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Abstract

In this work we explore the limiting dynamics of deep neural networks trained with
stochastic gradient descent (SGD). As observed previously, long after performance has
converged, networks continue to move through parameter space by a process of anoma-
lous diffusion in which distance travelled grows as a power law in the number of gradi-
ent updates with a nontrivial exponent. We reveal an intricate interaction between the
hyperparameters of optimization, the structure in the gradient noise, and the Hessian
matrix at the end of training that explains this anomalous diffusion. To build this under-
standing, we first derive a continuous-time model for SGD with finite learning rates and
batch sizes as an underdamped Langevin equation. We study this equation in the set-
ting of linear regression, where we can derive exact, analytic expressions for the phase
space dynamics of the parameters and their instantaneous velocities from initialization
to stationarity. Using the Fokker-Planck equation, we show that the key ingredient driv-
ing these dynamics is not the original training loss, but rather the combination of a
modified loss, which implicitly regularizes the velocity, and probability currents, which
cause oscillations in phase space. We identify qualitative and quantitative predictions
of this theory in the dynamics of a ResNet-18 model trained on ImageNet. Through the
lens of statistical physics, we uncover a mechanistic origin for the anomalous limiting

dynamics of deep neural networks trained with SGD.



1 Introduction

Deep neural networks have demonstrated remarkable generalization across a variety of
datasets and tasks. Essential to their success has been a collection of good practices
on how to train these models with stochastic gradient descent (SGD). Yet, despite their
importance, these practices are mainly based on heuristic arguments and trial and er-
ror search. Without a general theory connecting the hyperparameters of optimization,
the architecture of the network, and the geometry of the dataset, theory-driven design
of deep learning systems is impossible. Existing theoretical works studying this inter-
action have leveraged the random structure of neural networks at initialization and in
their infinite width limits in order to study their dynamics Schoenholz et al.| (2016);
Neal| (1996)); [Lee et al. (2017); Jacot et al.| (2018)); |Lee et al. (2019); Song et al.| (2018));
Rotskoff and Vanden-Eijnden|(2018); (Chizat and Bach| (2018)). Here we take a different
approach and study the training dynamics of pre-trained networks that are ready to be
used for inference. By leveraging the mathematical structures found at the end of train-
ing, we uncover an intricate interaction between the hyperparameters of optimization,
the structure in the gradient noise, and the Hessian matrix that corroborates previously
identified empirical behavior such as anomalous limiting dynamics. Understanding the
limiting dynamics of SGD is a critical stepping stone to building a complete theory for
the learning dynamics of neural networks. Additionally, a series of recent works have
demonstrated that the performance of pre-trained networks can be improved through av-
eraging and ensembling their parameters Garipov et al. (2018); |Izmailov et al. (2018);
Maddox et al.| (2019). Thus, the learning dynamics of neural networks, even at the end

of training, are still quite mysterious and important to the final performance of the net-



work. Combining empirical exploration and theoretical tools from statistical physics,
we identify and uncover a mechanistic explanation for the limiting dynamics of neural
networks trained with SGD. Our work is organized as follows:

1. We discuss related work which we build upon and delineate our contributions
(section [3).

2. We demonstrate empirically that long after performance has converged, networks
continue to move through parameter space by a process of anomalous diffusion
where distance travelled grows as a power law in the number of steps with a
nontrivial exponent (section [2).

3. To understand this empirical behavior, we derive a continuous-time model for
SGD as an underdamped Langevin equation, accounting for the discretization er-
ror due to finite learning rates and gradient noise introduced by stochastic batches
(section ().

4. We show that for linear regression, these dynamics give rise to an Ornstein-
Uhlenbeck process whose moments can be derived analytically as the sum of
damped harmonic oscillators in the eigenbasis of the data (section [3).

5. We prove via the Fokker-Planck equation that the stationary distribution for this
process is a Gibbs distribution on a modified (not the original) loss, which breaks
detailed balance and gives rise to non-zero probability currents in phase space
(section [6)).

6. We demonstrate empirically that the limiting dynamics of a ResNet-18 model
trained on ImageNet display these qualitative characteristics — no matter how

anisotropic the original training loss, the limiting trajectory of the network will



behave isotropically (section [7).

7. We derive theoretical expressions for the influence of the learning rate, batch size,
and momentum coefficient on the limiting instantaneous speed of the network and
the anomalous diffusion exponent, which quantitatively match empirics exactly

(section [g).

2 Diffusive Behavior in the Limiting Dynamics of SGD

Even after a neural network trained by SGD has reached its optimal performance, fur-
ther gradient steps will cause it to continue to move through parameter space Jastrzgbski
et al. (2017); Wan et al.| (2020); |[Baity-Jesi1 et al.|(2018)); |(Chen et al.| (2020). To demon-
strate this behavior, we resume training of pre-trained convolutional networks while
tracking the network trajectory through parameter space. Let 6, € R™ be the parameter
vector for a pre-trained network and 6, € R™ be the parameter vector after k& steps
of resumed training. We track two metrics of the training trajectory, namely the local
parameter displacement J; between consecutive steps, and the global displacement Ay

after k steps from the pre-trained initialization:
O = bk — Ok, A =0 — 0. (1

As shown in Fig. [I] neither of these differences converge to zero across a variety of
architectures, indicating that despite performance convergence, the networks continue
to move through parameter space, both locally and globally. The squared norm of the
local displacement ||d||3 remains near a constant value, indicating the network is es-

sentially moving at a constant instantaneous speed. This observation is quite similar
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Figure 1: Despite performance convergence, the network continues to move
through parameter space. We plot the squared Euclidean norm for the local and
global displacement (d; and Ay) of five classic convolutional neural network architec-
tures. The networks are standard Pytorch models pre-trained on ImageNet Paszke et al.
(2017). Their training is resumed for 10 additional epochs. We show the global dis-
placement on a log-log plot where the slope of the least squares line c is the exponent

of the power law ||Ax||3 o k°. See appendix [I| for experimental details.



to the “equilibrium" phenomenon or “constant angular update” observed in [Li et al.
(2020) and |Wan et al.| (2020) respectively. However, these works only studied the dis-
placement for parameters immediately preceding a normalization layer. The constant
instantaneous speed behavior we observe is for all parameters in the model and is even
present in models without normalization layers.

While the squared norm of the local displacement is essentially constant, the squared
norm of the global displacement || A ||3 is monotonically growing for all networks, im-
plying even once trained, the network continues to diverge from where it has been. In-
deed Fig.[I]indicates a power law relationship between global displacement and number
of steps, given by [|Ax||3 oc k¢. As we’ll see in section [} this relationship is indica-
tive of anomalous diffusion where c corresponds to the anomalous diffusion exponent.
The term anomalous diffusion is used to distinguish it from standard Brownian motion,
where the relationship between distance travelled and number of updates is linear. Stan-
dard Brownian motion diffusion corresponds to ¢ = 1. Similar observation were made
by Baity-Jesi et al. (2018) who noticed distinct phases of the training trajectory evident
in the dynamics of the global displacement and Chen et al.| (2020) who found that the
exponent of diffusion changes through the course of training. A parallel observation
is given by Hoffer et al.| (2017) for the beginning of training, where they measure the
global displacement from the initialization of an untrained network and observe a rate
o log(k), a form of ultra-slow diffusion. These empirical observations raise the natural
questions, where is the network moving to and why? To answer these questions we will
build a diffusion based theory of SGD, study these dynamics in the setting of linear re-

gression, and use lessons learned in this fundamental setting to understand the limiting



dynamics of neural networks.

3 Related Work

There is a long line of literature studying both theoretically and empirically the learning
dynamics of deep neural networks trained with SGD. Our analysis and experiments
build upon this literature.

Continuous models for SGD. Many works consider how to improve the classic gra-
dient flow model for SGD to more realistically reflect momentum |Qian| (1999), dis-
cretization due to finite learning rates Kunin et al.| (2020); |Barrett and Dherin| (2020),
and stochasticity due to random batches L1 et al.[(2017); Smith et al.| (2021). One line
of work has studied the dynamics of networks in their infinite width limits through dy-
namical mean field theory Mignacco et al.| (2020); Mannelli et al.| (2020); Mignacco
et al. (2021); Mannelli and Urbani| (2021)), while a different approach has used stochas-
tic differential equations (SDEs) to model SGD directly, the approach we take in this
work. However, recently, the validity of this approach has been questioned. The main
argument, as nicely explained in Yaidal (2018]), is that most SDE approximations simul-
taneously assume that At — 0F, while maintaining that the learning rate n = At is
finite. The works Simsekli et al.| (2019) and |L1 et al.| (2021) have questioned the cor-
rectness of the using the central limit theorem (CLT) to model the gradient noise as
Gaussian, arguing respectively that the heavy-tailed structure in the gradient noise and
the weak dependence between batches leads the CLT to break down. In our work, we

maintain the CLT assumption holds, which we discuss further in appendix[A] but impor-



tantly we avoid the pitfalls of many previous SDE approximations by simultaneously
modeling the effect of finite learning rates and stochasticity.

