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Abstract

We solve the longstanding conjecture by Milnor (1993) concerning the connect-
edness locus M1 of the family of quadratic rational maps tangent to the identity at
∞. We prove that this locus in homeomorphic to the Mandelbrot set M and that
the homeomorphism is unique, provided it identifies maps that are ”hybridly” con-
jugate on their filled-in Julia set. Moreover this homeomorphism from M to M1 is
nowhere Hölder on the boundary and so can not have even locally a quasi-conformal
extension to complements.

1 Introduction

Dynamical systems given by iteration of holomorphic maps have attracted a lot of at-
tention over the past 45 years. The simplest non trivial case being that of iteration of
quadratic polynomials conveniently normalized as Qc(z) = z2 + c, where c ∈ C is a
parameter. The Julia set Jf of a holomorphic map f is the chaotic locus, which can
be characterized in several way e.g. the minimal invariant set containing at least three
points or the set of non-normality in the sense of Montel for the family of iterates. For a
thorough introduction to holomorphic dynamics see e.g. [Mi5], [C-G] or [S].

For the quadratic polynomial Qc we denote by Jc its Julia set. In the quadratic family
there is a natural dichotomy given by connectedness of the Julia set. The Mandelbrot set
is the connectedness locus of this family:

M = {c ∈ C : Jc is connected }.

In many cases computer generated images of the parameter space of a holomorphic fam-
ily of holomorphic maps contains objects that looks like the Mandelbrot set. This led in
the 1980-ties Douady and Hubbard to develop a theory of polynomial like maps, [DH3],
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i.e. proper holomorphic maps f : U −→ U ′, where U ⊂⊂ U ′ are Riemann surfaces iso-
morphic to D. In this framework Douady and Hubbard were able to show that under a
certain natural hypothesis on the family of holomorphic maps, denoted Mandelbrot-like
family those objects are connectedness loci of the family and are in fact homeomorphic
copies of the Mandelbrot set by a canonical dynamics preserving homeomorphism. They
conjectured that the copies satisfying their hypothesis are moreover quasi-conformally
homeomorphic to M. McMullen took a step further and showed that the Mandelbrot set
is universal, [McM]. And Lyubich, [Ly] who developed a refined theory of polynomial-
like maps of degree 2 proved the Douady-Hubbard conjecture. In more detail Lyubich
considered normalized polynomial-like maps with U ⊂⊂ U ′ ⊂⊂ C and called such maps
Quadratic-like maps. He showed that within the space of germs of Quadratic-like maps,
the connectedness locus of a Mandelbrot-like family of Quadratic-like maps is connected
to the Mandelbrot set through a finite number of holomorphic motions.

As example, let M2 := Rat2/PSL(2,C) denote the moduli space of rational maps of
degree two. Milnor in [Mi1] introduced natural biholomorphic coordinates, i.e. a complex
structure (σ1, σ2) : M2 −→ C2 on M2, where σ1, σ2 are the first and second elementary
symmetric functions in the three fixed point multipliers. He then consider the curves

Per1(µ) = {[f ] ∈ M2 | f has a fixed point with multipier µ}
for µ ∈ C and shows that each Per1(µ) is a straight line in the above complex structure.

For µ ∈ D ∪ {1} denote by Mµ the connectedness locus in Per1(µ)

Mµ := {[f ] ∈ Per1(µ) | Jf is connected}.

It follows from Lyubich’s theory of Quadratic-like maps that Mµ is quasi-conformally
homeomorphic to M for µ ∈ D.

In the afore mentioned paper [Mi1, 1993] Milnor showed pictures of the connectedness
locus M1 for µ = 1, see Fig. 4 and Fig. 1 for illustrations of M1. Moreover he proposed
the following conjecture.

Conjecture (Milnor, 1983). The connectedness locus M1 is homeomorphic to the Man-
delbrot set M.

After this the set M1 was referred to as the Parabolic Mandelbrot set. However for
µ = 1 maps are not polynomial-like, i.e. the maps f , [f ] ∈ Per1(1) do not posses a
polynomial like restriction.

In this paper we prove a stronger version of Milnor’s conjecture.

Theorem A. There is a unique dynamics preserving homeomorphism Φ1 : M −→ M1

between the Mandelbrot set M and the parabolic Mandelbrot set M1. Moreover Φ1 admits
no quasi-conformal extension to any neighbourhod of any boundary point of M.
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Figure 1: The parabolic connectedness locus M1 (left) and the M (right)

In this theorem, dynamics preserving means:

For c ∈ M and [g] = Φ1(c) ∈ M1 there exists a homeomorphism ρc : Ĉ −→ Ĉ, which
is conformal a.e. on K(Qc), which conjugates Qc to g (see below Figure 3) :

K(Qc)
Qc //

ρc

��

K(Qc)

ρc

��
K(g) g

// K(g)

The statement of no quasi-conformal extension is a consequence of the following
stronger result.

Theorem B. For a dense set of parameters in ∂M the homeomorphism Φ1 is not Hölder
for any exponent.

Copies of M1 appear in several works as a consequence of Lomonaco’s theory of
parabolic-like maps, [Lo1], [Lo2]. As examples the result has already found applications
in the work by Bullet and Lomonaco on algebraic correspondences [B-L]. Further examples
are the lemniscate copies in the slices Per1(µ), µ a root of unity, in the space M2 [LoUh],
and in the moduli space of cubic polynomials [Lo2], [Z1], [Z2].

In this and many other cases the maps do not posess a polynomial-like restriction,
because it is not possible to choose U,U ′ with U ⊂⊂ U ′. They are what is called pinched
quadratic-like maps and such families do not form Mandelbrot-like families. Thus in
order to prove Milnor’s conjecture and more generally prove that more of the observed
Mandelbrot-look-alikes are homeomorphic to the actual Mandelbrot set, one needs to
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device completely new strategies and tools. For a more thorough discussion of this see
also Section 2.

Our theorem is the first instance of a proof that a connectedness locus in a family of
pinched quadratic-like maps is homeomorphic to M. As a consequence of the proof we
also obtain new examples of maps in the family Per1(1) with positive area Julia sets.

The basic idea of our proof, which was laid out in the papers [PR1] and [PR2], is
to develop a theory of Yoccoz puzzles for parabolic maps and to use the combinatorics,
which is encoded in the Yoccoz puzzles, as a vehicle to define a homeomorphism. Such
ideas has since then been applied in several other settings e.g. [D1], [D-S].

The structure of the paper is as follows. In section 3 we introduce a natural parametriza-
tion of the complement of M1. In section 4 we introduce the notion of parabolic rays
originally defined in [PR2] and port these to parabolic rays in parameter space. As for the
Mandelbrot set this leads to defining wakes and limbs of M1 and it leads to a parabolic
Yoccoz inequality. In section 5 we recall from [PR2] the construction of parabolic puz-
zles, similar to Yoccoz puzzles. These are defined via parabolic rays in both dynamical
space and parameter space. In section 6 we recall the notion of combinatorial-analytic
invariants introduced in [PR1]. These allow for defining a dynamics preserving bijection
between corresponding limbs of M1 and M.

In section 7 we develop a dynamical Yoccoz theory for parabolic puzzles. The basic
problem compared with the classical Yoccoz theory is that the puzzle pieces around the
β-fixed point and its preimage are not dynamical in the sense that each puzzle piece does
not map onto the puzzle piece one level up.

In section 8 we use the dynamical parabolic Yoccoz theory to develop a parameter
parabolic Yoccoz theory. Also here the new difficulty is coming from the β and β′ nests
not being dynamical.

In section 9 we prove local connectivity of M1. Finally in section 10 we prove the
main theorems.

Our strategy is to compare the representation of M given in [PR1] in terms of com-
binatorial data together with analytic data with a similar representation of M1. The
representation of M was obtained with the use of Yoccoz’ theorem. More precisely, re-
placing every maximal, i.e. level one renormalization copy of M strictly inside M we
obtain a tree. This tree is faithfully described by a space of stratified equivalence rela-
tions/laminations called towers. The union of the equivalence relations in a tower is an
equivalence relation, which is forward invariant under Q0 and which corresponds to the
co-landing pattern of those rays which eventually land on the α-fixed point.

In [PR2] we provided a dynamically defined map Ψ1 : M1 −→ M. This was con-
structed by associating combinatorial and analytic data similar to those for quadratic
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polynomials to each element of M1. The map Ψ1 takes g in M1 to c = Ψ1(g) such that
g and Qc have the same combinatorial and analytic data.

In this paper we prove that Ψ1 is a homeomorphism. We do this in two steps. First
we prove an analogue of Yoccoz parameter theorem for M1. From this theorem it easily
follows that Ψ1 is a bijection and is continuous, except possibly at the boundary of the
level one renormalization copies of M. The second and last step is to prove the continuity
at those remaining parameters. The continuity of the inverse Φ1 : M −→ M1 then follows
from abstract reasons.

In the course of the proof we prove the aforementioned parabolic Yoccoz parameter
theorem, which falls in two parts shrinking of limbs along the unit disk and a parameter
puzzle theorem for M1.

2 Background and state of the art

By definition of Per1(µ), one of the fixed point multipliers is µ. The product of the
two remaining fixed point multipliers define an isomorphism σµ : Per1(µ) −→ C between
Per1(µ) and C. See [Mi1, Lemma 3.4] for details. To simplify the notation we shall
henceforth identify Per1(µ) with C via this isomorphism.

In Per1(µ), the interesting dynamical systems are located in the connectedness locus
Mµ. Indeed, outside Mµ the map f is conjugate to the shift map on a Cantor set. We
shall often identify f and [f ], when there is no risk of confusion.

For µ = 0, M0 corresponds to the classical Mandelbrot set M. There is an extensive
knowledge and literature about quadratic polynomials and the Mandelbrot set pioneered
by Douady and Hubbard (see [DH1] and [DH2]). The family of quadratic polynomials
Qc(z) = z2 + c, c ∈ C parametrizes Per1(0). The Julia set Jc = J(Qc) is the common
boundary of the filled Julia set Kc = K(Qc) = {z ∈ C | Qn

c (z) is bounded} and the basin
of infinity Bc(∞) := {z ∈ C | Qn

c (z) → ∞} = C\Kc. The fixed landing point of the
external ray of argument 0 is called βc, the other fixed point is called αc. We have αc = βc
if and only if c = 1

4
.

The Mandelbrot set M = {c ∈ C | J(Qc) is connected} is also the set of parameters
c ∈ C such that c ∈ Kc. The product σ0 of the multipliers of the two finite fixed points
of Qc equals 4c, so that M0 = 4M. The central hyperbolic component Card, i.e. the
connected component of the interior of M containing 0 consists of parameters c for which
Qc has an attracting fixed point αc ∈ C.

Recall that a holomorphic motion of L ⊂ C over a complex analytical manifold Λ with
base point λ0 ∈ Λ is a map H : Λ× L −→ C satisfying
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1. For each fixed z ∈ L the map λ→ Hz(λ) := H(λ, z) is holomorphic.

2. For each λ ∈ Λ the map z → Hλ(z) := H(λ, z) is injective.

3. The map Hλ0 : L −→ C is the identity.

By the celebrated λ-lemma each Hλ is (the restriction of) a quasi-conformal homeomor-
phism.

For µ ∈ D the connectedness locus Mµ is quasi-conformally homeomorphic to M.
Indeed identifying each Per1(µ) with C via σµ one has the following theorem:

Theorem (Lyubich, Uhre, Bassanelli-Berteloot). There exists a dynamical holomorphic
motion Φ : D×M0 −→ C of M0 over D with base point µ0 = 0 such that Φµ(M0) = Mµ

for all µ ∈ D.

Here dynamical means that Qc and f ∈ Φµ(4c) have polynomial-like restrictions which
are hybridly equivalent, i.e. are conjugate by a quasi-conformal homeomorphism, which
is conformal a.e. on the filled-in Julia sets.

Figure 2: The sets Mµ for some parameters µ ∈ [0, 1].

The consecutive images of Mµ for µ ∈ [0, 1] in Fig. 2 illustrates why Milnor could
be led to conjecture that for µ = 1 there is still a homeomorphism, see also see Fig. 1
and Fig. 3. However there is no general Theorem on the boundary values of a holomorphic
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motion on say D, which would allow to conclude that there is a limiting homeomorphism
Φ1 : M0 −→ M1.

The notion of filled-in Julia set for [g] ∈ Per1(1), needs a little clarification. For
σ1(g) = 1, the parabolic basin for the fixed point of multiplier 1 has two symmetric
components, choose one of them to be the external basin, in all other cases the parabolic
basin is connected and so we may unambiguously call this the external basin. The filled
Julia set K(g) is the complement of the external basin.

Häıssinsky, [Ha1] has developed a trans-quasi-conformal surgery on simply connected
attracting basins:

Theorem (Haissinsky). Suppose c ∈M and that the critical point 0 of Qc is not recurrent
to βc. Then there exists a trans-quasi conformal homeomorphism hc : C −→ C conformal
on the interior of Kc and a unique quadratic rational map gB(z) = z + 1/z + B such
that 1 ∈ ΛB(∞) and such that hc conjugates Qc to gB on C\∆c, where ∆c is a forward
invariant topological disk in Λc(∞) accessing βc quasi-radially.

Häıssinsky’s theorem provides a way to uniquely define Φ1(c) ∈ M1 for any c ∈ M
such that the critical point is not recurrent to the β-fixed point βc. However the condition
that the critical point is not recurrent to the β-fixed point has zero harmonic measure
in ∂M. A recent result of Dudko and Lyubich states that every quadratic polynomial
with an indifferent fixed point has a maximal hedgehog, [D-L]. According to private
communication with Dudko, this implies that the critical point is not recurrent to the β
fixed point of such a polynomial. Hence Häıssinsky’s theorem applies to all polynomials
on the boundary of Card.
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conformal in the interior of K(Qc), conjugating f and g (see below Figure 1) :

K(Qc)
f //

�

✏✏

K(Qc)

�

✏✏
K(g) g

// K(g)

In fact, there are only some c 2 @Card, for which we don’t know how to construct a
conjugacy on the Julia sets.

