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Real-world systems are characterized by complex interactions of their internal degrees of freedom,
while living in ever-changing environments whose net effect is to act as additional couplings. Here,
we introduce a paradigmatic interacting model in a switching, but unobserved, environment. We
show that the limiting properties of the mutual information of the system allow for a disentangling
of these two sources of couplings. Further, our approach might stand as a general method to
discriminate complex internal interactions from equally complex changing environments.

Real-world systems exhibit interactions among their
internal degrees of freedom. Furthermore, they are usu-
ally coupled with a noisy, ever-changing environment.
Modeling together these two distinct contributions is of-
ten a problem too hard to be tackled, and a common
approach would prescribe to simply ignore environmen-
tal effects altogether.

In the last twenty years, however, it was realized in
many different fields that the effects of a noisy environ-
ment are often as fundamental as the internal interac-
tions. Biological systems [1, 2], biochemical [3] and gene
regulatory networks [4–6], swarming, oscillatory, and eco-
logical systems [7–9] are only a few examples of noisy in-
teracting systems living in an equally noisy environment,
and being consequently affected by it. In the last years,
it has been also shown that many observed properties
believed to be distinctive of neural interactions can be
solely explained by an environmental-like dynamics that
affects all neurons in the same way [10–13]. Alternatively,
some of these properties might be stochastic by nature
and not reflect any particular feature of the underlying
degrees of freedom [14].

From a different perspective, crucial non-equilibrium
features in chemical systems, such as thermophoresis
[15, 16], and pattern formation [17], have been recently
shown to be sheer consequences of the interplay between
environmental and internal interactions acting on differ-
ent time-scales [18].

To make things more interesting, an ever-growing
wealth of data is populating the realm of biological,
chemical and neural systems, thus fueling the possibility
of a direct extrapolation of some properties belonging to
the underlying dynamics. In fact, when dealing with ex-
perimental data, it is not unusual to solve a given inverse
problem, for example using a maximum entropy principle
[19–21], to reconstruct the interactions between the inter-
nal degrees of freedom that shape the observed behavior.
However, one might ask whether these reconstructed ef-
fective couplings could possibly be a pure consequence
of nothing but our ignorance about the unobserved envi-
ronment in which the system lives. This question is often
particularly hard to assess, as effective interactions arise
even in non-interacting systems under the influence of a
correlated noise [22].

In this work, we introduce a complete dynamical
model, which includes both the internal dynamics, i.e.
the one stemming from internal physical couplings, and
stochastic environmental changes. While the internal dy-
namics is independent of the environment, and fully de-
termined by system features, the environmental changes
affect model parameters shared by all degrees of freedom.
Recently, this problem has gained momentum from a the-
oretical perspective in different contexts [23–26], but the
general question of how we can possibly disentangle the
effects of internal interactions from those of a stochas-
tic environment is very much open and elusive. Here,
we consider the paradigmatic case of an environment af-
fecting only the diffusion coefficient, hence changing the
stochastic variability of the dynamics. Nonetheless, our
modeling approach can be immediately generalized to di-
verse scenarios, from more complicated environments to
spatially inhomogeneous media [27].

We will directly tackle the disentangling problem by
using the mutual information to quantify the similarity
between different interacting processes. In fact, the mu-
tual information captures all cross-dependencies between
two random variables [28]. We will show that in the pres-
ence of linearized interactions the mutual information of
the whole system does encode both internal and envi-
ronmental couplings as distinct contributions, and that
they can always be fully disentangled in suitable limits.
Although characterizing the specific nature of internal
interactions through mutual information remains a chal-
lenge, our results suggest that fast-varying environments
might reveal the presence of underlying real couplings in
any general system.

The mutual information between two stationary pro-
cesses x1(t) and x2(t) is the Kullback-Leibler divergence
between their joint stationary probability distribution
p(x1, x2) and the product of their marginalized station-
ary distributions p(x1)p(x2),

I =

∫
dx1dx2 p(x1, x2) log

p(x1, x2)

p(x1)p(x2)

= H1 +H2 −H12, (1)

where H12 is the differential entropy of the joint distri-
bution, and, similarly, Hµ is the differential entropy of
the marginalized probability distributions for µ = 1, 2.
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In order to fix the ideas, let us consider the paradig-
matic example of two interacting Ornstein-Uhlenbeck
processes [29]. This particular choice is twofold. First, an
Ornstein-Uhlenbeck process is one of the simplest multi-
dimensional stochastic process with a non-trivial station-
ary distribution. Second, Ornstein-Uhlenbeck processes
can often be seen as a linearization of more complex, non-
linear internal interactions. Therefore, we introduce an
internal dynamics by means of an interaction matrix A
between the internal degrees of freedom x1(t) and x2(t).
Then, we consider an archetypal description of the envi-
ronmental changes, which we will regard as unobserved
degrees of freedom acting on both x1 and x2 in the same
way. At all times, x1 and x2 share the same diffusion co-
efficient, and the diffusion coefficient itself is a stochastic
variable. In particular, we take it to be a dichotomous
process Di(t) between the states i ∈ {−,+}, so that the
diffusion coefficient jumps between two states D− and
D+ > D−, with transition rates W (− → +) = w+ and
W (+ → −) = w−. All in all, our model can be written
as the set of Langevin equations

dxµ
dt

= −
∑
ν

Aµν
xν
τ

+
√

2Di(t)ξµ(t) (2)

where i(t) is a realization of the jump process between
{−,+} and ξ1 and ξ2 are independent white noises with
zero mean. Here, the environment is encoded in the
two distinct diffusion coefficients Di, whereas the internal
couplings stem from the off-diagonal elements of A. Our
goal is to understand whether these two distinct contri-
butions to the dynamics can be disentangled, and, if so,
under which conditions.