Limiting dynamics. A series of works have applied SDE models of SGD to study the
limiting dynamics of neural networks. In the seminal work by Mandt et al.| (2016)),
the limiting dynamics were modeled with a multivariate Ornstein-Uhlenbeck process
by combining a first-order SDE model for SGD with assumptions on the geometry of
the loss and covariance matrix for the gradient noise. This analysis was extended by
Jastrzgbski et al. (2017) through additional assumptions on the covariance matrix to
gain tractable insights and applied by Ali et al.| (2020) to the simpler setting of linear
regression, which has a quadratic loss. A different approach was taken by Chaudhari
and Soatto| (2018)), which did not formulate the dynamics as an OU process, nor assume
directly a structure on the loss or gradient noise. Rather, this analysis studied the same
first-order SDE via the Fokker-Planck equation to propose the existence of a modified
loss and probability currents driving the limiting dynamics, but did not provide explicit
expressions. Our analysis deepens and combines ideas from all these works, where our
key insight is to lift the dynamics into phase space. By studying the dynamics of the
parameters and their velocities, and by applying the analysis first in the setting of linear
regression where assumptions are provably true, we are able to identify analytic expres-
sions and explicit insights which lead to concrete predictions and testable hypothesis.
Stationary dynamics. A different line of work avoids modeling the limiting dynamics
of SGD with an SDE and instead chooses to leverage the property of stationarity. These
works |Yaidal (2018); [Zhang et al. (2019); Liu et al.| (2021)); Ziyin et al.| (2021) assume

that eventually the probability distribution governing the model parameters reaches sta-



tionarity such that the discrete SGD process is simply sampling from this distribution.
Yaida|(2018) used this approach to derive fluctuation-dissipation relations that link mea-
surable quantities of the parameters and hyperparameters of SGD. |Liu et al.| (2021]) used
this approach to derive properties for the stationary distribution of SGD with a quadratic
loss. Similar to our analysis, this work identifies that the stationary distribution for the
parameters reflects a modified loss function dependent on the relationship between the
covariance matrix of the gradient noise and the Hessian matrix for the original loss.
Empirical exploration. Another set of works analyzing the limiting dynamics of SGD
has taken a purely empirical approach. Building on the intuition that flat minima gen-
eralize better than sharp minima, Keskar et al.| (2016) demonstrated empirically that
the hyperparameters of optimization influence the eigenvalue spectrum of the Hessian
matrix at the end of training. Many subsequent works have studied the Hessian eigen-
spectrum during and at the end of training. [Jastrzgbski et al. (2018)); (Cohen et al.| (2021))
studied the dynamics of the top eigenvalues during training. Sagun et al. (2017); Pa-
pyan (2018)); Ghorbani et al. (2019) demonstrated the spectrum has a bulk of values near
zero plus a small number of larger outliers. Gur-Ari et al.| (2018 demonstrated that the
learning dynamics are constrained to the subspace spanned by the top eigenvectors, but
found no special properties of the dynamics within this subspace. In our work we also
determine that the top eigensubspace of the Hessian plays a crucial role in the limiting
dynamics and by projecting the dynamics into this subspace in phase space, we see that
the motion is not random, but consists of incoherent oscillations leading to anomalous
diffusion.

Hyperparameter schedules and algorithm development. Lastly, a set of works have
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used theoretical and empirical insights of the limiting dynamics to construct hyperpa-
rameter schedules and algorithms to improve performance. Most famously, the /inear
scaling rule, derived by |[Krizhevsky (2014) and |Goyal et al.| (2017), relates the influ-
ence of the batch size and the learning rate, facilitating stable training with increased
parallelism. This relationship was extended by Smith et al. (2017) to account for the
effect of momentum. [Lucas et al. (2018]) proposed a variant of SGD with multiple ve-
locity buffers to increase stability in the presence of a nonuniform Hessian spectrum.
Chaudhari et al.| (2019) introduced a variant of SGD guided by local entropy to bias
the dynamics into wider minima. |[[zmailov et al.| (2018) demonstrated how a simple
algorithm of stochastically averaging samples from the limiting dynamics of a network
can improve generalization performance. While algorithm development is not the focus
of our work, we believe that our careful and precise understanding of the deep learning

limiting dynamics will similarly provide insight for future work in this direction.

4 Modeling SGD as an Underdamped Langevin Equa-
tion

Following the route of previous works Mandt et al.| (2016); Jastrzebski et al. (2017);
Chaudhari and Soatto (2018) studying the limiting dynamics of neural networks, we
first seek to model SGD as a continuous stochastic process. We consider a network
parameterized by § € R™, a training dataset {x1,...,zx} of size N, and a training
loss L(0) = Zf\il ((9, ;) with corresponding gradient g(#) = 25. The state of the

network at the k' step of training is defined by the position vector ), and velocity vector
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vy, of the same dimension. The gradient descent update with learning rate 77, momentum

B, and weight decay\ is given by

Ups1 = P — g(Ok) — Ay, Or+1 = O + N1, ()

where we initialize the network such that vy = 0 and 6 is the parameter initialization.
In order to understand the dynamics of the network through position and velocity space,
which we will refer to as phase space, we express these discrete recursive equations as
the discretization of some unknown ordinary differential equation (ODE). By incorpo-
rating a previous time step #;_1, we can rearrange the two update equations into the

finite difference discretization,

0 —0 O —0p
( k+1} k> -8 ( k nk 1) +\0), = _g(ek). (3)
Forwa;g Euler BackW;;i Euler

Forward and backward Euler discretizations are explicit and implicit discretizations
respectively of the first order temporal derivative 0 = %0. Simply replacing the dis-
cretizations with the derivative 6 would generate an inaccurate first-order model for the
discrete process. Like all discretizations, the Euler discretizations introduce higher-
order error terms proportional to the step size, which in this case are proportional to
g@ These second-order error terms are commonly referred to as artificial diffusion, as
they are not part of the original first-order ODE being discretized, but introduced by
the discretization process. Incorporating the artificial diffusion terms into the first-order
ODE, we get a second-order ODE, sometimes referred to as a modified equation as in
Kovachki and Stuart (2019); [Kunin et al.| (2020), describing the dynamics of gradient

descent

N |3

(1+3)0+(1—B)0+ X0 = —g(h). 4)
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While this second-order ODE models the gradient descent process, even at finite learn-
ing rates, it fails to account for the stochasticity introduced by choosing a random batch
B of size S drawn uniformly from the set of N training points. This sampling yields
the stochastic gradient gg(0) = < > ,.5 VL(0,2;). To model this effect, we make the

following assumption:

Assumption 1 (CLT). We assume the batch gradient is a noisy version of the true gra-

dient such that gs(0) — g(0) is a Gaussian random variable with mean 0 and covariance

().

This is a commonly applied analytic tool for handling noise introduced in stochastic
algorithms, although certain works have questioned the correctness of this assumption,
which we discuss further in appendix [A] Incorporating this assumption of stochastic
gradients into the previous finite difference equation and applying the stochastic coun-
terparts to Euler discretizations, results in the second-order stochastic differential equa-

tion (SDE),

N3

(L4 B+ (L= B)+ 20 = —g(0) + | TDOK(®), 5)

where £(t) represents a fluctuating force. An equation of this form is commonly referred
to as an underdamped Langevin equation and has a natural physical interpretation as the
equation of motion for a particle moving in a potential field with a fluctuating force. In
particular, the mass of the particle is 2(1 + 3), the friction constant is (1 — j3), the
potential is the regularized training loss £(6) + %[/6]|*, and the fluctuating force is
introduced by the gradient noise. While this form for the dynamics provides useful

intuition, we must expand back into phase space in order to write the equation in the
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standard drift-diffusion form for an SDE,
0 v 0 0

dl | = dt + dW,, (6)

where W, is a standard Wiener process. This is the continuous model we will study in

this work:

Assumption 2 (SDE). We assume the underdamped Langevin equation ([6) accurately
models the trajectory of the network driven by SGD through phase space such that

0(nk) ~ 0y and v(nk) = vy.

See appendix |A| for further discussion on the nuances of modeling SGD with an SDE.

5 Linear Regression with SGD is an Ornstein-Uhlenbeck

Process

Equipped with a model for SGD, we seek to understand its dynamics in the fundamental
setting of linear regression, one of the few cases where we have a complete model for
the interaction of the dataset, architecture, and optimizer. Let X & RV*d pe the input
data, Y € R" be the output labels, and 6 € R? be our vector of regression coefficients.
The least squares loss is the convex quadratic loss £(0) = 5-||Y — X6||* with gradient
g(0) = HO — b, where H = %X and b = XX, Plugging this expression for the

gradient into the underdamped Langevin equation (6), and rearranging terms, results in

the multivariate SDE,

7
d| | =-A - dt + /26 1D(0)dW;, 7



where A and D(0) are the drift and diffusion matrices respectively,

0 —I 0 0
A= , D = , ®)
2 2(1-5) 2(1-8)
e (H + AL Tagg ] 0 Sars>(0)

k = S(1 — %) is an inverse temperature constant, and u = (H + AI)~'b is the ridge
regression solution. In order to gain exact expressions for the dynamics of this SDE, we

introduce the following assumption on the covariance of the gradient noise:

Assumption 3 (Covariance Structure). We assume the covariance of the gradient noise
is spatially independent 3(0) = X and proportional to the Hessian of the least squares

loss Y = 02 H where o € RT is some unknown scalar.

This assumption, although strong, is actually quite natural when we assume our data
is generated from a noisy, linear teacher model. If our training labels are generated
as y; = x]0 + oe; where, € R? is the teacher model and ¢; ~ A/(0,1) is Gaussian
noise, then it is not difficult to show that $(0) ~ o?H. See appendix for a complete
derivation and discussion.

The result of assumption [3] is that the SDE equation [7] takes the form of a multivari-
ate Ornstein-Uhlenbeck (OU) process. The solution to an OU process is a Gaussian
process. By solving for the temporal dynamics of the first and second moments of the
process, we can obtain an analytic expression for the trajectory at any time ¢. In par-
ticular, we can decompose the trajectory as the sum of a deterministic and stochastic
component defined by the first and second moments respectively. The general solution
for a multivariate OU process is derived in appendix [D] and explicit expressions for the

solution of equation [7]are derived in appendix [F|
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Figure 2: Oscillatory dynamics in linear regression. We train a linear network to
perform regression on the CIFAR-10 dataset by using an MSE loss on the one-hot en-
coding of the labels. We compute the hessian of the loss, as well as its top eigenvectors.
The position and velocity trajectories are projected onto the first eigenvector of the hes-
sian and visualized in black. The theoretically derived mean, equation @]), is shown in
red. The top and bottom panels demonstrate the effect of varying momentum on the

oscillation mode.
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Deterministic component. Using the form of A in equation (8) we can decompose

the expectation as a sum of harmonic oscillators in the eigenbasis {q, . .., ¢} of the
Hessian,
0y 2 " qi 0
E = | +> |a® + bi(t) . 9)
Ut 0 =1 0 i

Here the coefficients a;(t) and b;(t) depend on the optimization hyperparameters 1, 3, A, S
and the respective eigenvalue of the Hessian p; as further explained in appendix [F] We
verify this expression nearly perfectly matches empirics on complex datasets under var-
ious hyperparameter settings as shown in Fig. [2|

Stochastic component. The cross-covariance of the process between two points in time

t <s,is

0 0s T T
’ :/iil (B_efAtBefA t)eA (tfs)’ (10)

U Vs

Cov

where B solves the Lyapunov equation AB + BAT = 2D. In the limit as ¢ — oo, the

process approaches a stationary solution,

1
Dss :N 7"4'_13 ) (11)

0

with stationary cross-covariance Cov, = k1 BeATlt=sl,

6 Understanding Stationarity via the Fokker-Planck Equa-
tion

The OU process is unique in that it is one of the few SDEs which we can solve exactly.
As shown in section [5] we were able to derive exact expressions for the dynamics of

17



linear regression trained with SGD from initialization to stationarity by simply solving
for the first and second moments. While the expression for the first moment provides
an understanding of the intricate oscillatory relationship in the deterministic component
of the process, the second moment, driving the stochastic component, is much more
opaque. An alternative route to solving the OU process that potentially provides more
insight is the Fokker-Planck equation.