Figure 2: A parabolic Julia set (left) and the corresponding one in M (right)

Note that for |µ| < 1, every rational map of Per1(µ) has an attracting fixed point, say
at infinity, so it is a quadratic-like map. This gives, by the work of Douady and Hubbard
([DH3]), a homeomorphism between M and Mµ.

In each a�ne line Per1(µ) the product �µ of the two remaining fixed point multipliers
is a natural coordinate which isomorphically identifies Per1(µ) with C (easy computation,
see also [Mi1] for other parametrizations). For µ = 0, �0(M0) = 4M.

To simplify notations, we will use implicitly throughout the text this identification
between Per1(µ) and C and between Mµ and its image �µ(Mµ) ⇢ C.

Theorem (Goldberg-Keen, Lyubich). For any µ 2 D, there exists a homeomorphism
�µ : C ! C such that �µ(M0) = Mµ. Moreover for c 2 M, the maps �µ([Qc]) and Qc

are quasi-conformally conjugated on a neighborhood of their Julia set.

Theorem (Lyubich, Uhre, Bassanneli-Berteloot). Those maps �µ form a holomorphic
motion. This means that � : D ⇥ C ! C defined by �(µ, z) = �µ(z) verifies

• µ ! �(µ, z) is holomorphic on D for any z,

• z 7! �(µ, z) is injective in C for any µ,
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To sum up the challenges to be overcome in order to prove Milnor’s conjecture include:

1. As discussed above there is no straightening result (like Douady-Hubbard straight-
ening theorem) going from the parabolic world to the hyperbolic world and more
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Figure 4: In black, M1, viewed in the coordinate σ1, the product of the two remaining
fixed point multipliers. Maps in Per1(1) have a degenerate fixed point. Hence σ1([g]) is
also the multiplier of the unique third fixed point αg of g. In particular the big black disk
is the unit disk, it corresponds to αg being attracting.

generally from pinched quadratic-like maps to quadratic-like maps (the disks defin-
ing the polynomial like map touch at their boundary). In the case of M1 the work of
Haissinsky, [Ha1] using Guy David’s theorem, see also below, does apply to interior
points of M, but fails to apply for ω-almost all boundary points, where ω denotes
the equilibrium measure on M.

2. In the case at hand with M1 there is no existing theory, which allows us to extend
the holomorphic motion Φ at the boundary point 1. There is definitely no extension
of the holomorphic motion in neighbourhood of 1, because M and M1 are not
quasi-conformally equivalent ;

3. There is no complete description of the boundary ∂M that describes the dynamics
of the maps for instance by the exterior and that could have been transported. (It
is conjectured that M is locally connected).

4. There is no complete description of the dynamics inside of the interior of M that
would allow us to compare the dynamics ;

5. There could be queer components in M1 which do not correspond to a queer compo-
nent in M, i.e. components of the interior for which all periodic points are repelling
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for those maps. The above mentioned work of Haissinsky implies that every queer
component in M if any would correspond to a queer component in M1 (Fatou’s
conjecture says that there are none in M);

3 Basic notations and description of parameter spaces.

3.1 Basic notions for quadratic polynomials

An essential tool in the study of the dynamics of quadratic polynomials and the Man-
delbrot set is the notion of external rays. For c ∈ C we let ϕc denote the Böttcher-
coordinate conjugating Qc to Q0 in a neighbourhood of ∞ normalized by being tan-
gent to identity at ∞. The Green’s function Gc for Bc(∞) is the subharmonic func-
tion on C defined by Gc(z) = log |ϕc(z)| on the domain of ϕc, the recursive relation
Gc(Qc(z)) = 2Gc(z) and Gc ≡ 0 on Kc. The Böttcher-coordinate has a unique univalent

extension ϕc : {z|Gc(z) > Gc(0)} −→ Ĉ\D(eGc(0)).

Denote by ψc the inverse of ϕc. The map ψc analytically extends along rays Rθ, where
Rθ is the straight line of angle θ, θ ∈ R/Z =: T. This extension stops when reaching D
or a point whose image by ψc is a pre-critical value of Qc. In the rest of the paper we
shall let ψc mean the maximal radial extension. The external ray of angle θ is defined by
Rc

θ = ψc(Rθ). An external ray which stops at a pre-critical value is said to bump. The
dynamics of Qc on rays is semi-conjugate to angle-doubling m2(θ) = 2θ mod 1. Douady
and Hubbard proved that a non-bumping (pre)-periodic ray lands at a (pre)-periodic
repelling or parabolic orbit with the same pre-period and period dividing that of the ray
(i.e. that of θ). More precisely

Theorem 3.1 (Douady-Hubbard). Let c ∈ C. For any (pre-)periodic argument θ ∈ T,
i.e. m2

k(m2
l(θ)) = m2

l(θ), if the external ray R = Rc
θ does not bump, then it converges

to a Qc (pre-)periodic point z ∈ Jc with Qk
c (Q

l
c(z)) = Ql

c(z). If the argument is periodic
(i.e. l = 0), let k′ denote the exact period of z and let q = k/k′. Then the ray R defines
the combinatorial rotation number p/q, (p, q) = 1 for z. The periodic point z is repelling
or parabolic with multiplier ei2πp/q. Moreover any other external ray landing at z is also
k-periodic and defines the same rotation number.

Theorem 3.2 (Douady). Let c ∈ M and suppose z is a (pre)-periodic point, Qk′
c (Q

l
c(z)) =

Ql
c(z), l ≥ 0 and k ≥ 1. And suppose that w = Ql

c(z) is either repelling or parabolic. Then
w has a combinatorial rotation number in the sense above. That is w is the landing point
of at least one external ray and all rays landing at w form a single cycle under Qk′

c .
Moreover z is the landing point of the same number of rays, each one being a preimage of
a ray landing at w.
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Figure 5: Mandelbrot set – the central cardioid with limbs attached

For c ∈ M, the map ϕc extends to an isomorphism between the basin of infinity and
Ĉ\D, so that no ray bumps. The two fixed points of Qc(z) are labelled βc and αc, with the
convention that βc is the landing point of the unique fixed ray, Rc

0. The other fixed point
αc can be attracting, neutral or repelling. It is non repelling precisely when c ∈ Card.
Thus by Theorem 3.2 αc is the landing point of q > 1 external rays that define a cycle
of combinatorial rotation number p/q, and that thus assigns rotation number p/q to αc.
This leads to the following stratification of M, (see [Mi4]).

Theorem 3.3 (Douady-Hubbard).

M = Card ∪
⋃

p
q
̸= 0

1

L⋆
p/q,

where the uprooted limb L⋆
p/q consists of those parameters c ∈ M for which the separating

fixed point αc is repelling and has combinatorial rotation number p/q. See also Fig. 5,
Fig. 6 and Fig. 7 for illustrations.

3.2 Wakes

Since the Böttcher-coordinate ϕc extends univalently to the set of points of potential
greater than Gc(0) it follows that ΦM : C\M −→ C\D given by ΦM(c) := ϕc(c) is well
defined for c ∈ C\M. Douady and Hubbard proved that ΦM is an isomorphism tangent
to the identity at infinity. Let ΨM denote its inverse. The parameter ray RM

θ of argument
θ ∈ T is by definition RM

θ := ΨM(Rθ).

Rational parameter rays land at special parameters on the boundary of M, see e.g.
[DH1] and [DH2].
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Figure 6: Parameter and dynamical Wakes

Theorem 3.4 (Douady-Hubbard). Let θ ∈ T be any (pre-)periodic argument under m2,
i.e. m2

k(m2
l(θ)) = m2

l(θ), for some l ≥ 0 k ≥ 1. Then RM
θ lands at a parameter c ∈ ∂M.

If the argument θ is periodic (i.e. l = 0), then Qc admits a parabolic orbit of period k′

and multiplier ei2πp/q such that k′q = k. Moreover the dynamical ray Rc
θ lands at a point

in this parabolic orbit. If furthermore k > 1 then c is the landing point of RM
θ and of

precisely one more parameter ray RM
θ′ . The angles θ and θ′ belong to the same cycle if

q > 1 — the satellite case — and to two different cycles if q = 1 — the primitive case. In
either case the critical value c is contained in the wake Wc(θ, θ

′), i.e. the domain bounded
by the closure of the co-landing rays Rc

θ,Rc
θ′ and not containing 0.

If l > 0 then RM
θ lands at a Misiurewicz parameter c, such that Ql

c(c) belongs to a
repelling cycle of exact period k. Moreover for any θ′ ∈ T such that the dynamical ray Rc

θ′

lands on c, the parameter ray RM
θ′ also lands on c.

Assume at first that l = 0 and k > 1 (periodic arguments), then the parameter
rays RM

θ ,RM
θ′ co-land on a parabolic parameter c as in the theorem above. Define the

parameter wake WM(θ, θ′) as the domain bounded by the closure of these rays and not
containing the origin. It is easy to see that for any c′ ∈ WM(θ, θ′) the dynamical rays
Rc′

θ ,Rc′
θ′ move holomorphically with c′ and co-land on a repelling periodic point wc′ , which

becomes the parabolic periodic point of Qc with the same rays landing, when c′ converges
to the root c of the wake. And that for c′ /∈ WM(θ, θ′) the two rays Rc′

θ ,Rc′
θ′ either land

on different periodic orbits or at least one of them bump. For c′ ∈ WM(θ, θ′) we may thus
also define the dynamical wake Wc′(θ, θ

′) by the same description.
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Figure 7: Dyadic wakes of primitive and satellite Mandelbrot copy.

Without loss of generality we can assume 0 < θ < θ′ < 1. There exists θ̂, θ̂′, 0 < θ <
θ̂′ < θ̂ < θ′ < 1 such that m2

k maps each of the intervals [θ, θ̂′] and [θ̂, θ′] diffeomorphically
onto the full interval [θ, θ′]. Let C(θ, θ′) denote the dyadic Cantor set consisting of those

points which never escapes [θ, θ̂′] ∪ [θ̂, θ′] under iteration by m2
k. Then C(θ, θ′) naturally

corresponds to the classical middle third Cantor set. As described by the Douady tuning
algorithm the points of C(θ, θ′) are almost all of the arguments of external rays, which
accumulates the filled-in Julia set K ′

c with wc′ ∈ K ′
c ⊂ Wc′(θ, θ′) of a polynomial-like

restriction of degree 2 of Qk
c (see also Lemma 7.1) In the case of q > 2 each gap of the

Cantor set contains q−2 additional arguments of Kc′ . It is a deep theorem that the set of
such parameters for which K ′

c is connected, is a (derooted in the satelite case) copy MM
θ,θ′

of the Mandelbrot set. And the set of arguments for parameter rays accumulating MM
θ,θ′

contains C(θ, θ′).

The gaps of the Cantor set C(θ, θ′) naturally corresponds to the dyadic numbers r/2s,

0 < r, s, r odd and r < 2s with the initial gap ]θ̂′, θ̂[ corresponding to 1/2. The endpoints
of the gap corresponding to r/2s map under m2

ks to the m2
k fixed points θ, θ′ and so

the corresponding parameter rays co-land on a Misiurewicz parameter c′′ = c(θ, θ′, r, s)
such that Qsk

c (c′′) = wc′′ . We denote by WM(θ, θ′, r, s) the wake bounded by the closure
of these rays. For c′ ∈ WM(θ, θ′, r, s) the corresponding dynamical rays co-land on a
pre-image of wc′ under Q

ks
c′ and so bound a corresponding dynamical wake Wc(θ, θ

′, r, s).
We define the r/2s-dyadic limb of MM

θ,θ′ as the intersection

LM(θ, θ′, r, s) := Wc(θ, θ
′, r, s) ∩M.

For a similar discussion see [PR3, Section 1].
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In the special case where the k-periodic parameter raysRM
θ ,RM

θ′ co-land on a parabolic
parameter c for which the parabolic periodic point of period k′ = 1, i.e. equals αc, so
that θ, θ′ belong to a p/q-cycle with q = k, we use the standard short hand WM(p/q)
for the parameter wake WM(θ, θ′), Wc′(p/q) for the dynamical wake Wc′(θ, θ

′) when c′ ∈
WM(p/q), Mp/q for Mθ,θ′ , WM(p/q, r, s) for the dyadic parameter wake WM(θ, θ′, r, s)
and Wc′(p/q, r, s) for corresponding dyadic dynamical wakes Wc′(θ, θ

′, r, s).

Note that by definition the uprooted limb L⋆
p/q = M ∩WM(p/q).

3.3 Basic notation for maps in Per1(1).

Figure 8: The A plane (A = 1−B2 is the multiplier of the α-fixed point of gB)

The slice Per1(1) does not admit a normal form which univalently parameterizes it.
As a consequence there is not a universal choice of parametrization. We shall henceforth
use several parametrizations interchangeably. First of all we shall write [g] for the element
in Per1(1) represented by g. Such a map g has a parabolic fixed point of multiplier 1 and
one more fixed point of multiplier A ∈ C. This fixed point coincides with the two others
precisely when A = 1. Thus σ1([g]) = A, because the parabolic fixed point of multiplier 1
is multiple. We invite the reader to think of g as taking the form g(z) = gB(z) = z+B+1/z
for B ∈ C, in which case the fixed point of multiplier 1 is at infinity and the critical points
are located at ±1 and the corresponding critical values are B±2.For B = 0 the three fixed
points coincide at ∞ and otherwise gB has a finite fixed point at −1/B with multiplier
A = 1−B2 = σ1([gB]). As a consequence we have
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Remark 3.5. The correspondance B ∈ C 7→ [gB] ∈ Per1(1) is a 2 to 1 branched covering.
We shall use interchangeably the notations g = gB, [g], B and A. In particular we shall
use g ∈ M1, [g] ∈ M1, A ∈ M1 and B ∈ M1 in the obvious meaning see also Fig. 8.