With this aim in mind, let us begin with the simple
case A = 1, i.e. x1 and x2 do not interact, so that
the only contribution to the mutual information has to
come from the environmental changes. The system is
described by a joint p.d.f. pi(x, t) to have values x =
(x1, x2) at time t and to be in the environmental state
i ∈ {−,+}. This probability is governed by the Fokker-
Planck equation

∂tpi(x, t) =

2∑
µ=1

∂µ

[xµ
τ
pi(x, t)

]
+Di

2∑
µ=1

∂2µ pi(x, t)+

+
∑
j 6=i

[wipj(x, t)− wjpi(x, t)] . (3)

This model corresponds, for instance, to a switching en-
vironment in a chemical [3, 16] or biological [2, 6] sys-
tem, or to different regimes of neural activity [10, 13].
Furthermore, being related to “diffusing diffusivity” pro-
cesses, it can also describe spatially disordered or inho-
mogeneous environments [27, 30]. An extension to N dif-
ferent processes (x1, . . . , xN ) andM environmental states
i1, . . . , iM is possible once we choose a multivariate gen-
eralization of the mutual information (see the Supple-
mental Materials (SM) [31] for details).

Let us note beforehand that the mutual information,
Eq. (1), can only depend on dimensionless quantities.
The relevant dimensionless parameters of this model are:
(i) τwsum, where wsum = w+ + w−, which governs the
time-scale separation between the internal degrees of free-
dom and the jump process of the environmental states;
(ii) w−/w+, which determines the relative persistence of
the environmental states; (iii) D−/D+, which describes
the separation between the environmental states. Im-
portantly, the joint probability does not depend on these
three parameters’ combinations only. Hence, to find a
general solution to Eq. (S3) proves to be a particularly
challenging task. Therefore, we resort to a time-scale
separation that corresponds to the two limits in which
the jumps are either much faster or much slower than
the relaxation time of x1 and x2 (see the SM [31]).

In a fast environment, we have τwsum � 1, and we
find the stationary probability distribution

pF (x1, x2) =
1

2πτ 〈D〉π
exp

[
− x

2
1 + x22

2τ 〈D〉π

]
≡ pF (x1)pF (x2)

(4)

where 〈D〉π = (D+w+ + D−w−)/wsum plays the role of
an effective diffusion coefficient, and the superscript F
refers to the fast-jumps regime. Loosely speaking, this
limit describes environmental changes affecting the in-
ternal degrees of freedom only on average, leaving the
two processes independent. Hence, the joint probability
factorizes and no mutual information arises (Figure 1).

The picture is markedly different in the slow-jumps
limit, when τwsum � 1. The stationary probability dis-
tribution is now given by the Gaussian mixture

pS(x1, x2) =
1

2πτ

∑
i

[
πsi
Di
e
− 1

2Diτ
(x2

1+x
2
2)
]

= π−p
S
−(x1, x2) + π+p

S
+(x1, x2) (5)

where πi = wi/wsum are the stationary probabilities of
the jump process, and the superscript S denotes the slow-
jumps regime. It is clear that in this limit the two pro-
cesses are not always independent. An example of a real-
ization and its corresponding probability distribution is
shown in Figure 1b and 1d, respectively. In the inter-
mediate regime between the fast- and slow-jumps limits
we cannot solve the Fokker-Planck equation explicitly,
but a direct simulation of the Langevin equations [32],
Eq. (2), shows that the resulting probability interpolates
between Eq. (5) and Eq. (4) in a smooth fashion (Figure
1d-f). Therefore, we will now focus on the slow-jumps
limit, where we can tackle the problem analytically, and
the mutual information takes non-zero values.