The Fokker-Planck (FP) equation is a PDE describing the time evolution for the prob-
ability distribution of a particle governed by Langevin dynamics. For an arbitrary po-
tential ® and diffusion matrix D, the Fokker-Planck equation (under an It6 integration
prescription) is

Op=V- (V@p + V. (/lep)), (12)

J/

-

—J

where p represents the time-dependent probability distribution, and J is a vector field
commonly referred to as the probability current. The FP equation is especially useful
for explicitly solving for the stationary solution, assuming one exists, of the Langevin
dynamics. The stationary solution p,s by definition obeys 0;pss = 0 or equivalently
V - Jss = 0. From this second definition we see that there are two distinct settings of
stationarity: detailed balance when J,; = 0 everywhere, or broken detailed balance
when V - J,, = 0 and J, # 0.

For a general OU process, the potential is a convex quadratic function ®(z) = 2TAzx
defined by the drift matrix A. When the diffusion matrix is isotropic (D o< I) and
spatially independent (V D = 0) the resulting stationary solution is a Gibbs distribution

KD (

pss(x) o< e (@) determined by the original loss ®(z) and is in detailed balance. Lesser

known properties of the OU process arise when the diffusion matrix is anisotropic or
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Figure 3: An anisotropic OU process is driven by a modified loss. We sample from
an OU process with anisotropic diffusion and plot the trajectory (same black line on
both plots). The left plot shows the original loss ®(z) generating the drift. The right
plot shows the modified loss ¥(x). Notice the trajectory more closely resembles the
curvature of W(z) than ®(z). The grey lines depict the stationary probability current

Jss().
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spatially dependent |Gardiner et al.| (1985)); Risken| (1996). In this setting the solution
is still a Gaussian process, but the stationary solution, if it exists, is no longer defined
by the Gibbs distribution of the original loss ®(x), but actually a modified loss ¥(z).
Furthermore, the stationary solution may be in broken detailed balance leading to a
non-zero probability current J,,(z). Depending on the relationship between the drift
matrix A and the diffusion matrix D the resulting dynamics of the OU process can have
very nontrivial behavior, as shown in Fig.

In the setting of linear regression, anisotropy in the data distribution will lead to anisotropy
in the gradient noise and thus an anisotropic diffusion matrix. This implies that for most
datasets we should expect that the SGD trajectory is not driven by the original least
squares loss, but by a modified loss and converges to a stationary solution with bro-
ken detailed balance, as predicted by (Chaudhar1 and Soatto (2018)). Using the explicit
expressions for the drift A and diffusion D matrices in equation we can compute

analytically the modified loss and stationary probability current,
T

0 1 0 i
\I/(Q,U) — - <%) - s Jss(eav) - _QU - DPss)
v 0 ) 0 ) 0

where () is a skew-symmetric matrix and U is a positive definite matrix defined as,

o0 0 -% . ZFS T HAA) 0

> 0 0 ¥l

(14)

These new fundamental matrices, () and U, relate to the original drift A and diffu-
sion D matrices through the unique decomposition A = (D + Q)U, introduced by
Ao (2004) and Kwon et al. (2005). Using this decomposition we can easily show that
B = U~! solves the Lyapunov equation and indeed the stationary solution p,,, de-

20



scribed in equation (11)), is the Gibbs distribution defined by the modified loss ¥ (6, v)
in equation (13)). Further, the stationary cross-covariance solved in section[5|reflects the
oscillatory dynamics introduced by the stationary probability currents Js,(6, v) in equa-
tion (I3)). Taken together, we gain the intuition that the limiting dynamics of SGD in

linear regression are driven by a modified loss subject to oscillatory probability currents.

7 Evidence of a Modified Loss and Oscillations in Deep

Learning

Does the theory derived in the linear regression setting (sections [3] [6) help explain
the empirical phenomena observed in the non-linear setting of deep neural networks
(section[2)? In order for the theory built in the previous sections to apply to the limiting
dynamics of neural networks, we must introduce the following simplifying assumption

on the loss landscape at the end of training:

Assumption 4 (Quadratic Loss). We assume that at the end of training the loss for a
neural network can be approximated by the quadratic loss L(0) = (6 —p)T (£) (6—p),

where H > 0 and p is some unknown mean vector, corresponding to a local minimum.

This assumption is strong, but again quite natural given our study of the limiting dynam-
ics of the network. See appendix |C| for a discussion on the motivations and limitations
of this assumption.

Under assumption ] then the expressions derived in the linear regression setting would
apply to the limiting dynamics of deep neural networks and depend only on quantities
that we can easily estimate empirically. Of course, these simplifications are strong,
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but as discussed in appendix [A] [B] and [C] also quite natural. Furthermore, we can
empirically test their qualitative implications: (1) a modified isotropic loss driving the
limiting dynamics through parameter space, (2) implicit regularization of the velocity
trajectory, and (3) oscillatory phase space dynamics determined by the Hessian eigen-
structure.

Modified loss. As discussed in section [6] due to the anisotropy of the diffusion matrix,
the loss landscape driving the dynamics at the end of training is not the original training
loss £(6), but a modified loss ¥ (6, v) in phase space. As shown in equation (13)), the
modified loss decouples into a term Wy that only depends on the parameters # and a term
U, that only depends on the velocities v. Under assumption 3] the parameter dependent

component is proportional to the convex quadratic,

Wy ox (60— p)" (%) (6—p). (15)

This quadratic function has the same mean p as the training loss, but a different curva-
ture. Using this expression, notice that when A = 0, the modified loss is isotropic in
the column space of H, regardless of what the nonzero eigenspectrum of H is. This
striking prediction suggests that no matter how anisotropic the original training loss —
as reflected by poor conditioning of the Hessian eigenspectrum — the training trajectory
of the network will behave isotropically, since it is driven not by the original anisotropic
loss, but a modified isotropic loss.

We test this prediction by studying the limiting dynamics of a pre-trained ResNet-18
model with batch normalization that we continue to train on ImageNet according to
the last setting of its hyperparameters |He et al. (2016). Let 6, represent the initial pre-
trained parameters of the network, depicted with the white dot in figures 4 and [5] We
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estimatem the top thirty eigenvectors ¢y, ..., q3p of the Hessian matrix H, evaluated
at 6, and project the limiting trajectory for the parameters onto the plane spanned by
the top ¢; and bottom g3y eigenvectors to maximize the illustrated anisotropy with our
estimates. We sample the train and test loss in this subspace for a region around the
projected trajectory. Additionally, using the hyperparameters of the optimization, the
eigenvalues p; and psg, and the estimate for the mean p = 6, — H_ g, (g, is the gradient
evaluated at 0,), we also sample from the modified loss equation in the same region.
Figure 4] shows the projected parameter trajectory on the sampled train, test and mod-
ified losses. Contour lines of both the train and test loss exhibit anisotropic structure,
with sharper curvature along eigenvector ¢g; compared to eigenvector g3, as expected.
However, as predicted, the trajectory appears to cover both directions equally. This
striking isotropy of the trajectory within a highly anisotropic slice of the loss landscape

indicates qualitatively that the trajectory evolves in a modified isotropic loss landscape.

Implicit velocity regularization. A second qualitative prediction of the theory is that
the velocity is regulated by the inverse Hessian of the training loss. Of course there are
no explicit terms in either the train or test losses that depend on the velocity. Yet, the

modified loss contains a component, ¥, that only depends on the velocities,
U, oc vTH to. (16)

This additional term can be understood as a form of implicit regularization on the veloc-

ity trajectory. Indeed, when we project the velocity trajectory onto the plane spanned

1To estimate the eigenvectors of H, we use subspace iteration, and limit ourselves to 30 eigenvectors

to constrain computation time. See appendix E| for details.
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Training loss Lyyain Test loss Lyest Modified loss I

Figure 4: The training trajectory behaves isotropically, regardless of the training
loss. We resume training of a pre-trained ResNet-18 model on ImageNet and project
its parameter trajectory (black line) onto the space spanned by the eigenvectors of its
pre-trained Hessian ¢, 30 (with eigenvalue ratio p;/pso =~ 6). We sample the train-
ing and test loss within the same 2D subspace and visualize them as a heatmap in the
left and center panels respectively. We visualize the modified loss computed from the
eigenvalues (p;, pso) and optimization hyperparameters according to equation (13) in
the right plot. Note the projected trajectory is isotropic, despite the anisotropy of the

training and test loss.
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Figure 5: Implicit velocity regularization defined by the inverse Hessian. The shape

of the projected velocity trajectory closely resembles the contours of the modified loss

U, equation (T6).

25



by the ¢; and g3 eigenvectors, as shown in Fig. [5] we see that the trajectory closely
resembles the curvature of the inverse Hessian H~'. The modified loss is effectively
penalizing SGD for moving in eigenvectors of the Hessian with small eigenvalues. A
similar qualitative effect was recently proposed by Barrett and Dherin| (2020) as a con-
sequence of the discretization error due to finite learning rates.