However we shall mainly be interested in A ∈ C\[1,∞[ which biholomorphically cor-
responds to B ∈ H+ := {x + iy|x > 0}. For this reason our preferred representation of
Per1(1) shall be via the parameter B ∈ H+ ∪ {0} or B ∈ H+ := {B′ | ℜ(B′) ≥ 0}.

For a map g = gB denote by ΛB the parabolic basin i.e. the maximal open subset
of points converging to the parabolic fixed point ∞ of multiplier 1. It is completely
invariant : g−1(ΛB) = ΛB. If B = 0, the parabolic basin Λ0 of g0 has two connected
components ±H+, each containing a critical point. Indeed, the Julia set J(g0) is simply
the imaginary axis iR ∪ {∞}.

For B ̸= 0 the parabolic basin ΛB is connected. Denote by filled Julia set its comple-
ment K(gB) = KB := C \ ΛB. The Julia set J(gB) = JB is then the common boundary
JB = ∂KB = ∂ΛB. The Julia set is either connected and B ∈ M1 or it is a Cantor
set (see [Mi1]). In the Cantor case ΛB is connected, infinitely connected, contains both
critical points and the dynamics on the Julia set is conjugate to the one-side shift map
on two symbols.

For B ̸= 0, gB admits an attracting Fatou coordinate ϕB : ΛB −→ C, which semi-
conjugates gB to translation by 1. The map ϕB is unique up to post-composition by a
translation. See Fig. 9 for an illustration.

Definition 3.6. There is a unique maximal forward invariant domain ΩB ⊂ ΛB, whose
boundary contains at least one critical point and which is mapped univalentely onto a right
half plane by ϕB. Adjusting ϕB we can assume the half plane is H+ ϕB sends a critical
point to 0. This critical point is denoted the fastest critical point.

For B = 0 there are two such coordinates one on each connected component of the
basin Λ0.

In the next section we shall describe another representative Bl of [g0], which is more
suitable for comparison with the polynomial z2.

Lemma 3.7. For B ∈ H+ the critical point 1 is the fastest escaping critical point.

Proof. We prove that the critical points escape at the same rate if and only if the param-
eter belongs to the imaginary axis. Thus in H+ either +1 is always the fastest escaping
critical point or −1 is. Note that for B = 1 we have g1(−1) = −1 so that the critical point
−1 is fixed and thus +1 is the only escaping and hence fastest escaping critical point.
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Figure 9: Fatou coordinate ϕB and ΩB

Now consider first a map gir, whith r ∈ R. It commutes with the reflection in the
imaginary axis, z 7→ −z. Hence, the critical points ±1 escape at equal rates for any r (for
r = 0 the critical points however are in distinct components of the parabolic basin).

Suppose that for parameters B ̸= B′, gB and gB′ both have two first attracted critical
points, i.e. critical points c1, c2 for gB and c′1, c

′
2 for gB′ respectively satisfy for well chosen

Fatou coordinates ϕB, ϕB′ that ϕB(c1) = ϕB′(c′1) = 0 and ϕB(c2) = ϕB′(c′2) = iy for some
non-zero real y. Then η := ϕ−1

B′ ◦ ϕB defines a biholomorphic conjugacy on a petal Ω
— which is mapped biholomophically to the right half plane by ϕB. Moreover η maps
critical values to critical values and so extends as a biholomorphic conjugacy between the
parabolic basins by iterated lifting. Then it extends to a global topological conjugacy,
since Julia sets are Cantor sets. Finally this conjugacy is holomorphic between gB and
gB′ , because the Julia set is holomorphically removable. The map η fixes ∞ and hence 0,
pole of the maps, so η is linear and since it maps critical points to critical points (±1) it
is either the identity or z 7→ −z. Hence B = ±B′. Applying, this to B ∈ iR and B′ ∈ C
we get that B′ ∈ iR.

Remark 3.8. For B ∈ H+ we normalize the Fatou-coordinate ϕB by ϕB(1) = 0. By
Lemma 3.7 there is no option for B ∈ H+. But for B ∈ iR = ∂H+, this is a choice. For
B = 0 this corresponds to considering H− as K0 and Λ0 as H+. In any case the restriction

ϕB : ΩB −→ H+

is a biholomorphic conjugacy and ΩB depends continuously on B ∈ H+.

For B ∈ H+ the critical value B + 2 = gB(1) ∈ ΩB, this implicitly defines Ω0. We
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denote by vB = −2 + B = gB(−1) the other critical value. For B ∈ M1, the points −1
and vB both belong to KB, ΛB is isomorphic to D and contains only the critical point 1.

In case B ∈ iR both critical points are on the boundary of ΩB and we could have
chosen to normalise ϕB using the critical point −1 in this case. The two choices for ϕB

thus differ by a purely imaginary translation and the values of ϕB(c1) for the two different
choices are purely imaginary and complex conjugate. This fact is used by Shishikura,
when constructing a natural isomorphism between Per1(1)\M1 and Ĉ\D, see e.g. [Mi2].
We shall in order to ease the notation not use this isomorphism here, but stop two steps
before the end of the construction. This is the content of the following subsection.

3.4 Parametrization of C \M1

The idea of Shishikura’s proof is to parametrize C \ M1 by the relative position of the
critical values in suitable coordinates, namely in C \ D viewed as the parabolic basin of
the standard parabolic Blaschke product. For this purpose we introduce the parabolic
Blaschke product Bl ∈ [g0] see Fig. 10 for an illustration. It acts as the external class of
the maps gB, similarly to z2 for quadratic polynomials

Bl(z) = z2 + 1/3

1 + z2/3
.
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in suitable coordinates. For this purpose we introduce the parabolic Blaschke product
B2 2 [g0]

B2 : z 7! z2 + 1/3

1 + z2/3
.

Figure 4: The attracting lines of the Blaschke product B2

The dynamics of B2 is very simple. The Julia set J(B2) is the unit circle, D and
bC \ D are the two components of the basin of the double parabolic fixed point 1. The
critical points are 0 and 1, with images 1/3 and 3. The map B2 admits ⌧(z) = 1/z as
a symmetry, it interchanges the immediate basins. The attracting axis in D contains the
segment [0, 1] and in bC \ D the attracting axis contains [1, 3].

We denote by �� : bC \ D ! C the Fatou coordinate normalized as above, that is
��(1) = 0 and �� is univalent on ⌦ = ��1

� (H+(0)).

Figure 5: The image B2(⌦) of the petal in black.

We recall the definition of the parametrization very briefly here.

Take any [g] /2 M1, then g has both critical points in its basin ⇤g and both critical values
are in ⇤g \ g(⌦g). Moreover, @⌦g contains a critical point c0 with �g(c0) = 0 so that
�g(v0) = 1 for the corresponding critical value v0 = g(c0).

Figure 10: The attracting directions of the Blaschke product Bl

Note that Bl = ν◦g0◦ν−1, where ν is the Möbius transformation ν(z) = (z+1)/(z−1).
It follows immediately from the above that the Julia set J(Bl) is the unit circle, D and

Ĉ \ D are the two components of the basin of the double parabolic fixed point 1. The
critical points are 0 and ∞, with images 1/3 and 3 respectively. The map Bl admits
τ(z) = 1/z as a symmetry interchanging the immediate basins. The arcs [0, 1] and [∞, 1]
form attracting axis for the attracting petals of Bl.
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and z1 = �z0. Since T; ⇢ D\[1/3, 1], define Tj to be the connected component of B�1
2 (T;)

containing zj. Define recursively after n 2 N⇤ and for each (✏1, ✏2, . . . , ✏n) 2 ⌃2 the point
z✏1,✏2,...,✏n as the unique point of the preimage B�1

2 (z✏2,...,✏n) belonging to T✏1,✏2,...,✏n�1 . Define
then T✏1,✏2,...,✏n to be the connected component of the preimage B�1

2 (T✏2,...,✏n) containing
z✏1,✏2,...,✏n .

Figure 6: The infinite dyadic tree T containing the internal parabolic rays of B2.

Figure 7: Construction of a parabolic ray fro B2 of rotation number 1/3

Define for each n the dyadic trees

Tn :=
n[

k=0

B�k
2 (T;) so that Tn = Tn�1 [

[

(✏1,✏2,...,✏n)2⌃2

T✏1,✏2,...,✏n .

τ(D )         0 τ(D  )  1/2 

Figure 11: The tiling of the internal parabolic bassin Bl by the connected components of
ϕ−1(C\]−∞, 0]).

We denote by ϕ = ϕ0 ◦ ν−1 : Ĉ \ D → C the Fatou coordinate normalized as above,
that is ϕ(∞) = 0 and ϕ is univalent on Ω = ϕ−1(H+), where Bl(Ω) ⊂ Ω. Let D0 denote
the connected component of ϕ−1(C\] − ∞, 0]). Then ϕ−1 extends to a univalent map

ϕ−1 : C\]−∞, 0] −→ D0 ⊃ Ω, because Ĉ\D contains only the critical point ∞ of Bl. We
write D1/2 for the disk −D0 and D1 for the disk, which is the interior of the closure of
D0 ∪D1/2. Then D1 = Bl−1(D0).

We define topological disks Ωn = Bl−n(Ω) and Dn = Bl−n(D0) ⊃ Ωn for each n ≥ 0.
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in suitable coordinates. For this purpose we introduce the parabolic Blaschke product
B2 2 [g0]

B2 : z 7! z2 + 1/3

1 + z2/3
.

Figure 4: The attracting lines of the Blaschke product B2

The dynamics of B2 is very simple. The Julia set J(B2) is the unit circle, D and
bC \ D are the two components of the basin of the double parabolic fixed point 1. The
critical points are 0 and 1, with images 1/3 and 3. The map B2 admits ⌧(z) = 1/z as
a symmetry, it interchanges the immediate basins. The attracting axis in D contains the
segment [0, 1] and in bC \ D the attracting axis contains [1, 3].

We denote by �� : bC \ D ! C the Fatou coordinate normalized as above, that is
��(1) = 0 and �� is univalent on ⌦ = ��1

� (H+(0)).

Figure 5: The image B2(⌦) of the petal in black.

We recall the definition of the parametrization very briefly here.

Take any [g] /2 M1, then g has both critical points in its basin ⇤g and both critical values
are in ⇤g \ g(⌦g). Moreover, @⌦g contains a critical point c0 with �g(c0) = 0 so that
�g(v0) = 1 for the corresponding critical value v0 = g(c0).

Figure 12: The image Bl(Ω) of the petal Ω in black.

The biholomorphic parametrization of C \M1 easily follows from the following con-
struction. Let B ∈ H+\M1 so that both critical points ±1 of gB belong to ΛB. For each
k ≥ 0 let ΩB

k = g−k
B (ΩB) and let n ≥ 0 be minimal with vB = gB(−1) ∈ ΩB

n . Then each
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ΩB
k with k ≤ n is simply connected. Define a biholomorphic conjugacy hB by

hB : ΩB → Ω
z 7→ ϕ−1 ◦ ϕB(z).

Then since hB sends the critical value gB(1) to the critical value 3 = Bl(∞), and the do-
mians ΩB

k are simply connected for k ≤ n the map hB can be univalently lifted iteratively
to define a conjugacy between gB and Bl on the domain ΩB

n = g−n
B (ΩB) containing the

second critical value vB, but not the second critical point −1. Then

ΩB
n

gB //

hB

��

ΩB
n−1

gB //

hB

��

ΩB
n−2

hB

��

gB // . . .
gB //

...

��

...

��

ΩB
1

hB

��

gB // ΩB

hB

��
Ωn Bl

// Ωn−1 Bl
// Ωn−2 Bl

// . . . Bl
// Ω1 Bl

// Ω

Hence we get the following Lemma.

Lemma 3.9. For every B ∈ H+\M1 there exist n = nB ∈ N and hB : ΩB
n → Ĉ\D a

univalent conjugacy between gB and Bl such that hB(B + 2) = 3 and vB = B − 2 ∈ ΩB
n .

Remark 3.10. Note that the map (B, z) 7→ h−1
B (z) is complex analytic as a function of

the pair of variables (B, z). Because the Fatou-coordinates depend holomorphically on B
and the map (B, z) 7→ (B, hB(z)) is locally biholomorphic off the critical points of hB.

Definition 3.11. Let Ω′ = Bl(Ω) and define a holomorphic map

Υ : H+\M1 −→ C\(D ∪ Ω′) by Υ(B) := hB(vB).

We shall see that this map is injective and analytically extends as homeomorphism

Υ : H+\M1 −→ C\(D ∪ Ω′).

Remark 3.12. Since σ1([gB]) = 1 − B2 = A the representation of the above map in the
A-coordinate gives a holomorphic and in fact biholomorphic map (see also Remark 3.5)

Υ̂ : C\(M1 ∪ [1,∞[) −→ C\(D ∪ Ω′).

Proposition 3.13. The map Υ is a proper holomorphic map of degree 1, hence an iso-
morphism.

Proof. We shall show that B → ∂(H+\M1) implies Υ(B) → ∂(D∪Ω′). It follows that Υ
is proper.

For B ̸= 0 the linear map z 7→ z/B conjugates the map gB to z 7→ z+1+1/(B2z) with
critical points at ±1/B and corresponding critical values 1 ± 2/B. It follows that both
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critical values for gB belong to ΩB, when |B| is sufficiently large and that Υ(B) = hB(vB)
converge to hB(B+2) = 3, when |B| → ∞. If ℜ(B) → 0, then Υ(B) = hB(vB) converge to
∂Ω′, since B 7→ hB(vB) is continuous and belongs to ∂Ω′, when ℜ(B) = 0. Finally suppose
{Bk}k ∈ H+\M1 is a sequence converging to ∂M1, but hBk

(vBk
) does not converge to

∂D. Then passing to a subsequence if necessary we can suppose that Bk → B ∈ ∂M1 and
hBk

(vBk
) converge to w ∈ Ĉ\(D∪Ω′). Choose N such that w ∈ ΩN and thus BlN(w) ∈ Ω.