Even though no closed form exists for the entropy of
a Gaussian mixture, from the bounds proposed in [33]
we can build the corresponding bounds on the mutual
information starting from the Chernoff-α divergence and
on the Kullback-Leibler divergence between the mixture
components, reported in the SM [31]. Notably, both
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FIG. 1. The environmental contribution to the mutual information as a function of D−/D+ and w−/w+. (a) The colored surface
is the result of a Monte Carlo integration with importance sampling of the mutual information in the slow-jumps limit with
τwsum = 10−3(see Eq. (1) and Eq. (4)). In the D−/D+ → 0 limit, Ienv becomes exactly Hjumps, the black dashed line, which is
also its maximum value. The gray plane is instead the mutual information in the fast-jumps limit, which always vanishes. (b)
A realization of x1(t) and x2(t) (red and yellow curves) in the slow-jumps limit, at w−/w+ = 1 and D−/D+ = 10−10. A bursty,
coordinated behavior emerges due to the environmental changes. (c) Same, but in the fast-jumps limit, where both variables
show a Brownian-like behavior. (d-f) Comparison between the marginalized probability distribution p(xµ) from the simulated
Langevin dynamics and the analytical distribution ((d) and (f) cases) for D− = 10−5, D+ = 1, τ = 1 in (d) the slow-jumps
limit at w− = w+ = 5 · 10−4, (f) the fast-jumps limit at w− = w+ = 50 and (e) in between at w− = w+ = 0.5.

the upper bound IS,upenv (D−/D+, w−/w+) and the lower
bound IS,lowenv (D−/D+, w−/w+) on the mixture distribu-
tion pS(x1, x2) only depend on the dimensionless parame-
ters D−/D+ and w−/w+. Moreover, although in general
these bounds are not tight, they do saturate in the limits
D−/D+ → 0 or D−/D+ → 1 - and these limits are par-
ticularly significant. The former corresponds to drastic
environmental changes, which lead to markedly different
dynamics and give rise to a bursty, seemingly coordinated
behavior of the internal degrees of freedom. The latter,
on the other hand, describes the trivial case in which D−
and D+ are very similar and thus environmental changes
are effectively negligible. We end up with (see SM [31])

ISenv

(
w−
w+

)
=

{
−π+ log π+ − π− log π− if D+ � D−
0 if D+ ≈ D−

(6)

which, since the bounds saturate, are the exact lim-
its of the mutual information in the slow-jumps regime.
Clearly, when D−/D+ → 1, the dynamics is insensitive
to the environment, thus x1(t) and x2(t) are indepen-
dent processes. Instead, and interestingly, the first line
is nothing but the Shannon entropy of the jump distribu-
tion, Hjumps(w−/w+). A Monte Carlo integration of Eq.
(1) shows that Hjumps is also the maximum value of the
mutual information that emerges due to the environment,

see Figure 1a. This result has a quite clear intuitive in-
terpretation. In fact, from an information-theoretic point
of view, Hjumps quantifies precisely the information lost
once we integrate out the stochastic environment, i.e. our
ignorance about the system as a whole.

So far, we have only considered the presence of an ef-
fective coupling emerging from environmental changes.
Although our results have been derived for Ornstein-
Uhlenbeck processes, they equivalently hold for the
more general stochastic dynamics ẋµ(t) = fµ(xµ) +√

2Di(t)ξµ(t), even when fν 6= fµ, as we show in the
SM [31]. Now, it is time to introduce back interactions
between x1(t) and x2(t) by considering the case in which
the matrix A in Eq. (2) has non-zero off-diagonal en-
tries. We will show that their contribution to the total
mutual information, Itot, can be effectively disentangled
from Ienv under suitable limits.

Let us consider the matrix

A =

(
1 −g1
−g2 1

)
and assume that its eigenvalues have positive real parts,
so that a stationary state exists [34]. Let us also assume,
for the time being, that we are in the slow-jumps limit,
so that we can solve the Langevin equations separately
for D+ and D− and then average them over π± as in
Eq. (5). The two solutions are multivariate Gaussian
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distributions, each one with a given covariance matrix
Σ±.

In order to try and disentangle the environmental con-
tribution, which is due to Di, and the one stemming from
internal interactions, due to the off-diagonal elements of
A, we write the covariance matrices as Σi = DiΣ̃. The
matrix Σ̃ then solves the Lyapunov equation (see the SM
[31])

1

2

[
AΣ̃ + Σ̃AT

]
= 1 (7)

which only depends on interactions and not on the jump
dynamics, nor on Di. We are now able to bound the
mutual information as

I
S,up/low
tot = Iint ({gµ}) + IS,up/lowenv

(
D−
D+

,
w−
w+

)
(8)

where

Iint ({gµ}) =
1

2
log

[
1− 4

4 + (g1 − g2)2
+

1

1− g1g2

]
(9)

is the contribution to the mutual information due to the
internal interactions only, as we show in the SM [31]. No-
tably, Iint is also the sole contribution in the fast-jumps
limit, since no environmental contribution is present to
begin with. On the other hand, in the slow-jumps limit
we can write the two limits, as in Eq. (6),

IStot

(
{gµ},

w−
w+

)
=

{
Hjumps + Iint ({gµ}) ifD+ � D−
Iint ({gµ}) ifD+ ≈ D−

(10)

where the environmental bounds saturate. Finally, in
the intermediate regime between the fast- and the slow-
jumps limits, a Monte Carlo integration of Eq. (1) shows
that the presence of linear internal interactions does sim-
ply shift the mutual information with respect to the non-
interacting case (Figure 2).

Therefore, our results suggest that Itot receives two
distinct contributions - one from the environment, Ienv,
and one from the internal linearized interactions, Iint -
disentangled in form:

Itot

(
{gµ},

D−
D+

,
w−
w+

)
= Iint({gµ}) + Ienv

(
D−
D+

,
w−
w+

)
.

