study the
parameterization dependence.

The rest of this paper is organized as follows. In Sec. II, we first identify the matrix elements needed to calculate
the unpolarized gluon parton distribution, construct the reduced pseudo-ITD from the matrix elements and lay out
the position-space matching that relates the reduced pseudo-ITD to the light-cone ITD. In Sec. III, we describe
the construction of the gluonic currents associated with the matrix elements and the nucleon two-point correlators.
Sec. IV contains the details of our lattice setup. In Sec. V, we demonstrate the consistency of the nucleon two-point
correlators by extracting the energy spectra. Sec. VI describes the methodology we implement to calculate the reduced
pseudo-ITD from the three-point correlators. In Sec. VII, we extract the gluon PDF from the reduced pseudo-ITD
and compare our results with the phenomenological distributions. Sec. VIII contains our concluding remarks.

II. THEORETICAL BACKGROUND OF GLUON PSEUDO-DISTRIBUTIONS

A. Matrix Elements

To access the unpolarized gluon PDF, we calculate the matrix elements of a spin-averaged nucleon for operators
composed of two gluon fields connected by a Wilson line, which have the general form

Mµα;λβ(z, p) ≡ 〈p|Gµα(z)W [z, 0]Gλβ(0) |p〉 . (1)

Here, zµ is the separation between the gluon-fields, pµ is the 4-momentum of the nucleon, W [z, 0] is the standard
straight-line Wilson line in the adjoint representation,

W [x, y] = Pexp
{
igs

∫ 1

0

dη (x− y)µÃµ
(
ηx+ (1− η)y

)}
, (2)

for the gauge field Aµ, where P indicates that the integral is path-ordered. The matrix elements can be decomposed
into invariant amplitudes,Mpp,Mzz,Mzp,Mpz,Mppzz andMgg using the four-vectors, pµ and zµ, and the metric
tensor gµν [56]. These amplitudes are functions of the invariant interval z2 and the Ioffe-time p · z ≡ −ν [44].

The light-cone gluon distribution is obtained from

gαβM+α;β+(z−, p) = −2p2
+Mpp(ν, 0) , (3)
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where z is taken in the light-cone “minus” direction, z = z−, and p+ is the momentum in the light-cone “plus”
direction. The PDF is determined by the Mpp amplitude,

−Mpp(ν, 0) =
1

2

∫ 1

−1

dx e−ixν x g(x) . (4)

The density of the momentum carried by the gluons, G(x) = x g(x) is the natural quantity in this definition of
the gluon PDF, rather than g(x). The field-strength tensor Gµα is antisymmetric with respect to its indices and
g−− = 0, so the left hand side of Eq. (3) reduces to a summation over the transverse indices i, j = x, y; perpendicular
to the direction of separation between the two gluon fields. The matrix element Mti;it decomposes into the invariant
amplitudes [56]

Mti;it = 2 p2
0Mpp + 2Mgg , (5)

where Mgg is a contamination term. The matrix element

Mji;ij = 〈p|Gji(z)W [z, 0]Gij(0) |p〉 = −2Mgg , (6)

cancels the contamination term from Mti;it [56]. Thus, the proper combination of the matrix elements to extract the
twist-2 invariant amplitude, Mpp is

Mti;it +Mji;ij = 2p2
0Mpp . (7)

For spatially-separated fields, the gauge link operator has extra ultraviolet divergences not present for light-like
separated fields. The combination of matrix elements Mti;it is multiplicatively renormalizable [57]. And, because of
the antisymmetry of the gluon fields, the combination Mji;ij can be written as

Mji;ij = 2 〈p|Gyx(z)W [z, 0]Gxy(0) |p〉 , (8)

which contains only one set of indices {µα;λβ}, making explicit the fact that this matrix element is multiplicatively
renormalizable too [58]. Furthermore, both Mti;it and Mji;ij have the same one-loop UV anomalous dimension [56],
making the whole combination in Eq. (7) multiplicatively renormalizable at the one-loop level, at least.

B. Reduced Matrix Elements

Similar to space-like separations, the extended gluon operator has additional link-related ultraviolet (UV) diver-
gences which are multiplicatively renormalizable [59–61]. These UV divergences can be cancelled by taking appropriate
ratios. We combine the matrix elements from Eq. (7) which we denote by M(ν, z2) for the rest of the paper, and
take the ratio [46] of the combination to its rest-frame value, keeping the separation same. This ratio cancels out the
ν-independent UV factor Z(z2/a2), making the ratio UV-finite. The kinematic factors remaining in the ratio can be
removed by taking the ratio of the non-zero separation to the zero separation matrix elements, at fixed Ioffe-time, in
both the numerator and denominator [48].

The resulting reduced matrix element, the reduced pseudo-ITD, can be written as:

M(ν, z2) =

(
M(ν, z2)

M(ν, 0)|z=0

)
/

(
M(0, z2)|p=0

M(0, 0)|p=0,z=0

)
. (9)

Taking the ratio, we also eliminate z2-dependent, but ν-independent, non-perturbative factors that M(ν, z2) may
contain. The residual polynomial “higher twist” dependence on z2, if visible, should be explicitly fitted in order to
separate it from the twist-2 contribution.

C. Position-space Matching

The reduced pseudo-ITD has a logarithmic z2 dependence. We relate the reduced pseudo-ITD, M(ν, z2), to the gluon
and singlet quark light-cone ITDs, Ig(ν, µ2) and IS(ν, µ2) in the MS scheme through the short distance factorization
relationship with z2 as the hard scale. Here, Ig(ν, µ2) is related to the gluon PDF, g(x, µ2), by

Ig(ν, µ2) =
1

2

∫ 1

−1

dx eixν x g(x, µ2) . (10)
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The product x g(x, µ2) is an even function of x, so the real part of Ig(ν, µ2) is given by the cosine transform of
x g(x, µ2), while its imaginary part vanishes. Neglecting the higher twist terms of Mzz, Mzp, Mpz, Mppzz, and
keeping just the Mpp term, the one-loop matching relation is [56, 62],

M(ν, z2) =
Ig(ν, µ2)

Ig(0, µ2)
− αsNc

2π

∫ 1

0

du
Ig(uν, µ2)

Ig(0, µ2)

{
ln

(
z2µ2e2γE

4

)
Bgg(u) + 4

[
u+ ln(ū)

ū

]
+

+
2

3

[
1− u3

]
+

}
− αsCF

2π
ln

(
z2µ2e2γE

4

)∫ 1

0

dw
IS(wν, µ2)

Ig(0, µ2)
Bgq(w) . (11)

The singlet quark Ioffe-time distribution IS(ν, µ2) is related to the singlet quark distribution, summed over quark
flavors. The Altarelli-Parisi kernel, Bgg(u), is given by

Bgg(u) = 2

[
(1− uū)2

1− u

]
+

, (12)

and the quark-gluon mixing kernel is given by

Bgq(w) =
[
1 + (1− w)2

]
+
, (13)

where the plus-prescription is ∫ 1

0

du
[
f(u)

]
+
g(u) =

∫ 1

0

du f(u)
[
g(u)− g(1)

]
(14)

and ū ≡ (1− u). Here, γE is the Euler–Mascheroni constant and CF is the quadratic Casimir operator in the funda-
mental representation. Determining the singlet quark Ioffe-time distribution requires evaluation of the disconnected
diagrams, which involves the computationally demanding calculation of the trace of the all-to-all quark propagator [63],
but contribute only a little to the matching. We neglect quark-gluon mixing in this calculation and implement the
matching relation

M(ν, z2) =
Ig(ν, µ2)

Ig(0, µ2)
− αsNc

2π

∫ 1

0

du
Ig(uν, µ2)

Ig(0, µ2)

{
ln

(
z2µ2e2γE

4

)
Bgg(u)

+ 4

[
u+ ln(ū)

ū

]
+

+
2

3

[
1− u3

]
+

}
. (15)

III. COMPUTATIONAL FRAMEWORK

A. Gluonic Current Calculation

The gluonic currents, inserted into the nucleon to calculate the matrix elements, are not connected to the nucleon
state by any quark propagator, so the currents are largely decoupled from the nucleon part of the calculation itself.
As a result, on the lattice, we can calculate the gluonic currents and the nucleon two-point correlators separately
and combine them together to obtain the three-point correlators from which we extract the matrix elements. On the
lattice, the gluonic current can be written with the Wilson line in the fundamental representation as

O(Gµα, Gλβ , z) ≡ Gµα(z) U(z, 0) Gλβ(0) U(0, z).

