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ABSTRACT

We address a biophysical network dynamical model to study how the modulation of dopamine (DA)
activity and related N-methyl-d-aspartate (NMDA) glutamate receptor activity as well as the emerg-
ing Pre-Frontal Cortex (PFC) functional connectivity network (FCN) affect inhibitory cognitive func-
tion in schizophrenia in an antisaccade task. The values of the model parameters and the topology of
the PFC-FCN were estimated by minimizing the differences between simulations and the observed
distributions of reaction times (RT) during the performance of the antisaccade task in 30 patients
with schizophrenia and 30 healthy controls. We show that the proposed model approximates remark-
ably well the predicted prefrontal cortical DA hypo-activity and the related NMDA receptor hypo-
function as well as the FCN dysconnection pattern that are considered as the major etio-pathological
hypotheses to explain cognitive deficits in schizophrenia.
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1 Introduction

Despite major advancements in contemporary neuroscience research, the mechanisms that underpin the pathophysi-
ology of major psychiatric disorders such as schizophrenia remain elusive. A major challenge revolves around the
development of an integrated framework, which can bridge the scales where the questions are asked and the answers
are required: the microscopic level (molecular genetics, neurophysiology and neuropharmacology of the neuron) and
the macroscopic level where one observes and measures changes in the behavioral and cognitive functions combined
with alterations in the neurophysiology and anatomical-functional imaging of the whole brain [1, 2, 3, 4, 5, 6, 7].
Between these two scales, it extends the mesoscopic scale, where one attempts to describe the activation and com-
munication of specific neuronal networks located in different brain areas. The coordinated activity of these networks
gives rise to emerging/macroscopically-experimentally observed behavior and corresponding global brain activation
patterns. The mesoscopic level of description has been the focus of many studies on the electrophysiology of rodents
and primates using single neuron, and more recently multi-neuron recording techniques, combined with histology and
more recently optogenetics [8, 9].

One way to shed light on the mesoscopic organization and functionality is through the use of detailed biophysical
neuronal network models. In general, the biophysical modelling approach is described by the following steps (see
Fig. 1): a) identification of a specific behavioral/cognitive function that is deviant in schizophrenia, b) construction of
a detailed biophysical neuronal model based on the knowledge acquired from detailed experiments and/or from ani-
mal studies including the identification of the neuronal networks at specific brain areas that govern the corresponding
behavioral/cognitive function, c) use of the biophysical network model to study structural and functional connectiv-
ity changes as predicted by existing neuropharmacological and sub-neuronal function hypotheses, d) test how these
changes have an impact on the predicted changes in the cognitive function, and finally, e) validation of the results
of the neuronal network model using experimental data to test whether the presence of the predicted changes of the
network model result in the same cognitive/behavioral deviance as observed e.g. in schizophrenia.

At the microscopic level, the dopamine hypothesis is a prominent theoretical framework that relates the mechanism
of the antispychotic medications to psychopathology in schizophrenia [2, 10, 11]. The hypothesis suggests that hyper-
dopaminergia or hyperactivity at D2-dopamine receptors in subcortical limbic system structures leads to the appear-
ance of positive symptoms of the disorder (delusions, hallucinations) and that the hypo-dopaminergia or hypoactivity
of D1-dopamine receptors in the prefrontal cortex leads to the appearance of negative symptoms and cognitive dysfunc-
tions [10, 11]. Another prominent hypothesis, the glutamate hypothesis is linked with the functional modulation of
N-methyl-D-aspartate (NMDA) receptors [3, 2, 12, 13, 14]. NMDA receptors which are located in cortical pyramidal
neurons are activated by glutamate, the main excitatory neurotransmitter in the mammalian brain. Activation of pyra-
midal neurons in the deep cortical layer results in the activation of GABAergic inhibitory interneurons in the cortex
forming a local functional network [12, 2, 14]. The glutamate hypothesis states that a hypoactivity at NMDA receptors
results in an imbalance of this excitation-inhibition network. Substances that are NMDA antagonists, such as phen-
cyclidine (PCP) and ketamine can produce both positive symptoms and cognitive dysfunctions in healthy individuals
that resemble schizophrenia, as well as worsening of such symptoms in schizophrenic patients [15, 14]. Furthermore,
postmortem studies in patients have shown significant changes in NMDA receptor protein expression in the prefrontal
cortex [14, 16].

Remarkably, these two phenomenological independent hypotheses might share the same pathophysiological pathway
in the prefrontal cortex. The D1 receptor signaling in cortical neurons is regulated by the action of NMDA receptors
and vice versa [17, 18, 10]. Activation of D1 receptors in the prefrontal cortical pyramidal neurons by the agonist
SKF81297 lead to an increase of the steady-state NMDA evoked current [18] and this effect is canceled by incubation

of neurons in [Ca2+] free medium. Inversely, activation of NMDA receptors by glutamate results in the recruitment
of D1 receptors in cortical neurons while they don’t have any effect on the distribution of D2 receptors [17]. The
dysconnection hypothesis describes the above synaptic complex: it suggests that psychosis in terms of aberrant neu-
romodulation of synaptic efficacy mediates the influence of intrinsic and extrinsic (long-range) connectivity [4]. It
suggests that the key pathophysiology lies in the interactions between NMDA receptor functions, the modulatory ef-
fect of neurotransmittion and the mediated changes in synaptic efficacy. The NMDAR-mediated plasticity affects the
functionality at the level of neuronal circuits which in turn leads to an abnormal functional integration (dysconnection)
of cognitive functions among brain regions in schizophrenia.

Here, the cognitive function that we study is the inhibition of the response in healthy controls and patients with
schizophrenia while performing an antisaccade task. In the particular task, subjects are instructed to look at the
opposite direction of a visually presented stimulus, thus exerting inhibitory control over the natural tendency to look
towards the visual stimulus [19]. There is a large body of literature that confirms a deficit in this task in patients with
schizophrenia compared to healthy controls [20]. More specifically, it has been reported that patients produce more
erroneous responses towards the visual target than healthy controls while the response latency for correct antisaccades
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for these patients is longer and more variable than that observed for healthy controls [21, 20]. A large body of animal
and human studies has confirmed the critical role of the prefrontal cortical areas such as the frontal eye field, the
supplementary eye field and especially the dorsolateral prefrontal cortex in the performance of the antisaccade task
[22, 23, 24]. There is also evidence that deficits in the performance of the antisaccade task in schizophrenia may
be related with hypo-activity in specific areas of the prefrontal cortex that are activated during this task such as the
dorsolateral prefrontal cortex [22, 25, 20], (see also Fig. 1).