(11)
Although the equation above holds analytically in the
fast-jumps regime, and where the slow-jumps bounds
Eqs. (8)-(10) saturate, its validity has been numerically
shown in the entire range of parameters. Furthermore,
even if the interactions are non-linear, we show in the
SM [31] that in the fast-jumps limit the environmental
contribution vanishes exactly. Hence, and independently
of the underlying interactions, any non-zero mutual in-
formation in the fast-jumps limit acts as a fingerprint of
the presence of internal couplings.

FIG. 2. The total mutual information as a function of D−/D+

and w−/w+ at fixed τwsum = 10−3, i.e. in the slow-jumps
limit. (a) The colored surface is the result of a Monte Carlo in-
tegration with importance sampling of Itot, in the slow-jumps
limit, for the interacting model with g1 = 5τ and g2 = −0.1τ .
The gray surface is instead the non-interacting case, Ienv.
The two contributions to the mutual information disentangle
and the interactions simply result in a constant shift. (b) A
comparison between the predicted shift Iint(g1, g2), Eq. (9),
and the difference of the Monte Carlo estimates of the two
surfaces for every sampling point (w−/w+, D−/D+), namely
IMC
int (w−/w+, D−/D+).

This result is extremely interesting. In fact, although
the environmental states, identified by D− and D+ in
our model, are usually not experimentally accessible, it
might be possible to characterize the frequency of the en-
vironmental changes. Neural activity originated by ex-
ternal stimuli [35–37], stirring in chemical conglomerates
[38], temperature-activated chemical reactions in solu-
tions [3, 39], and population growth [40–42], are only a
few examples in which our framework might apply. Even
if fast-varying environments have been shown to be in-
formative, our approach might provide hints about the
presence of interactions even away from the fast-jumps
limit, by bounding the environmental contribution to the
mutual information. This intriguing perspective will be
investigated in future works.

Although we focused on a paradigmatic, but rather
comprehensive, physical model, let us note that these
ideas have a much larger scope, and that disentangling
the different dependencies of a system is a far-reaching
question. Techniques such as Bayesian networks and
other probabilistic graphical models have been success-
fully used in biological data, for instance to disentangle
different sources of interactions and dependencies in gen-
eral [43–45]. Connections may be also drawn to machine
learning and artificial neural networks, particularly in
the context of learning disentangled representation of the
data, i.e. representations in which the informative latent
factors are described by a factorized distribution [46–49],
or in generative models with latent variables, such as
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switching state space models [50, 51]. The environment
in our model, in fact, can be seen as a latent variable, i.e.
unobserved and independent on the observed degrees of
freedom, while affecting the observed dynamics. Unlike
the one presented here, these approaches are often harder
to interpret and are less prone to the derivation of exact
results, even though they remain extremely powerful in
dealing with experimental data. Hence, a possible fu-
ture perspective is to combine the physical interpretabil-
ity and the analytical procedures behind our work to-
gether with tools from machine learning and data-driven
approaches. This could lead to promising results in the
quest of meaningfully disentangle the different sources of
dependencies that emerge in complex systems.

Furthermore, there are several more possible exten-
sions to this study. One might ask whether a stochas-
tic environment can be mapped into a set of effective
couplings with defined properties, and if such couplings
can be distinguished from the internal ones. Addition-
ally, an important and immediate generalization of our
framework is to allow the environment to be a continu-
ous variable. These problems, in principle, can be treated
from a field-theoretical perspective, where the marginal-
ization over the environment gives rise to new interaction
vertexes that are not present in the original theory, i.e.
before the marginalization. Ideally, this could allow for
a much more general framework amenable to analytical
treatments.

On the other side, the ability to analytically deal with
a class of stochastic processes with tools of information
theory, as shown here, opens up many fascinating possi-
bilities. A particularly appealing question is what hap-
pens when, instead of considering a stochastic environ-
ment, the system undergoes an external perturbation -
notably, how the latter changes the information content
and how such information evolves over time. A first step
towards this direction might be to consider two diffu-
sion processes in a finite domain that undergo a single
stochastic jump, and to study the persistence of the mu-
tual information as a function of time, domain size and
boundary conditions of the system.

Ultimately, we believe that this work draws a path to-
wards a deeper understanding of the different sources of
couplings in real-world systems. Indeed, it is a start-
ing point to elucidate the relations between their inter-
nal complexity and possibly equally complex, but unob-
served, ever-changing environments.
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Supplemental Material: “Mutual information disentangles interactions from
changing environments”

A. GENERALIZATION OF THE ENVIRONMENTAL DYNAMICS TO N PROCESSES AND M JUMPS

Let us consider a set of N Langevin equations of the form

dxµ
dt

= −fµ(xµ) +
√

2Di(t) ξµ(t) µ = 1 . . . , N (S1)

where ξµ(t) are independent white noises such that 〈ξµ(t)〉 = 0 and 〈ξµ(t1)〉 ξν(t2) = δµνδ(t1 − t2). As in the main
text, all the variables x share the same diffusion coefficient Di(t), where i(t) is a discrete stochastic process with M
states. The probability Πi(t) = P[i(t) = i] is described by the master equation