Phase space oscillations. A final implication of the theory is that at stationarity the
network is in broken detailed balance leading to non-zero probability currents flowing

through phase space:

JSS(Q,’U) - ‘ Pss- (17)
gy (H + M) (60— p)

~ n(1+8)

Notice, that while the joint phase space stationary distribution of the network is in
broken detailed balance, its marginal distribution in either position or velocity space
is actually in detailed balance. As such, the probability currents encourage oscillatory
dynamics in the phase space planes characterized by the eigenvectors of the Hessian,
at rates proportional to their eigenvalues. We consider the same projected trajectory
of the ResNet-18 model visualized in figures 4 and [5] but plot the trajectory in phase
space for the two eigenvectors ¢; and g3, separately. Shown in Fig. [6] we see that both
trajectories look like noisy clockwise rotations. Qualitatively, the trajectories for the
different eigenvectors appear to be rotating at different rates.

The integral curves of the stationary probability current are one-dimensional paths con-
fined to level sets of the modified loss. These paths might cross themselves, in which

case they are limit cycles, or they could cover the entire surface of the level sets, in

which case they are space-filling curves. This distinction depends on the relative fre-
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Figure 6: Phase space oscillations are determined by the eigendecomposition of
the Hessian. We visualize the projected position and velocity trajectories in phase
space. The top and bottom panels show the projections onto ¢; and g3g respectively.
Oscillations at different rates are distinguishable for the different eigenvectors and were
verified by comparing the dominant frequencies in the fast Fourier transform of the

trajectories, as shown in appendix [H]
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quencies of the oscillations, as determined by the pairwise ratios of the eigenvalues of
the Hessian. For real-world datasets, with a large spectrum of incommensurate frequen-
cies, we expect to be in the latter setting, thus contradicting the suggestion that SGD in

deep networks converges to limit cycles, as claimed in |[Chaudhari and Soatto (2018]).

8 Understanding the Diffusive Behaviour of the Limit-
ing Dynamics

Taken together the empirical results shown in section [/|indicate that many of the same
qualitative behaviors of SGD identified theoretically for linear regression are evident
in the limiting dynamics of neural networks. Can this theory quantitatively explain the
results we identified in section 2I?

Constant instantaneous speed. As noted in section [2 we observed that at the end
of training, across various architectures, the squared norm of the local displacement
||6¢|3 remains essentially constant. Assuming the limiting dynamics are described by
the stationary solution in equation (TT)), the expectation of the local displacement is

0’

Eqs [[10:]°] = WUQ’CT(H% (18)

as derived in appendix [G] We cannot test this prediction directly as we do not know

0% and computing tr(H) is computationally prohibitive. However, we can estimate

o?tr(H) by resuming training for a model, measuring the average ||0; ||, and then invert-
ing equation (18). Using this single estimate, we find that for a sweep of models with
varying hyperparameters, equation (I8)) accurately predicts their instantaneous speed.

Indeed, Fig.|/|shows an exact match between the empirics and theory, which strongly
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Figure 7: Understanding how the hyperparameters of optimization influence the
diffusion. We resume training of pre-trained ResNet-18 models on ImageNet using

|> and

a range of learning rates, batch sizes, and momentum coefficients, tracking ||d,
|A¢||?. Starting from the default hyperparameters, namely n = le — 4, S = 256, and
B = 0.9, we vary each one while keeping the others fixed. The top row shows the
I

measured ||d;||* in color, with the default hyperparameter setting highlighted in black.

The dotted line depicts the predicted value from equation (I8). The bottom row shows
I

the estimated exponent ¢ found by fitting a line to the ||A,||* trajectories on a log-log

plot. The dotted line shows ¢ = 1, corresponding to standard diffusion.

suggests that despite changing hyperparameters at the end of training, the model re-
mains in the same quadratic basin.

Exponent of anomalous diffusion. The expected value for the global displacement
under the stationary solution can also be analytically expressed in terms of the opti-
mization hyperparameters and the eigendecomposition of the Hessian as,

2

Ess [I1A7] = ﬁcﬂ (tr (H)t+2t) (1 - %) z_jplcl(m) .19

where C;(k) is a trigonometric function describing the velocity of a harmonic oscillator

with damping ratio ¢, = (1 — 3)/v/2n(1 + B) (p + A), see appendix |G| for details.
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As shown empirically in section [2} the squared norm ||A;||?> monotonically increases
as a power law in the number of steps, suggesting its expectation is proportional to ¢¢
for some unknown, constant c. The exponent ¢ determines the regime of diffusion for
the process. When ¢ = 1, the process corresponds to standard Brownian diffusion.
For ¢ > 1 or ¢ < 1 the process corresponds to anomalous super-diffusion or sub-
diffusion respectively. Unfortunately, it is not immediately clear how to extract the
explicit exponent ¢ from equation (I9). However, by exploring the functional form of
C,(k) and its relationship to the hyperparameters of optimization through the damping
ratio (;, we can determine overall trends in the diffusion exponent c.

Akin to how the exponent ¢ determines the regime of diffusion, the damping ratio (;
determines the regime for the harmonic oscillator describing the stationary velocity-

velocity correlation in the [

eigenvector of the Hessian. When (; = 1, the oscillator
is critically damped implying the velocity correlations converge to zero as quickly as
possible. In the extreme setting of C;(k) = 0 for all [, k, then equation simpli-
fies to standard Brownian diffusion, Eg [|[A¢]|?] o< ¢. When ¢, > 1, the oscillator
is overdamped implying the velocity correlations dampen slowly and remain positive
even over long temporal lags. Such long lasting temporal correlations in velocity lead
to faster global displacement. Indeed, in the extreme setting of C;(k) = 1 for all [, k,
then equation simplifies to a form of anomalous super-diffusion, E,; [||A||?] oc #2.
When (; < 1, the oscillator is underdamped implying the velocity correlations will os-
cillate quickly between positive and negative values. Indeed, the only way equation (I9)

could describe anomalous sub-diffusion is if C;(k) took on negative values for certain

k.
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Using the same sweep of models described previously, we can empirically confirm that
the optimization hyperparameters each influence the diffusion exponent c. As shown
in Fig. [/ the learning rate, batch size, and momentum can each independently drive
the exponent c into different regimes of anomalous diffusion. Notice how the influence
of the learning rate and momentum on the diffusion exponent c closely resembles their
respective influences on the damping ratio (;. Interestingly, a larger learning rate leads
to underdamped oscillations, and the resultant temporal velocities’ anti-correlations re-
duce the exponent of anomalous diffusion. Thus contrary to intuition, a larger learn-
ing rate actually leads to slower global transport in parameter space. The batch size
on the other hand, has no influence on the damping ratio, but leads to an interesting,
non-monotonic influence on the diffusion exponent. Overall, the hyperparameters of
optimization and eigenspectrum of the Hessian all conspire to govern the degree of

anomalous diffusion at the end of training.

9 Discussion

Through combined empirics and theory based on statistical physics, we uncovered an
intricate interplay between the optimization hyperparameters, structure in the gradient
noise, and the Hessian matrix at the end of training.

Significance. The significance of our work lies in (1) the identification/verification
of multiple empirical phenomena (constant instantaneous speed, anomalous diffusion
in global displacement, isotropic parameter exploration despite anisotopic loss, veloc-

ity regularization, and slower global parameter exploration with faster learning rates)
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present in the limiting dynamics of deep neural networks, (2) the emphasis on studying
the dynamics in velocity space in addition to parameter space, and (3) concrete quan-
titative as well as qualitative predictions of an SDE based theory that we empirically
verified in deep networks trained on large scale datasets (indeed some of the above
nontrivial phenomena were predictions of this theory). Of course, these contributions
directly build upon a series of related works studying the immensely complex process
of deep learning. To this end, we further clarify the originality of our contributions with
respect to some relevant works.

Originality. The empirical phenomena we present provide novel insight with respect
to the works of [Wan et al.| (2020), Hoffer et al.| (2017)), and |Chen et al.| (2020). We
observe that all parameters in the network (not just those with scale symmetry) move at
a constant instantaneous speed at the end of training and diffuse anomalously at rates
determined by the hyperparameters of optimization. In contrast to the work by [Liu
et al. (2021]), we modeled the entire SGD process as an OU process which allows us
to provide insight into the transient dynamics and identify oscillations in parameter and
velocity space. We build on the theoretical framework used by [Chaudhari and Soatto
(2018) and provide explicit expressions for the limiting dynamics in the simplified linear
regression setting and conclude that the oscillations present in the limiting dynamics are
more likely to be space-filling curves (and not limit cycles) in deep learning due to many
incommensurate oscillations.

Overall, by identifying key phenomena, explaining them in a simpler setting, deriving
predictions of new phenomena, and providing evidence for these predictions at scale,

we are furthering the scientific study of deep learning. We hope our newly derived un-
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derstanding of the limiting dynamics of SGD, and its dependence on various important
hyperparameters like batch size, learning rate, and momentum, can serve as a basis for

future work that can turn these insights into algorithmic gains.
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A Modeling SGD with an SDE

As explained in section [} in order to understand the dynamics of stochastic gradient
descent we build a continuous Langevin equation in phase space modeling the effect of

discrete updates and stochastic batches simultaneously.

A.1 Modeling Discretization

To model the discretization effect we assume that the system of update equations (2)) is
actually a discretization of some unknown ordinary differential equation. To uncover
this ODE, we combine the two update equations in (2)), by incorporating a previous time
step 0;_1, and rearrange into the form of a finite difference discretization, as shown in
equation (3)). Like all discretizations, the Euler discretizations introduce error terms
proportional to the step size, which in this case is the learning rate 1. Taylor expanding
Or+1 and 0y around 6y, its easy to show that both Euler discretizations introduce a

second-order error term proportional to 50.

0k+1—9k_- . 9 ek_ek—l_' U 2
. =0+50+007), P 50 +00).

Notice how the momentum coefficient 5 € [0, 1] regulates the amount of backward
Euler incorporated into the discretization. When /5 = 0, we remove all backward Euler
discretization leaving just the forward Euler discretization. When § = 1, we have
equal amounts of backward Euler as forward Euler resulting in a central second-order

discretizatior@ as noticed in Qian| (1999).

2The difference between a forward Euler and backward Euler discretization is a second-order central

discretization, (9’”17_9"‘) - (9’“_:’“*1) = (W#) =10+ O(n?).
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A.2 Modeling Stochasticity

In order to model the effect of stochastic batches, we first model a batch gradient with
the following assumption:

Assumption 1 (CLT). We assume the batch gradient is a noisy version of the true gra-
dient such that gz(0) — g(0) is a Gaussian random variable with mean 0 and covariance
3(0).