Here, building up on previous work [26, 27, 28, 29], we attempt to bridge the microscopic and macroscopic levels
by addressing a multiscale neuronal network model of two brain regions, namely the prefrontal cortex (PFC) and
the superior colliculus (SC) for the simulation of the antisaccade task. The model incorporates competing neuronal
activity at the intermediate layer of the SC that is driven both by a planned input (the antisaccade command) and a
reactive input (the erroneous prosaccade command). The output of the model are the reaction time distributions for the
correct antisaccades and erroneous prosaccades, as well as the percentage of the error prosaccades. The PFC activity
is approximated by leaky spiking integrate and fire pyramidal neuronal dynamics as described in [26], while the
connectivity of the PFC neurons is allowed to vary from a ring-like network to a completely random topology. Unlike
previous modeling attempts [27, 28, 30], we did not assume any a-priori knowledge of the biophysical parameter values
and the PFC neuronal connectivity structure; these are estimated in a strict numerical way, by “wrapping" around the
detailed network model a numerical optimization structure, namely the Levenberg-Marquardt algorithm [31] to fit
the experimental behavioral data. Then, we used the calibrated model to bridge microscopic and macroscopic scales,
namely to study how changes in the dopamine levels acting on D1 receptors and the related hypo-activity of NMDA
receptors on simulated prefrontal cortical neurons (microscopic level) give rise to antisaccade performance differences
in patients with schizophrenia vs. healthy controls. In addition, the fact that the detailed connectivity of the biophysical
neuronal network model of the PFC was also allowed to vary, gave us the opportunity to (qualitatively) study how
changes at the microscopic level can give rise to changes at the mesoscopic level (namely how the topology of the
specific network changes) that in turn give rise to macroscopic changes at the experimentally observed behavioral
performance. Our hypothesis is that decreased DA levels acting on D1 receptors associated with hypofunction of
NMDA receptors in the PFC would predict antisaccade performance differences as observed in schizophrenia, namely
a large increase in the error rate as well as an increase in the mean and variance of the reaction times for correct
antisaccades. Furthermore, in accordance to the dysconnection hypothesis, we predicted that the deviances in the
microscopic level would mediate the macroscopic effects via a change at the mesoscopic level, namely a change in the
functional connectivity of the underlying neuronal network.

2 Material and Methods

The Prefrontal Cortex network model

We build up on a model proposed in [26] using spiking integrate and fire neurons whose dynamics are governed by the
current balance equation:

C
dVi

dt
= −ILEAK − IAHP − IADP − INMDA − IGABA + IINJ, (1)

where C is the membrane capacity, Vi is the membrane potential of the i−th neuron, ILEAK IINJ, IAHP and IADP are the
leak, injected, after hyper polarizing and depolarizing currents respectively; INMDA, IGABA correspond to the excitatory
and inhibitory synaptic currents, respectively.
If Vi > Vthres, a spike is being fired and the potential returns to Vi = ELEAK. The leak current is given by:

ILEAK = gLEAK(Vi − ELEAK), (2)

where gLEAK is the corresponding conductance. The after hyperpolarizing current is given by:

IAHP = gAHPe
−(t−tsp)/τAHP(Vi − EAHP), (3)

where tsp is the time of the last spiking and τAHP reflects the decay time scale of the current; gAHP is the conductance
and EAHP is the reverse potential.

The after depolarizing current, IADP is due to the [Ca+2]i influx in pyramidal neurons and is modeled according to the
following equations [26]:











IADP = gADPmi(Vi − EADP)
dmi

dt = (m∞−mi)
τADP

[Ca+2] = ACa

∑

tsp
e−(t−tsp)/toff − e−(t−tsp)/ton ,

(4)

3



arXiv Template A PREPRINT

Microscopic
Molecular genetics

Neuropharmacology

Hypodopaminergia, D1 
hypo-activation of  PFC 

neurons

Hypofunction of NMDA 
receptors at PFC neurons

Mesoscopic
Neurophysiology of single 

neurons

Biophysical Neural 
Networks

Random connectivity 
pattern of the PFC neuronal 

network

Macroscopic

Behavioral Studies, Human 
Neurophysiology Functional 

Neuro-imaging

Increased antisaccade error 
rate, Increased mean and 
variance of antisaccade 

reaction time

Antisaccade
Error

Prosaccade

Dopaminergic Neuron PFC Antisaccade-Task

Figure 1: Schematic of the Experiment and different levels of inquiry ranging from the microscopic level: molecular
genetics, neurophysiology and neuropharmacology of the neuron, to the mesoscopic level: activation and communica-
tion of specific networks of connected neurons located in different areas of the brain, for example of the PFC network
(green triangles and red elipses are for pyramidal excitatory neurons and interneurons respectively), and finally to
the macroscopic level: changes in the behavior and cognitive functions combined with changes in the neurophysiol-
ogy and anatomical-functional imaging of the whole brain. Behavioral experiment: antisaccade task. Starting with a
fixated cue centered on a screen, a peripheral stimulus (S) appears, the subject is instructed to look at the opposite di-
rection (antisaccade) suppressing the saccadic motion (error prosaccade) exerting an inhibitory control over the natural
tendency to look towards the visual stimulus.

where m is the gating activation variable related to [Ca+2] influx, as:

m∞ = (1 + exp(γ(θ − [Ca+2]i))
−1. (5)

ton, toff are constant time scales marking the onset and offset of the [Ca+2] influx. EADP is the reverse potential, gADP

is the conductance. The parameters γ and θ control the sharpness of the equilibrium function m∞, while ACa controls
the calcium concentration resulting from the spike sequence [26]. In our model, the neurons are connected through a
Watts and Strogatz (WS) small-world topology [32, 33, 34]. The network is reflected on the synaptic currents defined
by the activation variable s which for each single neuron is given by [35, 36, 37]:

dsi

dt
= α(1 − s)H(Vi − θ0)− βsi, (6)

where H(V ) is the step function.
If Vi < θ0 =⇒ H(Vi − θ0) = 0 and the synaptic equation takes the form:

dsi

dt
= −βsi ⇒ si = ce−βt ⇒ s → 0, t → +∞. (7)

Hence, the synapse turns off with β as time scale.
Instead, if Vi > θ0 =⇒ H(Vi − θ0) = 1 and the synaptic equation takes the form:

dsi

dt
= α (1− si)− βsi. (8)

The above has the solution

si(t) = c
e−(α+β)t

α+ β
+

α

α+ β
. (9)
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Figure 2: Simulation of neurons in PFC and SC. (a) Membrane potentials for two neurons in the PFC network. One
of these neurons fires with higher frequency (black line). (b) The corresponding linear rising phase (see sec. 2) for
the previous PFC neurons. A neuron fires with slightly higher frequency (black line) giving a bigger slope in the
linear frequency-time approximation. (c) Firing rates in SC of buildup and burst neurons from a simulation run of the
antisaccade task. Buildup neurons (black line and blue lines) encoding reactive and planned saccade tasks. When the
activity of buildup neuron crosses a threshold (400HZ red dash line) an erroneous prosaccade (light green) is initiated
followed by a correct saccade.

The above expression implies that synaptic jumps are given by α
α+β .

Usually, fast synapses have α, β = O (1), while for slow synapses α = O (1) and β = O (ǫ) meaning that fast
synapses activate and deactivate on fast time scales, while the slow synapses activate on fast and deactivate on slow
time scales [35, 36]. The form of the excitatory and inhibitory synaptic currents are given, respectively, by:

INMDA = gNMDA(Vi − ENMDA)
∑

sj , (10)

for ENMDA = 0, and

IGABA = gGABA(Vi − EGABA)
∑

sj, (11)

for EGABA = −80. The summation is taken over the presynaptic neurons.
Excitatory currents result from pyramidal neurons, while inhibitory currents result from inter-neurons. Out of the N
neurons, 3N

4 are pyramidal neurons, while the rest are inter-neurons. Fig.2(a) shows the dynamics of two neurons in
the PFC network. The neurons although start with nearby initial conditions they exhibit slightly different firing rates
(see Fig.2(b)).

