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ABSTRACT

The Master equation describes the time evolution of the probabilities of a system with a discrete
state space. This time evolution approaches for long times a stationary state that will in general
depend on the initial probability distribution. Conditions under which the stationary state is unique
are usually given as remarks appended to more comprehensive theories in the mathematical literature.
We provide a direct and complete derivation of a necessary and sufficient criterion for when this
steady state is unique. We translate this problem into the language of graph theory and show that there
is a one-to-one correspondence between minimal absorbing sets within the state-transition network
and linearly independent stationary states of the Master equation.

Keywords Master equation ⋅ relaxing ⋅ steady states ⋅ connectivity ⋅ absorbing subnetworks

1 Introduction

Master equations appear in many different context in chemistry, biology and physics. Examples are biochemical
reaction networks, stochastic population dynamics based on deaths and births, and various statistical physics problems.

Master equations describe the time evolution of the probabilities of the different states of a system, with the dynamics
being due to transitions between these states [1, 2]. The most common form is an initial value problem of a linear
differential equation. The picture behind a Master equation is that of probabilities flowing between states like a fluid,
where their total amount is being conserved. The probability flow along a directed link depends linearly on the strength
of the link and the amount of probability at the source. Of particular interest is the long-time behaviour of the solution,
as this determines the states where a system will eventually be, together with their probabilities. Unlike discrete-time
Markov chains, which can lead to long-term oscillations of the probabilities, the solution of the Master equation for a
finite state space will always converge to a stationary solution where the probability distribution does not change any
more. In general, this steady state will depend on the initial distribution of the probabilities, i.e., on the initial condition
of the corresponding differential equation.

In this paper we focus on the question under which conditions a finite-size Master equation has a unique steady state, in
which case the Master equation is called relaxing [3].

The mathematical literature contains necessary and sufficient conditions for the stationary state to be unique, but these
are only hinted at or given as a remark appended to theorems within major treatises on topics such as Master equations,
Markov chains or directed graphs [4, 5, 6]. What these all lack is a clear statement and proof that is based on first
principles.
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In the physical literature, usually more special situations are discussed. For instance, the Master equation for the
microcanonical ensemble of statistical physics can be shown to be relaxing because the transition rates between pairs of
states are symmetric. Therefore, the steady state is the uniform distribution [1, 2].

The often-cited review by Schnakenberg on the network theory of Master equation systems [7] discusses models where
to each transition there exists also the reverse transition. In this specific case, the stationary solution is always unique.
A more mathematical paper by Jamilowski and Staszewski [8] gives a general criterion for the Master equation to be
relaxing, however, this criterion is a nonintuitive mathematical expression based on the principal minors of the matrix
that contains the transition rates.

Our goal in this paper is to provide a direct proof that is accessible for physicists without delving deep into the
mathematical literature. This proof proceeds by translating the initial value problem into the language of graph theory.
By considering the network of the states of the system and the transitions between them, an intuitive understanding of
the meaning of the steps of the proof can be achieved. An important notion is that of minimal absorbing sets, which are
subsets of states from where the probability cannot escape. We show that the number of linearly independent steady
states of the Master equation equals the number of minimal absorbing sets in the corresponding transition network. In
particular, the steady state of the Master equation is unique if and only if there is exactly one minimal absorbing set.
While this statement seems intuitively clear, the complete proof is non-trivial, even though it uses only undergraduate
mathematics.

2 The Master equation and the time evolution operator
We consider a system of N ∈ N states and the transitions between them. If there is no transition from state i to state
j, the associated transition rate γi→j vanishes. The states and the nonzero transition rates form together a network
S = (Ω,E), with the states Ω = {1, . . . ,N} being the nodes and the transitions being the directed links E ⊆ Ω×Ω of the
network. The transition rates indicate the weights of these links. For all subsets of states B ⊆ Ω there is a corresponding
subnetwork (B,EB), where EB ∶= {(i, j) ∈ E ∶ i, j ∈ B} consists of all links in the subset B ⊆ Ω.

Since transitions occur only between different states, the network has no self-loops, that is γi→i = 0 for all i ∈ Ω.

We denote with pi(t) the probability of the system to be in state i at time t. These probabilities are nonnegative and
normalized, p ∈ [0,1]N with ∥p∥1 = 1.

The Master equation that describes the change in time of these probabilities is the following initial value problem

∂tpi(t) =
N

∑
j=1
j≠i

(pj(t)γj→i − pi(t)γi→j )

pi(t = 0) = p
(i)
0 ,

(1)

or, in matrix-vector notation,
ṗ = Γp

p(t = 0) = p0, with Γij =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

γj→i , i ≠ j

−
N

∑
k=1

γj→k , i = j .