The two conditions needed for the CLT to hold are not exactly met in the setting of
SGD. Independent and identically distributed. Generally we perform SGD by making
a complete pass through the entire dataset before using a sample again which introduces
a weak dependence between samples. While the covariance matrix without replacement
more accurately models the dependence between samples within a batch, it fails to ac-
count for the dependence between batches. Finite variance. A different line of work
has questioned the Gaussian assumption entirely because of the need for finite variance
random variables. This work instead suggests using the generalized central limit the-
orem implying the noise would be a heavy-tailed a-stable random variable Simsekli
et al. (2019). Thus, the previous assumption is implicitly assuming the i.i.d. and finite
variance conditions apply for large enough datasets and small enough batches.

Under the CLT assumption, we must also replace the Euler discretizations with Eu-
ler—Maruyama discretizations. For a general stochastic process, dX; = udt + odW4,
the Euler—Maruyama method extends the Euler method for ODEs to SDE:s, resulting in
the update equation X1 = X + Atu + VAto€, where £ ~ N(0,1). Notice, the
key difference is that if the temporal step size is At = 7, then the noise is scaled by

the square root /7. In fact, the main argument against modeling SGD with an SDE,
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as nicely explained in Yaida (2018)), is that most SDE approximations simultaneously
assume that At — 07, while maintaining that the square root of the learning rate /7 is
finite. However, by modeling the discretization and stochastic effect simultaneously we
can avoid this argument, bringing us to our second assumption:

Assumption 2 (SDE). We assume the underdamped Langevin equation ({0) accurately
models the trajectory of the network driven by SGD through phase space such that
0(nk) =~ 0y and v(nk) = vy.

This approach of modeling discretization and stochasticity simultaneously is called

stochastic modified equations, as further explained in Li et al.| (2017)).

B Structure in the Covariance of the Gradient Noise

As we’ve mentioned before, SGD introduces highly structured noise into an optimiza-
tion process, often assumed to be an essential ingredient for its ability to avoid local
minima.

Assumption 3 (Covariance Structure). We assume the covariance of the gradient noise
is spatially independent 3(0) = X and proportional to the Hessian of the least squares
loss ¥ = 0> H where o € R is some unknown scalar.

In the setting of linear regression, this is a very natural assumption. If we assume the
classic generative model for linear regression data y; = x]6 + oe where, § € R? is the

true model and € ~ N(0, 1), then provably 3(0) ~ o2 H.

Proof. We can estimate the covariance as $(0) ~ + Zf\i 1 9i97 — gg7. Near stationarity
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99" < £ 3°% | gigl, and thus,

LS g

N - 9i9; -

Under the generative model y; = x]6 + oe where ¢ ~ N(0,1) and ¢ € R™, then the
gradient g; is

gi = (z](0 — 0) — oe)x,

and the matrix g;g; is
9i9; = (](0 = 0) — oe)*(wix]).

Assuming 6 ~ § at stationarity, then (2] (6 — 0) — o¢)? ~ 2. Thus,

02

N
~ N Z Tx] = —XTX ;!
Also notice that weight decay is independent of the data or batch and thus simply shifts

the gradient distribution, but leaves the covariance of the gradient noise unchanged. [

While the above analysis is in the linear regression setting, for deep neural networks
it is reasonable to make the same assumption. See the appendix of Jastrzgbski et al.
(2017) for a discussion on this assumption in the non-linear setting.

Recent work by|Ali et al.|(2020) also studies the dynamics of SGD (without momentum)
in the setting of linear regression. This work, while studying the classic first-order
stochastic differential equation, made a point to not introduce an assumption on the
diffusion matrix. In particular, they make the point that even in the setting of linear
regression, a constant covariance matrix will fail to capture the actual dynamics. To

illustrate this point they consider the univariate responseless least squares problem,

mlnlleC -— E [Ez
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As they explain, the SGD update for this problem would be
k
Ok+1 = Ok — % (Z Iz> Op = H(l — (5 Z%))Qm
i€B i=1 ieB
from which they conclude for a small enough learning rate 7, then with probability one
0r — 0. They contrast this with the Ornstein-Uhlenbeck process given by a constant
covariance matrix where while the mean for 6, converges to zero its variance converges
to a positive constant. At the heart of their argument is the fact that if an interpolating
solution exists, then if SGD reaches this solution, then the noise introduced by stochas-
tic batches would vanish, at which point the dynamics would stop. To capture this
behavior we would require that our diffusion matrix is spatially dependent resulting in
a process resembling a multivariate geometric Brownian motion rather than an OU pro-
cess. In general, we implicitly assume that we have sufficient training data such that no

interpolating solution exists.

C A Quadratic Loss at the End of Training

Assumption 4 (Quadratic Loss). We assume that at the end of training the loss for a
neural network can be approximated by the quadratic loss £(0) = (6 — p)T (£) (6 —
i), where H = 0 is the training loss Hessian and p is some unknown mean vector,
corresponding to a local minimum.

This assumption has been amply used in previous works such as Mandt et al. (2016),
Jastrzgbski et al.| (2017), and Poggio et al. (2017). Particularly, Mandt et al. (2016)
discuss how this assumption makes sense for smooth loss functions for which the sta-

tionary solution to the stochastic process reaches a deep local minimum from which it
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is difficult to escape.

It is a well-studied fact, both empirically and theoretically, that the Hessian is low-
rank near local minima as noted by Sagun et al.| (2016), and |[Kunin et al.| (2020)). This
degeneracy results in flat directions of equal loss. |Kunin et al.| (2020) discuss how dif-
ferentiable symmetries, architectural features that keep the loss constant under certain
weight transformations, give rise to these flat directions. Importantly, the Hessian and
the covariance matrix share the same null space, and thus we can always restrict our-
selves to the image space of the Hessian, where the drift and diffusion matrix will be
full rank. Further discussion on the relationship between the Hessian and the covariance
matrix can be found in|Thomas et al. (2020).

It is also a well known empirical fact that even at the end of training the Hessian can
have negative eigenvalues |Papyan (2018). This empirical observation is at odds with
our assumption that the Hessian is positive semi-definite /7 = 0. Further analysis is

needed to alleviate this inconsistency.
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D Solving an Ornstein-Uhlenbeck Process with Anisotropic

Noise

We will study the multivariate Ornstein-Uhlenbeck process described by the stochastic

differential equation
dXt = A(M — Xt)dt + v QIQ_IDth XO = T, (20)

where A € S, is a positive definite drift matrix, ;1 € R™ is a mean vector, x € RT
is some positive constant, and D € S, is a positive definite diffusion matrix. This
OU process is unique in that it is one of the few SDEs we can solve explicitly. We can

derive an expression for X as,

T
Xr=e Moo+ (I—e ") p+ / eADN2K-1 DAW. 1)
0

A

Proof. Consider the function f (¢, ) = e'z where e is a matrix exponential. Then by

It6’s Lemme@ we can evaluate the derivative of f(¢, X;) as

df (t, Xi) = (AeM X, + eMA(p — Xy)) dt + eV 251 DdW,

= Ae pdt + MV 251 DdW,
Integrating this expression from ¢ = 0 to ¢t = 1" gives

T T
(T, X7) — f(0, Xo) :/ AeAt,udt+/ eV 25-1DAW,
0 0
T
AT X — To = (eAT - I) W+ / A 251 DAW,
0

which rearranged gives the expression for X. [

3It6’s Lemma states that for any It6 drift-diffusion process dX; = pidt + o,dW, and twice differen-

tiable scalar function f (¢, x), then df (¢, X;) = (ft + oy fo + %t?fm) dt + oy frdW,.
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From this expression it is clear that X7 is a Gaussian process. The mean of the process
is
EX7]=eag+ (I —e )y, (22)

and the covariance and cross-covariance of the process are

T

Var(Xr) = /il/ eAt=DopeAT =T gy (23)

0
min(7T,S)

Cov(Xrp, Xg) = k71 / A2 DeAT =5 gt (24)
0

These last two expressions are derived by Ito Isometryiﬂ

D.1 The Lyapunov Equation

We can explicitly solve the integral expressions for the covariance and cross-covariance

exactly by solving for the unique matrix B € S', that solves the Lyapunov equation,
AB + BAT =2D. (25)

If B solves the Lyapunov equation, notice

d

a ( AC-T) g eAT(th)) _ AUT) A BeATI=5) | A(=T) g AT AT(E=5)
dt

— QAWU=T)9 ) AT(t=S5)
Using this derivative, the integral expressions for the covariance and cross-covariance
simplify as,
Var(Xr) = k' (B — e T Be ™), (26)
Cov(Xp, Xg) = ! (B — e_ATBe_ATT) eATT=5), 27

where we implicitly assume 7" < S.

2
4o Isometry states for any standard It6 process X;, then E [(jg Xtth) } =E Uot det] :
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D.2 Decomposing the Drift Matrix

While the Lyapunov equation simplifies the expressions for the covariance and cross-
covariance, it does not explain how to actually solve for the unknown matrix 5. Fol-
lowing a method proposed by Kwon et al. (2005), we will show how to solve for B
explicitly in terms of the drift A and diffusion D.

The drift matrix A can be uniquely decomposed as,
A=(D+QU (28)

where D is our symmetric diffusion matrix, () is a skew-symmetric matrix (i.e. () =
—QT), and U is a positive definite matrix. Using this decomposition, then B = U~!,

solves the Lyapunov equation.

Proof. Plug B = U~! into the left-hand side of equation ,
AU+ U AT = (D+Q)UU '+ U'U(D - Q)

=(D+Q)+([D-Q)

=2D
Here we used the symmetry of A, D, U and the skew-symmetry of (). ]

All that is left is to do is solve for the unknown matrices () and U. First notice the
following identity,

AD — DA = QA+ AQ (29)
Proof. Multiplying A = (D + Q)U on the right by (D — Q) gives,

AD-Q)=(D+QUD-Q)

= (D+Q)AT,
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which rearranged and using A = AT gives the desired equation. ]

Let VAVT be the eigendecomposition of A and define the matrices D = VDV and

@ = VTQV. These matrices observe the following relationship,

>

J_r ij D,;. (30)
i J

éij =

)

Proof. Replace A in the previous equality with its eigendecompsoition,
VAVTID — DVAVT = QVAVT + VAVTQ.
Multiply this equation on the right by V' and on the left by VT,
AD — DA = QA + AQ.