The Superior Colliculus (Tectum) model

The neuronal model is a classic on-center off-surround leaky competitive integrator [38, 39, 40, 41]. The internal state
which represents the firing rate xi(t) of the i−th node is governed by the following differential equation:

τ
dxi

dt
= −xi +

∑

j

Ajwij + Ip + Ir − u0 + In, (12)

where w = (wij), i, j = 1, 2, ...N is the synaptic efficacy from neuron i to neuron j, A is the activity function of node
j, Ir and Ip are the reactive and planned inputs, respectively, that the Tectum receives from other cortical areas, u0 is
a global inhibition term, and In is the background noise.
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The value of u0 is set to zero for the buildup neurons and to a large value for the burst neurons as burst neurons are
shown to have a discharge activity only after the activity of the buildup neurons reaches a certain threshold [42]. The
activity of the burst neurons is restored back to zero only when these neurons surpass an activity level equal to 80% of
their theoretical maximum discharge rate [38, 27]. The activity functionAj(t) of a neuron j, j = 1, 2, ..N representing
the average membrane potential is given by a sigmoid function

Ai(t) =
1

1 + e−bxi+θ
, (13)

where b is the steepness and θ is the offset of the sigmoid function. The interaction matrix w allows for lateral interac-
tions between neurons in the same colliculus and between neurons located in opposite colliculi sites [43, 44]; it depends
only on the spatial distance and it is positive (excitatory) i.e. wij > 0 for short distances, and negative(inhibitory) i.e.
wij < 0 for long distancing neurons. Thus, the interaction matrix is described by

wij = a
e−(j−i)2

2σ2
a

− b
e−(j−i)2

2σ2
b

− c, (14)

where a, b, and c are free parameters and σa and σb are spatial parameters.

Two competing input signals are integrated in the Tectum: a planned and a reactive. In the model, the origins of these
two input signals differ: the reactive signal is considered to originate from the Post Parietal Cortex (PPC), whereas
the planned signal from the frontal executive centers of the brain (the PFC). The reactive input signal is governed by a
simple differential equation reading:







dIr
dt = A | sloper |, if t ≥ ton + tdelayr and Ir ≤ Imax

r
dIr
dt = −arA · Ir, if t ≥ ton + tdelayr and Ir > Imax

r
dIr
dt = −arA · Ir, else

(15)

ar are the integration strengths, Imax
r is a theoretical maximum allowed activity for the reactive input, ton is a constant

indicating the onset of the incoming signal Ir. A is the strength of the rising phase and sloper represents the linear
rising phase of the reactive input and follows a bell like probability distribution function (normal with mean value
x = 5.27 and standard deviation std = 2) [27, 28]. The reactive input reflects the sensory information reaching the
Tectum without extensive information processing and it is taken to follow closely the onset of a visual stimulus in the
periphery with a delay, tdelayr .

The planned input signal has also a linear rising phase [45] before it reaches its theoretical maximum value and is
governed by:







Ip = A | slopep |, if t ≥ ton + tdelayp and Ip ≤ Imax
p

Ip = A · Imax
p , if t ≥ ton + tdelayp and Ir > Imax

p

Ip = 0, else.

(16)

Imax
p is the theoretical maximum activity of the planned input, A is the strength of the planned input and slopep is

the slope of the planned input rising phase and it is extracted from the neural integration (time evolution) of the PFC
according to the following way: for each PFC neuron, we perform a linear approximation of the corresponding firing
rate (which is called linear rising phase and it is calculated in the first 70 msec). The mean value of these slopes
defines slopep. The planned input reflects the processing of the planned antisaccade by higher processing centers such
as the frontal eye fields (FEF), the supplementary eye fields (SEF), and the dorsolateral prefrontal cortex (DLPFC) to
determine the behavioral response that would be appropriate for the given task instruction and it is considered to take
longer, i.e. tdelayp > tdelayr for processing than the reactive input due to additional cortical processing.

The strength of both planned and reactive signals is given by:

A(i, j) = A0e
−(j−i)2

2σ2
A , (17)

where i and j are the indices of nodes and σA is the standard deviation of the Gaussian. The width of the Gaussian
function was derived from the shape of movement fields of saccade related neurons in the monkey SC [42, 38]. In
the simulations, the threshold level (horizontal line at about 400 Hz) was appropriately adjusted, so that both buildup
neurons encoding the reactive and planned inputs cross the threshold and an erroneous prosaccade (error burst) was
initiated followed by a correct saccade (correct burst). We considered a correct antisaccade response, if the movement
of the eyes went in the opposite direction of the stimulus; all other cases were considered to be error prosaccades.
Saccade reaction times were estimated to be the time interval from the onset of peripheral stimulus until the time the
activity of the burst neurons deviated from zero plus 20 ms (approximate time required for burst neuron signal to reach
the eye muscles) [27, 28]. Fig.2(c) shows the firing rates in SC of two buildup and two burst neurons from a simulation
run of the antisaccade task.
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(a) (b) (c)

Figure 3: Healthy controls. Distributions of reaction times (RT) during the experiment (see sec. 3). (a) Distribution of
RT which includes correct antisaccades and wrong prosaccades; the main statistical moments are found to be: mean
value t̄RT = 253, standard deviation s = 60.83. (b) Distribution of antisccade only RT: mean value t̄RT = 270.84
and standard deviation s = 55.53. (c) Distribution of error prosaccases RT: mean value t̄RT = 208.94 and standard
deviation s = 42.59.

3 Experimental Data Analysis

Experimental Data

The experimental data used in this study are derived from a previous study of the group [46]. Briefly the antisaccade
performance data of 30 male patients (age span 18-30 years) with DSM-IV schizophrenia formed the patient group.
Patients were evaluated at the Psychosis Unit of the Psychiatry Department of the National and Kapodistrian University
of Athens at Eginition Hospital and the diagnosis of schizophrenia was confirmed by a trained psychiatrist with the
use of the Mini International Neuropyschiatric Interview (M.I.N.I., version 5.0.0., DSM IV) [47]. Exclusion criteria
consisted of the following: neurological disorder (epilepsy, multiple sclerosis etc), mental retardation and drug abuse
within the last year before evaluation. All patient participants were receiving antipsychotic medication and were in a
stable phase of the disorder during testing.

The control sample was derived from the ASPIS (Athens Study for Psychosis proneness and Incidence of Schizophre-
nia) data base [48, 49, 50]. For the purposes of ASPIS oculomotor task data (smooth eye-pursuit, saccade, antisaccade,
visual fixation) were collected from a population of 2120 conscripts of the Greek Air Force aged 18-25 years. Valid
antisaccade data were obtained from 2006 individuals.