(2)

The solution is given by pt ∶= eΓ t p0, with the initial state p(t = 0) = p0 and the solution operator

eΓ t ∶= ∑
k∈N0

Γk tk

k!
= lim
n→∞

(I +
Γ t

n
)
n

. (3)

The matrix Γ is called the generator of the network Ω [4].

In the following, we relate properties of the solution pt ∶= eΓ t p0 to the properties of the network Ω.

Since the column sum of Γ is zero (
N

∑
i=1

Γij = 0), the matrix Γ has at least one eigenvalue 0. The eigenvectors to this

eigenvalue are stationary states that satisfy ṗ = 0. From Gershgorin’s circle theorem [9] follows that all non-zero
eigenvalues of Γ have a (strictly) negative real part.
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The column sum of any matrix power of Γ is also zero,
N

∑
i=1

(Γk)
ij
= 0 for all k ∈ N, as can be shown by induction.

Further, a power series expansion yields that the column sums of its matrix exponential eΓ t equals one,

N

∑
i=1

(eΓ t)
ij
= 1. (4)

Every initial state can be written as a linear combination of generalized eigenvectors of Γ. In the limit t→∞, only the
eigenvectors of the eigenvalue λ = 0 ( the ones lying in the kernel of Γ) remain, while the contributions of the other
eigenvectors decay exponentially.

To see this, let vλ,m be a generalized eigenvector of rank m ∈ N to the eigenvalue λ. The action of the time evolution
operator eΓ t on this vector is

eΓ t vλ,m = eλt
m−1

∑
k=0

tk

k!
vλ,m−k . (5)

For non-zero eigenvalues λ ≠ 0, this tends to zero since Re[λ] < 0. For λ = 0, we must have m = 1 since the solution
of the master equation (2) is bounded. This means that all generalized eigenvectors to the eigenvalue λ = 0 lie in the
kernel of Γ.

This results in
eΓ t vλ=0 = vλ=0 . (6)

3 Definitions and preparatory considerations
Before we can state and prove the main theorem, we need a few more definitions and theorems.

3.1 Paths
If state b can be reached from state a via a series of transitions, there is a path from a to b, which we indicate by a↝ b,
and we say that state b is reachable from state a. We denote with

• R(→a) ∶= {b ∈ Ω ∣ b↝ a} the set of states from where a path to a exists and with

• R(a→) ∶= {b ∈ Ω ∣a↝ b} the set of states to which a path from a exists.

3.2 Weak, unilateral, and strong connectedness
We call Ω

i) weakly connected if the corresponding undirected graph of Ω is connected;

ii) unilaterally connected if for all a, b ∈ Ω, b is reachable from a OR a is reachable from b;

iii) strongly connected if for all a, b ∈ Ω, b is reachable from a and a is reachable from b,
a↝ b AND b↝ a.

Figure 1 illustrates the difference.

(a) weakly, but not unilaterally connected (b) unilaterally, but not strongly connected

Figure 1: The differences between weak, unilateral and strong connectivity.

3.3 Relaxing networks
We call Ω relaxing if there exists a unique stationary state p∞ such that for all initial conditions p0 the dynamics
of the Master equation converges to this stationary state, that is lim

t→∞
pt = p∞. This means that the eigenspace of Γ

corresponding to the eigenvalue 0 is one-dimensional, dim ( kern (Γ)) = 1.
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3.4 Absorbing subsets
We write p ∈ B if all mass of the probability distribution is restricted to a subset B ∈ Ω, that is ∑

i∈B
pi = 1. We call

a subset B ⊆ Ω absorbing if there are no edges pointing out of B, that is if γi→j = 0 for all i ∈ B and j ∈ BC . This
means that probability cannot flow out of B, so when the mass of the probability distribution of the initial state is in B
(p0 ∈ B), then it will stay in B for all times: pt ∈ B for all t ≥ 0.

Later, we will use the fact thatR(→a)C andR(a→) are absorbing subsets. The two statements are shown as follows:

• IfR(→a)C were not absorbing, there would be a state c ∈R(→a)C and a b ∈R(→a) such that c↝ b. However,
this would imply c↝ b↝ a, which is a contradiction.

• If R(a→) were not absorbing, there would be a state b ∈ R(a→) and a state c ∈ R(a→)C such that b ↝ c.
However, this would imply a↝ b↝ c, which is a contradiction.