(16)

The field-strength tensor can be expressed in terms of the (1× 1) plaquette operator, U
(1×1)
µν , as [64]

−i
2

[
U (1×1)
µν − U (1×1)†

µν − 1

3
Tr
(
U (1×1)
µν − U (1×1)†

µν

)]
= gsa

2
[
Gµν +O(a2) +O(g2

sa
2)
]
, (17)
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FIG. 1. Visual representation of the gluonic current, O(Gµα, Gλβ , z). The rectangles on both the sides represent field-strength
tensors and the lines connecting them represent the Wilson lines on the lattice.

where a is the lattice spacing and β = 6/g2
s . One-third of the trace is subtracted here to enforce the traceless property

of the Gell-Mann matrices. The (1 × 1) plaquette operator is defined as the product of the link variables forming a
(1× 1) loop on the lattice,

U (1×1)
µν (x) = Uµ(x)Uν(x+ aµ̂)U†µ(x+ aν̂)U†ν (x). (18)

To reduce statistical fluctuations, we take the average of the four possible plaquette operators that can be constructed
by changing the signs of µ and ν. Finally, we combine the gluonic currents O(Gti, Git, z) and O(Gji, Gij , z) to calculate
Mpp. Accounting for the sign change of the gluonic current with the “temporal” index in Euclidean spacetime, the
total gluonic current becomes

Og(z) = Gji(z)U(z, 0)Gij(0)U(0, z)− Gti(z)U(z, 0)Git(0)U(0, z). (19)

B. Gradient Flow

In our calculation, we apply the gradient flow [65–67] to reduce ultraviolet fluctuations and improve the signal-to-
noise ratio for the gluon observables. To implement this technique, the flowed gauge field, Bµ(τ, x), is defined by
following the procedure in [65],

Ḃµ = DνGνµ , Dµ = ∂µ + [Bµ, · ] ,
Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ] , (20)

where the flowed gauge field is subjected to the boundary condition Bµ(τ = 0, x) = Aµ(x). Here τ is the flow time and
we abbreviate differentiation with respect to τ by a dot. The flow equation of the gauge field is a diffusion equation
and the evolution operator in the momentum space acts as an UV regulator for τ > 0. As a result, the gradient
flow exponentially suppresses the UV field-fluctuations, which corresponds to smearing out the original degrees of
freedom in coordinate space. The operators constructed using flowed gauge fields with positive flow time enter into
the relevant theories at length scales of ∼

√
8τ .

On the lattice, the gradient flow is implemented by defining the flowed link variable, Vµ(τ, x) as [65]:

V̇µ(τ, x) = −g2
0{∂x,µS(Vµ(τ, x))}Vµ(τ, x) , (21)

where g0 is the bare coupling, S(Vµ(τ, x)) is the flowed action, Vµ(τ = 0, x) has the boundary condition of being equal
to the link variable, Uµ(x), and ∂x,µ stands for the natural SU(3)-valued differential operator with respect to Vµ(τ, x).
The action, S(Vµ(τ, x)) is a monotonically decreasing function of τ , and the gradient flow corresponds to a continuous
stout-link smearing procedure [68].

We use unimproved Wilson flow and calculate the gluonic currents with flow times from τ = a2 to τ = 3.8a2. We
construct the double ratio of Eq. (9) using the flowed matrix elements, which further reduces UV fluctuations and
suppresses the flow time dependence. The residual τ -dependence is removed by fitting the flowed reduced matrix
elements to an appropriate functional form which, in turn, gives us the reduced pseudo-ITD at zero flow time.

C. Nucleon Two-point Correlator

We calculate the nucleon two-point correlators by applying interpolators at the source time-slice and the sink
time-slice on the lattice. We apply distillation [69], a low-rank approximation to the gauge-covariant Jacobi-smearing



6

kernel, Jσ,nσ (t) =
(

1 + σ∇2(t)
nσ

)nσ
[70]. The tunable parameters {σ, nσ} ensure that, in the large iteration limit,

the kernel approaches that of a spherically-symmetric Gaussian. The quark fields are smeared using the distillation
smearing kernel

�xy(t) =

ND∑
k=1

ν(k)
x (t) ν(k)†

y (t) ≡ VD(t) V †D(t), (22)

where VD(t) is a (Nc×Nx×Ny ×Nz)×ND matrix, where Nc is the dimension of the color space, Nx, Ny, Nz are the
extents of the lattice in the three spatial directions, and ND is the dimension of the distillation space. The kth column

of VD(t), ν
(k)
x (t) is the kth eigenvector of the second-order three-dimensional differential operator, ∇2, evaluated on

the background of the spatial gauge fields of time-slice t, once the eigenvectors have been sorted by the ascending
order of the eigenvalues. The two-point correlator for the nucleon can be written as〈

ON,i(m)ŌN,j(n)
〉

= Φ
(pqr)
i, αβγ(tm)×

[
Ppp̄
αᾱ(tm, tn) Pqq̄

ββ̄
(tm, tn) Prr̄

γγ̄(tm, tn)

−Ppp̄
αᾱ(tm, tn) Pqr̄

βγ̄(tm, tn) Prq̄

γβ̄
(tm, tn)

]
× Φ

(p̄q̄r̄)∗
j, ᾱβ̄γ̄

(tn), (23)

where,

Φ
(pqr)
i,αβγ(t) = εabc Si,αβγ

(
Γ1i ν

(p)
)a(

Γ2i ν
(q)
)b (

Γ3i ν
(r)
)c

(t), (24)

and

Ppp̄
αᾱ(tm, tn) = ν(p)†(tm) D−1

αᾱ(tm, tn) ν(p̄)(tn). (25)

Here, Φi(t) and P(tm, tn) are referred to as elementals and perambulators, respectively; D is the lattice representation
of the Dirac operator; α, ᾱ, β, β̄, γ, γ̄ are the spin indices; a, b, c are the color indices. The Φi(t) encodes the structure
of the interpolating operator as well as has a well-defined momentum, while P(tm, tn) encodes the propagation of the
quarks, and does not have have any explicit momentum projection. Elementals can be decomposed into terms that
act only within coordinate and color space, like Γ, and only within spin space, like Sαβγ .

We adopt distillation for two reasons. First, the computationally demanding parallel transporters of the theory,
the perambulators, depend only on the gauge field, and not on the interpolators. Therefore, we can calculate the
perambulators on an ensemble of gauge fields once, and then reuse them for an extended basis of interpolators, thus
reducing the computational cost to a great extent. This extended basis of interpolators is the key to perform a
successful summed generalized eigenvalue problem (sGEVP) analysis [71], enabling us to attain a clear signal for the
ground state nucleon.

Second, distillation admits a momentum projection both at the source interpolating operator, and at the sink
interpolating operator, in contrast to the more usually adopted methods. Thus for the gluonic three-point functions
computed here, we are able to impose momentum projection at all three time-slices, ensuring the most complete
possible sampling of the lattice. Moreover, the low-lying spectra of the nucleon can be faithfully captured with
a relatively small number of distillation eigenvectors [72], thus lowering the cost of the calculation further. The
expectation is that ND should scale as the physical volume, and the cost of computing the corresponding correlation
functions scales as N4

D for the case of the nucleon. In this calculation, we employed ND = 64 eigenvectors. The
efficacy of distillation for the calculation of nucleon charges was demonstrated in ref. [73], and subsequently extended
to the case of the nucleon in motion [74]. Recently, the unpolarized, isovector PDF of the nucleon has been computed
using the same ensemble within the distillation framework [55].

D. Interpolators

The lattice regulator explicitly breaks the continuum SO(3) rotational symmetry, so the associated symmetry
group reduces to the double-cover octahedral group, ODh for the nucleon at rest. Although there are six irreducible
representations (irreps.) available in ODh , we focus on G1g, because the states with continuum spin 1

2 , such as the
ground state nucleon, are subduced onto this irrep. Here, the subscript g stands for positive parity. At non-zero
spatial momenta, the ODh group breaks into further little groups depending on the direction of the boost. We consider
boosts only along the z-direction, so the associated little group is the order-16 dicyclic group or Dic4.