∂tΠi(t) =

M∑
j=1

[W (j → i)πj(t)−W (i→ j)πi(t)] (S2)

that is independent on all xµ.
We can write the corresponding Fokker-Planck equations as

∂tpi(x, t) =

N∑
µ=1

∂µ [fµ(xµ)pi(x, t)] +Di

N∑
µ=1

∂2µ pi(x, t) +

M∑
j=1

[W (j → i)pj(x, t)−W (i→ j)pi(x, t)] (S3)

where we used the shorthand notation ∂xµ := ∂µ and x = (x1, . . . , xN ). These are M equations for each of the discrete
states of Di. Similarly to the main text, the first row is associated to the continuous stochastic process described by
the Langevin equations Eq. (S1 at a given diffusion coefficient, whereas the second row describes the jump process of
Eq. (S2) for the diffusion coefficient itself.

Since we have N variables, we need to choose a suitable generalization of the mutual information. Such generaliza-
tions, however, are troublesome from an information-theoretic perspective [28]. Since the variables are not interacting
but they only share the same environmental diffusion coefficient, we shall be interested in the factorizability of the
joint probability distribution p(x) with respect to its full factorization, that is

IN =

∫ N∏
µ=1

dxµp(x1, . . . , xN ) log
p(x1, . . . , xN )∏N

µ=1 p(xµ)
=

N∑
µ=1

Hµ −H1,...,N (S4)

where Hµ and H1,...,N are the entropies of the corresponding probability distributions. This is nothing but the
Kullback-Leibler divergence between the joint probability distribution and the product of the single-variable distri-
butions. Thus, this quantity is always positive and for N = 2 it gives exactly the mutual information.

B. FAST- AND SLOW- JUMPS LIMIT FOR N PROCESSES AND M JUMPS

We assume that the Langevin equations are associated with a timescale τ - e.g. the fastest timescale of x - whereas

the jump process happens at a timescale τjumps - e.g. τjumps =
(∑

i 6=jW (i→ j)
)−1

. Hence we can write the rescaled

equation

∂tpi(x, t) =
1

τ

N∑
µ=1

[
∂µ

[
f̃µ(xµ)pi(x, t)

]
+ D̃i ∂

2
µ pi(x, t)

]
+

+
1

τjumps

M∑
j=1

[
W̃ (j → i)pj(x, t)− W̃ (i→ j)pi(x, t)

]
(S5)

where f̃µ := τfµ, D̃i := τDi and W̃ (i→ j) := τjumpsW (i→ j).
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Let us now assume that the jump process is faster, i.e. τjumps/τ = γ � 1. In this scenario, it makes sense to rescale
the slow timescale τ , namely t→ t/τ and to look for a solution of the form

pi(x, t) = p
(0)
i (x, t) + γ p

(1)
i (x, t) +O(γ2). (S6)

Thus, we end up with the Fokker-Planck equation

∂tp
(0)
i =

N∑
µ=1

[
∂µ

[
f̃µ(xµ)p

(0)
i

]
+ D̃i ∂

2
µ p

(0)
i

]
+

+

M∑
j=1

[
W̃ (j → i)p

(1)
j − W̃ (i→ j)p

(1)
i

]
+

+
1

γ

M∑
j=1

[
W̃ (j → i)p

(0)
j − W̃ (i→ j)p

(0)
i

]
+O(γ). (S7)

At the leading order we simply have

0 =

M∑
j=1

[
W̃ (j → i)p

(0)
j (x, t)− W̃ (i→ j)p

(0)
i (x, t)

]
which is the stationary condition of the jump process. Hence we can assume that the zero-th order solution can be

factorized as p
(0)
i (x, t) = πiP (x, t), where

0 =

M∑
j=1

[
W̃ (j → i)πsj − W̃ (i→ j)πi

]
defines the dependence on the i-th index and we only need to find P (x, t).

At the order O(1) we can sum over i to find

∂tP (x, t) =

N∑
µ=1

[
∂µ

[
f̃µ(xµ)P (x, t)

]
+

(∑
i

πiD̃i

)
∂2µ P (x, t)

]
which gives us the solution for P (x, t) as the solution for the Langevin equations in Eq. (S1) with an effective diffusion

coefficient
∑
i πiD̃i. This is nothing but a set of N independent equations that can be solved separately. Thus we

find that the solution in the limit of fast jumps is simply given by the factorization

p(x, t) =
∑
i

p
(0)
i (x, t) =

N∏
µ=1

gµ(xµ, t) (S8)

where gµ(xµ, t) solves the one-dimensional equation

∂tgµ(x, t) = ∂x[f̃µ(x)gµ(x, t)] +

(∑
i

πiD̃i

)
∂2xgµ(x, t).