3.5 Minimal absorbing subsets
An absorbing subset B ⊆ Ω is called minimal if for all absorbing subsets C ⊆ Ω with C ⊆ B, we have B = C. In
particular, there can be more than one minimal absorbing subset.

Every minimal absorbing subset B is strongly connected. To see this, assume that there are two states i, j ∈ B with
i  j. Then i ∈ (R(→j)C ∩ B) and j ∉ (R(→j)C ∩ B). This implies that (R(→j)C ∩ B) is a non-empty intersection
of two minimal absorbing sets which is strictly less than B, in contradiction with the premise that B is minimal.

Every state ω ∈ Ω leads to a (not necessarily unique) minimal absorbing subnetwork Bω, that is there exists a path
ω → b to some element b ∈ Bω of some minimal absorbing subset Bω. This follows from the result in the previous
subsection that the setR(ω→) is absorbing. This set must contain a minimal absorbing set Bω ⊆R(ω→), and (since
minimal absorbing subnetworks are strongly connected) every state of Bω is reachable from ω, that is ω ↝ b for all
states b ∈ Bω ⊆R(ω→).

3.6 Diagonal dominance
Let B ∈ CN×N be a complex matrix.

• For i ∈ {1, . . . ,N}, we call the i-th row of B strictly diagonal dominant (SDD) if ∣Bii∣ >
N

∑
j=1,
j≠i

∣Bij ∣.

• We call the matrix B strictly diagonal dominant (SDD) if every row of B is SDD. Due to the Gershgorin
circle theorem [9], a SDD matrix is non-singular.

• The definition of a weakly diagonal dominant (WDD) matrix is the same as the previous one, but with a "≥"
sign instead of a ">" sign.

• We call B weakly chained diagonal dominant (WCDD) if B is WDD and for all rows i ∈ {1, . . . ,N} that
are not (SSD), there exists a k ∈ {1, . . . ,N} and a path i = i0 → ⋅ ⋅ ⋅→ ik = j in the directed graph associated
to B to a (SSD) row j ∈ {1, . . . ,N} of B.

It can be shown that WCDD matrices are non-singular ( see section (A.1) in the Appendix for a proof).

3.7 Structure of the matrix Γ

Below, we will use the matrix Γ in a specific form that can be obtained by re-numbering the states.

Let B = {B1, . . . ,Bn}, n ≤ N be the set of minimal absorbing subsets and define M ∶= N −
n

∑
i=1

∣Bi∣. We number the

states as follows: The first M states are those not contained in minimal absorbing networks. Then we count the states
which lie in minimal absorbing networks block-wise, that is

B0 ∶= Ω/
n

⋃
i=1

Bi = {1, . . . ,M}

Bi = {M +
i−1

∑
j=1

∣Bj ∣ + 1, . . . ,M +
i

∑
j=1

∣Bj ∣ }, for i ∈ {1, . . . , n}.

(7)
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After this re-numbering of the states, we can write Γ in the following form

Γ =

⎛
⎜
⎜
⎜
⎝

ΓB0
0M×∣B1∣ . . . 0M×∣Bn∣

ΓB0→B1 ΓB1 0∣B1∣×∣B1∣

⋮ ⋱
ΓB0→Bn 0∣Bn∣×∣B1∣ ΓBn

⎞
⎟
⎟
⎟
⎠

with the matrices

ΓB0 ∈ R
M×M , ΓBi ∈ R

∣Bi∣×∣Bi∣ and ΓB0→Bi ∈ R
(N−M)×M , for i ∈ {1, . . . , n}

(8)

If there is no matrix ΓB0 (M = 0) and there is only one minimal absorbing set (n = 1), then Γ is called irreducible
[9, 10], otherwise it is called reducible.

Figure 2 gives an illustrating example.

Figure 2: Example of a network / directed graph with the minimal absorbing sets being B1 = {3}, B2 = {4, 5} and
B3 = {6, 7, 8}.

The matrices of the absorbing subnetworks and the full matrix Γ for this example are

ΓB1 = 0, ΓB2 = (
−γ4→5 γ5→4

γ4→5 −γ5→4
), ΓB3 =

⎛

⎝

−γ6→7 0 γ8→6

γ6→7 −γ7→8 0
0 γ7→8 −γ8→6

⎞

⎠

and

Γ =

⎛
⎜
⎜
⎝

ΓB0 0 0 0
ΓB0→B1 ΓB1 0 0
ΓB0→B2 0 ΓB2 0
ΓB0→B3 0 0 ΓB3

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−γ1→2 − γ1→3 − γ1→4 γ2→1 0 0 0 0 0 0
γ1→2 −γ2→1 − γ2→6 0 0 0 0 0 0
γ1→3 0 0 0 0 0 0 0
γ1→4 0 0 −γ5→4 γ4→5 0 0 0