To calculate the low-lying spectra of the nucleon, we include interpolators with zero orbital angular momentum,
which have the largest overlaps with the ground state of the nucleon. For the lowest excited-states, we include
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Spatial momentum Interpolators

−→p =
−→
0 N 2SS

1
2

+
, N 2SM

1
2

+
, N 4DM

1
2

+
,

N 2PA
1
2

+
, N 4P ∗

M
1
2

+
, N 2P ∗

M
1
2

+

−→p 6= −→0 N 2PM
1
2

−
, N 2PM

3
2

−
, N 4PM

1
2

−
,

N 4PM
3
2

−
, N 4PM

5
2

−
, N 2SS

1
2

+
,

N 2SM
1
2

+
, N 2P ∗

M
1
2

+
, N 4P ∗

M
1
2

+

TABLE I. Nucleon interpolators used in the calculation. The interpolators with asterisk (*) on them are hybrid in nature.

interpolators with gauge-covariant derivatives acting on the quark fields to capture the effect of the non-zero angular
momenta between the quarks [75]. All these interpolators are “non-relativistic”, in the sense that they feature only
the upper components of the Dirac spinors. We also include the interpolators that have derivatives of second order
and form combinations corresponding to the commutation of two gauge-covariant derivatives acting on the same
quark field. These interpolators, also referred to as hybrid interpolators [76], vanish in the absence of a gauge-field
and correspond to the chromomagnetic components of the gluonic field-strength tensor. We tabulate our choice of
interpolators for the nucleon at rest as the first row in Table I, using the spectroscopic notation of: X 2S+1LπJ

P where
X is the nucleon, N ; S is the Dirac spin; L = S, P, D, . . . is the orbital angular momentum; π = S, M or A is the
permutation symmetry of the derivatives; J is the total angular momentum; and P is the parity. For the construction
of the three-point correlators needed for the unpolarized distributions, we take the sum of the spin = + 1

2 and spin =

- 1
2 nucleon two-point correlators.
For the case of the correlation functions at non-zero spatial momentum, parity is no longer a good quantum number

and further operators are classified according to their helicity. We therefore include operators corresponding both to
higher spin, and to negative parity, in our basis within the little group Dic4. We choose the direction of momenta
to be in the same direction of the polarization to ensure longitudinal polarization. We access the unpolarized gluon
PDF by taking the sum of helicity = + 1

2 and helicity = - 1
2 nucleon two-point correlators. The basis of interpolators

is tabulated as the second row in Table I.

E. Momentum Smearing

To access a wide range of Ioffe-times, we perform the lattice calculation at multiple spatial momenta. On the lattice,
the spatial momentum is discretized and expressed as

p =
2π l

aL
. (26)

Here, L = 32, is the spatial extent of the lattice. For p, where l > 3, we enhance the overlap of the interpolators
onto the lowest-lying states in motion by applying momentum smearing [77]. We follow the procedure introduced
in [74] and add a phase to the distillation eigenvectors for higher momenta to preserve translational invariance, which
is essential for the projection onto the states of definite momenta. The “phased” distillation eigenvector becomes,

ν̃(k)
x ( #»z , t) = ei

#»
ζ · #»z ν(k)

x ( #»z , t) . (27)

It is sufficient to modify the previously computed eigenvectors to perform calculation at the higher lattice momenta,
though the perambulators and the elementals need to be recalculated with these “phased” eigenvectors. For our
calculation, choosing

#»

ζ = 2 · 2π

L
ẑ (28)

gives the momentum smearing needed for boosts up to p = 6× 2π
aL .

IV. LATTICE DETAILS

We perform our calculation on an isotropic ensemble with (2 + 1) dynamical flavors of clover Wilson fermions with
stout-link smearing [68] of the gauge fields and a tree-level tadpole-improved Symanzik gauge action, with approximate
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ID a (fm) Mπ (MeV) L3 ×Nt Ncfg Nsrcs

a094m358 0.094(1) 358(3) 323 × 64 349 64

TABLE II. The parameters of the ensemble used in this work. Here, Ncfg is the number of gauge configurations.

lattice spacing, a ∼ 0.094 fm and pion mass, Mπ ∼ 358 MeV, generated by the JLab/W&M collaboration [78]. The
rational hybrid Monte Carlo (RHMC) algorithm [79] is used to carry out the updates. One iteration of four-dimensional
stout-smearing with the weight ρ = 0.125 for the staples is used in the fermion action. After stout-smearing, the
tadpole-improved tree-level clover coefficient, CSW , is very close to the non-perturbative value. This is confirmed
using the Schrödinger functional method for determining the clover coefficient non-perturbatively [78]. The tuning of
the strange quark mass is done by first setting the quantity, (2M2

K+ −M2
π0)/M2

Ω− equal to its physical value 0.1678.
This quantity is independent of the light quark masses to the lowest order in χPT, depending only on the strange
quark mass [80]. So, it can be tuned in the SU(3) symmetric limit. The resulting value of the strange quark mass is
then kept fixed as the light quark masses are decreased in the (2+1) flavor theory to their physical values.

We use 64 temporal sources over 349 gauge configurations, with each configuration separated by 10 HMC trajec-
tories. The two light quark flavors, u and d are taken to be degenerate and the lattice spacing was determined using
the w0 scale [81]. We summarize the parameters of the ensemble in Table II.

V. VARIATIONAL ANALYSIS

To check whether the two-point correlators give us the expected results, we investigate the associated principal
correlators and extract the energy spectra by performing a variational analysis for the nucleon at rest in the G1g

channel and for all the boosted frames in the Dic4 little group with the interpolators in Table I. This fitting procedure
is discussed in detail in [72, 73, 75]. We only summarize the procedure here. We solve the GEVP of Eq. (A9) over
a range of t0. We then define optimal interpolators, in the variational sense, for the energy eigenstates, |n〉 through∑
i u

i
nŌN,i. Here, ŌN,i are the interpolators used in the calculation and uin are the weights of these interpolators

that define the optimal interpolator. The energy associated with each state |n〉 is obtained by fitting its principal
correlator according to

λn(t, t0) = (1−An)e−En(t−t0) +Ane
−E′n(t−t0) . (29)

In our fitting procedure, we aim to ensure that the principal correlators are dominated by the leading exponential.
Thus in each of our fits, we choose t0 such that we obtain an acceptable χ2/d.o.f., that the value of An is small,
typically less than 0.1, and that, for each principal correlator, λn(t, t0), the subleading energy E′n is larger than than
the leading energies for all the principal correlators. This indicates that the matrix of two-point correlators is to a
large degree, saturated by the lowest-lying states.

In Fig. 2 and 3, we show fits to the leading principal correlators for the nucleon subduced onto the little group,
Dic4 for p = 2 × 2π

aL = 0.82 GeV, and p = 6 × 2π
aL = 2.46 GeV, respectively. For each panel, the blue band is the

reconstruction from the fitted parameters. The approach of the plateaux close to unity at large times is indicative of
the small value of An in the fits, and the small contribution of the other states to each principal correlator.

In Fig. 4, we plot the ground state nucleon energies extracted using the variational analysis with respect to the
spatial momentum, together with the expectations from the continuum dispersion relation.

Fig. 4 shows that for lower momenta, the unphased ground state nucleon energies are in excellent agreement with
the continuum dispersion relation. At p = 3 × 2π

aL = 1.23 GeV, the ground state energy starts to deviate, but from

p = 4× 2π
aL = 1.64 GeV, after phasing, the ground state energy starts to align with the continuum dispersion curve,

indicating that adding a phase to the distillation eigenvectors with ζ = 2 2π
L resulted in a significant increase in the

overlap of the interpolators onto the lowest-lying states in motion.
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FIG. 2. Fits to the principal correlators for the nucleon with for p = 2× 2π
aL

= 0.82 GeV, subduced onto the little group, Dic4,

on the ensemble a094m358, for t0 = 5. The plots show λn(t, t0) eEn(t−t0) data on the y-axes and the lattice time-slices on
the x-axes; the blue bands are the two-exponential fits as described in the text. The top, middle and bottom panels show the
principal correlators for the ground state, the first excited-state and the second excited-state respectively. In each panel, the
energy corresponding to the leading exponential state is labelled by En.