Oculomotor tasks were performed in a set up that has been described in detail in our previous studies [48, 49, 50]. The
antisaccade task was preceded by a calibration procedure, with saccades at 5 and 10 degrees to the left and to the right
of a central fixation point. Each antisaccade trial started with the appearance of a central fixation stimulus (white cross
0.3 x 0.3 degrees of visual angle). After a variable period of 1-2 sec, the central stimulus disappeared and a peripheral
stimulus (same white cross) appeared randomly at one of the 9 prescribed distances (2-10 degrees at 1 degree intervals)
either to the left or to the right of the central fixation stimulus. The subjects were instructed to make an eye movement
to the opposite direction from that of the peripheral stimulus as quickly as possible. Each subject performed 90 trials.

An interactive PC program (created using the TestPoint CEC) was used for the detection and measurement of saccades
from the eye movement record [48, 49, 50]. We excluded trials with artifacts (blinks, etc.) in the period extending
from 100ms before the appearance of the peripheral target to the end of the first saccade as well as trials for which
an eye movement occurred within the 100-ms period before the appearance of the peripheral target. In addition, in
order to avoid including predictive movements or too slow responses, we excluded trials with reaction times that were
not within the window of 80-600ms. Using the above criteria, the minimum number of valid trials retained for each
subject was 30 and the maximum was 90.
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(a) (b) (c)

Figure 4: Distributions of reactions times (RT) of schizophrenic patients during the experiment (see sec. 3). (a)
Distribution of RT which includes correct antisaccades and wrong prosaccades: mean value t̄RT = 265, standard
deviation s = 81. (b) Distribution of antisccade only RT: t̄RT = 304, standard deviation s = 77. (c) Distribution of
error prosaccases RT: mean value t̄RT = 215, standard deviation s = 60.

Data Analysis

The error rate was computed for all patients and healthy controls as the percentage of erroneous prosaccades towards
the peripheral target over all valid trials. The mean value and standard deviation for each group was then computed
and compared with the error rate of the simulation data using the t-test at a 0.05 level of significance.

The reaction times for valid trials for each subject were used to derive the cumulative reaction time distribution for
each subject. Then, the reaction times for correct antisaccades and erroneous prosaccades were processed separately
for each subject to derive the corresponding cumulative reaction time (RT) distributions. For all RT distributions, we
also calculated the percentiles (from 5% to 95% with a step of 5%). The percentiles were then averaged across the
group to give the average group percentiles that are plotted in the average cumulative distribution. Ratcliff [51] showed
that this average distribution retains the basic shape characteristics of the individual distributions. Thus, we created
experimental averages of the RT distributions for (a) all RT, (b) correct antisaccade RT only, and (c) error prosaccade
RT. Fig. 3 depicts the resulting experimental RT distributions for the healthy controls, while Fig. 4 illustrates the RT
distributions for the patients. The correct antisaccade cumulative RT distributions for each group were then compared
with the corresponding average cumulative RT distributions derived from the model simulation using the Kolmogoroff-
Smirnov test at a 0.05 significance level.

Numerical Optimization

Our PFC neuronal network consisted of N1 = 75 pyramidal neurons and N2 = 25 inter-neurons. The SC neuronal
network had N3 = 31 neurons (15 buildup neurons, 15 burst neurons and 1 fixation neuron). Ensembles of the PFC
network topology were constructed using the WS algorithm [32, 34, 33], thus allowing the connectivity to vary between
ring and random regular structures; the connectivity topology is adjusted by the switching probability p. In line with
biological theories, variations in the receptors functionality (DA, NMDA) as well as alterations in the PFC network
topology are reflected in the conductances of the synaptic currents INMDA, IGABA as well as in the ionic currents e.g.
calcium-activated potassium IAHP [52]. Here, we investigated these alterations in the conductances of currents INMDA

and IAHP by extracting the conductance gAHP from a normal distribution with mean value r1 and standard deviation r2,
while the gNMDA was our third parameter gNMDA = r3 to be tuned.

For each set of the model parameters r = (r1, r2, r3, p), the dynamic model produces a different PFC activity (defining
a distribution of trials), thus resulting to different values of the slopep. The resulting distributed values of slopep over
all trials are then fed into the SC model in order to produce the reaction times for correct antisaccades as well error
prosaccades RT. The number of simulation trials was set to N = 100.
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(a) (b) (c)

Figure 5: The computed distributions of reactions times (RT) for healthy controls (brown color), using the value
parameters estimated by numerical optimization. The experimental distributions are also depicted for comparison
purposes. (a) Distribution of all RT (correct antisaccades and error prosaccades): mean value t̄RT = 249.38, standard
deviation s = 57.14 (t̄RT = 253.6 and s = 60 are the corresponding experimental values). (b) Distribution of RT only
for the correct antisaccades: mean value t̄RT = 269.48, standard deviation s = 51.72 (t̄RT = 270 and s = 55 are
the corresponding experimental values).(c) Distribution of error prosaccades RT: mean value t̄RT = 207.41, standard
deviation s = 42.76 (t̄RT = 208.94 and s = 42.59 are the corresponding experimental values).

The values of the model parameters ri, i = 1, 2, 3, as well as the switching probability p for the construction of the
network topology were estimated numerically by minimizing the residual of the objective function defined as the norm
difference of the distribution functions f(·) of the RT (both antsaccade and error prosaccade) between experimental
and those resulting from simulations, i.e.:

argmin
r∈R

4
+

obj(r) :=
{

r : min||f(xi, r)model − f(xi)Data||, r ∈ R
4
+

}

(18)

where the norm is the Euclidean distance between the n points of approximate and experimental RT distributions func-
tions. The procedure was implemented separately in the two groups of healthy controls and patients. The minimiza-
tion problem was solved using the matlab implementation of the Levenberg-Marquardt algorithm (function nlqnonlin
[53])[31]. The step size tolerance was set to tol(X) = 0.001 and the function tolerance was set to tolF=0.01. The
maximum number of iterations was set to 100.

Results

Healthy controls

The numerical optimization for the healthy controls resulted to the following values of the model parameters:
r1 = 2.135 (95% CI: 1.986, 2.283), r2 = 0.631 (95% CI: 0.591, 0.672) (gAHP) and r3 = 1.33 (95% CI: 1.197,
1.47), (gNMDA), while for the network’s topology, the switching probability was found to be p = 0.01(95%CI :
0.007, 0.0145), see also tab. 1. The residual of the objective function was 0.0022. For the optimal parameter val-
ues, the model predicted an error rate of 34% for the control group which was not significantly different from the
experimentally observed one at a 0.05 significance level. Fig.5 depicts the distribution function of reaction times for
the experimentally observed and those derived by simulations. In order to compare between the experimental and
computational RT distributions, we performed a Kolomogorov-Smirnov test. The statistical test showed that the null
Hypothesis that the RT data come from the same population cannot be rejected at a 0.05 significance level (p-value:
0.77).

Patients with Schizophrenia

The resulting optimal values for the group of patients were: r1 = 2.45(95%CI : 2.328, 2.58), r2 = 0.885(95%CI :
0.816, 0.954), r3 = 0.857(95%CI : 0.805, 1.1), p = 0.02(95%CI : 0.008, 0.04) for the switching probability. The
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Parameter Estimated values 95% Confidence In-
tervals

1. r1 2.135 r1 ∈ (2.23, 2.33)
2. r2 0.631 r2 ∈ (0.72, 0.79)
3. r3 1.33 r3 ∈ (1.197, 1.47)
4. p 0.0101 p ∈ (0.007, 0.0145)

Table 1: Estimated values of model parameters along with their 95% confidence intervals for the healthy controls.