Then gNBk
(vBk

) ∈ ΩBk for all k large enough. But then by continuity also gNB (vB) ∈ ΩB,
contradicting that B ∈ ∂M1.

Finally the degree is 1 because it extends continuously and injectively to ∂H+, which
is mapped onto ∂Ω′ and we showed above that if Bn → ∂M1 then Υ(Bn) converge to
∂D.

Lemma 3.14. If Υ(B) /∈ D0 then h−1
B extends as a biholomorphic conjugacy

h−1
B : D1 −→ h−1

B (D1).

Definition 3.15. In view of the Lemma above, when Υ(B) /∈ D0 we define DB
1 :=

h−1
B (D1), D

B
1/2 := h−1

B (D1/2) and D
B
0 := h−1

B (D0).

Proof. Note that
⋃

m Ωm ∩ D0 = D0,
⋃

m Ωm ∩ D1 = D1 and that each set Ωn ∩ D0 is
simply connected and does not contain hB(vB). Hence we obtain an increasing sequence
of extensions of h−1

B by iterated lifting:

Ωn ∩D0
Bl //

h−1
B
��

Ωn−1 ∩D0
Bl //

h−1
B
��

Ωn−2 ∩D0

h−1
B
��

Bl // . . . Bl //

...

��

...

��

Ω1 ∩D0

h−1
B
��

Bl // Ω

h−1
B
��

h−1
B (ΩB

n ∩DB
0 ) gB

// h−1
B (ΩB

n−1 ∩DB
0 ) gB

// h−1
B (ΩB

n−2 ∩DB
0 ) gB

// . . . gB
// h−1

B (ΩB
1 ∩DB

0 ) gB
// ΩB

4 Parabolic Rays

4.1 Dynamical parabolic rays

We first define parabolic rays in D and in C \ D for the model map Bl. We then define
parabolic rays in the basin of ∞ for the maps gB. In the case where the Julia set is
connected, the conjugacy hB (between gB and Bl) extends to the whole basin of infinity,
so we just pull back the parabolic rays defined for the model map Bl. In the non-connected
case, we pull back when it is possible the beginning of the ray.
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4.1.1 Parabolic ray for the Blaschke product

The notion of (external) rays is well defined for quadratic polynomials, since on their
basin of ∞ polynomials are conjugated (in the connected case) to z 7→ z2 on C \ D. The
(external) rays are the pull-back of straight lines in C \ D.

The map Bl is a degree 2 map on D and on Ĉ \ D, but it is not conjugate to z 7→ z2

on these domains. Nevertheless, Bl is conjugate to z2 on S1.

Lemma 4.1. There exists a unique homeomorphism h : S1 −→ S1 fixing 1 and conjugating
z 7→ z2 to Bl, i.e. h(z2) = Bl ◦ h. It commutes with z 7→ z.

Proof. Indeed, the map Bl is weakly expanding on S1, as |Bl′(z)| ≥ 1 on S1 with equality
iff z2 = 1. The rest of the proof is a classical theorem for strongly expanding maps, for
which the proof passes over to the weakly expanding case with out any essential changes.
(Define recursively hn : S1 −→ S1 by Bl ◦ hn = hn−1(z

2) and hn(1) = 1, with h0 = id.
The maps hn converge to an order preserving bijection between the two sets of iterated
preimages of 1 and by the weakly expanding property both sets of iterated preimages are
dense in S1 so that the limit of the hn exists on all of S1 and is the required topological
conjugacy.)

Similarly to the binary expansion of the angle, we will define rays for Bl using the
itineraries.

Let Σ2 := {0, 1}N denote the one-sided shift space on 2-symbols. The angle θ is said
to have binary expansion ϵ = (ϵ1, ϵ2, . . . , ϵn, . . .) if

θ =
∞∑

n=1

ϵn
2n
.

Denote by Π2 : Σ2 −→ S1 the projection map: Π2(ϵ1, ϵ2, . . . , ϵn, . . .) = exp (2πiθ). Ob-
viously Π2 conjugates the shift σ2 to z 7→ z2 on S1 with σ2 : Σ2 −→ Σ2 the shift map:
σ2(ϵ1, ϵ2, . . . , ϵn, . . .) = (ϵ2, ϵ3, . . . , ϵn−1, . . .). Moreover, we equip Σ2 with the lexicographic
ordering: ϵ1 = (ϵ11, ϵ

1
2, . . . , ϵ

1
n, . . .) < (ϵ21, ϵ

2
2, . . . , ϵ

2
n, . . .) = ϵ2 iff ϵ1k = ϵ2k for 1 ≤ k < m and

ϵ1m < ϵ2m for some m ∈ N.

Write the upper half-arc I0 = [1,−1] ⊂ S1 and lower I1 = [−1, 1] ⊂ S1. An itinerary
of a point z ∈ S1 under the map z 7→ z2 is a sequence ϵ = (ϵ1, ϵ2, . . . , ϵn, . . .) with the
property that for all n ∈ N: z2n ∈ Iϵn+1 . The reader shall easily verify that for each ϵ ∈ Σ2

the point Π2(ϵ) is the unique point of itinerary ϵ under z
2. Moreover two sequences ϵ1 < ϵ2

are the common itineraries of a point z if and only if z2
n
= 1 for some minimal n ≥ 0 and

equivalently for this n ϵ1k = ϵ2k for 1 ≤ k < n, 0 < ϵ2n = ϵ1n + 1 < 2 and ϵ1k = 1, ϵ2k = 0 for
n < k.
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Defining itineraries for Bl by the same algorithm as for z2 above, i.e. Bln(z) ∈ Iϵn+1 ,
we obtain exactly the same statements for Bl. For example h ◦Π2 conjugates the shift σ2
to Bl, any itinerary for Bl determines a unique point of S1 and a point has two itineraries
if and only if Bln(z) = 1 for some n.

We shall now construct accesses to these points. Called parabolic rays, they sit in a
tree. We explain the construction of this tree in D instead of Ĉ \ D to be more visual.

For each j = 0, 1 the open sector Sj spanned by the arc Ij, i.e. the interior of the convex
hull of the union of Ij and 0, is mapped univalently onto D\[1/3, 1]. The parts [−1, 0] ⊂ R
and [0, 1] ⊂ R of the boundary are each mapped (homeomorphically) onto [1/3, 1] which
is forward invariant. Let z∅ = 0 and T∅ := Bl−1([0, 1/3]) = [0, z0] ∪ [0, z1], where z0 =

i√
3

and z1 = −z0. Since T∅ ⊂ D\[1/3, 1], define Tj to be the connected component of Bl−1(T∅)
containing zj. Define recursively after n ∈ N∗ and for each (ϵ1, ϵ2, . . . , ϵn) ∈ Σ2 the point
zϵ1,ϵ2,...,ϵn as the unique point of the preimage Bl−1(zϵ2,...,ϵn) belonging to Tϵ1,ϵ2,...,ϵn−1 . Define
then Tϵ1,ϵ2,...,ϵn to be the connected component of the preimage Bl−1(Tϵ2,...,ϵn) containing
zϵ1,ϵ2,...,ϵn .
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and z1 = �z0. Since T; ⇢ D\[1/3, 1], define Tj to be the connected component of B�1
2 (T;)

containing zj. Define recursively after n 2 N⇤ and for each (✏1, ✏2, . . . , ✏n) 2 ⌃2 the point
z✏1,✏2,...,✏n as the unique point of the preimage B�1

2 (z✏2,...,✏n) belonging to T✏1,✏2,...,✏n�1 . Define
then T✏1,✏2,...,✏n to be the connected component of the preimage B�1

2 (T✏2,...,✏n) containing
z✏1,✏2,...,✏n .

Figure 6: The infinite dyadic tree T containing the internal parabolic rays of B2.

Figure 7: Construction of a parabolic ray fro B2 of rotation number 1/3

Define for each n the dyadic trees

Tn :=
n[

k=0

B�k
2 (T;) so that Tn = Tn�1 [

[

(✏1,✏2,...,✏n)2⌃2

T✏1,✏2,...,✏n .

Figure 13: The infinite dyadic tree T containing the internal parabolic rays of Bl and the
corresponding one for gB.

Define for each n the dyadic trees

Tn :=
n⋃

k=0

Bl−k(T∅) so that Tn = Tn−1 ∪
⋃

(ϵ1,ϵ2,...,ϵn)∈{0,1}n
Tϵ1,ϵ2,...,ϵn .

Then define

T :=
∞⋃

k=0

Bl−k(T∅)
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and z1 = �z0. Since T; ⇢ D\[1/3, 1], define Tj to be the connected component of B�1
2 (T;)

containing zj. Define recursively after n 2 N⇤ and for each (✏1, ✏2, . . . , ✏n) 2 ⌃2 the point
z✏1,✏2,...,✏n as the unique point of the preimage B�1

2 (z✏2,...,✏n) belonging to T✏1,✏2,...,✏n�1 . Define
then T✏1,✏2,...,✏n to be the connected component of the preimage B�1

2 (T✏2,...,✏n) containing
z✏1,✏2,...,✏n .

Figure 6: The infinite dyadic tree T containing the internal parabolic rays of B2.

Figure 7: Construction of a parabolic ray fro B2 of rotation number 1/3

Define for each n the dyadic trees

Tn :=
n[

k=0

B�k
2 (T;) so that Tn = Tn�1 [

[

(✏1,✏2,...,✏n)2⌃2

T✏1,✏2,...,✏n .
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and z1 = �z0. Since T; ⇢ D\[1/3, 1], define Tj to be the connected component of B�1
2 (T;)

containing zj. Define recursively after n 2 N⇤ and for each (✏1, ✏2, . . . , ✏n) 2 ⌃2 the point
z✏1,✏2,...,✏n as the unique point of the preimage B�1

2 (z✏2,...,✏n) belonging to T✏1,✏2,...,✏n�1 . Define
then T✏1,✏2,...,✏n to be the connected component of the preimage B�1

2 (T✏2,...,✏n) containing
z✏1,✏2,...,✏n .

Figure 6: The infinite dyadic tree T containing the internal parabolic rays of B2.

Figure 7: Construction of a parabolic ray fro B2 of rotation number 1/3

Define for each n the dyadic trees

Tn :=
n[

k=0

B�k
2 (T;) so that Tn = Tn�1 [

[

(✏1,✏2,...,✏n)2⌃2

T✏1,✏2,...,✏n .

Figure 14: Construction of a parabolic ray for Bl of rotation number 1/3

with boundary (in) S1.

Definition 4.2. For ϵ ∈ Σ2 a parabolic internal ray R̂ϵ is the minimal connected subset
of T containing the sequence of points zϵ1,ϵ2,...,ϵn, n ≥ 0 (enterpreting n = 0 as z∅).

A parabolic external ray Rϵ is the image of R̂ϵ by z 7→ 1/z.

In order to stay close to the notations for quadratic polynomials, it will be convenient
to identify T and the Julia set S1 for Bl. This motivates the following definition.

Definition 4.3. We shall say that θ ∈ T is the external angle of the point h(ei2πθ). And
write Rθ for the ray Rϵ, where ϵ is a binary expansion of θ mod 1. In the special case
where θ has two binary expansions ϵ1, ϵ2 we shall write Rθ := Rϵ1

∪Rϵ2
.

For j ∈ {0, 1} the boundary ] − 1, 1[ of Sj in D is forward invariant and zj ∈ Sj. It
follows that the set Sj ∪ {0} contains any of the rays Rϵ with ϵ1 = j. Moreover as Ω is
also forward invariant and disjoint from T∅ we even have that Sj ∪{0}\Ω contains any of
the rays Rϵ with ϵ1 = j. It follows that we may define parabolic rays in parameter space
by RM1

ϵ = Υ−1(Rϵ). See also Definition 4.5.

4.1.2 Parabolic rays for the rational map gB

Parabolic rays for gB are defined as pre-images of the external parabolic rays Rϵ and Rθ.
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Definition 4.4. Let B ∈ M1 and ϵ be an itinerary. The parabolic dynamical ray for gB
of itinerary ϵ is by definition RB

ϵ = h−1
B (Rϵ). And the parabolic dynamical ray for gB

with angle θ is by definition RB
θ = h−1

B (Rθ).

The Parabolic Mandelbrot Set 13

Then define

T :=
1[

k=0

B�k
2 (T;)

with boundary (in) S1.

For ✏ 2 ⌃2 a parabolic internal ray R̂✏ is the minimal connected subset of T containing
the sequence of points z✏1,✏2,...,✏n , n � 0 (enterpreting n = 0 as z;).

As zj 2 Sj for each j it easily follows by induction, that Tn\Sj is connected and for any
n and any (✏2, . . . , ✏n) contains both the point zj,✏2,...,✏n and the set Tj,✏2,...,✏n . Consequently
Sj [ {0} contains also any of the rays R✏ with ✏1 = j.

For ✏ 2 ⌃2 a parabolic external ray R✏ is the image of R̂✏ by z 7! 1/z.

3.1.2 Parabolic rays for the rational map gB

To be close to the notations of quadratic polynomials it will be convenient to identify T
and the Julia set S1 for B2. In particular, we shall say that ✓ 2 T is the external angle of
the point h(ei2⇡✓).

Definition 3.2. Let gB 2 M1 and ✏ an itinerary. The parabolic dynamical ray of
itinerary ✏ is by definition RB

✏ = h�1
B (R✏).

Figure 8: The 1/3 cycle of parabolic ray in C \ J
Figure 15: The 1/3 cycle of parabolic rays RB

1/7,RB
2/7 and RB

4/7 in C \ JB on the left and

the ray (pair) RB
0 on the right (also in C \ JB).

Definition 4.5. The parabolic parameter ray of itinerary ϵ is defined by RM1
ϵ = Υ−1(Rϵ).

Similarly, the parabolic parameter ray of angle θ is defined by RM1
θ = Υ−1(Rθ).

We say that a q cycle of rays R0, . . .Rq−1 for gB landing on a common k periodic
point z and numbered in the counter clockwise order around z defines the combinatorial
rotation number p/q, (p, q) = 1 iff gkB(Rj) = R(j+p) mod q.