0 0 0 γ5→4 −γ4→5 0 0 0
0 γ2→6 0 0 0 −γ6→7 0 γ8→6

0 0 0 0 0 γ6→7 −γ7→8 0
0 0 0 0 0 0 γ7→8 −γ8→6

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

3.8 If the matrix ΓB0 exists, it is invertible
In order to show that the matrix ΓB0 is invertible, it suffices to show that ΓB0 is WCDD (see section (A.1) in the
Appendix). We assume that Γ is of the form (8) and B = {B1, . . . ,Bn} is the set of minimal absorbing subsets.

1) ΓB0 is WDD, since

M

∑
i=1,
i≠j

∣ (ΓB0
)ij ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣Γij ∣

≤
N

∑
i=1,
i≠j

∣Γij ∣ = ∣Γjj ∣ = ∣ (ΓB0
)jj ∣.

2) Let x ∈ B0 be an arbitrary state in B0. Then there are two cases:

5



i) If γx→b > 0 for some b ∈ Bi, then the x-th row is SDD, since
M

∑
i=1,
i≠x

∣ (ΓB0)i, x ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣Γi,x∣

<
M

∑
i=1,
i≠x

∣Γi, x∣ + ∣Γb, x∣
²
γx→b

≤
N

∑
i=1,
i≠x

∣Γi, x∣ = ∣Γx,x∣ = ∣ (ΓB0)x,x ∣.

ii) If the x-th column is not SSD (γx→b = 0 for all b ∈ Ω/B0, we know from section (3.5) that there exists a
path from the state x to a minimal absorbing set Bi, that is x→ . . .→ x′ → b for some i ∈ {1, . . . , n} and
some state b ∈ Bi and x′ ∈ B0. But this again means that if the x-column is not SDD, there is a path from
x to the SDD column x′ (where γx′→b > 0, for some b ∈ Bi).

Hence, we conclude that ΓB0 is WCDD and therefore invertible.

4 A simplified version of the main theorem
Before stating the general condition for a network Ω to be relaxing, we first consider the important special case that Ω
is strongly connected. Our goal in this section is to prove that a strongly connected network is relaxing (which is a
corollary of the theorem of Perron-Frobenius [9]). We proceed in three steps.

4.1 A directed graph Ω is strongly connected if and only if its adjacency matrix A is irreducible
Here, we use a different but equivalent characterization of irreducibility than above: A matrix A ∈ RN×N with non-
negative entries (Aij ≥ 0 for all i, j) is irreducible if and only if for all i, j ∈ {1, . . . ,N} there exists a natural number
k = kij ∈ N such that the i-j-th entry of the kij-th matrix power of A is strictly greater zero, that is (Akij)

ij
> 0.

The adjacency matrix A of the directed graph Ω is defined by

Aij = {
1 γj→i > 0

0 else.
(9)

In contrast to Γ, the adjacency matrix A has zeros on the main diagonal and only tells us qualitatively, whether two
links j and i are directly connected, and contains no quantitative information about the strength of the links .

Figure 3: Illustrating the difference between the adjacency matrix A and Γ:

Figure 3 shows an example of a strongly connected network. The corresponding adjacency matrix is A = (
0 1
1 0

) , and

the generator is Γ = (
−γ1→2 γ2→1

γ1→2 −γ2→1
). Unlike the adjacency matrix A, all the column sums of the generator Γ equal

zero.

The statement is proven by showing that a state i ∈ {1, . . . ,N} is reachable from another state j ∈ {1, . . . ,N} in kij ∈ N
steps if and only if (Akij)

ij
> 0, which can be proven by induction.

Below, we will make use of a modified version of this result: We define Ã ∶= A + I, which is the adjacency matrix of
the directed graph Ω̃ that is obtained by adding a self-loop to every state of Ω. Then Ω̃ (and therefore also Ω) is strongly
connected if and only if Ã is irreducible. But when Ω̃ is strongly connected and every state has a self-loop, then there
exists a natural number k ∈ N such that there is a path of length n ∈ N from state j to state i for all n ≥ k. Hence, we
can choose k (defined at the beginning of section (4.1)) to be independent of i and j. In particular, when Ω is strongly
connected the matrix power of the adjacency matrix Ãk = (I +A)

k has strictly positive entries when k is large enough.

This does not necessarily apply to the adjacency matrix A, as is obvious from the example of Figure 3 with A = (
0 1
1 0

).