(a) (b) (c)

Figure 6: Computed distributions of reactions times (RT) for patients as derived using the parameter values estimated
by numerical optimization (brown color). The experimental distributions are also depicted for comparison purposes
(blue color). (a) Distribution of all RT (correct antisaccades and error prosaccades). Error prosaccades: mean value
t̄RT = 266, standard deviation s = 73.9 (the corresponding experimental statistical moments are t̄RT = 266, s = 81).
(b) Distribution of antisaccade only RT: mean values t̄RT = 296.87, standard deviation s = 70 (the corresponding
experimental statistical moments are: t̄RT = 304, s = 77). (c) Distribution of error prosaccades RT: mean value
t̄RT = 212.63, standard deviation s = 52.

residual of the objective function was 0.003. With these parameter values, the model predicted an error rate of 44% for
the group of patients, which was not significantly different from the experimentally observed one. Fig.6 depicts the
distribution of RT antisaccades for the group of patients. Experimental and model-derived RT are in a good agreement.
By applying the Kolmogorov Smirnov test, it results that the H0 hypothesis that the two sets of data come from the
same distribution cannot be rejected at the 0.05 significance level (p-value: 0.543).

Figs. 7 and 8 depict the mean and 95% confidence interval estimations of the RT. Fig. 9 shows a schematic of two
characteristic PFC neural networks for the healthy controls (Fig.9(a)) and for the group of patients (Fig.9 (b)); in the
second case the resulting PFC network is found to be more random with an increased number of random remote con-
nections. It has been suggested that such random structures act as communication-integration disruptors [1, 54]. In
concurrent, Fig.9(c) depicts a schematic of a local circuit between a pyramidal excitatory PFC neuron and a GABAer-
gic interneuron (microscopic scale). The optimization process manifested here a mechanism by which the dopamine
D1 results to a hypofunction of NMDA neurons (lower gNMDA in patient case) disrupting this way the functionality
of NMDA-GABAergic dipoles. In the higher level of the neural PFC network (mesoscopic scale) (see Fig.9(d)), the
abnormal behavior of the pyramidal-interneuron circuit together with the network disruption leads to an ineffective
behaviour performance at the macroscopic level.

Discussion

Numerical simulations of the proposed PFC-SC biophysical-based network model that was developed to assess the
antisaccade performance in healthy controls and patients with schizophrenia predicted the hypothesis about the effects
of the changes in the dopamine levels, NMDA functionality and simultaneously the alteration of the PFC network
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(a) (b) (c)

Figure 7: Healthy controls. The computed distributions of reaction times (solid line); the shaded area depicts the 95%
confidence intervals. (a) Distribution of all reaction times (RT) (correct antisaccades and wrong prosaccades). (b)
Distribution of antisaccades only RT. (c) Distribution of error prosaccades RT.

(a) (b) (c)

Figure 8: Schizophrenic patients. Computed distributions of reaction times (solid line); the shaded area depicts the
95% confidence intervals. (a) Distribution of all reaction times (RT) (correct antisaccades and wrong prosaccades).
(b) Distribution of antisccade only RT. (c) Distribution of error prosaccades RT.

topology. In particular, decreased DA levels in the PFC, combined with the NMDA hypofunction and the connectivity
topology alteration predicted all basic antisaccade performance differences as have been observed experimentally in
patients with schizophrenia (see introduction), namely a large increase in the error rate as well as an increase in the
mean and variance of the reaction times for the correct antisaccades. Here, it is important to stress that the numerical
optimization for the calibration of the model parameters was performed based on the total experimental distribution
which contains both antisaccade and error prosaccade RT. Simulation results were in a very good agreement with the
experimentally observed ones (both antisaccades and error prosaccades), thus providing evidence that the proposed
model is able to capture the essential aspects of the observed data.

The estimated values of the model parameters for the group of patients suggest a deviant in the PFC activity. More
specifically, the conductance of the inhibitory current IAHP current was found higher in the group of patients (2.456 in
patients vs. 2.135 in healthy controls) suggesting an inhibition on the PFC neurons. The increment of IAHP decreases
the firing rates of the PFC neurons which in turn results to a lower value of the slopep (see Fig. 2(b)). This suggests that
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Parameter Estimated value 95% Confidence In-
tervals

1. r1 2.456 r1 ∈ (2.328, 2.584)
2. r2 0.885 r2 ∈ (0.816, 0.954)
3. r3 0.957 r3 ∈ (0.805, 1.11)
4. p 0.02 p ∈ (0.0075, 0.04)

Table 2: Estimated values of model parameters along with their 95% confidence intervals for the group of patients
with schizophrenia.

(a) (b)

(c) (d)
D1 Hypoactivity

⇓
NMDA
Hypofunction

Figure 9: A schematic of the PFC neural network. (a) A low number of remote connections is characteristic of
the topology for the group of healthy controls. (b) A more random topology, i.e. an increased number of remote
connections, resulting from larger values of the switching probability in the Watts and Strogatz [32, 33] model is
characteristic for the group of schizophrenic patients. (c) A schematic of a disrupted circuit model in patients with
schizophrenia. The circuit consists of cortical pyramidal neurons (green) and GABAergic neurons. A D1 hypofunction
implies NMDA receptor hypofunction which results to a hypoactivity of the cortical pyramidal neurons. Due to
this, the communication between pyramidal and interneurons is disrupted. (d) A schematic of the PFC network; an
abnormal behavior of the pyramidal-interneuron circuit in conjunction with the network disruption (randomization)
leads to ineffective performance of the PFC which is linked to the SC network.

the buildup neurons trigger more slowly, i.e. they delay to reach the critical value that governs the RT, thus leading to
larger reaction times. This result is consistent with the dopamine hypo-activity hypothesis [55, 52, 56]. In [55], using
cell patch clamp recording in rat prefrontal neurons showed that the DA activation (under the D1 receptor) suppress
the IAHP current, thus leading to a higher spiking activity. Pezedrani et al.[56] also reports similar results regarding the
Hippocampus neurons.