We immediately see that in this limit all the variables xµ are independent and Eq. (S4) is zero.
We are also interested in the opposite limit, where the Langevin equations in Eq. (S1) relax faster to their own

stationary state, that is in the limit τ/τjumps := δ � 1. As before, we rescale t → t/τjumps and we end up with the
Fokker-Planck equation

∂tp
(0)
i =

1

δ

N∑
µ=1

[
∂µ

[
f̃µ(xµ)p

(0)
i

]
+ D̃i ∂

2
µ p

(0)
i

]
+

+

N∑
µ=1

[
∂µ

[
f̃µ(xµ)p

(1)
i

]
+ D̃i ∂

2
µ p

(1)
i

]
+

+

M∑
j=1

[
W̃ (j → i)p

(0)
j − W̃ (i→ j)p

(0)
i

]
+O(δ). (S9)
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Once more the leading order carries no temporal dependence so we assume that p
(0)
i (x, t) = πi(t)P

s
i (x). Furthermore,

we can write P si (x) =
∏
µ P

s
µ(xµ, Di) where P sµ(x,Di) solves

0 = ∂x

[
f̃µ(x)P sµ(x,Di)

]
+ D̃i ∂

2
x P

s
µ(x,Di)

which are nothing but the (independent) stationary solutions of each of the Langevin equations in Eq. (S1) at constant
diffusion coefficient.

The O(1) order, after an integration over x, gives instead

∂tπi(t) =

M∑
j=1

[
W̃ (j → i)πj(t)− W̃ (i→ j)πi(t)

]
which leads to the overall solution

p(x, t) =

M∑
i=1

[
πi(t)

N∏
µ=1

P sµi(xµ)

]
(S10)

where we denote P sµ(xµ, Di) with P sµi(xµ) for the sake of brevity. In this limit, the variables xµ are not independent
anymore and indeed their joint distribution is a mixture distribution.

C. MULTIVARIATE INFORMATION FOR N PROCESSES AND M JUMPS

We now consider the limit of slow jumps, so that we end up with a probability distribution that is not trivially
factorizable. Let us write the stationary limit of the one variable probability distributions as

pµ(x) =

M∑
i=1

πiP
s
µi(x) (S11)

and the N variables probability distribution as

p1,...,N (x) =

M∑
i=1

πi

N∏
µ=1

P sµi(xµ). (S12)

In order to study the multivariate information in Eq. (S4) we need to bound the entropies of these distributions,
which do not admit a closed form. From [33] we can write an upper and a lower bound starting from the estimator

Ĥµ =
∑
i

πiH(P sµi)−
∑
i

πi log

∑
j

πje
−d(P sµi||P

s
µj)

 (S13)

where d(P sµi||P sµj) is any distance function in the probability distributions space. We note that

H

(
N∏
µ=1

P sµi

)
= −

∫
dx1 . . . dxN

N∏
µ=1

P sµi(xµ) log

[
N∏
µ=1

P sµi(xµ)

]
=

N∑
µ=1

H(P sµi)

so the first part of Eq. (S13) for the entropy of the joint probability distribution is exactly equal to the sum of the
estimators of the entropy of the one variable distributions. Thus, in the corresponding estimator for the multivariate
information we are left with

ÎN,env = −
∑
i

πi log

∏N
µ=1

(∑
j πje

−d1(P sµi||P
s
µj)
)

∑
j πje

−d2(
∏N
µ=1 P

s
µi||

∏N
µ=1 P

s
µj)

(S14)

where we denote as d1(·||·) the distance function we choose for the one variable entropies and as d2(·||·) the distance
function we choose for the N variables entropy.
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Following [33], a lower bound for the entropy is achieved when we choose as a distance function the Chernoff-α
divergence

Cα(p||q) = − log

∫
dx pα(x)q1−α(x)

for any α ∈ [0, 1], and an upper bound is instead achieved when we use a simple Kullback-Leibler divergence

DKL(p||q) =

∫
dx p(x) log

p(x)

q(x)
.

Therefore, Eq. S14 is a lower bound if we choose the Chernoff-α divergence for the one variable entropy and the
Kullback-Leibler divergence for the N variables entropy, and it is an upper bound is we make the opposite choice.

Both this upper and lower bound saturate in two particular cases. The first is the one in which Cα(·||·) diverges for
all i 6= j. In fact, the Jensen inequality implies that Cα(·||·) ≤ (1 − α)DKL(·||·), hence if the Chernoff-α divergence
diverges so does the Kullback-Leibler divergence. In this case, the estimator of the mutual information is exact and
we find

I∞N,env = −
∑

πi log
(πi)

N

πi
= (N − 1)Hjumps. (S15)

Qualitatively, this means that the probability distribution P sµi(x) is infinitely different from P sµj(x), so the discrete
jumps between the Di states generate an infinitely different dynamics in terms of its stationary states.

The second, albeit trivial, case is the one in which the distances between both P sµi and P sµj are zero. Once more,
both the upper and the lower bounds given by Eq. (S14) saturate and we find

I0N,env = −
∑

πi log 1 = 0 (S16)

which amounts to the trivial statement that if the two mixtures of Eqs. (S11-S12) have the same components they
are also factorizable.