Looking at this equality element-wise and using the fact that A is diagonal gives the

scalar equality for any 1, 7,

(A = A)Dig = (A + 2) Qi
which rearranged gives the desired expression. [
Thus, ) and U are given by,

Q=VQVT, U=(D+Q) A (31)

Xi— A

ST exists and (D +

This decomposition always holds uniquely when A, D > 0, as

Q) is invertible. See Kwon et al. (2005) for a discussion on the singularities of this

decomposition.
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D.3 Stationary Solution

Using the Lyapunov equation and the drift decomposition, then X ~ pp, where
pr=N(ezo+ (I —e ) p,xt (U —e U e, (32
In the limit as 7 — oo, then e~47 — 0 and p; — p,, Where
Pos =N (57 'U) | (33)
Similarly, the cross-covariance converges to the stationary cross-covariance,

Coves(Xp, Xg) = k1 BeATT=9), (34)
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E A Variational Formulation of the OU Process with

Anisotropic Noise

In this section we will describe an alternative, variational, route towards solving the
dynamics of the OU process studied in appendix [D]

Let & : R® — R be an arbitrary, non-negative potential and consider the stochastic
differential equation describing the Langevin dynamics of a particle in this potential
field,

dX; = —VO(X,)dt + /26 1D(X)dW,,  Xo = o, (35)

where D(X}) is an arbitrary, spatially-dependent, diffusion matrix, « is a temperature
constant, and o € R™ is the particle’s initial position. The Fokker-Planck equation
describes the time evolution for the probability distribution p of the particle’s position

such that p(x,t) = P(X; = x). The FP equation is the partial differential equatiOIEI,

where V- denotes the divergence and (zy) is a dirac delta distribution centered at the
initialization xy. To assist in the exploration of the FP equation we define the vector
field,

J(z,t) = =VO(X;)p — V- (D(Xy)p), (37)

which is commonly referred to as the probability current. Notice, that this gives an
alternative expression for the FP equation, d;p = —V - J, demonstrating that J(x, )

defines the flow of probability mass through space and time. This interpretation is espe-

5 This PDE is also known as the Forward Kolmogorov equation.
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cially useful for solving for the stationary solution p,s, which is the unique distribution
that satisfies,

atpss = -V Jss - Oa (38)

where J,, is the probability current for p,,. The stationary condition can be obtained in

two distinct ways:

1. Detailed balance. This is when Jg(z) = 0 for all z € Q. This is analogous to
reversibility for discrete Markov chains, which implies that the probability mass
flowing from a state ¢ to any state j is the same as the probability mass flowing

from state j to state 7.

2. Broken detailed balance. This is when V - Jy(z) = 0 but J(x) # 0 for all
x € (). This is analogous to irreversibility for discrete Markov chains, which
only implies that the total probability mass flowing out of state ¢ equals to the

total probability mass flowing into state 7.

The distinction between these two cases is critical for understanding the limiting dy-

namics of the process.

E.1 The Variational Formulation of the Fokker-Planck Equation
with Isotropic Diffusion

We will now consider the restricted setting of standard, isotropic diffusion (D = I). It

is easy enough to check that in this setting the stationary solution is

—k®P(x)
pss(x) = € 7 7 = /Qe_nq)(z)dxj (39)
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where p, is called a Gibbs distribution and Z is the partition function. Under this
distribution, the stationary probability current is zero (J,s(z) = 0) and thus the process
is in detailed balance. Interestingly, the Gibbs distribution p,s has another interpretation

as the unique minimizer of the the Gibbs free energy functional,
F(p) = E[®] — " H(p), (40)

where E [®] is the expectation of the potential ® under the distribution p and H(p) =

— Jo p(z)log(p(x))dz is the Shannon entropy of p.

Proof. To prove that indeed p,, 1s the unique minimizer of the Gibbs free energy func-

tional, consider the following equivalent expression

F) = [ @y + 57" [ pallog(oa))da
= [ o) (toglole)) = Log(pfe)) do = 7" [ 1og(2)

=" De(p || pss) — K7 og(Z)

From this expressions, it is clear that the Kullback—Leibler divergence is uniquely min-

imized when p = p,,. [

In other words, with isotropic diffusion the stationary solution pg, can be thought of as
the limiting distribution given by the Fokker-Planck equation or the unique minimizer
of an energetic-entropic functional.

Seminal work by Jordan et al.| (1998)) deepened this connection between the Fokker-
Planck equation and the Gibbs free energy functional. In particular, their work demon-
strates that the solution p(z, t) to the Fokker-Planck equation is the Wasserstein gradient
flow trajectory on the Gibbs free energy functional.
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Steepest descent is always defined with respect to a distance metric. For example, the
update equation, zj1 = x,—nV®(z}), for classic gradient descent on a potential ¢ (),
can be formulated as the solution to the minimization problem x; = argmin, n®(z)+
td(x, zy,)* where d(x, x,) = || — ]| is the Euclidean distance metric. Gradient flow
is the continuous-time limit of gradient descent where we take  — 0T. Similarly,
Wasserstein gradient flow is the continuous-time limit of steepest descent optimization

defined by the Wasserstein metric. The Wasserstein metric is a distance metric between

probability measures defined as,

W2(up) = inf / 2 — y?p(de, dy), 1)
R xR"

PEM(p1,p2)
where j1; and p» are two probability measures on R™ with finite second moments and
I1( 11, p2) defines the set of joint probability measures with marginals z; and pe. Thus,
given an initial distribution and learning rate 7, we can use the Wasserstein metric to
derive a sequence of distributions minimizing some functional in the sense of steepest
descent. In the continuous-time limit as 7 — 0T this sequence defines a continuous
trajectory of probability distributions minimizing the functional. Jordan et al.| (1997)
proved, through the following theorem, that this process applied to the Gibbs free en-
ergy functional converges to the solution to the Fokker-Planck equation with the same

initialization:

Theorem 1 (JKO). Given an initial condition py with finite second moment and an

n > 0, define the iterative scheme p,, with iterates defined by
pr = argmin,n (E[®] — k" H(p)) + W3 (p,p* ).

Asn — OF, then p, — p weakly in L' where p is the solution to the Fokker-Planck
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equation with the same initial condition.

See Jordan et al. (1997) for further explanation and Jordan et al.| (1998) for a complete

derivation.

E.2 Extending the Variational Formulation to the Setting of Anisotropic
Diffusion

While the JKO theorem provides a very powerful lens through which to view solutions
to the Fokker-Planck equation, and thus distributions for particles governed by Langevin
dynamics, it only applies in the very restricted setting of isotropic diffusion. In this
section we will review work by (Chaudhari and Soatto (2018)) extending the variational
interpretation to the setting of anisotropic diffusion.

Consider when D(X}) is an anisotropic, spatially-dependent diffusion matrix. In this
setting, the original Gibbs distribution given in equation does not necessarily sat-
isfy the stationarity condition equation (38). In fact, it is not immediately clear what
the stationary solution is or if the dynamics even have one. Thus,|Chaudhari and Soatto
(2018)) make the following assumption:

Stationary Assumption. Assume there exists a unique distribution ps that is the sta-
tionary solution to the Fokker-Planck equation irregardless of initial conditions.
Under this assumption we can implicitly define the potential ¥(z) = —x'og(pss()).
Using this modified potential we can express the stationary solution as a Gibbs distri-
bution,

Pss(T) o e rY(@) (42)

49



Under this implicit definition we can define the stationary probability current as Jg(x) =

J(x)pss(z) where
j(r) = -V&(x) — 'V - D(z) + D(z)V¥(x). (43)

The vector field j(z) reflects the discrepancy between the original potential ¢ and the
modified potential ¥ according to the diffusion D(z). Notice that in the isotropic case,
when D(z) = I, then & = ¥ and j(z) = 0. Chaudhari and Soatto| (2018)) notice the

following additional properties of j(x):
1. pss is in detailed balance iff j(z) = 0 for all x € Q.
2.V j— KjTVV = 0,
3. J(x,t) = —j(z)ps + p:D(2)V (¥ (z) + klogp).

Chaudhari and Soatto (2018) introduce another property of j(z) through assumption,
Conservative Assumption. Assume that the force j(x) is conservative (i.e. V - j(z) =
0).

Using this assumption, Chaudhari and Soatto|(2018) extends the variational formulation

provided by the JKO theorem to the anisotropic setting,

Theorem 2 (CS). Given an initial condition py with finite second moment, then the

energetic-entropic functional,
F(p) =B, [¥(2)] — v~ H(p)

monotonically decreases throughout the trajectory given by the solution to the Fokker-

Planck equation with the given initial condition.
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In other words, the Fokker-Plank equation @]) with anisotropic diffusion can be in-
terpreted as minimizing the expectation of a modified loss ¥, while being implicitly
regularized towards distributions that maximize entropy. The derivation requires we as-
sume a stationary solution p, exists and that the force j(z) implicitly defined by py; is
conservative. However, rather than implicitly define W(x) and j(x) through assumption,
if we can explicitly construct a modified loss W () such that the resulting j(x) satisfies
certain conditions, then the stationary solution exists and the variational formulation

will apply as well. We formalize this statement with the following theorem,

Theorem 3 (Explicit Construction). If there exists a potential V(x) such that either
j@) = 0o0r V- j(x) = 0and VU¥(x) L j(x), then pss is the Gibbs distribution

67,‘{\1/(93)

o and the variational formulation given in Theorem@applies.

E.3 Applying the Variational Formulation to the OU Process

Through explicit construction we now seek to find analytic expressions for the modified
loss W(x) and force j(x) hypothesised by Chaudhari and Soatto| (2018) in the funda-
mental setting of an OU process with anisotropic diffusion, as described in section [D}]
We assume the diffusion matrix is anisotropic, but spatially independent, V - D(x) = 0.