Theorem 4.6. Let B ∈ M1. For any (pre-)periodic argument ϵ ∈ Σ2, i.e. σ
k(σl(ϵ)) =

σl(ϵ), the parabolic ray R = RB
ϵ converges to a gB (pre-)periodic point z ∈ J(gB) with

gkB(g
l
B(z)) = glB(z). If the argument is periodic (i.e. l = 0), let k′ denote the exact period

of z and let q = k/k′. Then the ray R defines the combinatorial rotation number p/q,
(p, q) = 1 for z. The periodic point z is repelling or parabolic with multiplier ei2πp/q.
Moreover any other external parabolic ray landing at z is also k-periodic and defines the
same rotation number.
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This is a standard result which in its initial form is due to Sullivan, Douady and
Hubbard, for the polynomials. See the proof in [P, Th. A and Prop. 2.1], it goes through
for parabolic rays.

And conversely

Theorem 4.7. If B ∈ M1 and z ∈ J(gB) is any repelling or parabolic periodic point.
Then there is a periodic parabolic ray landing at z. It defines for z its (unique) combina-
torial rotation number. In particular for B ∈ M1 with A = 1−B2 /∈ D the fixed point αB

has a combinatorial rotation number.

Proof. Since gB has degree 2 the parabolic basin for βB is completely invariant and thus
the Theorem is a special case of [P, Th. B].

The non-connected case:

Assume now that B /∈ M1 so that the Julia set J(gB) is a Cantor set. The map hB
(Lemma 3.9) is well defined on Ω̃B = ΩB

nB
, so that δϵ := h−1

B (Rϵ) is well defined (it is the

pull-back of the part in Ω̃ = hB(Ω̃
B)). The part δϵ is the beginning of the dynamical ray

(as before). Using the relation gB ◦hB = hB ◦Bl one can define the ray, until it bumps on
an iterated pre-image of the second critical value vB, as follows. Define recursively δn+1

ϵ

as the connected component of g−1
B (δnσ(ϵ)) containing δ

n
ϵ , with δ

0
ϵ = δϵ. For n ≥ 0 define δnϵ

as the connected component of g−n
B (δσn(ϵ)) containing δϵ.

Lemma 4.8. Let ϵ ∈ Σ2. If the critical value vB does not belong to δσj(ϵ) for any 0 < j ≤
n, then the set δnϵ is a simple curve. Moreover hB has a univalent analytic extension to a
neighbourhood of δnϵ .

Definition 4.9. If the critical value vB does not belong to δσn(ϵ) for any n, then we define
the dynamical ray of itinerary ϵ by

RB
ϵ :=

⋃

n

δnϵ .

If the critical value vB belongs to δσn(ϵ) for some n, then we say that the ray RB
ϵ bumps

on some (pre)-critical point in g−n
B (−1) and that the ray is defined until this (pre)-critical

point by the same procedure.

Remark 4.10. As an immediate consequence of the definition of rays, the conjugacy hB
has a unique analytic extension along rays. In particular we have

vB ∈ RB
ϵ ⇐⇒ B ∈ RM1

ϵ .
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The landing property given by Theorem 4.6 in the connected case, translates in the
non connected case as follows :

Theorem 4.11. Let B ∈ H+. For any (pre-)periodic argument ϵ ∈ Σ2, either the parabolic
ray RB

ϵ bumps on the critical point −1 or it converges to a gB (pre-) periodic point

z ∈ J(gB) with g
k
B(g

l
B(z)) = glB(z). If periodic (i.e. l = 0), let k′ denote the exact period

of z and let q = k/k′. Then the ray RB
ϵ defines a combinatorial rotation number p/q,

(p, q) = 1 for z. The periodic point z is repelling or parabolic with multiplier ei2πp/q.
Moreover any other external parabolic ray landing at z is also k-periodic and defines the
same rotation number.

The following stability statement will be crucial in the sequel :

Lemma 4.12. Let B⋆ ∈ H+ and assume that the critical point −1 is not on the forward
orbit of RB⋆

ϵ and that RB⋆

ϵ is landing on either a pre-image of ∞ or on a point, which
is pre-periodic to a repelling periodic point. Then, there exists a neighborhood U of B⋆

such that for any B ∈ U , the ray RB
ϵ lands at a pre-periodic point and there exists a

holomorphic motion ψ : U ×RB⋆

ϵ → C such that ψB(RB⋆

ϵ ) = RB

ϵ .

Proof. In the case where the landing point is pre-repelling, the proof is similar to the
one of Douady-Hubbard in the case of quadratic polynomials : it is based on the implicit
function Theorem. Note that RB

0
always lands at ∞ when it is defined. Hence, if vB is not

on the closure of RB
0
, this ray varies holomorphically (in this family) and the pre-images

RB
0
, RB

10
cannot break on the critical point −1. Indeed, on any disk in C \RM1

0
, we have

a holomorphic motion of the arc h−1
B⋆([0, 1]) connecting the critical point 1 to its critical

value gB⋆(1). Pullback by iteratively along RB
10

by the dynamics we never encounter the
second critical value vB and so lifting the holomorphic motion gives a holomorphic motion
of all the ray parameterized by this disk. By the λ-Lemma it extends to the closure of
RB

0
. Note that the only parameter B ∈ M1 for which vB is on the closure of RB

0
is B = 0.

The similar statement hold for RM1

1
.

Corollary 4.13. In any disk contained in the complement of Ĉ \ ∪iRM1

2iθ , the ray RB
θ

admits a holomorphic motion and so does its closure (by the λ-Lemma).

4.2 Limbs of M1

Similarly to Douady and Hubbard description ofM, the parabolic Mandelbrot setM1 can
be described in terms of limbs sprouting out of the central, period 1 (relative) hyperbolic
component H0.
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Figure 9: Parabolic chess board in C \ M1

Corollary 3.11. In any disk of the complement of C \ [iRM1

2i✓ , the ray RB
✓ admits a

holomorphic motion and so does its closure (by the �-Lemma).

3.2 Limbs of M1

Similarly to Douady and Hubbard description of M, the parabolic Mandelbrot set M1

can be described in terms of limbs sprouting out of the unit disk. The aim of this section
is to prove this result, namely :

Theorem 3.12.
M1 = D [

G

p
q
6= 0

1

LM1(p/q)

where LM1(p/q) are disjoint compact connected sets characterized by the fact that the fixed
point ↵(A) 2 C has rotation number p/q.

The proof is exactly parallel to the one of Douady and Hubbard and we follow the
presentation given by Milnor in [Mi4]. Here is a rough idea. For A 2 C \ {1}, the
multiplier of the fixed point ↵(A) 2 C is exactly A, so it is attracting in D = D(0, 1),

Figure 16: Parabolic chess board outside M1, viewed in the A-parameter plane.

Definition 4.14. For 0 < p/q < 1 an irreducible rational we define the p/q limb LM1

p/q as

LM1

p/q = {B ∈ M1 | αB has rotation number p/q}.

By uniqueness of the rotation limbs of different rotation numbers are disjoint and
moreover Bp/q with 1−B2

p/q = Ap/q := ei2πp/q ∈ LM1

p/q is called the root of the limb.

Theorem 4.15.
M1 = H0 ∪

⊔

p
q
̸= 0

1

LM1

p/q (1)

and each limb LM1

p/q is compact and connected with H0 ∩ LM1

p/q = {Bp/q}.

Though this is similar to the Mandelbrot case we give in this section a complete proof
following the approach by Milnor in [Mi4].

Proof. The decomposition (1) of M1 is an immediate consequence of Theorem 4.7 and
H0 ∩LM1

p/q = {Bp/q} follows from the combination of Theorem 4.7 and Theorem 4.6. The
compactness and precise localisation of the limb follows from Corollary 4.22 of Theo-
rem 4.21 below.
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The following discussion is most conveniently taken in the A-parametrization, where
H0 = D. For this subsection we shall henceforth use the A-parameterization. For A ∈
C \ {1}, the multiplier of the finite fixed point α(A) is A ∈ C, so it is attracting when
A ∈ D = D(0, 1), neutral when A ∈ ∂D and repelling when A ∈ C \D. For each p/q ̸= 1,
with (p, q) = 1, the parameter Ap/q = ei2πp/q ∈ ∂D \ {1} belongs to M1, so that there
is a parabolic external ray converging to α(A) by Theorem 4.7 and Theorem 4.6. This
ray has rotation number p/q. Let us denote by RB

θ−(p/q) and RB
θ+(p/q), recall A = 1− B2,

the rays in the cycle that are adjacent to the critical value (i.e. to the Fatou component
containing it). In Theorem 4.21 we prove that the corresponding parameter rays RM1

θ±(p/q)

lands at Ap/q and that they cut off a wake WM1(p/q). We call (p/q−) (derooted) limb of
M1, the set L∗

p/q := M1 ∩WM1(p/q).

For θ = p/2l, l ≥ 0 a dyadic angle we shall say that R∗
θ, ∗ ∈ {M1, B} lands if the

two rays R∗
ϵi
land on the same point, where ϵ0, ϵ1 are the two dyadic expansions of θ. We

obtain quite precise properties of the landing in the parameter plane in the following :

Theorem 4.16. For every pre-periodic (i.e. rational) angle θ, the parameter ray RM1
θ

lands. More precisely, suppose 2k+lθ ≡ 2lθ mod 1 with (period ) k > 0 and l ≥ 0 minimal.

1. If θ is periodic (l = 0) then RM1
θ lands on a parameter A = 1 − B2 for which the

corresponding dynamical ray RB
θ lands at a parabolic periodic point z(B), with exact

period k′| k and with multiplier λ = (gk
′

B )
′(z(B)) a primitive k/k′-th root of unity.

2. If l > 0 then RM1
θ lands at a parameter A for which the corresponding dynamical

ray RB
θ lands on vB and for which gk+l

B (vB) = glB(vB) is a periodic point of exact
period k. This periodic point is repelling if k > 1 and is the parabolic fixed point ∞
for k = 1. Moreover for any dynamical ray RB

θ′ landing on vB, the corresponding
parameter ray RM1

θ′ lands at A ∈ M1.

Remark 4.17. In particular in point 1. θ = 0 both rays RB
0
,RB

1
land at the parabolic

fixed point ∞ of multiplier 1, and there is no other ray landing at ∞. In point 2., θ = p/2l,
l > 0 the landing point of RM1

θ is not on ∂H0 (but at the so called “θ-dyadic tip” of M1),
so that these two rays landing at the same point do not define a limb but bounds a disk.

4.2.1 Landing of parameter rays

Lemma 4.18. Let θ be a k-periodic angle, then RM1
θ lands at a parameter A ∈ M1.

Moreover, the corresponding dynamical ray RB
θ lands at a parabolic periodic point z(B)

where A = 1 − B2. If k = 1, z(B) = ∞. If k > 1, z(B) has exact period k′| k and
multiplier λ = (gk

′
B )

′(z(B)) a primitive k/k′-th root of unity.
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Figure 9: Parabolic chess board in C \ M1

Corollary 3.11. In any disk of the complement of C \ [iRM1

2i✓ , the ray RB
✓ admits a

holomorphic motion and so does its closure (by the �-Lemma).

3.2 Limbs of M1

Similarly to Douady and Hubbard description of M, the parabolic Mandelbrot set M1

can be described in terms of limbs sprouting out of the unit disk. The aim of this section
is to prove this result, namely :

Theorem 3.12.
M1 = D [

G

p
q
6= 0

1

LM1(p/q)

where LM1(p/q) are disjoint compact connected sets characterized by the fact that the fixed
point ↵(A) 2 C has rotation number p/q.

The proof is exactly parallel to the one of Douady and Hubbard and we follow the
presentation given by Milnor in [Mi4]. Here is a rough idea. For A 2 C \ {1}, the
multiplier of the fixed point ↵(A) 2 C is exactly A, so it is attracting in D = D(0, 1),

R
10

_R

_

01

Figure 17: The dyadic rays RM1

01
, RM1

10
corresponding to the dyadic angle 1/2 They bound

the disk DM1

1/2 := Υ−1(D1/2), viewed in the A-parameter plane.

Proof. The argument is classical. Let A be any accumulation point of RM1
θ . Since A is

in M1 the Julia set is connected. For B such that A = 1 − B2, the ray R = RB
θ lands

at a k′-periodic point z(B) of J(gB) with k′| k. It is either repelling or parabolic. If it
is repelling or if it lands at the parabolic point ∞, Theorem 4.12 gives a holomorphic
motion of R in a neighborhood of A since z(B) cannot be critical (it is periodic). But
this contradicts the fact that if A′ is close to A on RM1

θ , the critical value is on the ray
RB′

θ (Lemma 4.10) so that the two preimages (one is in the cycle) bump on the critical
point (since θ is periodic). Hence, z(B) is a parabolic point of period k′ dividing k ≥ 1,
with multiplier λ = (gk

′
B )

′(z(B)) a primitive k/k′-th root of unity.

The set of parameters B ∈ C such that gB has a parabolic cycle of period k′| k with
k > 1 is included in {B ∈ C | ∃z ∈ C, gk′B (z) = z, (gk

′
B )

′(z) = e2iπjk
′/k, j ∈ {0, · · · , k/k′}}.

This set is finite since it is defined by the equations in (z,B) of two (relatively prime)
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polynomials.

Therefore, the accumulation set of RM1
θ is finite, so it reduces to one point.

Lemma 4.19. Let θ be a strictly preperiodic angle : 2k+lθ ≡ 2lθ mod 1 with k > 0 and
l > 0 minimal. The parameter ray RM1

θ lands. Moreover, if k = 1, the corresponding
dynamical ray RB

θ lands on the critical value vB and glB(vB) = ∞.