These results have a nice intuitive explanation. In fact, as long as Di is fixed the processes described by Equation
(S1) are independent and thus they cannot share any information. The only moment in time in which they are
effectively coupled is when a jump Di → Dj happens, when they share the sudden change in the diffusion coefficient
- from then on, as long as Dj is fixed, they evolve independently once more. As these changes are instantaneous, the
greatest amount of information the processes can share corresponds to the entropy of the jumps, which is achieved
when the processes are infinitely distinguishable for different diffusion coefficients Di. In terms of information theory,
the entropy of the jumps corresponds to our ignorance of the system, that is, since the jumps are stochastic we do
not know when they happen.

D. BOUNDS ON THE MUTUAL INFORMATION FOR TWO NON-INTERACTING
ORNSTEIN-UHLENBECK PROCESSES

We now focus on the model proposed in the main text, in the non-interacting case. The stationary solution in the
limit of slow-jumps is the Gaussian mixture

p12(x1, x2) =
1

2πτ

[
π−
D−

e
− 1

2τD− (x2
1+x

2
2) +

π+
D+

e
− 1

2τD+
(x2

1+x
2
2)
]

= π−N (0,Σ−) + π+N (0,Σ+) (S17)

where πs+(−) = w+(−)/(w+ + w−) and Σ−(+) = D−(+)diag (τ, τ). Similarly,

p1(x1) =
1√
2πτ

[
π−√
D−

e
− x21

2τD− +
π+√
D+

e
− x21

2τD+

]
= π−N (0, τD−) + π+N (0, τD+). (S18)

We are now interested in both the Chernoff-α divergence and the Kullback-Leibler divergence between the components
of these Gaussian mixtures. In particular, for the two one-dimensional components of Eq. (S18) we have

Cα(N (0, D+)||N (0, D−)) =
1

2
log

(1− α) + α(D−/D+)

(D−/D+)α
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which depends only on the ratio D−/D+ := ε. Since we are free to choose α, we take ∂αCα = 0 so that the Chernoff
divergence is minimum. We find

α =
1− ε− ε log ε

(ε− 1) log ε
=⇒ C(a||b) =

1

2

[
−1 + log

(ε− 1)ε
1
ε−1

log ε

]
:=

1

2
z(ε).

Similarly, for the components of Eq. S17 we have

Cα(N (0,Σ+)||N (0,Σ−)) = log
(1− α) + α(D+/D−)

(D+/D−)α

and upon optimization over α we find the same result as before, up to a factor 1/2, namely

C(N (0,Σ+)||N (0,Σ−))) = −1 + log
(ε− 1)ε

1
ε−1

log ε
= z(ε).

Notice that z(ε) = z(1/ε) implies that the distance between the component with a diffusion coefficient D− and the
one with a diffusion coefficient D+ is the same as the reversed one. We also note that the function z(ε) has the
following properties:

lim
ε→0

z(ε) = +∞ = lim
ε→0

z(1/ε)

lim
ε→1

z(ε) = 0

which means that if D− � D+ the Chernoff divergence between the components of the Gaussian mixtures diverge.
We also need to write down explicitly the Kullback-Leibler divergences between the mixture components, which are

DKL(N (0, D+)||N (0, D−)) =
1

2

[
1− ε
ε

+ log ε

]
:=

1

2
h(ε)

and

DKL(N (0,Σ+)||N (0,Σ−)) =
1− ε
ε

+ log ε = h(ε).

These distances are not symmetric anymore, but the function h(ε) is such that

lim
ε→0

h(ε) = +∞ = lim
ε→0

h(1/ε)

lim
ε→1

h(ε) = 0

so the limit D− � D+ is, perhaps unsurprisingly, the limit in which the distances between the mixture components
diverge and the mutual information is exactly equal to the jump entropy.

Overall, the bounds on the mutual information are given by

IS,upenv

(
D−
D+

,
w−
w+

)
= −π+ log

[
π+ + π−e

−h(D−/D+)

2

]2
π+ + π−e−z(D−/D+)

− π− log

[
π+e

−h(D+/D−)

2 + π−

]2
π+e−z(D+/D−) + π−

IS,lowenv

(
D−
D+

,
w−
w+

)
= −π+ log

[
π+ + π−e

− z(D−/D+)

2

]2
π+ + π−e−h(D−/D+)

− π− log

[
π+e

− z(D+/D−)

2 + π−

]2
π+e−h(D+/D−) + π−

(S19)

and they only depend on the ratios D−/D+ and w+/w−.

E. DISENTANGLING THE ENVIRONMENT AND THE INTERNAL INTERACTIONS IN THE
MUTUAL INFORMATION

Let us now consider the corresponding generalization to N variables and M jumps of the interacting case studied
in the main text,

dxµ
dt

= −
∑
ν

Aµνxν +
√

2Di(t)ξµ(t) (S20)
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for µ = 1, . . . , N and i = 1, . . . ,M . In the slow-jumps limit, the mixture components are multivariate Gaussian
distributions with a covariance matrix Σ that solves the Lyapunov equation

AΣi + ΣiA
T = 2Di1 (S21)

which we can rewrite as in the main text as

AΣ̃ + Σ̃AT = 2τ−11 (S22)

where Σi = DiτΣ̃. Thus, the covariance matrix receives separate contributions from the diffusion coefficient Di and
the interactions A.