Here, the sequence (Am)m∈N of matrix powers of A oscillates between the two matrices A2m = I and A2m+1 = A.
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4.2 When Ω is strongly connected, then for times t > 0 all entries of the solution operator eΓ t are strictly
positive, that is (eΓ t)

ij
> 0, for all i, j ∈ {1, . . . ,N}, where Γ is the corresponding generator of the

network Ω

.

We know the following two statements to be true:
Firstly, since Ω is strongly connected, the entries of (I +Adj(Ω))

n are strictly positive when n is large enough.
Secondly, the entry of (I +Adj(Ω))ij is strictly positive if and only if the entry of

(I +
Γ t

n
)
ij

(2)
ÔÔ

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 − t
n

N

∑
m=1
m≠j

γj→m , if i = j

t
n
γj→i , if i ≠ j,

is strictly positive for large enough n.

Hence, the entries of (I + Γ t
n
)
n

are strictly positive when n is large enough.

Since by lemma (A.2) (see Appendix) the sequence ([(I + Γ t
n
)
n
]
ij
)
n∈N

has a strictly positive lower bound, we

conclude that the components of the solution operator (eΓ t)
ij
∶= lim
n→∞

[(I + Γ t
n
)
n
]
ij

are strictly positive.

The ij-th entry of (eΓ t) can be interpreted as the probability for being in state i after the time t > 0, provided that the
system was in state j at time t = 0. So when all entries of the matrix (eΓ t) are strictly positive, after an arbitrary small
time t > 0 every state has a non-zero probability (probability vectors pt are strictly positive), independent of the initial
condition.

4.3 When Ω is strongly connected, then Ω is relaxing and all components of the unique steady state are
strictly positive, p∞ ∈ (R>0)

N .

Proof. Let v be an eigenvector of Γ to a real eigenvalue λ ∈ R, that is Γv = λv. Then we have

eλt∥v∥1 =∥eλtv∥1 = ∥eΓ tv∥1 =
N

∑
i=1

RRRRRRRRRRR

N

∑
j=1

(eΓ t)
ij
vj

RRRRRRRRRRR

(∗)
≤

N

∑
i, j=1

RRRRRRRRRRRRRRRRRR

(eΓ t)
ij

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
≥0

RRRRRRRRRRRRRRRRRR

⋅ ∣vj ∣ =
N

∑
j=1

∣vj ∣ (
N

∑
i=1

(eΓ t)
ij
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

= ∥v∥1.

The identity
N

∑
i=1

(eΓ t)
ij
= 1 was obtained above, equation (4). Now, let v ∈ kern (Γ), which implies λ = 0 and we have

equality in the above estimation. But on the other hand, we have equality in (*) if and only if

((eΓ t)
i1
v1, . . . , (eΓ t)

iN
vN) ∈ (R≥0)

N
∪ (R≤0)

N
. (10)

Since we assumed that Ω is strongly connected, we know from the previous subsection that the solution operator eΓ t

has only strictly positive entries, so from equation (10) follows that
⎛

⎝

v1

⋮
vN

⎞

⎠
= v ∈ (R≥0)

N
∪ (R≤0)

N .

This means that kern (Γ) ⊆ (R≥0)
N
∪ (R≤0)

N . But a vector space that contains only vectors where all entries have the
same sign must be one-dimensional. If it was more than one-dimensional, one could create a vector with positive and
negative entries by building a suitable linear combination of the two basis vectors.
This proves that Ω is relaxing. It remains to be shown that the steady has strictly positive entries. So let p∞ ∈ kern (Γ)

7



be the unique steady state, with ∥p∞∥ = 1. Then p∞ has only strictly positive components since we have equality in
(11) if and only if all components of p∞ are zero:

p(i)∞ =

N

∑
j=1,
j≠i

p
(j)
∞ γj→i

N

∑
j=1,
j≠i

γi→j

≥ 0 . (11)

5 Statement of the main theorem and its proof
The theorem that we will prove in the following states:

The Master equation (2) of a network Ω is relaxing if and only if there is exactly one minimal absorbing set.

We prove the forward direction by contraposition. Suppose there exists two distinct minimal absorbing subsets
B1,B2 ⊆ Ω. Then Ω cannot be relaxing since the stationary state will lie in B1 (B2) when the initial condition is in B1

(B2), that is p0 ∈ B1,2 Ô⇒ p∞ ∈ B1,2.

For the backward direction, we start from the assumption that there is exactly one minimal absorbing set B1. We show
that Ω is relaxing by proving dim kern (Γ) = 1. we write Γ in the form (8),

Γ = (
ΓB0 0

ΓB0→B1 ΓB1

) .