Proof. As before let A be an accumulation point of the ray RM1
θ . The dynamical ray

RB
θ lands at a strictly preperiodic point z(B) of J(gB). The point glB(z(B)) is periodic,

either repelling or parabolic. Assume first that k > 1. As in previous lemma, the set
of parameters such that z(B) is parabolic is finite. Now if z(B) is repelling, the critical
point is in the orbit of z(B), by the stability Lemma. This situation also corresponds to
a finite number of B ∈ C since B has to satisfy a polynomial equation (the critical point
is pre-periodic). Since the accumulation set of RM1

θ is connected and finite, it reduces to
one point. Therefore, the parameter ray lands.

We consider now the case k = 1. The angle is dyadic and RB
θ lands at the critical

value vB, so g
l
B(vB) = ∞. This equation also gives a finite number of parameters so that

the parameter ray lands.

To achieve the proof of Theorem 4.16 we need to define Wakes as in the Mandelbrot
case.

4.2.2 Wakes

We consider now for p/q /∈ {0, 1}, the parabolic parameter Ap/q = ei2πp/q and the q-cycle
of external parabolic rays landing to the α fixed point, with angles 0 < θ0 < θ1 < . . . <
θq−1 < 1 of combinatorial rotation number p/q (i.e. 2θi ≡ θ(i+p) mod q mod 1) (defined
at the beginning of the Subsection 4.2). Denote by I = (θ−, θ+) the smallest interval in

S1 \
⋃

i≥0

θi.

Lemma 4.20. Let A be a parameter outside of M1 on some external ray of angle t. The
dynamical rays RB

θ0
,RB

θ1
, . . . ,RB

θq−1
land at the repelling fixed point if an only if t belongs

to I.

Proof. The proof is the same as Lemma 2.9 of [Mi4] (which deals with all kind of cycles

of quadratic polynomials). We recall it briefly. Note that the two rays RB
t/2 ∪ RB

t/2+1/2

crash on the critical point and so partition the plane C in two sides. It follows that two
dynamical rays land at the same point if and only if they have the same itinerary with
respect to this partition of C.
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On the other hand, the arcs in the complement of the cycle θ0, · · · , θq are mapped
injectivly to another complementary arc, except for one complementary arc that double
covers I. Therefore, if t /∈ I, its preimages t/2 and (t+ 1)/2 belongs to different comple-
mentary arcs, or to the cycle, so that the rays of the cycle cannot land at the same point,
or are even not defined until the end.

Now, for t ∈ I, t/2 and (t+1)/2 belongs to a complementary interval of length greater
than 1/2. So all the rays of the cycle are in the same component of the partition, they
land at the same point.
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Figure 10: Wake 1/3

the map gB has a repelling fixed point (since it can have only one parabolic cycle in C).
There is a cycle of external rays, di↵erent from RB

✓i
, landing at this fixed point. This cycle

is stable (Lemma 3.10) in a small neighborhood since the critical point is in the basin of
the parabolic cycle. This contradicts the fact that A is in the boundary of W where these
rays do not land at the fixed point. Therefore A = Ap/q and the statement follows.

Denote by dynamical wake WB(p/q) the connected component of C \ RB
✓� [ RB

✓+
con-

taining the rays RB
t for t 2 (✓�, ✓+)

Corollary 3.18. For parameters A in WM1(p/q), the second critical value v1 is in the
dynamical Wake WB(p/q) with A = 1 � B2.

Figure 18: Wake 1/3

Theorem 4.21. The parameter rays RM1
θ− ,RM1

θ+
both land at Ap/q. Moreover, the curve

RM1
θ− ∪RM1

θ+
∪Ap/q cuts the sphere into two connected components. Denote by WM1(p/q)

the one not containing D. The dynamical rays RB
θi
, 0 ≤ i ≤ q − 1, land at a common

repelling fixed point if and only if A = 1−B2 ∈ WM1(p/q).

Proof. The proof is similar to the one in Theorem 3.1 of [Mi4]. Let W be the set of
parameters in C such that the dynamical rays RB

θi
all land at the same point which

is a repelling fixed point. Note that such rays cannot land at the fixed point ∞. By
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Lemma 4.20 W is non empty; it is an open set by the stablity property of such rays.
From the charaterization given by Lemma 4.20, a parameter ray RM1

t belongs to W if
and only if t ∈ I. The boundary of W consists of parameters for which there is no
stability of the dynamical rays. That is, either the critical point c1 is on the cycle RB

θi

(it cannot be at the landing point which is periodic) or the landing point of the rays is

parabolic (Lemma 4.12) : ∂W ⊂ (
⋃

0≤i≤q−1

RM1
θi

) ∪ F , where F corresponds to the finite

set of parameters for which there is a parabolic point of period q. We deduce from this
description of ∂W and from Lemma 4.20 that W is connected. Then the parameter
rays RM1

θ− and RM1
θ+

have to land at a common point A of F , since W does not contain

parameter rays of angle outside I. For this parameter A, the rays RB
θi
land at a parabolic

q′-cycle different from ∞ by Lemma 4.18, with q′ dividing q. Assume that A ̸= Ap/q, then
the map gB has a repelling fixed point (since it can have only one parabolic cycle in C).
There is a cycle of external rays, different from RB

θi
, landing at this fixed point. This cycle

is stable (Lemma 4.12) in a small neighborhood since the critical point is in the basin of
the parabolic cycle. This contradicts the fact that A is in the boundary of W where these
rays do not land at the fixed point. Therefore A = Ap/q and the statement follows.

Corollary 4.22. The limbs LM1

p/q are compact, more pricesely

LM1

p/q = M1 ∩WM1(p/q) = L∗
p/q ∪ {Ap/q}.

Definition 4.23. For A = 1 − B2 ∈ WM1(p/q) we define the dynamical wake WB(p/q)

as the connected component of C \ RB
θ− ∪RB

θ+
containing the rays RB

t for t ∈ (θ−, θ+).

Note that when A /∈ WM1(p/q), p ̸= 0 then RB
θ− ∪RB

θ+
does separate C into two sub

disks.

Corollary 4.24. The parameter A in WM1(p/q), if and only if the second critical value
vB is in the dynamical wake WB(p/q).

Proof. It follows from the construction. As explained in the proof of Lemma 4.20, the only
non injective interval of angles double covers I. One deduces easily that the sector/wake
corresponding I contains the critical value vB.

Corollary 4.25. The diameter of the limbs LM1

p/q tends to zero, when q tends to ∞.

Proof. Assume to get a contradiction that there is a sequence of Limbs LM1

pn/qn
, with

qn → ∞ whose diameter does not go to zero. Then, one can find points xn, yn ∈ LM1

pn/qn
converging to x ̸= y respectively. By Theorem 4.15 these two points cannot both belong
to D (they would be separated by some wake). So one at least, say y, correspond to a map
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that has a repelling fixed point and therefore is in some Limb L(p/q). But this implies
that the sequence yn enters in WM1(p/q) for n large. The contradiction comes from the
fact that the wakes WM1(pn/qn) and WM1(p/q) are disjoint. Alternatively apply Yoccoz
inequality in the form [P, Theorem C] to all gB, B ∈ LM1

p/q . To obtain that log of the limb

is contained in the closed Euclidean disk of radius r(q) and center r(q) + i2πp/q, where

r(q) =
log 4

q

Here the argument 4 comes from the inequality |Bl′(z)| ≤ 4 on the unit circle.

Proof of Theorem 4.16:

Note that this Corollary 4.24 together with Lemma 4.18 achieve the proof of part 1 of
Theorem 4.16 in the case k = 1. Thus it suffices to consider the case k > 1.

Lemma 4.26. For a pre-periodic angle θ, i.e. 2k+lθ ≡ 2lθ mod 1 with (period ) k > 1
and l > 0 minimal, if A denotes the landing point of RM1

θ , the corresponding dynamical
ray RB

θ lands at vB and gk+l
B (vB) = glB(vB) is a repelling periodic point of exact period k.

Proof. Assume to get a contradiction that the external rays of the cycle of angles 2i+lθ
land at a parabolic periodic point. The parameter A belongs to some wake WM1(p/q), so
that there is a cycle of external rays landing at the repelling fixed point. Let us denote by
Γ the union of these external rays together with the fixed point. The iterated pre-images
Γn = g−n

B (Γ) give a partition of C that separates for n large enough, the external rays of
the cycle of angles 2i+lθ with i ≥ 0 from the ray of angle θ. Therefore Γn separates the
critical value vB from the external ray of angle θ (since it is in a Fatou component adjacent
to one of the rays in the cycle 2i+lθ). Now the graphs Γn are stable, so for parameters A′

in a neighborhood of A, but on the ray RM1
θ , the graph still separates the critical value

vB′ from the ray RB′
θ where A′ = 1 − B′2 (the elements stays in some different sectors).

This contradicts the fact that vB′ has to be on RB′
θ . Therefore RB

θ lands at vB.

Recall from page 12 that the pair of periodic arguments θ, θ′, 0 < θ < θ′ < 1 of
a pair of parameter rays RM

θ and RM
θ′ co-landing on a parabolic parameter defines a

Cantor set C(θ, θ′). And that this lead to the definition of dyadic wakes and limbs of the
corresponding copy of the Mandelbrot set. In view of Lemma 4.18 and Lemma 4.26 we
generalize this to M1 as follows. Let MM1(θ, θ′) be the copy of M in M1 with root rays
RM1

θ and RM1

θ′ .

Definition 4.27. Define the dyadic wake WM1(θ, θ′, r, s) ofMM1(θ, θ′) as the set bounded
by the pair of co-landing parameter rays RM1

θ0
,RM1

θ1
, where θ0, θ1 are the the arguments
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bounding the r/2s gap in the Cantor set C(θ, θ′). And define the dyadic limb LM1(θ, θ′, r, s)
as the intersection

LM1(θ, θ′, r, s) := WM1(θ, θ′, r, s) ∩M1.

Moreover as for polynomials in the special case where MM1(θ, θ′) = MM1

p/q we shall write

WM1(p/q, r, s) for WM1(θ, θ′, r, s) and LM1(p/q, r, s) for LM1(θ, θ′, r, s) dyadic wakes and
limbs associated with MM1

p/q .

The root B of the dyadic wake WM1(θ, θ′, r, s) is the r/s dyadic tip of MM1(θ, θ′),
that is the parameter such that the q-renormaliztion of gB is hybridly equivalent to the
r/s tip, i.e. the landing point of the parameter ray RM

r/s of the Mandelbrot set.

5 Parabolic Puzzles and Parabolic Para-puzzles

We shall state and prove in Section 9 a theorem for the parabolic Mandelbrot set M1

ananalogous to the Yoccoz parameter puzzle theorem for the Mandelbrot set (see [R1]).
The idea underlying the proof is also in this case to transfer the result obtained in the dy-
namical plane to the parameter plane using the trick of Shishikura to control the dilatation
of the holomorphic motion in puzzle pieces.

Yoccoz theorem for the parabolic map gB was proved in [PR2]. We recall briefly the
proof here since we need the detailed construction of the parabolic puzzle. Before let
us recall the classical Yoccoz puzzle. Then, the construction of the parabolic puzzle will
appear more natural even in the parameter plane.

5.1 Yoccoz puzzle for Quadratic polynomials

For c ∈ M \ Card, c belongs to some derooted limb L⋆
p/q. For the rest of this section we

fix the reduced rational p/q, but we shall only occasionally make reference to p/q. This
motivates the following. Let 0 < θ0 < θ1 < . . . θq−1 < 1 denote the arguments of the
unique q-cycle of rotation number p/q for Q0.

Recall that the wake parameter wake WM(p/q) is the subset of parameter space C
bounded by the parameter rays of arguments θp−1, θp. Recall further that c ∈ WM(p/q) if
and only if the cycle of dynamical raysRc

θ0
, . . . ,Rc

θq−1
co-land on αc and then also c ∈ Wc

p/q,
the dynamical wake bounded by the dynamical rays of arguments θp−1, θp. Moreover the
strictly pre-periodic pre-image rays of arguments θ0 +

1
2
< . . . θq− + 1

2
⊂]θq−1, θ0[ co-lands

on α′
c. It follows immediately that all 2q rays together with their landing points αc, α

′
c

move holomorphically with the parameter c ∈ WM(p/q).
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We shall fix an arbitrary choice of potential l0 = 1. For n ∈ N we define the dynamical
sets V c

n := {z ∈ C | Gc(z) < l0/2
n} bounded by the l0/2

n level set Ec
n = {z ∈ C | Gc(z) =

l0/2
n}. And we define the restricted parameter wakes WM

n (p/q) := {c ∈ WM(p/q)|c ∈
V c
n}.
For c ∈ WM

0 (p/q) we define the Yoccoz puzzle as follows. Let GYc
0 denote graph

GYc
0 = Ec

0 ∪ {αc, α
′
c} ∪

q−1⋃

i=0

((Rc
θi
∪Rc

θi+1/2) ∩ V c
0 ).

That is the union of the equipotential Ec
0 together with αc, α

′
c and the segments, inside

E0, of the external rays landing on these two points. (Note that the original construction
involved only the cycle of rays landing on αc and not the preimages landing on α′

c, that
we add here for convenience).

Following up un the remark above we note that the graph GYc
0 move holomorphically

with c ∈ WM
0 (p/q).

We define recursively the level n-Yoccoz graph GYc
n+1 := Q−1

c (GYc
n).

The level-0 puzzle pieces are the bounded connected components of C\GYc
0. Denote by

Yc
0 the level-0 puzzle : the collection of these 2q− 1 puzzle pieces. Define the level-n ∈ N

puzzle Yc
n as the collection of connected components of Q−n

c (Y ), where Y ranges over all
of the level-0 puzzle pieces or equivalently as the set of bounded connected components
of C\GYc

n. The (p/q-Yoccoz) Puzzle for Qc is the union Yc = ∪n≥0Yc
n of the puzzles at all

levels. We shall also use the finite unions of puzzles Yc(N) := ∪0≤n≤NYc
n, N ∈ N.

Denote by GYc(n) the union
⋃n

j=0 GYc
j and let GYc be the union of these graphs of all

levels.