The conductance of the excitatory synaptic current INMDA for the group of patients was found smaller with respect to
the one for the group of healthy control (0.957 in patients vs 1.33 in healthy controls), which is consistent with the
glutamate hypofunction theory. The reduction of the NMDA conductance weakens the current transmission, impairs
the neurons interactions, thus resulting to smaller firing rates of the PFC neurons. The decreased PFC activity weakens
the planned input to SC (see sec.2). As a consequence, the planned antisaccade processing that would be appropriate
for the given task instruction is defective and the SC produces longer and more variant reaction times. Furthermore,
the results of our study coincide with the disconnetivity hypothesis, that for the pathological case one would expect
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a disrupted neuronal-functional connectivity in the the PFC-SC network. In our model, the PFC was modeled by
leaky integrate-and-fire dynamics evolving on a small-world network structure. In the case of the healthy control
group, the value of the switching probability that determines the topology of the small-world network dictates a high
clustered (similar to a ring) structure. Instead, in the group of patients, the switching probability was higher: p ∼ 0.01
vs p ∼ 0.02 for the group of healthy-control dictating a connectivity that is closer to a random structure. In the
review article [57] (and the references therein), the authors report that under working memory tasks, schizophrenic
patients involve a sparser network of cortical regions resulting to a reduced cortical signal to noise ratio (which can be
interpreted as a loss of signal information). Disruptions in connectivity were also reported in auditory hallucinations,
compared with healthy controls and patients who had schizophrenia but not hallucinations [58, 59], suggesting that
the auditory hallucinations originate from altered connectivity of the same regions that process normal hearing and
speech [1]. Similar results have been reported by Rubinov et al. [60] who studied two groups (healthy controls and
patients with schizophrenia) with resting state EEG. The authors concluded that cognitive disturbances may be due to
the randomization of the underlying functional connectivity network. In Lo et al. [54] it is also reported significant
randomization of global network metrics for patients with schizophrenia. These conclusions are in line with our model
outcomes as changes in the network topology going from clustered and structured to more random ones result in a
worse cognitive performance in the antisaccade task.

Based one the above, our proposed model and numerical results may provide useful insights regarding the organiza-
tion of the connectome and its alteration, especially on the hypothesis of the “small-worldness" of key parts of the
sensorimotor system (in particular of the PFC) and the study of its topological characteristics. Even though, functional
neuroimaging studies have provided evidence of the small-world organization of the brain [33], the connectome and
its plasticity within and between areas of the cortex such as the PFC that possess a prominent role in the voluntary
control of movements including saccades and the midbrain such as the SC is still not well understood [61]. Several
neuroimaging studies that have focused toward this direction have revealed that there are certain differences in the
functional connectivity of the PFC between healthy controls and subjects suffering from severe mental disorders such
schizophrenia [62, 63, 64]. The outcomes of our model was in line with the main findings of these studies.

In conclusion, our PFC-SC biophysical network model for the approximation and assessment of the reaction times
of the antisaccade task showed that the combination of three factors, namely the DA and NMDA hypofunction and
the network alteration in the PFC explain the deficits in the antisaccade performance as observed experimentally in
patients with schizophrenia. Furthermore, the connectivity changes, as the disconnection hypothesis suggests in the
PFC connectome resemble (qualitatively) those observed in functional connectivity neuroimaging studies.

Another direction as to which the proposed model could be exploited in future studies is the investigation of the
so-called Stochastic Resonance mechanism [65, 66, 67], which is related to improved reaction performance in the
presence of a low level background noise within a certain interval. Future research could be also targeted on the study
of the potential effects of DA-D2 receptors on the neuronal responses of pyramidal neurons in the cortical modules
and subsequently on the behavioral data of the patient group. D2 receptors tend to have opposing effects relative to the
action of the D1 component, as far as the enhancement or inhibition of cortical currents is concerned [68]. In addition,
the extension of the model to include the cortico-striatal, the basal ganglia network constitutes another future direction.
Studies in neurological inhibitory control, suggest that inhibition is achieved via a fronto-basal-ganglia network, which
could intercept the Go process and thus decrease thalamocortical output [69, 70, 71]. The augmented model will be
used to simulate the control override and inhibition of the habitual response selection mechanism. [72, 73, 69].

Acknowledgements

C.S. acknowledges partial support by INdAM, through GNCS research projects. K.S. and J.S. thank the DFG for sup-
port through the Collaborative Research Center CRC 1270 (Deutsche Forschungsgemeinschaft, Grant/ Award Number:
SFB 1270/1–299150580).

References

[1] Higgins E.S. Do neural disconnects cause schizophrenia? Current Psychiatry, 6:90–96, 2007.

[2] T.D. Cannon. How schizophrenia develops: Cognitive and brain mechanisms underlying onset of psychosis.
Trends in Cognitive Sciences, 19(12):744–756, 2015.

[3] S.H. Fatemi and T.D. Folsom. The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophrenia
Bulletin, 35(3):528–548, 2009.

[4] K. Friston, H.R Brown, J. Siemerkus, and K.E. Stephan. The dysconnection hypothesis. Schiz. Res., 176:83–94,
2016.

13



arXiv Template A PREPRINT

[5] M. Kubicki, R. McCarley, C.-F. Westin, H.-J. Park, S. Maier, R. Kikinis, F.A. Jolesz, and M.E. Shenton. A review
of diffusion tensor imaging studies in schizophrenia. Journal of Psychiatric Research, 41(1-2):15–30, 2007.

[6] S. Ruiz, N. Birbaumer, and R. Sitaram. Abnormal neural connectivity in schizophrenia and fmri-brain-computer
interface as a potential therapeutic approach. Frontiers in Psychiatry, 4(MAR), 2013.

[7] S. Kelly, N. Jahanshad, A. Zalesky, P. Kochunov, et al. Widespread white matter microstructural differences in
schizophrenia across 4322 individuals: Results from the enigma schizophrenia dti working group. Molecular
Psychiatry, 23(5):1261–1269, 2018.

[8] J.H. Jennings, R.L. Ung, S.L. Resendez, A.M. Stamatakis, J.G. Taylor, J. Huang, K. Veleta, P.A. Kantak, M. Aita,
K. Shilling-Scrivo, C. Ramakrishnan, K. Deisseroth, S. Otte, and G.D. Stuber. Visualizing hypothalamic network
dynamics for appetitive and consummatory behaviors. Cell, 160(3):516–527, 2015.

[9] A.V. Kravitz, L.D. Tye, and A.C. Kreitzer. Distinct roles for direct and indirect pathway striatal neurons in
reinforcement. Nature Neuroscience, 15(6):816–818, 2012.

[10] O.D. Howes and S. Kapur. The dopamine hypothesis of schizophrenia: Version iii - the final common pathway.
Schizophrenia Bulletin, 35(3):549–562, 2009.

[11] R. Brisch, A. Saniotis, R. Wolf, H. Bielau, H.G. Bernstein, J. Steiner, B. Bogerts, K. Braun, Z. Jankowski,
M. Henneberg, and T. Gos. The role of dopamine in schizophrenia from a neurobiological and evolutionary
perspective: Old fashioned, but still in vogue. Frontiers in Psychiatry, 5(APR), 2014.

[12] D.A. Lewis and R.A. Sweet. Schizophrenia from a neural circuitry perspective: Advancing toward rational
pharmacological therapies. Journal of Clinical Investigation, 119(4):706–716, 2009.

[13] G. Gonzalez-Burgos and D.A. Lewis. Nmda receptor hypofunction, parvalbumin-positive neurons, and cortical
gamma oscillations in schizophrenia. Schizophrenia Bulletin, 38(5):950–957, 2012.

[14] Wen-Jun Gao and Melissa Snyder. Nmda hypofunction as a convergence point for progression and symptoms of
schizophrenia. Frontiers in Cellular Neuroscience, 7:31, 2013.

[15] A.C. Lahti, M.A. Weiler, T. Michaelidis, A. Parwani, and C.A. Tamminga. Effects of ketamine in normal and
schizophrenic volunteers. Neuropsychopharmacology, 25(4):455–467, 2001.