Let v∗ = (
u∗

w∗) ∈ kern (Γ) with u∗ ∈ RM and w∗ ∈ R(N−M). Then we have

0
!
= Γv∗ = (

ΓB0
0

ΓB0→B1 ΓB1

)(
u∗

v∗
) = (

ΓB0 u
∗

ΓB0→B1 u
∗ + ΓB1 w

∗) . (12)

Since we know from section (3.8) that ΓB0 is invertible, we have u∗ = 0 and v∗ = (
0
w∗). But w∗ must lie in

the kernel of ΓB1 , which is one-dimensional, since B1 is strongly connected (see: section 4.3). This means that
dim kern (Γ) = dim kern (ΓB1) = 1 which completes the proof.

6 Generalized main theorem: The number of minimal absorbing sets equals the dimension
of the kernel of Γ

Proof. Let B = {B1, . . . ,Bn}, n ≤ N be the set of minimal absorbing sets and let Γ be of the form (8), that is

Γ =

⎛
⎜
⎜
⎝

ΓB0 0 . . . 0
ΓB0→B1 ΓB1 0

⋮ ⋱
ΓB0→Bn 0 ΓBn

⎞
⎟
⎟
⎠

. (13)

Let qi ∈ kern (ΓBi) ∩ (R>0)
∣Bi∣ with ∥qi∥1 = 1 for all i ∈ {1, . . . , n}. We know from section (3.5) that all Bi are

strongly connected and from section (4.3) that all qi are well defined and uniquely determined.

Further, define pi ∶= (0M ,0∣B1∣, . . . ,qi, . . . ,0∣Bn∣)
T and note that the vectors {pi ∶ i ∈ {1, . . . , n}} are linearly

independent. Then we have

Γpi =
⎛

⎝

0
ΓBi qi

0

⎞

⎠
= 0N . (14)

and hence span ({pi ∶ i ∈ {1, . . . , n}}) ⊆ kern (Γ).

On the other hand, let v ∈ kern (Γ) be an arbitrary element of the kernel of Γ. We write v as

v = (u0,w1, . . . ,wn) ∈ RM ×R∣B1∣ × ⋅ ⋅ ⋅ ×R∣Bn∣. (15)
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Then we know that

0N
v ∈ kern (Γ)
ÔÔÔÔÔ Γv =

⎛
⎜
⎜
⎝

ΓB0 u0

ΓB0→B1 u0 + ΓB1 w1

⋮
ΓB0→Bn u0 + ΓBn wn

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

0M
ΓB1 w1

⋮
ΓBn wn

⎞
⎟
⎟
⎠

. (16)

The last equality holds, because ΓB0 is invertible. Moreover, since dim kern (ΓBi) = 1 for all i ∈ {1, . . . , n} we
conclude that u0 = 0M and wi ∈ kern (ΓBi) = span (qi), that is wi = λi qi, for some λ ∈ R.

It then follows that

v =

⎛
⎜
⎜
⎝

0M
λ1 q1

⋮
λn qn

⎞
⎟
⎟
⎠

=
n

∑
i=1

λi pi, and hence

kern (Γ) ⊆ span ({pi ∶ i ∈ {1, . . . , n}}).

(17)

This means that we can construct a basis of steady states from the set of minimal absorbing sets, with every basis vector
corresponding to exactly one minimal absorbing set.

For the example given in Figure 2, the basis vectors are

p1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
1
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, p2 =
1

γ4→5 + γ5→4

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0

γ5→4

γ4→5

0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, p3 =
1

γ7→8 γ8→6 + γ8→6 γ6→7 + γ6→7 γ7→8

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0

γ7→8 γ8→6

γ8→6 γ6→7

γ6→7 γ7→8

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (18)

7 Discussion and Conclusions

We have shown that the information about the number of linearly independent steady states of a finite-size Master
equation is encoded in the directed network of transitions: There is a one-to-one correspondence between minimal
absorbing sets and basis vectors of the kernel of the generator that span the space of steady states. In particular, the
dimension of the space of steady states equals the number of minimal absorbing sets. Moreover, for every minimal
absorbing set Bi ⊆ Ω we can construct a normalized basis vector pi ∈ (R≥0)

N
∩ kern (Γ), where the strictly positive

entries correspond to the states lying in the minimal absorbing set Bi.

The questions remains how to proceed in practice. Given a system S = (Ω,E) composed of a finite number of states Ω
and transition rates E , how does one determine whether this system is relaxing and, if not, how many steady states there
are?