In order to compute the bounds, we need the divergences

Cα(Σi||Σj) =
1

2
log

det [(1− α)Σi + αΣj)]

det1−α Σi detα Σj

=
1

2
log

det τΣ̃ [(1− α)Di + αDj ]

det1−α τDiΣ̃ detα τDjΣ̃
=
N

2
log

[(1− α)Di + αDj ]

D1−α
i Dα

j

(S23)

and

DKL(Σi||Σj) =
1

2

[
log

det Σj

det Σi
+ Tr Σ−1j Σi −N

]
=

1

2

[
log

det τDjΣ̃

det τDiΣ̃
+ Tr

1

τDj
Σ̃−1τDiΣ̃−N

]
=

=
N

2

[
log

Dj

Di
+
Dj

Di
− 1

]
. (S24)

If we set N = 2 we recover the two variables case considered in the main text, but in general these results hold for
any N . As we can see, due to the factorization of the covariance matrix the bounds are the same as the ones of the
non interacting case and they only depend on the ratios Di/Dj .

Then, if we want to compute the multivariate information I(N) we need the entropies of the mixture components

H
(i)
1,...,N =

1

2

[
N log(2πeτDi) + log det Σ̃

]
(S25)

and

H(i)
µ =

1

2

[
log(2πeτDi) + log Σ̃µµ

]
. (S26)

Due to the interactions, it is not anymore the case in which H
(i)
1,...,N is exactly equal to

∑
µH

(i)
µ and thus the bounds

on the mutual information become

I
S,up/low
N =

1

2
log

[∏
µ Σ̃µµ

det Σ̃

]
+ I

S,up/low
N,env

({
Di

Dj

}
, {πi}

)
(S27)

so the contribution of the interactions is disentangled from the one of the switching environment. Hence, in the limit
in which all the distances between the mixture components diverge, we are left with

IN →
1

2
log

[∏
µ Σ̃µµ

det Σ̃

]
− (N − 1)

∑
i∈±

πi log πi. (S28)

Finally, in the case studied in the main text the interaction matrix is given by

A =

(
1
τ −g1
−g2 1

τ

)
(S29)

hence the solution to the Lyapunov equation is the covariance matrix

Σ̃ =
1

g1g2τ2 − 1

(
1
2g1τ

2(g2 − g1)− 1 − 1
2τ(g1 + g2)

− 1
2τ(g1 + g2) 1

2g2τ
2(g1 − g2)− 1

)
. (S30)
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Therefore, the result presented in the main text is simply given by

1

2
log

[
Σ̃11Σ̃22

det Σ̃

]
=

1

2
log

[
1− 4

4 + τ2(g1 − g2)2
+

1

1− g1g2τ2

]
. (S31)

Notice that in the fast-jumps limit, once we solve the Lyapunov equation Eq. (S22), the stationary probability

distribution is the multivariate Gaussian distribution N (0, 〈D〉π τΣ̃) that only depends on the single effective diffusion
coefficient 〈D〉π. In this limit we can compute the mutual information exactly

Ifast =
1

2
log

[
1− 4

4 + τ2(g1 − g2)2
+

1

1− g1g2τ2

]
= Iint(g1, g2) (S32)

thus in this limit the only - constant - contribution to the mutual information is the first term of Eq. (S27).

F. MULTIVARIATE INFORMATION IN THE FAST-JUMPS LIMIT WITH NON-LINEAR
INTERACTIONS

In the presence of non linear interactions the Fokker-Planck equation of the system reads

∂tpi(x, t) = L(i)
FP pi(x, t) +

M∑
j=1

[W (j → i)pj(x, t)−W (i→ j)pi(x, t)] (S33)

=

N∑
µ=1

∂µ [fµ(x)pi(x, t)] +Di

N∑
µ=1

∂2µ pi(x, t) +

M∑
j=1

[W (j → i)pj(x, t)−W (i→ j)pi(x, t)] (S34)

where L(i)
FP is the Fokker-Planck operator and now fµ(x) contains the interaction terms between xµ and all the

remaining variables xν 6=µ. If we follow the same time-scale separation limits as in section B, the zero-th order
stationary solution in the fast-jumps limit now solves the equation

0 =
∑
i

L(i)
FP [πip(x, t)] =

N∑
µ=1

∂µ [fµ(x)p(x, t)] + 〈D〉π
N∑
µ=1

∂2µ p(x, t) (S35)

where 〈D〉π =
∑
i πiD̃i. Although this equation cannot be solved exactly, the solution is not factorizable, and thus

the multivariate information is not zero unless fµ(x) = fµ(xµ) which corresponds to the non-interacting case.
Hence, a non-vanishing multivariate information is a distinctive signature of underlying interactions. Notably, the

main difference with respect to the previous linearized case corresponds to the fact that in the linear case it is possible
to show that the multivariate information depends only on the interaction matrix A, whereas in the general non-linear
case we cannot factor out the dependence on the environments through 〈D〉π.
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