Figure 19: Yoccoz dynamical puzzles (without equipotential) in the wake 1/3

Any two puzzle pieces Y ∈ Yc
n and Y ′ ∈ Yc

m, m ≤ n are either interiorly disjoint or
nested with Y ⊆ Y ′ (because the potential is multiplied by two under the dynamics and
the set of rays in the construction of Yc

0 is forward invariant).

A nest, i.e. a sequence N = {Yn}n, Yn ∈ Yc
n with Yn+1 ⊆ Yn, is called convergent iff

End(N ) :=
⋂

n∈N Y n = {z} a singleton and is called divergent otherwise. When wanting
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to emphasise z we say the nest N is convergent to z. A nest N is called critical iff
0 ∈ End(N ) and called a critical value nest iff c ∈ End(N ).

Universal Yoccoz Puzzle

Associated to a rotation number p/q, one defines the universal Yoccoz Puzzle on
the complement of the disk. It is a model of all p/q Yoccoz Puzzle using the Böttcher

conjugacy. Let Z0 =

q−1⋃

j=0

ei2πθj ∪ ei2π(θj+
1
2
) be the unique q-cycle for Q0 of combinatorial

rotation number p/q in S1 and its preimage.

Let l0 denote the choice of equipotential above and define E0 = {z | |z| = el0}. Let
GU0 denote the union of the equipotential E0, the unit circle, together with the segments,
of radial lines through the points of Z0 between E0 and the unit circle.

The Universal Yoccoz graph is then

GU0 = E0 ∪ S1 ∪
(

q−1⋃

i=0

Rθi ∪
q−1⋃

i=0

Rθi+1/2)

)
∩ {z ∈ C | 1 < |z| < el0}

and define the universal (p/q-Yoccoz) puzzle UY0 as the set consisting of the 2q bounded
connected components of the complement of GU0 in C \ D.

Define GUn recursively as follows :

GUn = Q−1
0 (GUn−1)

and the universal (p/q-Yoccoz) puzzle UYn as the set consisting of the bounded connected
components of the complement of GUn in C \ D.

Finally define UY(n) = ∪j≤nUYj and UY = ∪
n∈NUYn. We call UY the universal

p/q-Yoccoz puzzle. Remark that if ϕc(c) /∈ UY(n), in particular if c ∈ L⋆
p/q, then

GYc(n) = ψc(UY(n)).

5.2 Parabolic dynamical puzzle

Similarly to the polynomial case above, we have for each irreducible rational p/q defined
in [PR2] a universal parabolic p/q-puzzle using the parabolic rays described in section 4
above. We shall for completeness briefly review the construction here The universal
parabolic p/q-puzzle is the puzzle for the Blaschke product Bl, which is the model map
for the external class of the maps g ∈ Per1(1). Recall that the notation Rϵ refers to the
external parabolic ray of Bl with argument ϵ ∈ Σ2, as defined in section 4. Note that
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with the parabolics, the difficulty is that we do not have equipotentials. Therefore we will
define the shortest path from one ray to the next (in the cycle) and use this path as an
equipotential. In [PR2] we compared the two universal puzzles and showed that there is a
natural dynamics preserving bijection between the two puzzles. In fact there is a modified
Universal Yoccoz puzzles inducing Yoccoz puzzles similarly as above, puzzles which yield
the same puzzle results as standard Yoccoz puzzles associated with the Universal Yoccoz
puzzle UY and such that the modified Universal Yoccoz puzzle is homeomorphic to the
Universal parabolic Yoccoz puzzle P to be introduced below.

5.2.1 Shortcuts

Recall that the restriction ϕ+ : D0 −→ C\]−∞, 0] of ϕ is a conformal isomorphism which
extends continuously to the boundary. For 0 < n0, n1 let γ̌(n0, n1) be the arc which is
mapped by ϕ+ to the Archimedean spiral/circle of center 0 connecting −n0 and −n1

counter clockwise through C\R−. And let γ(n0, n1) = −γ̌(n0, n1) ⊂ D1/2. Since any
branch of Bl−n for any n ≥ 1 is univalent on D1/2, we may use such branches to define
short-cuts in any of the pre-images Dr/2n of D1/2 under Bln−1, where n ≥ 1 and r is the
odd number such that h(exp(i2πr/2n)) belongs to the boundary of Dr/2n . Short-cuts were
introduced in [PR2] in order to produces parabolic Yoccoz graphs and puzzles, which are
topologically similar to standard polynomial Yoccoz graphs and puzzles.

The basic observation is that if ϵ0 ∈ Σ2 has n0 > 1 leading 0’s followed by a 1 and
ϵ1 ∈ Σ2 has n1 > 1 leading 1’s followed by a 0. Then the two rays Rϵ0 and Rϵ1 follow
the boundary of the disk D0 precisely down to times −n0 and −n1 respectively. When
forming e.g. puzzles where the two rays Rϵ0 , Rϵ1 are adjacent and so are destined to bound
a puzzle piece we shall replace the subarc of Rϵ0 ∪ Rϵ1 between Rϵ0(−n0) and Rϵ1(−n1)
with the short-cut γ̌(n0, n1). Similarly if ϵ0 has a leading 1, followed by n0 − 1 digits 0
with n0−1 ≥ 1 and then a 1 and ϵ1 has a leading 0 followed by n1−1 ≥ 1 leading 1’s and
then a 0. Then the two rays Rϵ0 and Rϵ1 follow the boundary of the disk D1/2 precisely
down to times −n0 and −n1 respectively. In this case when the two rays Rϵ0 , Rϵ1 are
adjacent in a graph or puzzle we shall replace the subarc of Rϵ0 ∪ Rϵ1 between Rϵ0(−n0)
and Rϵ1(−n1) with the short-cut γ(n0, n1). And finally if ϵ0, ϵ1 coincide up to digit n− 1,
but differ on the n-th digit, say σ2(ϵ

0) has a leading 1, followed by n0 − 1 ≥ 1 0’s and
then a 1 and σ2(ϵ

1) has a leading 0 followed by n1− 1 ≥ 1 leading 1’s and then a 0. Then
the two rays Rϵ0 and Rϵ1 coincide down to time n−1 and follow the boundary of the disk
Dr/2n precisely down to times −n0 − n and −n1 − n respectively, where r has the binary
representation given by the first n digits of ϵ0. Similarly to the above we can short-cut
Rϵ0 ∪Rϵ1 through Dr/2n .

In any of the three cases we denote by γ̂(ϵ0, ϵ1) the arc obtained from Rϵ0 ∪ Rϵ1 by
short-cutting through the appropriate Dr/2n .
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Figure 20: Example of shortcut on the rays RB
0
and RB

1
: on the right shortcut γ̌(n, 3)

and on the left γ(n, 3).

5.2.2 The Universal Parabolic p/q Yoccoz Puzzle.

As above let Z0 =

q−1⋃

j=0

ei2πθj ∪ ei2π(θj+
1
2
) be the unique q-cycle for Q0 of combinatorial

rotation number p/q in S1 and its preimage. Then the set h(Z0) corresponds to the
unique p/q orbit of Bl together with its preimage under Bl (recall that h is the conjugacy
between Bl and z2 satisfying h(z2) = Bl ◦ h defined in Lemma 4.1). Let 0 < ϵ0 < ϵ1 <
. . . < ϵ2q−1 < 1 denote the unique itineraries of these points and let GP0 denote the graph

GP0 = S1 ∪
2q−1⋃

i=0

γ̂(ϵi, ϵ(i+1) mod 2q)

and define the universal parabolic (p/q-Yoccoz) puzzle P0 as the set consisting of the 2q
bounded connected components of the complement of GP0 in C \ D. Denote by P1,0 and
P−1,0 the puzzle pieces with 1 and −1 respectively on the boundary. Then by construction
all the level 0 puzzle pieces except P1,0 are pre-images of P−1,0 under some iterate of Blk,
0 ≤ k ≤ q. This is different from the level 0 universal Yoccoz-puzzle, where all puzzle
pieces are bounded by the same equipotential.
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Define Pn recursively as follows :

Pn = {Bl−1(P ) | P ∈ Pn−1, 1 /∈ ∂P} ∪ {P1,n, P−1,n},

where P1,n, resp. P−1,n, is the component bounded by

γ̂((0, . . . , 0︸ ︷︷ ︸
n times

, ϵ0), (1, . . . , 1︸ ︷︷ ︸
n times

, ϵ2q−1)) resp. by γ̂((0, 1, . . . , 1︸ ︷︷ ︸
(n−1) times

, ϵ2q−1), (1, 0, . . . , 0︸ ︷︷ ︸
(n−1) times

, ϵ0))

together with the corresponding arc on the unit circle.

We shall write γ̌n for the short-cut ∂P1,n ∩D0 and γn for the short-cut ∂P−1,n ∩D1/2.

By construction the only non dynamical parts of the universal parabolic p/q graph
and puzzle are the short-cuts γ̌n and γn, n ≥ 0, i.e.

Bl(GPn+1\(γ̌n+1 ∪ γn+1)) = GPn\γ̌n.

Finally define P = ∪
n∈NPn. We call P the (quadratic) universal parabolic p/q-Yoccoz

puzzle. Denote by GPn =
⋃

P∈Pn
∂P . Denote by GP(n) the union

⋃
0≤k≤n GPk; it coincides

with the union of the boundaries of puzzle pieces of all levels up to and including n. Let
GP be the union of these graphs of all levels.

Figure 21: Shortcuts In the model, graphs of level 0 and 1.

For every p/q, there is a correspondence between the Universal Yoccoz puzzle and
Universal Parabolic puzzle. For any universal Yoccoz puzzle piece of depth n bounded by
external rays of argument {t1, t2}, the corresponding universal parabolic puzzle piece of
depth n is bounded by the parabolic rays of argument {h(t1), h(t2)}.
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Figure 22: Puzzles pieces of level 0 and of level 1, the ones with color define non degenerate
annuli.

5.2.3 Parabolic p/q-Puzzle

Let p/q be an irreducible rational and let B ∈ WM1(p/q) (for the definition of the p/q wake
WM1(p/q) see Lemma 4.21). The parabolic p/q puzzle for gB is derived from the universal
parabolic p/q puzzle, in a maner similar to how the Yoccoz-puzzle for Qc, c ∈ WM(p/q)
is derived from the universal Yoccoz puzzle.

For each n ≥ 0 let V P
n be the interior of the union of closures of level n universal

parabolic puzzle pieces. We define reduced wakes

WM1
n (p/q) := LM1

p/q ∪ {B ∈ WM1(p/q)|hB(vB) ∈ V P
n },

which are similar to the reduced wakes WM
n (p/q) though the phrasing of the definition is

different.

Recall from Corollary 4.24 that for B ∈ WM1(p/q), the unique p/q-cycle of parabolic
rays for gB with rotation number p/q co-lands on αB the unique finite fixed point for
gB, which is repelling. And moreover the second critical value vB for gB belongs to the
dynamical wake WB(p/q). If B ∈ WM1(p/q)\M1 then we may extend h−1

B analytically

to a univalent map on a neighbourhood in Ĉ\D of (GP0\D)∪D1 ∪Up/q, where Up/q is the

unbounded connected component of Ĉ\GP0. And if B ∈ M1 ∩WM1(p/q) then h−1
B even

extends to a biholomorphic map h−1
B : Ĉ\D −→ ΛB. Thus for every B ∈ WM1(p/q) we

may define short cuts γ̌Bn = h−1
B (γ̌n) ⊂ DB

0 and γBn = h−1
B (γn) ⊂ DB

1/2. So we may define
parabolic Yoccoz graphs:

Definition 5.1. For B ∈ WM1
0 (p/q) we define the dynamical graph GPB

0 as

GPB
0 = h−1

B (GP0) ∪ {αB, α
′
B}.
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We define the parabolic (p/q-Yoccoz) puzzle PB
0 for gB as the set consisting of the 2q − 1

connected components of the complement of GPB
0 intersecting the Julia set of gB.

Define GPB
n recursively by

GPB
n+1 := g−1

B (GPB
n \γ̌Bn ) ∪ {γ̌Bn+1 ∪ γBn+1).

We denote by GPB(n) the union
⋃

0≤k≤n GPB
k ; and we write GPB for the union of these

graphs of all levels.

And define the parabolic (p/q-Yoccoz) puzzle PB
n for gB as the set of complementary

components P of GPB
n intersecting the Julia set for gB, PB(N) := ∪0≤n≤NPB

n and PB :=
∪0≤nPB

n .

We take over the vocabulary from Yoccoz puzzles and write PB
n (z) for the level n puzzle

piece containing z, if one such exists, N = {Pn}n for a nest of puzzle pieces, End(N ) =
∩nP n for the end of N . And moreover that N is convergent to z iff End(N ) = {z} and
divergent if End(N ) is not a singleton.
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Then define

T :=
1[

k=0

B�k
2 (T;)

with boundary (in) S1.

For ✏ 2 ⌃2 a parabolic internal ray R̂✏ is the minimal connected subset of T containing
the sequence of points z✏1,✏2,...,✏n , n � 0 (enterpreting n = 0 as z;).

As zj 2 Sj for each j it easily follows by induction, that Tn\Sj is connected and for any
n and any (✏2, . . . , ✏n) contains both the point zj,✏2,...,✏n and the set Tj,✏2,...,✏n . Consequently
Sj [ {0} contains also any of the rays R✏ with ✏1 = j.

For ✏ 2 ⌃2 a parabolic external ray R✏ is the image of R̂✏ by z 7! 1/z.

3.1.2 Parabolic rays for the rational map gB

To be close to the notations of quadratic polynomials it will be convenient to identify T
and the Julia set S1 for B2. In particular, we shall say that ✓ 2 T is the external angle of
the point h(ei2⇡✓).

Definition 3.2. Let gB 2 M1 and ✏ an itinerary. The parabolic dynamical ray of
itinerary ✏ is by definition RB

✏ = h�1
B (R✏).