FIG. 3. Fits to the principal correlators for the nucleon with p = 6 × 2π
aL

= 2.46 GeV, subduced onto the little group, Dic4,

on the ensemble a094m358, for t0 = 6. The plots show λn(t, t0) eEn(t−t0) data on the y-axes and the lattice time-slices on
the x-axes; the blue bands are the two-exponential fits as described in the text. The top, middle and bottom panels show the
principal correlators for the ground state, the first excited-state and the second excited-state respectively. In each panel, the
energy corresponding to the leading exponential state is labelled by En.

VI. MATRIX ELEMENT EXTRACTION

A. Three-point Correlator

We calculate the matrix elements by first computing the three-point correlators by inserting gluonic currents between
the source and the sink of the two-point correlators. The three-point correlator can be expressed as

〈C3pt(t, tg)〉 = 〈0|T {ON (t)Og(tg) ŌN (0)}|0〉 , (30)
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FIG. 4. The ground state nucleon dispersion relation on the ensemble a094m358, the solid line being the continuum dispersion
relation. Energies without phasing are in black and energies with phasing are in blue.

where ŌN and ON are the interpolators and t is the source-sink separation. The 〈. . . 〉 indicates the ensemble average
and T {. . . } stands for the time-ordered product. The three-point correlator can be rewritten as

Ci3pt(t, tg) =
(
Ci2pt(t)−

〈
C2pt(t)

〉)(
Oig(tg)− 〈Og(tg)〉

)
, (31)

where C2pt(t) is the nucleon two-point correlator with source-sink separation t in lattice units and tg is the time-slice
on which the gluonic current is inserted.

B. sGEVP Method

We implement the sGEVP method [71, 82] to extract the matrix elements from the three-point correlators, a
combination of the summation method [83] and GEVP [75] method which begins with the formation of the summed
three-point correlation functions formed from our basis of interpolating operators

Ci,s3pt(t) =

t−1∑
tg=1

Ci3pt(t, tg). (32)

We provide details of the method in appendix A, but the salient feature is that for sGEVP, the systematic error
decays as

[
t exp(−∆E t)

]
, which is much faster than the

[
exp(−∆E′ t)

]
decay for GEVP [75]. This allows us to access

the matrix elements at a much smaller temporal separation than would be possible with GEVP. This is crucial for
hadron structure calculations, since the signals tend to be heavily contaminated by noise as the temporal separation
is increased. sGEVP utilizes the lowest-lying spectra, conveniently calculated using distillation, by rotating the three-
point correlator matrix by a suitable angle, removing much of the excited-state contaminations, and therefore performs
better than the summation method [83], which involves only the ground-state nucleon.

In principle, increasing the number of states, N , in the sGEVP analysis should lead to a larger ∆E, which enables
matrix elements to be extracted from even smaller temporal separations. This, however, also increases the compu-
tational cost, because the N × N correlator matrix needs to be constructed, and makes solving the GEVP for the
nucleon two-point correlator matrix more challenging.

C. Bare Matrix Elements

Our calculation requires the extraction of the matrix elements at multiple flow times, multiple nucleon momenta
and multiple separations between the gluon fields. We perform the calculation for flow times τ/a2 = 1.0, 1.4, 1.8, 2.2,
2.6, 3.0, 3.4 and 3.8. For each flow time, we calculate the matrix elements for nucleon momenta, p = 2πl

aL where l = 0
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FIG. 5. Extraction of the matrix elements using the sGEVP method for different flow times, nucleon momenta and field
separations on the ensemble a094m358. The bands are the fits described in the text. The top and bottom rows contain the
matrix elements for flow time τ/a2 = 1.0 and 3.0, respectively. In each row, the left column compares between the matrix
elements for p = {1, 6} × 2π

aL
= 0.41 GeV, 2.46 GeV respectively at zero separation; the middle column compares between the

matrix elements for p = 1× 2π
aL

= 0.41 GeV and separations z = {1, 6}× a= 0.094 fm, 0.564 fm respectively. The right column

does the same comparison as done in the middle column, but for p = 6× 2π
aL

= 2.46 GeV.

to 6, and for field separations, z = s a where s = 0 to 6; a being the lattice spacing. We construct the effective matrix
element, Meff(t, z, p, τ) for each flow time, nucleon momentum and field separation, using the formulation described
in appendix A and fit the matrix elements using the functional form in Eq. (A12), which can be written in simplified
notation and arguments as

Meff(t) = A+B t exp(−∆E t) . (33)

Here, A is the matrix element we wish to extract. To perform the fit of Eq. (33) for a particular nucleon momentum,
p, we first fit the matrix element for z = 0 using a Bayesian analysis and determine the corresponding fitted value
of the parameter, ∆E. As the hadronic spectrum is determined by the two-point correlators, we use the value of
∆E obtained from the fit to the matrix element for z = 0 as the prior for our subsequent fits to the matrix elements
for z > 0 at that particular nucleon momentum. We set the prior-width of ∆E for z > 0 to be three times larger
than the uncertainty in ∆E and allow for random priors in XMBF [84]. The priors are chosen randomly from normal
distributions with the given prior-widths. We perform a simultaneous and correlated fit to the matrix elements for
z = {1, 2, 3, 4, 5, 6} × a = 0.094 fm, 0.188 fm, 0.282 fm, 0.376 fm, 0.470 fm, 0.564 fm respectively,

Meff(t)i = Ai +Bi t exp(−∆E t) , (34)

where i = 1, 2, · · · 6 and the ∆E is assumed to be the same for matrix elements at a fixed nucleon momentum and
flow time. This procedure is particularly helpful for a well-controlled fit to the large momentum matrix elements for
which the signal-to-noise ratio is poor, especially at flow times τ/a2 < 1.6.

In Fig. 5, we illustrate our fits to the matrix elements for τ/a2 = 1.0, in the upper row and for τ/a2 = 3.0 in
the bottom row. Here, we compare the fitted matrix elements among the momenta, p = {1, 6} × 2π

aL = 0.41 GeV,
2.46 GeV respectively; and the separations, z = {0, 1, 6} × a = 0, 0.094 fm, 0.564 fm respectively, and list the fitted
parameters in Table III. One can immediately see that the ∆E values determined for the non-zero separations are
almost identical compared to that obtained for the matrix elements at z = 0 where no prior is assigned on the fit
parameter ∆E. This, along with the goodness of the fit in the extraction of the matrix elements for the non-zero
separations, indicates the validity of our fitting procedure.

From Fig. 5 and the corresponding fit parameters in Table III we see that the lattice data are described well by our
fit procedure. The χ2/d.o.f. shows that the choice of prior-width for ∆E at z > 0 is an appropriate one. We notice
from Fig. 5 that the matrix elements for z = 6a = 0.564 fm, have a flat behavior as a function of the source-sink
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τ/a2 p (GeV) z (a) ν A B ∆E χ2/d.o.f.

1.0 0.41 0 0.00 0.62(4) -2.69(79) 1.41(18) 0.53

1.0 0.41 1 0.20 0.60(3) -2.35(50) 1.40(13) 0.77

1.0 0.41 6 1.18 0.13(2) -0.14(7) 1.40(13) 0.77

1.0 2.46 0 0.00 0.94(12) -2.56(83) 1.15(25) 0.62

1.0 2.46 1 1.18 0.85(8) -2.23(28) 1.22(12) 0.29

1.0 2.46 6 7.07 0.09(2) 0.07(13) 1.22(12) 0.29

3.0 0.41 0 0.00 0.62(4) -1.80(13) 1.03(5) 0.35

3.0 0.41 1 0.20 0.60(2) -1.68(8) 1.02(4) 0.31

3.0 0.41 6 1.18 0.19(1) -0.39(4) 1.02(4) 0.31

3.0 2.46 0 0.00 0.91(11) -2.16(20) 0.91(10) 0.29

3.0 2.46 1 1.18 0.83(7) -1.90(17) 0.93(7) 0.22

3.0 2.46 6 7.07 0.18(3) -0.28(13) 0.93(7) 0.22

TABLE III. The fitted parameters and the goodness of the fits for the matrix elements shown in Fig. 5. For a particular flow
time and nucleon momentum, we first fit the matrix elements at z = 0; the information regarding the fit parameter ∆E from
this fit is used to set the prior for ∆E in a simultaneous correlated fit for the matrix elements of all the non-zero separations.

separations. This can also be understood from the smallness of B-parameters listed in Table III, with relatively larger
uncertainties.