For the OU process the original potential generating the drift is
®(z) = (z — )75 (x — p). (44)

Recall, that in order to extend the variational formulation we must construct some po-
tential U(z) such that V - j(z) = 0 and V¥ L j(x). It is possible to construct ¥(x)

using the unique decomposition of the drift matrix A = (D + @)U discussed in ap-
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pendix [D] Define the modified potential,

U(r) = (x — 0TSz — ). (45)

Using this potential, the force j(z) is
j(@) = —A(x —p) + DU(x — p) = —QU(x — p). (46)

Notice that j(x) is conservative, V - j(x) = V- —QU (x — ) = 0 because () is skew-
symmetric. Additionally, j(z) is orthogonal, j(z)TVV¥ (z) = (x — u)" UTQU (x — u) =
0, again because () is skew-symmetric. Thus, we have determined a modified potential
U(x) that results in a conservative orthogonal force j(z) satisfying the conditions for
Theorem [3] Indeed the stationary Gibbs distribution given by Theorem [3] agrees with

equation derived via the first and second moments in appendix D]
efn\ll(z) x N (/L, KflUfl)

In addition to the variational formulation, this interpretation further details explicitly the
stationary probability current, Jys(x) = j(z)pss, and whether or not the the stationary

solution is in broken detailed balance.

F Explicit expressions for the OU process Generated by

SGD

We will now consider the specific OU process generated by SGD with linear regression.
Here we repeat the setup as explained in section 5

Let X € RV*4 Y ¢ RN be the input data, output labels respectively and § € R be
our vector of regression coefficients. The least squares loss is the convex quadratic loss
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L£(0) = 35]|Y — X012 with gradient g(0) = HO — b, where H = XX and b = X7

Plugging this expression for the gradient into the underdamped Langevin equation (6),

and rearranging terms, results in the multivariate Ornstein-Uhlenbeck (OU) process,

0 1 0
il =4 "1 | at + Var-Daw,, (47)

(% 0 (%

where A and D are the drift and diffusion matrices respectively,

0 _I 0 0
A= . D= , (48)
2 2(1-5) 2(1-5)
i H + M) g ] 0 Jara =)

k = S(1 — 3?) is a temperature constant, and ;1 = (H + AI)~'b is the ridge regression

solution.

F.1 Solving for the Modified Loss and Conservative Force

In order to apply the expressions derived for a general OU process in appendix [D] and
we must first decompose the drift as A = (D + Q)U. Under the simplification
¥(0) = o*H discussed in appendix [B] then the matrices @ and U, as defined below,

achieve this,

—2 HYH+MN) 0

o2

= 7 U — n(1+8) . (49)
o*H 0 0 %H -1

Using these matrices we can now derive explicit expressions for the modified loss

U(#,v) and conservative force j(6,v). First notice that the least squares loss with Lo

regularization is proportional to the convex quadratic,

() = (6 — p)T(H + A1) (0 — p). (50)

53



The modified loss W is composed of two terms, one that only depends on the position,

wa(0) = 0~ " () 0, 51

and another that only depends on the velocity,

H—l
U, (v) =0T ( 5 ) v. (52)
g
The conservative force j(6, v) is
v
Jj(0,v) = : (53)

and thus the stationary probability current is Jy5(0,v) = j(6, v)pss.

F.2 Decomposing the Trajectory into the Eigenbasis of the Hessian

As shown in appendix [D} the temporal distribution for the OU process at some time

T >0is,

0 ar |0 ary | M 1 (171 AT ATT
pr =N|e + (I —e ") KU = e U e AT
v Vo 0
Here we will now use the eigenbasis {q1,..., ¢y} of the Hessian with eigenvalues

{p1, ..., pm} to derive explicit expressions for the mean and covariance of the process

through time.
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Deterministic component. We can rearrange the expectation as

bo — 11
E = +e
v 0 Vg

Notice that the second, time-dependent term is actually the solution to the system of

ODEs

=—-A

(% (%

T
with initial condition {@0 — 1 Uo] . This system of ODESs can be block diagonalized

by factorizing A = OSOT where O is orthogonal and .S is block diagonal defined as

- - - 0 —1
@1 0 ... ¢gn O ﬁ(m*” %
0= S =
0 @ 0 gm 0 -1
I | i g om+ ) 25

T T
In otherwords in the plane spanned by [Qi 0} and [0 qz} the system of ODEs de-

couples into the 2D system

a; 0 1 a;
, 2 (). _2(1=p) ,
bi aam PN —ars | b

This system has a simple physical interpretation as a damped harmonic oscillator. If we

let b; = a;, then we can unravel this system into the second order ODE

1-5 . 2 . _
it p T n(1+5)(pZ+A)az 0
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1-5

which is in standard form (i.e. i + 2vi + w?z = 0) for v = TR

and w; =

m(pi + A). Let a;(0) = (6p — , q;) and b;(0) = (wo, ¢;), then the solution in

terms of v and w; is

;

et (ai(O) cosh (\/72 — wft) + % sinh ( 2 — wft)) v > w;

Bt

ai(t) = 4 e (a;(0) + (va;(0) + b;(0))t) Y= wi

et (ai(O) cos ( w? — 72t> + %er’go) sin ( w? — ’y%)) v < w;
\ Wi

Differentiating these equations gives us solutions for b; ()

;

e (bi(O) cosh < 72— wft) — Mﬂbg(m sinh ( v2 — w?t)) v > w;

72 —w;
bilt) =4 e (5,(0) = (wPai(0) +7B(0)) 1) Y =w
et (bi(O) cos ( w? — 7215) — %ﬂi(o) sin ( w? — 721%)) v < w;
\ Wi

Combining all these results, we can now analytically decompose the expectation as the

sum,

H e 4 0
E = + | ait) + b(t)
v 0 =1 0 i

Intuitively, this equation describes a damped rotation (spiral) around the OLS solution
in the planes defined by the the eigenvectors of the Hessian at a rate proportional to the

respective eigenvalue.
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Stochastic component. Using the previous block diagonal decomposition A = OSOT

we can simplify the variance as
Var =k (U’1 — e’ATU’le’ATT)
ol (U—l _ e—OSOTTU—le—OSTOTT)
=r 'O (OTU_lO — e_ST(OTU_lO)e_STT) o7
Interestingly, the matrix OTU 1O is also block diagonal,

n(1+8)o% _p 0
2 p1+A

0 a’p
WA (4 A\ H 0
oOUto=0" O =
0 o’H
n(1+8)0% _pm

Thus, similar to the mean, we can simply consider the variance in each of the planes

T T
spanned by {qi 0] and {0 qi] . If we define the block matrices,

no? __pi
D, — 25(1-08) pi+A 0 S, = 0 1
2

o 2 2(1-8)
0 sa-p2)Pi —aiem (P T+ A — )

then the projected variance matrix in this plane simplifies as

T
60 —SiT 1y —SiTT
Var =D;,—e " Die "t

qv
Using the solution to a damped harmonic osccilator discussed previously, we can ex-

press the matrix exponential ¢ =57 1-5 2

n(1+8) n(1+06)
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If we let a; = \/|7? — w?|, then the matrix exponential is

( ~

cosh (a;t) + L sinh (a;t) L sinh (a;t)
et L v > w;
—2—12 sinh (at) cosh (a;t) — X sinh (at)
1+t t
e dit = e v = w;
—wit 1—~t
cos (at) + - sin (at) L sin (a;t)
et v < w;
—% sin (ay) cos (ait) — 2 sin (a;t)
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G Analyzing Properties of the Stationary Solution

Assuming the stationary solution is given by equation (TT)) we can solve for the expected
value of the norm of the local displacement and gain some intuition for the expected

value of the norm of global displacement.

G.1 Instantaneous Speed

Ees [10]1°] = Exs (1601 — 0411
= 1’Ess [[|vks1]|]
= n’tr (s [Uki10]44])
= ntr (Vargs (Vp41) + Egs [Uks1] Ess [Vrra]T)
= ﬁtr (02H )
Note that this follows directly from the definition of d; in equation (1)) and the mean and

variance of the stationary solution in equation ([TI]), as well as the follow-up derivation

in appendix [F|
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G.2 Anomalous Diffusion

Notice, that the global movement A, = 6, — 6, can be broken up into the sum of the

local movements A; = Z 1 0;, where 6; = 0; — 0;,_1. Applying this decomposition,

ss [HAtH

t
ZESS H‘SH +ZESS 5“5
i=1

7]

As we solved for previously,

2

Ess [10i11%] = 7Ess [[luill*] = n*tr (Vargs(vi)) = ﬁtr (02H) .

By a similar simplification, we can express the second term in terms of the stationary

cross-covariance,
Ess [(85,0;)] = 1°Ess [(vi, v5)] = m°tr (Covies (v, v;)) -

Thus, to simplify this expression we just need to consider the velocity-velocity covari-

ance Covs(v;, v;). At stationarity, the cross-covariance for the system in phase space,

where x = S(1 — 3?), and

Ayl —AT|i—j
Covss(2i,2) =k U e =l

. N (H M) 0 0 —I

2(1-8)
(Hﬁ)(H—l—)\[) ; I
As discussed when solving for the mean of the OU trajectory, the drift matrix A can

be block diagonalized as A = OSOT where O is orthogonal and S is block diagonal
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defined as

¢ 0

0 —1
2 2(1-5)
G 0 s (T A) AT
, S =
0 gm

Notice also that O diagonalizes U ! such that,

A=0"U10 =

2 p1+A

0 a’p1

n(1+8)0% _pm _

0
2
s (Pm + A)
0
0% pm

Applying these decompositions, properties of matrix exponentials, and the cyclic in-

variance of the trace, allows us to express the trace of the cross-covariance as

tr (Covgs(2i,2;)) = Kk 'tr (U—le—AT\i—jl)
=k ltr (U_lOe_ST“_j‘OT)

=K Mr (Ae_STli_j‘)

n
=53t (Age S
k=1

where Ay and Sy, are the blocks associated with each eigenvector of H. As solved for

previously in the variance of the OU process, we can express the matrix exponential

e~ %l=il explicitly in terms of 7 =

16 and Wy =

n(1+5) n(1+8)
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|i — j| and oy, = /|7 — w}|, then the matrix exponential is

( —
cosh (ax7) + - sinh (a,7) aik sinh (a7)
e Y > Wk
I —2—’2 sinh (ax7) cosh (ay7) — alk sinh (c7)
o 1+~7 T
R L v = Wk
—w,%T 1—~7
cos (agT) + ;- sin (oy) oo sin ()
e Y < Wk
_:_E sin (o) cos (agT) — alk sin (aT)
\ -

Plugging in these expressions into previous expression and restricting to just the k™

velocity component, we see

(

/€_102pk6_77 (cosh (&kT) — alk sinh (ak7)> v > W
_ -1 —5T}i—j _
COVss(Ui,k, Uj,k) =R [Ake il Jq . = H—lazpke—'yr (1 _ ’YT) Y= W
ko2 pre™ T (cos (axT) — Lsin (OékT)) Y < Wk
\

Pulling it all together,

2 .2

s 187 = 50— (tr<H>t+ 2y (1 - %) Zplcxk))

S

where C;(k) is defined as

Ci(k) =

(

e 7k (cosh (auk) — 2 sinh (aﬂc)) v > w

e " (1 —vk) v =w

ek (cos (auk) — L sin (aﬂc)) v < w

for y = 1757 wi = /gy (o + A and i = /3% = W7
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G.3 Training Loss and Equipartition Theorem

In addition to solving for the expected values of the local and global displacements,
we can consider the expected training loss and find an interesting relationship to the
equipartition theorem from classical statistical mechanics.