[16] Lars V Kristiansen, Ibone Huerta, Monica Beneyto, and James H Meador-Woodruff. Nmda receptors and
schizophrenia. Current Opinion in Pharmacology, 7(1):48 – 55, 2007.

[17] L. Scott, M.S. Kruse, H. Forssberg, H. Brismar, P. Greengard, and A. Aperia. Selective up-regulation of dopamine
d1 receptors in dendritic spines by nmda receptor activation. Proceedings of the National Academy of Sciences
of the United States of America, 99(3):1661–1664, 2002.

[18] G. Chen, P. Greengard, and Z. Yan. Potentiation of nmda receptor currents by dopamine d1 receptors in prefrontal
cortex. Proceedings of the National Academy of Sciences of the United States of America, 101(8):2596–2600,
2004.

[19] P.E. Hallett. Primary and secondary saccades to goals defined by instructions. Vision Research, 18(10):1279–
1296, 1978.

[20] G. Panagiotaropoulou, E. Thrapsanioti, E. Pappa, C. Grigoras, D. Mylonas, E. Karavasilis, G. Velonakis,
N. Kelekis, and N. Smyrnis. Hypo-activity of the dorsolateral prefrontal cortex relates to increased reaction
time variability in patients with schizophrenia. NeuroImage: Clinical, 23, 2019.

[21] D.C. Gooding and M.A. Basso. The tell-tale tasks: A review of saccadic research in psychiatric patient popula-
tions. Brain and Cognition, 68(3):371–390, 2008.

[22] D.P. Munoz and S. Everling. Look away: The anti-saccade task and the voluntary control of eye movement.
Nature Reviews Neuroscience, 5(3):218–228, 2004.

[23] Ch. Pierrot-Deseilligny, R.M. Müri, T. Nyffeler, and D. Milea. The role of the human dorsolateral prefrontal
cortex in ocular motor behavior. Annals of the New York Academy of Sciences, 1039:239–251, 2005.

[24] M.R.G. Brown, T. Vilis, and S. Everling. Frontoparietal activation with preparation for antisaccades. Journal of
Neurophysiology, 98(3):1751–1762, 2007.

[25] B.C. Coe and D.P. Munoz. Mechanisms of saccade suppression revealed in the anti-saccade task. Philosophical
Transactions of the Royal Society B: Biological Sciences, 372(1718), 2017.

[26] D. Durstewitz. Self-organizing neural integrator predicts interval times through climbing activity. Journal of
Neuroscience, 23(12):5342–5353, 2003.

[27] V. Cutsuridis, N. Smyrnis, I. Evdokimidis, and S. Perantonis. A neural model of decision-making by the superior
colicullus in an antisaccade task. Neural Networks, 20(6):690–704, 2007.

14



arXiv Template A PREPRINT

[28] V. Cutsuridis, I. Kahramanoglou, N. Smyrnis, I. Evdokimidis, and S. Perantonis. A biophysical neural accumu-
lator model of decision making in an antisaccade task. Neurocomputing, 70(7-9):1390–1402, 2007.

[29] I. Kahramanoglou, S. Perantonis, N. Smyrnis, I. Evdokimidis, and V. Cutsuridis. Modeling the effects of
dopamine on the antisaccade reaction times (asrt) of schizophrenia patients. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5164
LNCS(PART 2):290–299, 2008.

[30] V. Cutsuridis, V. Kumari, and U. Ettinger. Antisaccade performance in schizophrenia: A neural model of decision
making in the superior colliculus. Frontiers in Neuroscience, 8(8 FEB), 2014.

[31] H.P. Gavin. The levenberg-marquardt algorithm for nonlinear least squares curve-fitting problems, 2011.

[32] D.J. Watts and S.H. Strogatz. Collective dynamics of ’small-world’ networks. Nature, 393(6684):440–442, 1998.

[33] E. Bullmore and O. Sporns. Complex brain networks: Graph theoretical analysis of structural and functional
systems. Nature Reviews Neuroscience, 10(3):186–198, 2009.

[34] C.J. Stam and J.C. Reijneveld. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomedi-
cal Physics, 1, 2007.

[35] C.R. Laing and C.C. Chow. A spiking neuron model for binocular rivalry. Journal of Computational Neuro-
science, 12(1):39–53, 2002.

[36] B. Ermentrout and D. Terman. Neural networks as spatio-temporal pattern-forming systems. Springer, New
York, 2012.

[37] A. Compte, N. Brunel, P.S. Goldman-Rakic, and X.-J. Wang. Synaptic mechanisms and network dynamics
underlying spatial working memory in a cortical network model. Cerebral Cortex, 10(9):910–923, 2000.

[38] T.P. Trappenberg, M.C. Dorris, D.P. Munoz, and R.M. Klein. A model of saccade initiation based on the com-
petitive integration of exogenous and endogenous signals in the superior colliculus. Journal of Cognitive Neuro-
science, 13(2):256–271, 2001.

[39] J.G. Taylor. Neural ’bubble’ dynamics in two dimensions: Foundations. Biological Cybernetics, 80(6):393–409,
1999.

[40] K. Arai, E.L. Keller, and J.A. Edelman. Two-dimensional neural network model of the primate saccadic system.
Neural Networks, 7(6-7):1115–1135, 1994.

[41] Klaus Kopecz. Saccadic reaction times in gap/overlap paradigms: a model based on integration of intentional
and visual information on neural, dynamic fields. Vision Research, 35(20):2911–2925, 1995.

[42] D.P. Munoz and R.H. Wurtz. Saccade-related activity in monkey superior colliculus i. characteristics of burst
and buildup cells. Journal of Neurophysiology, 73(6):2313–2333, 1995.

[43] D.P. Munoz and P.J. Istvan. Lateral inhibitory interactions in the intermediate layers of the monkey superior
colliculus. Journal of Neurophysiology, 79(3):1193–1209, 1998.

[44] M.A. Meredith and A.S. Ramoa. Intrinsic circuitry of the superior colliculus: Pharmacophysiological identifica-
tion of horizontally oriented inhibitory interneurons. Journal of Neurophysiology, 79(3):1597–1602, 1998.

[45] B.A.J. Reddi and R.H.S. Carpenter. The influence of urgency on decision time. Nature Neuroscience, 3(8):827–
830, 2000.

[46] N. Smyrnis, T. Karantinos, I. Malogiannis, C. Theleritis, A. Mantas, N.C. Stefanis, J. Hatzimanolis, and
I. Evdokimidis. Larger variability of saccadic reaction times in schizophrenia patients. Psychiatry Research,
168(2):129–136, 2009.

[47] DV Sheehan, Y Lecrubier, K Harnett Sheehan, J Janavs, E Weiller, A Keskiner, J Schinka, E Knapp, MF Sheehan,
and GC Dunbar. The validity of the mini international neuropsychiatric interview (mini) according to the scid-p
and its reliability. European Psychiatry, 12(5):232–241, 1997.

[48] N. Smyrnis, I. Evdokimidis, N. Stefanis, T. Constantinidis, D. Avramopoulos, C. Theleritis, C. Paximadis, C. Ef-
stratiadis, G. Kastrinakis, and C. Stefanis. The antisaccade task in a sample of 2,006 young males: Ii. effects of
task parameters. Experimental Brain Research, 147(1):53–63, 2002.