The nucleon two-point correlators have quite good signal-to-noise ratios up to the source-sink separation t = 9a =
0.846 fm at p = 6 × 2π

aL = 2.46 GeV, as can be seen from Fig. 3. Fig. 5 shows, however, that the matrix elements
almost lose any statistical signal around source-sink separation t = 6a = 0.564 fm, which is expected as the nucleon
momentum increases. As shown in [85], the optimized interpolators reduce the excited-state contributions allowing
us to start the fit at significantly earlier source-sink separations. In support of this, we indeed see from Fig. 5 that
the matrix elements for p = 1× 2π

aL = 0.41 GeV reach a plateau around the source-sink separation, t = 4a = 0.376 fm.
We note that lattice QCD calculations of the gluonic observables are, in general, much noisier than quark matrix

elements. Measures of the goodness of the fits do not necessarily reflect all the systematic uncertainties in our
extractions of the fit parameters A, B, and ∆E. However, by using N interpolators within a variational approach,
we are better able to sample the Hilbert space in a particular irrep. in finite volume. This has been proven successful
in nucleon structure calculation in [73]. The crucial insight is that projecting to the definite finite volume states
via the variational solutions allows us to take advantage of the orthogonality of the states in the Hilbert space [82].
There are clearly residual excited-states present as constructing the ideal basis is unrealistic. However, a significant
improvement is achieved by incorporating a moderate number of interpolators and applying distillation, one of the
most computationally cost-effective methods for implementing a large number of interpolators. Therefore, by adding
multiple interpolators we have attempted to systematically improve the determination of A, B, and ∆E in this
calculation. Further investigation with larger statistics will be necessary for complete estimate of all the systematic
uncertainties associated with excited-state contamination at large nucleon momenta.

D. Reduced Matrix Elements and Zero Flow time Extrapolation

From the bare matrix elements, we calculate the reduced matrix elements using the double ratio in Eq. (9) for
different flow times, nucleon momenta and field separations. We present the reduced matrix elements for four different
values of τ/a2 in Fig. 6. We expect the higher twist contributions, discretization effects, and flow time dependence to
be minimized through this double ratio.

From the reduced matrix elements at different flow times, we calculate the reduced pseudo-ITD distribution by
extrapolating to zero flow time. At fixed values of the field separation, z, and nucleon momentum, p, we find that the
τ -dependence is best fit by a linear form, M(τ) = c0 +c1τ , which we use to determine the reduced pseudo-ITD matrix
elements for the subsequent analyses. The values of the fitted parameters are tabulated in appendix B. Out of 36
different fits, we present six examples of such extrapolation in Fig. 7 and for all extrapolations, we find χ2/d.o.f. < 1.0.
Finally, we present the reduced pseudo-ITD in the zero flow time limit in Fig. 8.
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FIG. 6. The reduced matrix elements, M(ν, z2) with respect to the Ioffe-time for different flow times. The top-left, top-right,
bottom-left, bottom-right panels have the reduced matrix elements for τ = 1.0, 1.8, 2.6, 3.4 in lattice units respectively.

VII. DETERMINATION OF GLUON PDF AND COMPARISON WITH PHENOMENOLOGICAL
DISTRIBUTION

Determining PDFs from lattice calculations involves the challenge of how best to extract a continuous distribution
from the discrete lattice data, compounded by a limited number of data points due to a finite range of field separations
and hadron momenta, and therefore a finite range of ν. By performing a phenomenological analysis of the NNPDF
unpolarized gluon PDF [4], it has been found in [86] that a ν-range that is much larger than the present calculation, or
any available lattice QCD determination of the gluon ITD [40, 41], is necessary to determine the gluon distribution in
the entire x-region from the ITD data. Therefore, we do not expect a proper determination of the gluon distribution
in the entire x-region, especially in the small-x domain. However, given our lattice data in a limited region, namely
ν ∈ [0, 7.07], we extract the gluon PDF from the reduced pseudo-ITD using the Jacobi polynomial parameterization
proposed in [23]. The details of this procedure are presented in [23, 55]; here we start with the simplest form for the
PDF containing the matching kernel and the leading PDF behavior, which we label as

[
2-param (Q)

]
M(ν, z2) =

∫ 1

0

dx K(xν, µ2z2)
xα (1− x)β

B(α+ 1, β + 1)
. (35)

Here, K(xν, µ2z2) is the matching kernel that factorizes the reduced pseudo-ITD directly to the gluon PDF and the

beta function, B(a, b) =
∫ 1

0
ra−1 (1− r)b−1 dr . To assess our fit model, and the associated systematic uncertainties,

we add terms to the model. We consider the effect of adding one transformed Jacobi polynomial to the functional
form of the PDF and label this model

[
3-param (Q)

]
,

M(ν, z2) =

∫ 1

0

dx K(xν, µ2z2) xα (1− x)β
(

1

B(α+ 1, β + 1)
+ d

(α,β)
1 J

(α,β)
1 (x)

)
. (36)
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FIG. 7. Reduced matrix elements, M(τ) extrapolated to τ → 0 limit for different nucleon momenta and different field
separations. The functional form used to fit the reduced matrix elements is: M(τ) = c0 + c1τ . The top-left panel shows the fit
for p = 1× 2π

aL
= 0.41 GeV and z = a = 0.094 fm. The top-middle panel shows the fit for p = 2× 2π

aL
= 0.82 GeV and z = 2a

= 0.188 fm. The top-right panel shows the fit for p = 2× 2π
aL

= 0.82 GeV and z = 6a = 0.564 fm. The bottom-left panel shows

the fit for p = 4× 2π
aL

= 1.64 GeV and z = 6a = 0.564 fm. The bottom-middle panel shows the fit for p = 5× 2π
aL

= 2.05 GeV

and z = 4a = 0.376 fm. The bottom-right panel shows the fit for p = 6× 2π
aL

= 2.46 GeV and z = a = 0.094 fm.
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FIG. 8. Reduced Ioffe-time pseudo-distribution, M(ν, z2) plotted with respect to the Ioffe-time ν. For each nucleon momentum
and field separation, the reduced matrix elements for different flow times are extrapolated to the limit, τ → 0 , extracting the
flow time independent reduced pseudo-ITD.

Finally, we consider a model that we denote
[
2-param (Q) + P1

]
for which we add a nuisance term to capture

possible O
(
a/|z|

)
effects. This nuisance term can be parametrized by a transformed Jacobi polynomial [23]

M(ν, z2) =

∫ 1

0

dxK(xν, µ2z2)
xα (1− x)β

B(α+ 1, β + 1)
+

(
a

|z|

)
P1(ν) , (37)

where

P1(ν) = p
(α,β)
1

∫ 1

0

dx cos(νx)xα(1− x)βJ
(α,β)
1 (x) . (38)
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The transformed Jacobi polynomials, J
(α,β)
n (x) are defined as,

J (α,β)
n (x) =

n∑
j=0

ω
(α,β)
n,j xj , (39)

with

ω
(α,β)
n,j =

(
n

j

)
(−1)j

n!

Γ(α+ n+ 1)Γ(α+ β + n+ j + 1)

Γ(α+ β + n+ 1)Γ(α+ j + 1)
. (40)

Here, Γ(n) is the Gamma function. The orthogonality relation for these transformed Jacobi polynomials becomes∫ 1

0

dxxα(1− x)βJ (α,β)
n (x)J (α,β)

m (x) = N (α,β)
n δn,m , (41)

where

N (α,β)
n =

1

2n+ α+ β + 1

Γ(α+ n+ 1)Γ(β + n+ 1)

n! Γ(α+ β + n+ 1)
. (42)

The transformed Jacobi polynomials form a complete basis of functions in the interval [0,1], making it possible to
parameterize the PDF.