The regularized training loss is £3(0) = (6 — p)TH(0 — p) + 3[|0||*, where H is
the Hessian matrix and p is the true mean. Taking the expectation with respect to the

stationary distribution,

ot [£2(0)] = gir ((H + M)Esu [097) — pTHE,, 0] + Sy H

The first and second moments of the stationary solution are

2

Ealll =p  Eul007] = o

517 2 (H+X)"'H + py”

Plugging these expressions in and canceling terms we get

Ui

Ess [LA(0)] = 150 =5)

A
tr (o H) +

Define the kinetic energy of the network as KC(v) = 3ml|v||%, where m = 2(1 + f3) is
the per-parameter “mass" of the network according to our previously derived Langevin

dynamics. At stationarity,

n(1+3)

Ess [K(v)] = Ttr (Ess [00T]) = "

mtr (O'QH)

where we used the fact that E [vvT] = WUQH . In otherwords, at stationarity,

£ [£(6)] = Eu [K(0)] + 3

This relationship between the expected potential and kinetic energy can be understood
as a form of the equipartition theorem.
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H Phase space oscillation rates in Deep Learning

In Fig. [6] we showed the position and velocity of the weights over training time, pro-
jected onto the first and 30th eigenvector of the Hessian. To supplement the qualitative
observation that the oscillations in phase space seemed to occur at different rates, as
is the case in linear regression, we measured a quantifiable difference in oscillation
frequency for the position of the weights projected onto different eigenvectors by look-
ing at the amplitude-weighted average of the frequencies identified by the fast Fourier
Transform. The velocity of the weights showed a smaller difference in the predominant

oscillation frequency, but it was still noticeable.

Position Velocity

10° 4 —— @1, avg. frequency: 264.04 —— @ avg. frequency: 1283.51

—— @50, avg. frequency: 413.35 —— @30, avg. frequency: 1332.50

102 4

10! 4

Amplitude
Amplitude

100 4

107 < T T T T T 107 T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Frequency (Hz) Frequency (Hz)

Figure 8: Phase space oscillations at different rates are determined by the eigen-
decomposition of the Hessian Weight positions oscillate at a quantifiably different
frequencies when projected onto different eigenvectors of the Hessian. Velocities fol-

low a similar pattern, with less clear differences
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I Experimental Details

A version of our code, used to run all experiments and generate all the figures in this pa-

per, can be found athttps://github.com/danielkunin/rethinking—-SGD.

I.L1 Computing the Hessian eigendecomposition

Computing the full Hessian of the loss with respect to the parameters is computation-
ally intractable for large models. However, equipped with an autograd engine, we can
compute Hessian-vector products. We use the subspace iteration on Hessian-vector
products computed on a variety of datasets. For Cifar-10 we use the entire train dataset
to compute the Hessian-vector products. For Imagenet, we use a subset 40,000 images
sampled from the train dataset to keep the computation within reasonable limits.

For experiments on linear regression, the Hessian is independent of the model (it only
depends on the data) and can be computed using any model checkpoint. For all other
experiments, the Hessian eigenvectors were computed using the model at its initial pre-

trained state.

I.2 Figure 1

We resumed training for a variety of ImageNet pre-trained models from Torchvision Paszke
et al.| (2017) for 10 epochs, with the hyperparameters used at the end of training, shown

in table Il

We kept track of the norms of the local and global displacement, ||d||3 and ||A||3,

every 250 steps in the training process, to keep the length of the trajectories within
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reasonable limits. ||0;||3 is visualized directly, along with its 15 step moving average.

We then fit a power law of the form ok to the ||A||3 trajectories for each model, using

the last 2/3 of the saved trajectories. We visualize the ||A.||3 trajectories along with

their fits on a log-log plot.

Model | Dataset Opt. | Epochs | Batchsize S | LR7 | Mom. 5 | WD A\
VGG-16 | ImageNet | SGDM 10 256 1075 0.9 5x 1074
VGG-11 w/BN | ImageNet | SGDM 10 256 107° 0.9 5x 1074
VGG-16 w/BN | ImageNet | SGDM 10 256 107° 0.9 5x 107*
ResNet-18 | ImageNet | SGDM 10 256 1074 0.9 1074
ResNet-34 | ImageNet | SGDM 10 256 1074 0.9 1074

Table 1: Figure 1 experiments training hyperparameters.

.3 Figure 2

For this figure we trained a linear regression model on Cifar-10, using MSE loss on the

one-hot encoded labels. The hyperparameters used during training are shown in table[2]

At every step in training the full set of model weights and velocities were stored. The

top 30 eigenvectors of the hessian were computed as described in appendix using

10 subspace iterations.

The saved weight and velocity trajectories were then projected onto the top eigenvector

of the hessian and were visualized in black. Using the initial weights and velocities, the

red trajectories were computed according to equation (9).
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Model | Dataset | Opt. | Epochs | Batchsize S | LR7 | Mom. § | WD )\

Linear Regression | Cifar-10 | SGDM 4 512 107° 0.9 0

Linear Regression | Cifar-10 | SGDM 4 512 107° 0.99 0

Table 2: Figure 2 experiments training hyperparameters.

1.4 Figure 3

For this figure we constructed an arbitrary Ornstein-Uhlenbeck process with anisotropic
noise which would help contrast the original and modified potentials. We sampled from

a 2 dimensional OU process of the form

T T
d —A|b- dt + 107"V DdW,.
) T
where we set b = [—0.1,0.05]T and arbitrarily construct A such that it’s eigenvectors are
aligned with ¢; = [—1,1]" and ¢ = [1, 1]7 and it’s eigenvalues are 4 and 1 as follows:
4 0 -1 1
D= ., V= ., A=V7lDV
01 1 1

The background for the left panel was computed from the convex quadratic potential
O(x) = %Z‘TA.% — bzx. The background for the right panel was computed from the
modified quadratic ¥ (z) = s2TUz — uz, with U = (D + Q) ' A and u = UA™'b (see

equation (31))). Both were sampled in a regular 40 x 40 grid in [—0.1, 0.1] x [—0.1,0.1].
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.5 Figures 4,5, and 6

Starting with the ImageNet pre-trained ResNet-18 from Torchvision Paszke et al.[/(2017),
we resumed training for 5 epochs with the hyperparameters used at the end of training,
shown in tablg3] The top 30 Hessian eigenvectors were computed as described in ap-
pendix using 10 subspace iterations. During training, we tracked the projection of
the weights and velocities onto eigenvectors ¢; and gsg.

For Figure ] we show the projection of the position trajectory onto eigenvectors ¢
and g0 in 2D in black. The background for the left and center panels was computed
taking the ImageNet pre-trained ResNet-18 from Torchvision |Paszke et al.| (2017) and
perturbing its weights in the ¢; and ¢3¢ directions in a region close to the projected
trajectory. The training and test loss were computed for a grid of 20 x 20 perturbed

models. The background for the right panel was computed according to equation (15

Model

Dataset Opt. | Epochs | Batchsize S | LR 7 | Mom. § | WD )\

ResNet-18 | ImageNet | SGDM 5 256 1074 0.9 1074

Table 3: Figures 4,5,6 experiments training hyperparameters.

.6 Figure 7

We resumed training for an ImageNet pre-trained ResNet-18 from Torchvision Paszke
et al| (2017) for 2 epochs, using the sweeps of hyperparameters shown in table ] We
indicate a sweep in a particular hyperparameter by [A, B], which denotes 20 evenly
spaced numbers between A and B, inclusive.

We kept track of the norms of the local and global displacement, ||d||3 and ||A||3,
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every step in the training process. The value for ||d;||% at the end of the two epochs is
shown in the top row of the figure. We fitted power law of the form ak to the || A3
trajectories for each model on the full trajectories. The fitted exponent c for each model

is plotted in the bottom row of the figure.

Model | Dataset Opt. | Epochs | Batch size S LRy Mom. 5 | WD )\
ResNet-18 | ImageNet | SGDM 2 [32, 1024] 1074 0.9 10~4
ResNet-18 | ImageNet | SGDM 2 256 [1073,107°] 0.9 10~
ResNet-18 | ImageNet | SGDM 2 256 10~ [0.8,0.99] | 10~¢

Table 4: Figure 7 experiments training hyperparameters.

I.7 Increasing rate of anomalous diffusion

Upon further experimentation with the fitting procedure for the rate of anomalous diffu-
sion explained in Figure[I| we observed an interesting phenomenon. The fitted exponent
c for the power law relationship ||Ax||3 oc k¢ increases as a function of the length of the
trajectory we fit to. As can be seen in Figure [0] c increases at a diminishing rate with
the length of the trajectory. This could be indicative of ||A||3 being governed by a sum

of power laws where the leading term becomes dominant for longer trajectories.
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Figure 9: The fitted rate of anomalous diffusion increases with the length of tra-
jectory fitted. The left panel shows the fitted power law on training trajectories of
increasing length from the pre-trained ResNet-18 model. The right panel shows the

fitted exponent c as a function of the length of the trajectory.
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