The standard way would be to determine the dimension and the span of the kernel of Γ, which can be done in O(∣Ω∣3)
steps. The alternative, however, is to search for the strongly connected components, which is possible in O(∣Ω∣ + ∣E ∣)
steps, and merge each of these strongly connected components into a single ‘macrostate’, see Figure 4 where this is
done for the example from Figure 2.
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(a) original network

(b) macrostate network

Figure 4: Merging of the strongly connected components of a network into ’macrostates’.

Every absorbing macrostate in the resulting coarse-grained network is a minimal absorbing set in the original network.
Their number determines whether Ω is relaxing or not.

In order to find a basis of vectors spanning the space of steady states, it suffices now to determine the steady state pi for
each minimal absorbing set Bi, based on equation (26) in the Appendix.

The stationary state p∞ for the whole network Ω when starting from the initial state p0 is the projection of p0 onto the
span of the steady states of the minimal absorbing sets pi. Writing the initial state as

p0 =
n

∑
i=1

λi pi + rest, (19)

with the rest being a vector orthogonal to the pi, then p∞ is given by p∞ =
n

∑
i=1
λi pi.

The proof provided in this paper is based on the assumption that the state space is finite. The theorems on which the
proof is based, such as the Perron-Frobenius theorem [9]), have no version for the infinite-dimensional case. There are,
however, good reasons to assume that the results are valid also for some models with an infinite state space.

There are systems which show the same behavior (qualitative and approximately quantitative) as a reduced system
Ω<∞ ⫋ Ω∞ with a finite state space, for which the above considerations hold. Examples are systems with a finite
number of minimal absorbing sets for each connected component and chemical reaction systems where an arbitrary
large number of molecules is extremely unlikely. For these systems, we expect that given an initial state p0 and an
ε > 0, it is possible to choose a finite sub-system Ω<∞ of Ω∞ such that the apart from an arbitrary small probability
mass ε dynamics takes places in the finite sub-system.

A Appendix
A.1 WCDD matrices are non-singular
Proof. The fact that SDD matrices are non-singular follows from Gershgorin’s circle theorem [9]. Now let A be
WCDD and assume that A is singular. Let x ∈ kern(A), w.l.o.g. assume that there is an i ∈ {1, . . . ,N} such that
1 = ∣xi∣ ≥ ∣xk ∣∀k ∈ {1, . . . ,N}, k ≠ i. Then we have

0 = (Ax)i =
N

∑
k=1,
k≠i

Aik xk +Aii xi Ô⇒ −Aii xi =
N

∑
k=1,
k≠i

Aik xk (20)

Ô⇒ ∣Aii∣ = ∣−Aii xi ∣
(20)
=

RRRRRRRRRRRRR

N

∑
k=1,
k≠i

Aik xk

RRRRRRRRRRRRR

≤
N

∑
k=1,
k≠i

∣Aik ∣ ∣xk ∣
±
≤1

(∗)
≤

N

∑
k=1,
k≠i

∣Aik ∣
A...WDD

≤ ∣Aii ∣ (21)

Hence, in line (21) we have equality everywhere. In particular:

i) The last equality tells us that the i-the row is not SDD.

ii) Equality in (*) tells us, that whenever Aik ≠ 0Ô⇒ ∣xk ∣ = 1.
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Since A is WCDD we know there exists a path i = i0 → i1 → ⋅ ⋅ ⋅→ ik = j to the SDD row number j. In particular, we

have Ai0, i1 ≠ 0
ii)
Ô⇒ ∣xi1 ∣ = 1. Repeating the argument from the beginning, we get from i) that the i1-th row is not

SDD. When we keep iterating, we finally get, that the j-th row is not SDD which is a contradiction.

A.2 When Ω is strongly connected, the sequence ([(I + Γ t
n
)
n
]
ij
)
n∈N

has a strictly positive lower bound

Proof. Define

Γmin ∶= min{Γll ∶ l ∈ {1, . . . ,N}} < 0

d ∶= length of the shortest path from j to i

γ(j→i) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if j = i

min{
d

∏
l=1
γml→ml+1

∶ (m1, . . . ,md) ∈ {1, . . . ,N}d, m1 = j, md = i, γml→ml+1
≠ 0} , if j ≠ i

(22)

The interpretation of γ(j→i) is the following: For all path (j =mi → . . .→mk = i) of length d ∈ N from state j to state
i, multiply the rates γml→ml+1

of the edges that constitute the path and take the minimum over all paths.