We use Bayesian analysis to extract the PDF from the reduced pseudo-ITD. We denote the set of fit parameters,
which includes the exponents α, β, and the linear coefficients of the Jacobi series for the PDF and additional terms,
by θ. Bayes’ theorem gives the posterior distribution, P [θ|M, I], which describes the probability distribution of a
given set of parameters being the true parameters for a given set of data, M(ν, z2), and prior information, I, as

P [θ|M, I] =
P [M|θ]P [θ|I]

P [M|I]
. (43)

Here, P [M|θ] is the probability distribution of the data for a given set of model parameters. The prior distribution,
which describes the probability distribution of a set of parameters given some previously held information, is P [θ|I]
and P [M|I] is the marginal likelihood or evidence that describes the probability that the data are correct given the
previously held information.

In our parameterization, the PDF is dominated by the leading behavior xα(1− x)β and the other terms should be

small corrections to this. Therefore, in the
[
3-param (Q)

]
model, our prior for the PDF model parameter, d

(α,β)
1 is

given by a normal distribution, with a mean and width of d0 and σd, respectively. Similarly, in the
[
2-param (Q) + P1

]
model, we expect the parameter for the additional P1 term to be a small correction to the dominant PDF and use a
normal distribution as a prior. The mean and width of the distribution are given by e0 and σe.

Guided by phenomenological fits of PDFs, we set α and β to be positive and their prior distributions are set to be
log-normal distributions,

P (x, µl, σ, x0) =
1

(x− x0)σ
√

2π
e−[log(x−x0)−µl]2/2σ2

, (44)

where µl is the mean and σ2 the variance of the distribution of log(x− x0), and x0 is the lower bound of the log-normal
distributions. The most likely parameters of the model are found by maximizing the posterior distribution. This is
performed by minimizing the negative log of the posterior distribution,

L2 = −2 log(P [θ|M, I]) + C, (45)

where C is the normalization of the posterior, which is independent of the model parameters.
In Fig. 9, we compare the light-cone ITDs obtained from these three models. Adding more terms to the functional

form of the PDF or adding more nuisance terms does not improve the quality of the fits and the limited Ioffe-time
range does not allow us to add an arbitrary number of parameters to the fit models. Fig. 9 demonstrates that the
ITDs do not differ among the three models and the resulting PDFs remain quantitatively the same. We list the
L2/d.o.f. and χ2/d.o.f. of the models in Table IV and find no significant change. The χ2/d.o.f. and L2/d.o.f. values
are also in the acceptable range and their proximity shows that the prior distributions on the PDF parameters do not
have a significant effect on the fit. Therefore, for our following discussion, we focus on the

[
2-param (Q)

]
model.
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Model L2/d.o.f. χ2/d.o.f.

2-param (Q) 1.07 0.81

3-param (Q) 1.11 0.82

2-param (Q) + P1 1.04 0.77

TABLE IV. The L2/d.o.f. and the χ2/d.o.f. of different models used to perform Jacobi polynomial parameterization of the
lattice reduced pseudo-ITD to calculate the gluon PDF.
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FIG. 9. Comparison among light-cone Ioffe-time distributions calculated using Jacobi polynomial parameterization and the
corresponding x g(x) distributions at 2 GeV in the MS-scheme.

In Fig. 10, the reduced pseudo-ITD calculated is shown for different separations, z, along with its fitted bands
obtained from the

[
2-param (Q)

]
model. In Fig. 11, we plot the light-cone Ioffe-time distribution with the lattice data

modified by the matching kernel from the short distance factorization. SDF removes the logarithmic z2 dependence of
the reduced pseudo-ITD, and introduces the µ2 dependence on the light-cone Ioffe-time distribution. This effect can
be observed in Fig. 11, where after applying the matching kernel, the lattice data points with different field separations
shift upward, depending on their field separations, and the data points fall on a regular light-cone Ioffe-time distribution
for all z2. In previous pseudo-PDF calculations such as the pion valence quark distribution determination [49], the
PDF moments extracted by implementing SDF show the logarithmic z2 dependence removed for z up to 1 fm. Similar
results can be found in [47], where the moments of quark distribution in the nucleon calculated through SDF are
found to be independent of a logarithmic z2 effect for z as large as 0.93 fm. On the other hand, if SDF breaks down,
we should see a non-polynomial z2 dependence in the lattice data, especially for large z2. We do not see such behavior
within the current statistics. Instead, the lattice data, after modification by the matching kernel, aligns with the
light-cone Ioffe-time distribution band, including the large z2 data points, indicating that SDF is quite successful in
extracting the Ioffe-time distribution.

In Fig. 12, we present the unpolarized gluon PDF (cyan band) extracted from the
[
2-param (Q)

]
model (fit Eq. (35))

and compare this with the gluon PDFs extracted from the phenomenological data sets CT18 [3], NNPDF3.1 [4], and
JAM20 [87] at µ = 2 GeV. A similar comparison can be made with the other global fits of the gluon PDF, such as with
CJ15 [5], HERAPDF2.0 [88], MSHT20 [2]. To determine the normalization of the gluon PDF according to Eq. (15),
we need to normalize the extracted PDF with the gluon momentum fraction. There has been a number of lattice
calculations to extract the gluon momentum fraction [35, 89], as well as phenomenological calculations [3, 4]. We take
the results from [35], which is 〈x〉g=0.427(92) in the MS scheme at renormalization scale µ = 2 GeV, and apply this
normalization to our gluon PDF. One could similarly adopt the normalization from the 〈x〉g determination in [89]. We
consider the uncertainties of our extracted gluon PDF and the gluon momentum fraction from [35] to be uncorrelated
and determine the total uncertainty in the PDF. The statistical uncertainty of the gluon PDF determined from the
fit Eq. (35) and the uncertainty from the normalization using 〈x〉g are added in quadrature and the final uncertainty
is shown as the outer band in Fig. 12.

As discussed in [86], from the fitting of the ITD constructed from the NNPDF x g(x) distribution, one needs the
lattice data beyond ν ∼ 15 to evaluate the gluon distribution in the small-x region. In the present calculation, we can
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FIG. 10. Lattice reduced pseudo-ITD shown along with their reconstructed fitted bands calculated for the model: 2-param
(Q).
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FIG. 11. Ioffe-time distribution after the implementation of the perturbative matching kernel on the lattice reduced pseudo-
ITD data along with the light-cone ITD calculated for the model: 2-param (Q), in the MS renormalization scheme at 2
GeV.

extract the ITD up to ν ∼ 7.07. Therefore, the larger uncertainty and difference in the small-x region determined from
the lattice data is expected. As a cautionary remark, we also remind the readers that we have not included the mixing
of the gluon operator with the quark singlet sector in the present calculation. Moreover, this calculation is performed
at the unphysical pion mass and in principle, physical pion mass, continuum, and infinite volume extrapolation
should be performed for a proper comparison with the phenomenological distribution. Therefore, it remains a matter
of future investigation to draw a more specific conclusion about the x g(x) distribution extracted from the lattice
QCD calculation in the large-x region. We also note that the shrinking of the statistical uncertainty band in the PDF
near x ∼ 0.15 results from the correlation of the PDF fit parameters. This feature has also been seen in previous
works [28, 40, 49, 51].

However, within these limitations, we find the large-x distribution is in reasonable agreement with the global fits of
x g(x) distribution, as can be seen from Fig. 12. The value of β = 5.85(72) determined in this calculation is statistically
in good agreement with the leading (1−x)β behavior obtained in [86] from the fit to the NNPDF3.1 gluon distribution
and a recent phenomenological calculation [90]. The IS(ν, µ2) distribution, which we have not included in the present
work, is expected to have an increasingly larger effect as ν increases and is expected to have an observable effect in
the small-x gluon distribution. However, in the present lattice calculation at heavier up- and down-quark masses, one
expects the singlet distribution to increase at a slower rate compared to the phenomenological singlet distribution,
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FIG. 12. Unpolarized gluon PDF (cyan band) extracted from our lattice data using the 2-param (Q) model. We compare
our results to gluon PDFs extracted from global fits to experimental data, CT18 [3], NNPDF3.1 [4], and JAM20 [87]. The

normalization of the gluon PDF is performed using the gluon momentum fraction 〈x〉MS
g (µ = 2 GeV)=0.427(92) from [35]. The

figures on left and right are the same distributions with different scales for x g(x) to enhance the view of the large-x region.

therefore having a smaller effect on the Ioffe-time distribution in the 0 ≤ ν ≤ 7.07-range.