[49] N. Smyrnis, I. Evdokimidis, N.C. Stefanis, D. Avramopoulos, T.S. Constantinidis, A. Stavropoulos, and C.N.
Stefanis. Antisaccade performance of 1,273 men: Effects of schizotypy, anxiety, and depression. Journal of
Abnormal Psychology, 112(3):403–414, 2003.

[50] I. Evdokimidis, N. Smyrnis, T. Constantinidis, N. Stefanis, D. Avramopoulos, C. Paximadis, C. Theleritis, C. Ef-
stratiadis, G. Kastrinakis, and C. Stefanis. The antisaccade task in a sample of 2,006 young men: I. normal
population characteristics. Experimental Brain Research, 147(1):45–52, 2002.

15



arXiv Template A PREPRINT

[51] R. Ratcliff. Group reaction time distributions and an analysis of distribution statistics. Psychological Bulletin,
86(3):446–461, 1979.

[52] R.C. Malenka and R.A. Nicoll. Dopamine decreases the calcium-activated afterhyperpolarization in hippocampal
ca1 pyramidal cells. Brain Research, 379(2):210–215, 1986.

[53] matlab. fminsearch. "https://de.mathworks.com/help/matlab/ref/fminsearch.html", -.

[54] Chun-Yi Zac Lo, Tsung-Wei Su, Chu-Chung Huang, Chia-Chun Hung, Wei-Ling Chen, Tsuo-Hung Lan, Ching-
Po Lin, and Edward T. Bullmore. Randomization and resilience of brain functional networks as systems-level
endophenotypes of schizophrenia. Proceedings of the National Academy of Sciences, 112(29):9123–9128, 2015.

[55] F. Yi, X.-H. Zhang, C.R. Yang, and B.-M. Li. Contribution of dopamine d1/5 receptor modulation of post-
spike/burst afterhyperpolarization to enhance neuronal excitability of layer v pyramidal neurons in prepubertal
rat prefrontal cortex. PLoS ONE, 8(8), 2013.

[56] P. Pedarzani and J.F. Storm. Dopamine modulates the slow ca2+-activated k+ current i(ahp) via cyclic amp-
dependent protein kinase in hippocampal neurons. Journal of Neurophysiology, 74(6):2749–2753, 1995.

[57] H.-Y. Tan, J.H. Callicott, and D.R. Weinberger. Dysfunctional and compensatory prefrontal cortical systems,
genes and the pathogenesis of schizophrenia. Cerebral Cortex, 17(SUPPL. 1):i171–i181, 2007.

[58] D. Hubl, T. Koenig, W. Strik, A. Federspiel, R. Kreis, C. Boesch, S.E. Maier, G. Schroth, K. Lovblad, and
T. Dierks. Pathways that make voices: White matter changes in auditory hallucinations. Archives of General
Psychiatry, 61(7):658–668, 2004.

[59] Ben Alderson-Day, Kelly Diederen, Charles Fernyhough, Judith M. Ford, Guillermo Horga, Daniel S. Margulies,
Simon McCarthy-Jones, Georg Northoff, James M. Shine, Jessica Turner, Vincent van de Ven, Remko van
Lutterveld, Flavie Waters, and Renaud Jardri. Auditory Hallucinations and the Brain’s Resting-State Networks:
Findings and Methodological Observations. Schizophrenia Bulletin, 42(5):1110–1123, 06 2016.

[60] M. Rubinov, S.A. Knock, C.J. Stam, S. Micheloyannis, A.W.F. Harris, L.M. Williams, and M. Breakspear. Small-
world properties of nonlinear brain activity in schizophrenia. Human Brain Mapping, 30(2):403–416, 2009.

[61] M.P.A. van Meer, W.M. Otte, K. van der Marel, C.H. Nijboer, A. Kavelaars, J.W.B. van der Sprenkel, M.A.
Viergever, and R.M. Dijkhuizen. Extent of bilateral neuronal network reorganization and functional recovery in
relation to stroke severity. Journal of Neuroscience, 32(13):4495–4507, 2012.

[62] Y. Yang, A. Raine, A.A. Joshi, S. Joshi, Y.-T. Chang, R.A. Schug, D. Wheland, R. Leahy, and K.L. Narr. Frontal
information flow and connectivity in psychopathy. British Journal of Psychiatry, 201(5):408–409, 2012.

[63] Y. Yu, H. Shen, L.-L. Zeng, Q. Ma, and D. Hu. Convergent and divergent functional connectivity patterns in
schizophrenia and depression. PLoS ONE, 8(7), 2013.

[64] W.-J. Gao, S.-S. Yang, N.R. Mack, and L.A. Chamberlin. Aberrant maturation and connectivity of prefrontal
cortex in schizophrenia—contribution of nmda receptor development and hypofunction. Molecular Psychiatry,
2021.

[65] K. Wiesenfeld and F. Moss. Stochastic resonance and the benefits of noise: From ice ages to crayfish and squids.
Nature, 373(6509):33–36, 1995.

[66] K. Kitajo, K. Yamanaka, L.M. Ward, and Y. Yamamoto. Stochastic resonance in attention control. Europhysics
Letters, 76(6):1029–1035, 2006.

[67] I. Mendez-Balbuena, E. Manjarrez, J. Schulte-Mönting, F. Huethe, J.A. Tapia, M.-C. Hepp-Reymond, and
R. Kristeva. Improved sensorimotor performance via stochastic resonance. Journal of Neuroscience,
32(36):12612–12618, 2012.

[68] J.K. Seamans and C.R. Yang. The principal features and mechanisms of dopamine modulation in the prefrontal
cortex. Progress in Neurobiology, 74(1):1–58, 2004.

[69] Adam R. Aron, Sarah Durston, Dawn M. Eagle, Gordon D. Logan, Cathy M. Stinear, and Veit Stuphorn. Con-
verging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. Journal of
Neuroscience, 27(44):11860–11864, 2007.

[70] J.R. Wessel, N. Jenkinson, J.-S. Brittain, S.H.E.M. Voets, T.Z. Aziz, and A.R. Aron. Surprise disrupts cognition
via a fronto-basal ganglia suppressive mechanism. Nature Communications, 7, 2016.

[71] Jonathan Heston, Alexander Friedman, Mustafa Baqai, Nicholas Bavafa, Adam R. Aron, and Thomas S. Hnasko.
Activation of subthalamic nucleus stop circuit disrupts cognitive performance. eNeuro, 7(5), 2020.

[72] T.V. Wiecki and M.J. Frank. A computational model of inhibitory control in frontal cortex and basal ganglia.
Psychological Review, 120(2):329–355, 2013.

16



arXiv Template A PREPRINT

[73] Brian C. Coe, Thomas Trappenberg, and Douglas P. Munoz. Modeling saccadic action selection: Cortical and
basal ganglia signals coalesce in the superior colliculus. Frontiers in Systems Neuroscience, 13:3, 2019.

17


	1 Introduction
	2 Material and Methods
	3 Experimental Data Analysis