Then we can make the following estimate:

(eΓ t)
ij
= lim
n→∞

((I +
Γ t

n
)
n

)
ij

= lim
n→∞

N

∑
k1=1

⋯
N

∑
kn=1

(I +
Γ t

n
)
i. k1

. . . (I +
Γ t

n
)
kn−1 j

≥

(∗)
≥ lim

n→∞

n!

(n − d)!nd

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n→∞
ÐÐÐ→1

γ(j→i) td

d!
(1 +

Γmin t

n
)
n−d

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n→∞
ÐÐÐ→ eΓmin t

=
γ(j→i) td

d!
eΓmin t > 0,

(23)

where we used in (*) the following calculation:

N

∑
k1=1

⋯
N

∑
kn−1=1

(I +
Γ t

n
)
i k1

. . . (I +
Γ t

n
)
kn−1 j

≥ (
n
d
)(

γj→m2 t

n
) . . .(

γmd−1→i t

n
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d times

(1 +
Γ◻◻ t

n
) . . .(1 +

Γ◻◻ t

n
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n-d times

≥

≥
n!

(n − d)!nd
γ(j→i) td

d!
(1 +

Γmin t

n
)
n−d

(24)

A.3 Explicit expression for the stationary state of a strongly connected network
We call a network an in-tree (also called anti-arborescence [11]) rooted at state ω0 ∈ Ω, if for all states ω ∈ Ω there
is a unique directed path leading from state ω towards the root ω0. An example is given in Figure 5, where the root is
state number 2, the distinguished state to which all the directed paths lead.

Figure 5: Example of an in-tree rooted at state number 2. There is a unique directed path from each state of the tree
leading to state number 2.
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Further, we define
Θm(Ω) ∶= {T ⊆ S ∶ T is an in-tree of Ω rooted in state number m } (25)

to be the set of all in-tree of Ω that are rooted in state number m ∈ {1, . . . ,N}.

Now, suppose that the network Ω is strongly connected. Then the kernel of the corresponding generator Γ is one-
dimensional (see: section 4.3) and there is an analytical expression for it, namely:

kern (Γ) = span

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⎛
⎜
⎝
∑

T ∈Θm(Ω)
∏

(i,j) ∈E(T )
γi→j

⎞
⎟
⎠
m∈{1,...,N}

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

= span

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
T ∈Θ1(Ω)

∏
(i,j) ∈E(T )

γi→j

⋮

∑
T ∈ΘN (Ω)

∏
(i,j) ∈E(T )

γi→j

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(26)

For the k-th component of that vector you consider an in-tree T spanning over the whole network Ω rooted in state
number k and multiply the rates of all edges E(T ) of T . Then you sum over all such in-trees which are rooted in state
number k.
This is done for all component k ∈ {1, . . . ,N} that is, for every state number. An illustration of this procedure can be
seen in Figure 6.

A detailed proof for this theorem can be found in [12, 13]. The original statement was first formulated in 1948 by Tutte
[14] .

It is possible to find all in-trees in O (N + ∣E ∣ + ∣E ∣ ⋅ n) number of steps [11], where N is the number of states, ∣E ∣ the
number of edges and n the number of minimal absorbing sets.

As a special case, we consider the the microcanonical ensemble of statistical physics [2] where the rates for a transition
and the corresponding reverse transition are identical, γi→j = γj→i for all i, j ∈ {1, . . . ,N}. From equation (26) follows
that the stationary probability for each state is the same, i.e. p∞ = 1

∣Ω∣(1, . . . ,1)
T : For every in-tree rooted at a state

i ∈ Ω, it is possible to construct an in-tree rooted at any other state j ∈ Ω by inverting the direction of the transitions.
The overall product ∏

(i,j) ∈E(T ))
γi→j stays the same since the rates for forward and backward transitions are symmetric

as is the number of in-trees for each state.
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(a)

(b) In-tree rooted in 1 (c) In-tree rooted in 3

(d) First in-tree rooted
in 2

(e) Second in-tree
rooted in 2

Figure 6: Example of a strongly connected network (Figure 6a) together with the corresponding in-trees rooted in states
number 1 (Figure 6b) and 3 (Figure 6c), and the two in-trees rooted in state number 2 (Figure 6d and 6e). The kernel
of Γ is the span of a vector whose i-th component is the sum over all in-trees rooted in state number i of the product of
the rates of all edges that constitute that particular in-tree. In this example we have:

kern (Γ) = span
⎧⎪⎪
⎨
⎪⎪⎩

⎛

⎝

γ3→2 ⋅ γ2→1

γ1→2 ⋅ γ3→2 + γ1→3 ⋅ γ3→2

γ2→1 ⋅ γ1→3

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

.
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