VIII. CONCLUSION AND OUTLOOK

In this paper, we present the unpolarized gluon parton distribution using the pseudo-PDF approach. We employ
the distillation technique, combined with momentum smearing in our lattice. Distillation allows us not only to
improve the sampling of the lattice but also to construct the nucleon two-point correlators with an extended basis
of interpolators, which is necessary for the implementation of the sGEVP method. By using momentum smearing,
momentum as high as 2.46 GeV is achieved. The sGEVP method combines the features of the summation method
and GEVP technique, suppressing the excited-state contributions to the matrix elements significantly. Gradient
flow reduces the UV fluctuations from the flowed matrix elements. The combination of these techniques enable
us to control the signal-to-noise issues to a great extent. The reduced pseudo-ITD is calculated from the flowed
reduced matrix elements by fitting the τ -dependence using a linear form and extrapolating to τ → 0 limit. Using the
Jacobi polynomial parameterization, the gluon parton distribution is extracted directly from the reduced pseudo-ITD.
Although systematics like higher-twist contributions, lattice spacing errors, infinite volume effects, unphysical pion
mass effects are not refined from the parton distribution, and quark-gluon mixing is excluded from the calculation,
the resultant ITD has a well-regulated signal-to-noise ratio. The gluon PDF extracted is remarkably consistent with
that extracted from the phenomenological distributions. Future endeavors include performing the calculation with
a larger number of gauge configurations on the same ensemble and also perform a lattice calculation of the gluon
momentum fraction, which will enables us to address the systematic uncertainties more completely along with better
statistics. Incorporating the quark-gluon mixing to the calculation is another task we are aiming to undertake. When
all the systematic uncertainties are properly quantified and the mixing with the isoscalar quark PDF are included, the
lattice calculations will help constrain the gluon PDF at large-x, where the PDF is less constrained by experimental
data.

IX. ACKNOWLEDGEMENT

We would like to thank all the members of the HadStruc collaboration for fruitful and stimulating exchanges. TK
and RSS acknowledge Luka Leskovec and Archana Radhakrishnan for offering their generous help, which greatly
assisted this research. TK is support in part by the Center for Nuclear Femtography grants C2-2020-FEMT-006,
C2019-FEMT-002-05. TK, RSS, and KO are supported by U.S. DOE Grant #DE-FG02-04ER41302. AR and WM
are also supported by U.S. DOE Grant #DE-FG02-97ER41028. JK is supported by U.S. DOE grant #DE-SC0011941.
This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract
DE-AC05-06OR23177. Computations for this work were carried out in part on facilities of the USQCD Collaboration,



19

which are funded by the Office of Science of the U.S. Department of Energy. This work was performed in part using
computing facilities at The College of William and Mary which were provided by contributions from the National
Science Foundation (MRI grant PHY-1626177), and the Commonwealth of Virginia Equipment Trust Fund. This work
used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science
Foundation grant number ACI-1548562. Specifically, it used the Bridges system, which is supported by NSF award
number ACI-1445606, at the Pittsburgh Supercomputing Center (PSC) [91, 92]. In addition, this work used resources
at NERSC, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of
Energy under Contract #DE-AC02-05CH11231, as well as resources of the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. #DE-AC05-00OR22725. The software codes Chroma [93], QUDA [94, 95] and QPhiX [96] were
used in our work. The authors acknowledge support from the U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research and Office of Nuclear Physics, Scientific Discovery through Advanced
Computing (SciDAC) program, and of the U.S. Department of Energy Exascale Computing Project. The authors
also acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing
HPC resources, like Frontera computing system [97] that has contributed to the research results reported within this
paper. We acknowledge PRACE (Partnership for Advanced Computing in Europe) for awarding us access to the
high performance computing system Marconi100 at CINECA (Consorzio Interuniversitario per il Calcolo Automatico
dell’Italia Nord-orientale) under the grant Pra21-5389. JLAB-THY-21-3469.

[1] J. C. Collins, D. E. Soper, and G. F. Sterman, Adv. Ser. Direct. High Energy Phys. 5, 1 (1989), arXiv:hep-ph/0409313.
[2] S. Bailey, T. Cridge, L. A. Harland-Lang, A. D. Martin, and R. S. Thorne, Eur. Phys. J. C 81, 341 (2021), arXiv:2012.04684

[hep-ph].
[3] T.-J. Hou et al., Phys. Rev. D 103, 014013 (2021), arXiv:1912.10053 [hep-ph].
[4] Ball, Richard D. et al. (NNPDF), Eur. Phys. J. C 77, 663 (2017), arXiv:1706.00428 [hep-ph].
[5] A. Accardi, L. T. Brady, W. Melnitchouk, J. F. Owens, and N. Sato, Phys. Rev. D 93, 114017 (2016), arXiv:1602.03154

[hep-ph].
[6] S. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, and C. P. Yuan, Phys.

Rev. D 93, 033006 (2016), arXiv:1506.07443 [hep-ph].
[7] S. Chatrchyan et al. (CMS), Science 338, 1569 (2012).
[8] Kogler, Roman et al., Rev. Mod. Phys. 91, 045003 (2019), arXiv:1803.06991 [hep-ex].
[9] Albayrak et al., Jefferson Lab PAC 39 Proposal , PR12.12.001 (2012).

[10] Accardi, A. et al., Eur. Phys. J. A 52, 268 (2016), arXiv:1212.1701 [nucl-ex].
[11] Aguilar, Arlene C. et al., Eur. Phys. J. A 55, 190 (2019), arXiv:1907.08218 [nucl-ex].
[12] R. Abdul Khalek et al., (2021), arXiv:2103.05419 [physics.ins-det].
[13] D. P. Anderle et al., Front. Phys. (Beijing) 16, 64701 (2021), arXiv:2102.09222 [nucl-ex].
[14] K.-F. Liu and S.-J. Dong, Phys. Rev. Lett. 72, 1790 (1994), arXiv:hep-ph/9306299.
[15] W. Detmold and C. J. D. Lin, Phys. Rev. D 73, 014501 (2006), arXiv:hep-lat/0507007.
[16] X. Ji, Phys. Rev. Lett. 110, 262002 (2013), arXiv:1305.1539 [hep-ph].
[17] X. Ji, Sci. China Phys. Mech. Astron. 57, 1407 (2014), arXiv:1404.6680 [hep-ph].
[18] A. V. Radyushkin, Phys. Rev. D 96, 034025 (2017), arXiv:1705.01488 [hep-ph].
[19] Y.-Q. Ma and J.-W. Qiu, Phys. Rev. D 98, 074021 (2018), arXiv:1404.6860 [hep-ph].
[20] Y.-Q. Ma and J.-W. Qiu, Phys. Rev. Lett. 120, 022003 (2018), arXiv:1709.03018 [hep-ph].
[21] M. Constantinou et al., (2020), arXiv:2006.08636 [hep-ph].
[22] K. Cichy and M. Constantinou, Adv. High Energy Phys. 2019, 3036904 (2019), arXiv:1811.07248 [hep-lat].
[23] J. Karpie, K. Orginos, A. Radyushkin, and S. Zafeiropoulos, (2021), arXiv:2105.13313 [hep-lat].
[24] R. S. Sufian, C. Egerer, J. Karpie, R. G. Edwards, B. Joó, Y.-Q. Ma, K. Orginos, J.-W. Qiu, and D. G. Richards, Phys.
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[57] J.-H. Zhang, X. Ji, A. Schäfer, W. Wang, and S. Zhao, Phys. Rev. Lett. 122, 142001 (2019), arXiv:1808.10824 [hep-ph].
[58] Z.-Y. Li, Y.-Q. Ma, and J.-W. Qiu, Phys. Rev. Lett. 122, 062002 (2019), arXiv:1809.01836 [hep-ph].
[59] T. Izubuchi, X. Ji, L. Jin, I. W. Stewart, and Y. Zhao, Phys. Rev. D 98, 056004 (2018), arXiv:1801.03917 [hep-ph].
[60] X. Ji, J.-H. Zhang, and Y. Zhao, Phys. Rev. Lett. 120, 112001 (2018), arXiv:1706.08962 [hep-ph].
[61] J. Green, K. Jansen, and F. Steffens, Phys. Rev. Lett. 121, 022004 (2018), arXiv:1707.07152 [hep-lat].
[62] I. Balitsky, W. Morris, and A. Radyushkin, in 28th International Workshop on Deep Inelastic Scattering and Related

Subjects (2021) arXiv:2106.01916 [hep-ph].
[63] A. S. Gambhir, A. Stathopoulos, K. Orginos, B. Yoon, R. Gupta, and S. Syritsyn, PoS LATTICE2016, 265 (2016),

arXiv:1611.01193 [hep-lat].
[64] S. O. Bilson-Thompson, D. B. Leinweber, and A. G. Williams, Annals Phys. 304, 1 (2003), arXiv:hep-lat/0203008.
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Appendix A: Implement of sGEVP

In sGEVP [71, 82] method, the summation method [83] and GEVP method [75] are combined together. In order to
achieve that, we construct the summed three-point correlator by summing over the three-point correlators that have
the same source-sink separations, but gluonic currents inserted at different time-slices between the source and sink.
From the sum, to avoid contact contributions, we exclude the three-point correlators which have gluonic currents
inserted at the source time-slice or sink time-slice themselves. We construct the summed three-point correlators for
different interpolator combinations at the source and the sink.

Cs3pt(tsrc, tsnk) =

(tsnk−1)∑
tg=(tsrc+1)

C2pt(tsrc, tsnk) Og(tg) . (A1)

Here, tsrc and tsnk are the lattice time-slices where the source and the sink are, respectively. The label ”s” stands
for summed. To implement the sGEVP, consider two sets of interpolators,

Oi(t) = O(A)
i (t) , i = 1 . . . N

Oi+N (t) = O(B)
i (t) , i = 1 . . . N. (A2)

Expanding the path integral to first order in ε, the combined 2N × 2N matrix of the two-point correlators from

these interpolators, Cij(t, ε) = 〈Oi(t)O†j(0)〉, can be written in the simple block structure,

C(t, ε) =

[
C2pt(t) εCs3pt(t)

εCs†3pt(t) C2pt(t)

]
+O(ε2) . (A3)

Here, we set C(A) = C(B) = C2pt. The 2N × 2N GEVP equation,

C(t, ε)ρn(t, t0, ε) = λn(t, t0, ε)C(t0, ε)ρn(t, t0, ε) , (A4)

can be rewritten into its components,[
C2pt(t)± εCs3pt(t)

]
u±n (t, t0, ε) = λ±n (t, t0, ε)

[
C2pt(t0)± εCs3pt(t0)

]
u±n (t, t0, ε) , (A5)
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where

ρ±n =
1√
2

(
u±n
±u±n

)
. (A6)

Taking the small ε limit, we can treat the summed three-point correlators as a perturbation. By by expanding the
GEVP equation in ε, we can write the effective matrix element as [71],

Meff,s
nn (t, t0) = −∂t

{∣∣∣∣(un, [Cs3pt(t)λ−1
n (t, t0) − Cs3pt(t0)

]
un

)∣∣∣∣(
un, C2pt(t0)un

) }
. (A7)

Here, (
un, C2pt(t0)un

)
≡ u†n

(
C2pt(t0)un

)
, (A8)

and n is the index of the interpolator. In the small ε limit, un and λn(t, t0) are the generalized eigenvector and the
principal correlator of the generalized eigenvalue problem for the two-point correlator matrix.

C2pt(t)un(t, t0) = λn(t, t0)C2pt(t0)un(t, t0) . (A9)

The generalized eigenvector, un, satisfies the orthogonality condition:

u†n′(t, t0)C2pt(t0)un(t, t0) = δn,n′ . (A10)

In GEVP, we rotate the two-point correlator matrix to be diagonal in the generalized eigenvector space, eliminating
the excited-state contributions significantly. In sGEVP, we rotate the summed three-point correlator matrix with the
same angle by which the two-point correlator matrix is rotated to be diagonal. This rotation suppresses the excited-
state contributions in the summed three-point correlators too. As the orthogonality of the generalized eigenvectors are
defined with respect to t = t0, the ratio of the C3pt(t) matrix to the principal correlator matrix, λ(t, t0) is ill-defined
at t = t0. We subtract C3pt(t0) from the ratio for all t to avoid this issue.

To extract the matrix element fromMeff,s
nn (t, t0), we recall from the degenerate perturbation theory that the matrix

element is the first derivative of the energy with respect to the perturbation taken in the ε → 0 limit. Now, the
effective energy is given in terms of the principal correlator [98],

Eeff
n (t, t0, ε) = −∂t log(λn(t, t0, ε)). (A11)

So, the effective matrix element can be expressed as,

Meff,s
nn (t, t0) ≡ d

dε
Eeff
n (t, t0, ε)

∣∣∣∣
ε=0

= Mnn +O
(
∆EN+1,n t exp(−∆EN+1,n t)

)
. (A12)

Here, N is the total number of states.

Appendix B: Zero Flow Time Extrapolated Reduced Matrix Elements

For each nucleon momentum and each field separation, the flowed reduced matrix elements for different flow times
are fit to a linear expression: M(τ) = c0 + c1τ , where the fit parameter, c0 gives the reduced pseudo-ITD at zero flow
time limit. The fit parameters, c0 and c1 are tabulated in Table V, along with the goodness of the fits, χ2/d.o.f..
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p (GeV) z (a) ν c0 c1 χ2/d.o.f.

0.41 1 0.20 1.0005(328) -0.0026(106) 0.335

0.41 2 0.39 0.9885(341) -0.0057(121) 0.505

0.41 3 0.59 0.9773(338) 0.0015(142) 0.262

0.41 4 0.79 0.9765(380) -0.0004(142) 0.271

0.41 5 0.98 0.9218(553) 0.0120(232) 0.323

0.41 6 1.18 0.9260(599) 0.0099(189) 0.401

0.82 1 0.39 0.9800(448) -0.0036(155) 0.127

0.82 2 0.79 0.9741(497) 0.0006(174) 0.436

0.82 3 1.18 0.9326(522) 0.0073(217) 0.107

0.82 4 1.57 0.8847(633) 0.0292(240) 0.306

0.82 5 1.96 0.8641(658) 0.0076(269) 0.181

0.82 6 2.36 0.7843(735) 0.0171(252) 0.658

1.23 1 0.59 0.9962(558) -0.0043(209) 0.117

1.23 2 1.18 0.9945(671) -0.0160(292) 0.119

1.23 3 1.77 0.8770(766) 0.0175(299) 0.155

1.23 4 2.36 0.8271(788) 0.0202(303) 0.131

1.23 5 2.95 0.6896(1004) 0.0458(342) 0.096

1.23 6 3.53 0.6232(1234) 0.0376(322) 0.555

1.64 1 0.79 0.9514(344) -0.0014(127) 0.569

1.64 2 1.57 0.8928(423) 0.0180(148) 0.339

1.64 3 2.36 0.8533(463) 0.0127(120) 0.209

1.64 4 3.14 0.7099(769) 0.0483(249) 0.130

1.64 5 3.93 0.5853(906) 0.0581(278) 0.319

1.64 6 4.71 0.4599(1015) 0.0801(336) 0.470

2.05 1 0.98 0.9468(465) 0.0046(163) 1.285

2.05 2 1.96 0.9081(585) 0.0119(234) 0.107

2.05 3 2.95 0.8121(805) 0.0268(373) 0.087

2.05 4 3.93 0.7137(860) 0.0196(283) 0.258

2.05 5 4.91 0.5958(762) 0.0374(238) 0.112

2.05 6 5.89 0.5314(780) 0.0431(243) 0.274

2.46 1 1.18 0.9027(617) 0.0088(162) 0.871

2.46 2 2.36 0.8452(866) 0.0262(297) 0.320

2.46 3 3.53 0.7268(713) 0.0336(235) 0.595

2.46 4 4.71 0.6327(935) 0.0313(344) 0.050

2.46 5 5.89 0.5048(974) 0.0442(300) 0.343

2.46 6 7.07 0.4203(954) 0.0349(270) 0.388

TABLE V. Reduced matrix elements extrapolated to zero flow time. The flowed reduced matrix elements are fitted using a
linear form: M(τ) = c0 + c1τ , where c0 is the reduced matrix elements at τ → 0 .
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