Figure 8: The 1/3 cycle of parabolic ray in C \ J

Figure 23: Puzzle pieces of level 0.
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Remark 5.2. Note that by construction the second critical point and value, −1, vB as well
as βB are pairwise separated by GPB

0 for every B ∈ WM1
0 (p/q). Moreover the dynamical

wake WB(p/q) is disjoint from DB
0 , for any B ∈ WM1(p/q) so that the second critical

point −1 does not belong to DB
1 and hence for every n the puzzle pieces Pn(βB) and Pn(β

′
B)

are defined and the restrictions

gB : ∂Pn+1(βB)\γ̌Bn+1 −→ ∂Pn(βB)\γ̌Bn and gB : ∂Pn+1(β
′
B)\γBn+1 −→ ∂Pn(βB)\γ̌Bn

are diffeomorphisms.

For B ∈ WM1
0 (p/q) define the graph

GPB
β := GPB

0 ∪ {βB, β′
B} ∪

⋃

n≥0

(∂Pn(βB) ∪ ∂Pn(β
′
B)).

Proposition 5.3. Let B∗ ∈ WM1
0 (p/q) be arbitrary. Then there is a holomorphic motion

ψB∗
β : WM1

0 (p/q)× GPB∗
β −→ Ĉ

with base point B∗ such that ψB∗
β (B,GPB∗

β ) = GPB
β and gB ◦ ψB∗

β (B, z) = ψB∗
β (B, gB∗(z))

for every B ∈ WM1(p/q) and z ∈ GPB∗
β .

Proof. Since the family gB, B ̸= 0 has a persistent parabolic fixed point of fixed parabolic
multiplicity, the normalized Fatou coordinates ϕB for gB depends holomorphically on
both B and z. Hence also the coordinates hB depends holomorphically on the two vari-

ables (B, z). For the same price the short-cuts γ̌Bn , γ
B
n ⊂ D

B

1 move holomorphically with
B. Since GPB

0 is the closure of h−1
B (GP0\D) the graph GPB

0 moves holomorphically with
B ∈ WM1

0 (p/q). By construction βB ≡ ∞ and β′
B ≡ 0 and so move holomorphically.

Finally by Remark 5.2 above there is no critical point for gB on any of the boundary arcs
∂Pn+1(βB)\γ̌Bn+1, ∂Pn+1(β

′
B)\γBn+1 for any n ≥ 0 and any B ∈ WM1

0 (p/q). Hence also
these move holomorphically with B. From this the proof follows.

6 Tower of laminations, combinatorial invariants

6.1 Abstract Towers

The following presentation is an excerpt from [PR1]. For more details the reader is referred
to this paper.

Let E0 denote the unique p/q cycle for Q0, then denote by Zn = Q
−(n+1)
0 (E0) for

n ≥ −1 and Z = ∪n≥0Zn. Remark that Z0 = E0 ∪ (−E0) and that Zn = Q−n
0 (Z0) for

n ≥ 0.
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For E ⊂ S1 we let H(E) denote E union its hyperbolic convex hull in D, H(E) is
therefore a closed set in D.

Figure 24: Lamination associate to a Yoccoz graph, the critical point and value in red.

Definition 6.1. A tuple of equivalence relations (∼n)0≤n≤N , with N ∈ N∪{∞}, is called
a tower if it satisfies the following admissibility conditions (see also [K]):

i) For each n: ∼n is an equivalence relation on Zn.

ii) ∼0 has the two classes E0 and −E0.

iii) For any class E of ∼n with 0 ≤ n ≤ N the set Q0(E) is a class of ∼(n−1) ;

iv) ∼N=
N⋃

n=0

∼n so that ∼n |Zm = ∼m for any m,n with 0 ≤ m < n ≤ N ;

v) For any two distinct classes E and E ′ of ∼n, with 0 ≤ n ≤ N , H(E) ∩H(E ′) = ∅.

By property iv. ∼N imposes ∼n for n ≤ N . We shall thus abbreviate and write simply
∼N for the tower (∼n)0≤n≤N .

The level of a class E is the minimal n ≥ 0 for which E ⊂ Zn.

The finite towers ∼N are the nodes of a tree with root ∼0 and with a branch connecting
each child ∼N back to its parent ∼N−1. We denote this tree by T . The infinite towers
∼∞ on the other hand are the infinite branches of this tree starting at ∼0. We denote the
set or space of all infinite branches T∞.
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For a tower ∼N , we denote by the graph of ∼N the set

G∼N
=

⋃

E a class of ∼N

H(E) ⊂ D

A gap G of a finite tower ∼n is any connected component of D\G∼n . We denote by
essential boundary of a gap G the set δG = G ∩ S1. The image of the gap Gn of ∼n is
defined as the gap Gn−1 of ∼n−1 with δGn−1 = Q0(δGn).

A class E or a gap G is said to be critical iff 0 ∈ H(E), resp. 0 ∈ G. Clearly any finite
tower has either a (unique) critical class or gap. We shall denote the critical class/gap of
∼n by E∗

n/G
∗
n (or just E∗/G∗). The image of the critical class or gap will be called the

critical value class or gap of ∼n and denoted E ′
n/G

′
n. Note that the critical value class or

gap is a class or gap of ∼n−1 and (provided the level of the critical class is n) is a subset
of the critical value gap of ∼n−1.

For a finite tower ∼N with critical gap G∗
N define the critical period k ≥ 1 of ∼N as

the minimal k ≥ 1 for which Qk
0(G

∗
N) is again a critical gap (of ∼N−k). Note that in fact

k ≥ q always. Also in order to ensure that a critical gap always has a critical period, we
may formally define Zn = E0 and ∼n as the equivalence relation with only one class E0

for any n with −q < n < 0.

Let ∼n be a finite tower. If ∼n has a critical class E it has a unique child and we say
that ∼n is a terminal tower.

If ∼n has a critical gap with critical value gap G′
n and if E ⊂ G′

n or G ⊆ G′
n is any

class or gap of ∼n within G′
n. Then ∼n has a unique extension ∼n+1 with critical value

class E respective critical value gap G. For this reason we say ∼n is a fertile tower, when
it has a critical gap.

An infinite tower ∼∞ is said to be renormalizable with combinatorics ∼N and renor-
malization period k if for every n ≥ N , ∼n has critical period k and N is the minimal
height with this period.

Suppose ∼T
∞ is an infinite terminal tower with critical value class E ′

n, that is ∼T
n=

∼∞T |Zn has a critical class E∗
n with image E ′

n and ∼n−1=∼T
∞ |Zn−1 has a critical gap G∗

n−1

with image the critical value gap G′
n−1 containing H(E ′

n). Then G
′
n−1 contains exactly q

gaps G1
n, . . . , G

q
n of ∼n−1, which are adjacent to E ′

n, i.e. with H(E ′
n) ∩ ∂Gj

n ̸= ∅, because
H(E ′

n) is a q-gon. In the light of the above discussion let ∼j
n denote the unique extensions

of ∼n−1 with critical value gaps Gj
n for j = 1, . . . , q. Define recursively for m > n unique

extensions ∼j
m of ∼j

m−1 with critical value gap Gj
m ⊂ Gj

m−1 adjacent to E
′
n. Finally denote

by ∼∞j = ∪m≥n ∼j
m the corresponding infinite towers for j = 1, . . . , q.

We shall say that ∼T
∞ is adjacent to any of the q towers ∼∞1, . . . ,∼∞q and vice versa.
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6.2 The natural tower puzzle relation

Recall that if c ∈ M \ Card then c belongs to a limb Lp/q, so that the p/q cycle of rays
co-land at the α fixed point. Fix p/q with (p, q) = 1 and let Zn,Z be given by p/q as in
Subsection 6.1.

Definition 6.2. Let c belong to the limb Lp/q. Define t, t′ ∈ Zn, n ∈ N ∪ {∞} to be
equivalent, t ∼c

n t′ if and only if the rays Rc
t and Rc

t′ co-land. And define ∼c as the
corresponding tower of equivalence relations.

Note that the arguments t ∈ Zn are precisely the arguments of external rays in the
level n Yoccoz graph and puzzle. And moreover t ∼c

n t′ if and only if Rc
t and Rc

t′ co-
land on a point of Q−n

c (αc). We can thus view ∼c
n as an abstract version of the Yoccoz

graph/puzzle, where the gaps G corresponds to level n puzzle pieces and the hulls H(E)
of classes E corresponds to the unions of segments of co-landing rays. In view of this
for any class E of ∼c say of level n, we shall refer to the closure of the complete set of
co-landing rays with arguments in E as RE. Then the Yoccoz graph GYn is also the first
graph containing the lower ends of the rays in RE.

Similarly any g ∈ M1 \ D belongs to a Limb LM1

p/q .

Definition 6.3. Let g belong to the Limb LM1

p/q . Define t, t′ ∈ Zn, n ∈ N ∪ {∞} to be

equivalent, t ∼B
n t′ if and only if the rays RB

h(t) and R
B
h(t′) co-land. And define ∼B as the

corresponding tower of equivalence relations.

Remark 6.4. In both the polynomial and the parabolic case we shall extend the definition
of ∼c

n respectively ∼B
n to maps Qc with c ∈ WM

n−1(p/q) with c /∈ GYc
n−1 respectively maps

gB with B ∈ WM1
n−1(p/q) with vB /∈ GPB

n−1.

Recall that h : S1 −→ S1 is the conjugacy between Q0 and Bl (see Lemma 4.1).

In other words t ∼B
n t′ are equivalent if and only if the parabolic rays of the level n

parabolic Yoccoz graph GPn
g corresponding to h(u) and h(v) co-land at the samepoint

of g−n(α(g)). As in the polynomial case the equivalence relations ∼B
n can be viewed as

abstract parabolic Yoccoz graphs/puzzles with the gaps G corresponds to level n puzzle
pieces and the hulls H(E) of classes E corresponds to the unions of segments co-landing
rays.

We proved in [PR2, Lemma 5.7] that among all p/q towers adjacent to some terminal
tower∼T

∞ only the renormalizable tower∼⋆
∞ (p/q) with renormalization period q is realised

as ∼c
∞ for some c ∈ M and similarly as ∼B

∞ for some g ∈ M1. Moreover we proved in
[PR2, Theorem 5.6] that any other infinite tower is realized as ∼c

∞ for some c ∈ M. We
summarize this as the following Theorem
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Theorem 6.5. Let B ∈ WM1(p/q), then there exists c ∈ WM(p/q) with

∼c
∞=∼B

∞ .

Definition 6.6. Define an abstract map ǧ from PB to itself given by ǧ(Pn(β
′)) = ǧ(Pn(β)) =

Pn−1(β) for every n ≥ 1 and ǧ(Pn) = g(Pn) for every other level n ≥ 1 puzzle piece Pn.

The following Proposition says that if gB with B ∈ M1\D and Qc with c ∈ M\Card
define the same infinite tower ∼∞, then their puzzles are similar:

Proposition 6.7. Let p/q be an irreducible rational, let B ∈ LM1

p/q and c ∈ Lp/q be

parameters such that ∼c
N=∼B

N , N ∈ N ∪ {∞}. Then there is a dynamically defined
bijection ΞB : Yc(N) −→ PB(N) between the Yoccoz puzzle Yc(N) for Qc and the parabolic
Yoccoz puzzle PB(N) for gB such that

1. For any puzzle piece Yn ∈ Yc of level n, 1 ≤ n ≤ N the puzzle piece Pn = ΞB(Yn)
also has level n and ǧ ◦ ΞB(Yn) = ΞB ◦Qc(Yn).

2. In particular critical puzzle pieces correspond to critical puzzle pieces.

3. Any annulus of the parabolic puzzle PB is non degenerate if and only if the corre-
sponding annulus in the Yoccoz puzzle Yc is non degenerate.

Proof. Combine Theorem 6.5 with [PR2, Lemma 5.1] for the proof in the case N = ∞.
The easier proof in the finite case follows the same line.

Note that if Y in the Propostition above contains either β(c) or β′(c) = −β(c), then
P = ΞB(Y ) contains the parabolic fixed point ∞ respectively its preimage 0.

7 Transfering Yoccoz results to maps in M1

We first recall the basic steps in the proof of Yoccoz theorem of local connectivity for
quadratic polynomials. Then we show that a similar proof can be made for maps gB
in M1. In the following chapters we use this setup to transfer results to the parameter
spaces. Fix for the rest of this section an arbitrary irreducible rational p/q.

7.1 Basic Yocooz puzzle theory and estimates

In this subsection we set-up the machinery for the proof of Yoccoz theorem on local
connectivity of the Mandelbrot set at any non renormalizable parameter in any de-rooted
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limb L⋆
p/q and for the same price local connectivity of the Julia set of such polynomials.

(see for instance in [Mi3]). Recall that l0 was the equipotential level in the definition of
Yoccoz puzzles, that V c

n := {z ∈ C | Gc(z) < l0/2
n} is the dynamical set bounded by the

l0/2
n level set. And moreover WM

n := {c ∈ WM(p/q) | c ∈ V c
n}, n ≥ 0.

Note that for c ∈ WM
0 the set V c

n is the interior of the union of closures of all level n
puzzle pieces.

Let c ∈ WM
0 (p/q). For Yn a puzzle piece of some level n and z ∈ Yn we write

Yn(z) := Yn. We shall furthermore use the abbreviations Y 0
n := Yn(0) ∈ Yn and Y c

n :=
Yn(c) = Qc(Yn+1) ∈ Yn whenever there is such a puzzle piece, that is whenever Qn

c (c)
belongs to a level 0 puzzle piece. If Kc is connected, this only fails whenever Qn+1

c (c) = αc.
Since the dynamics is quadratic any non-critical puzzle piece Y has a unique dynamical
twin Ỹ of the same level with Qc(Ỹ ) = Qc(Y ), in fact Ỹ = −Y . And the critical puzzle

pieces are siamese twins in the sence that Y 0
n = Ỹ 0

n .

Lemma 7.1. Let c ∈ WM
q−1(p/q). Then the map Qq

c has a quadratic-like restriction

fc := Qq
c : U −→ U ′ with Y 0

0 ∩ V c
q ⊂ U ⊂ V c

q .

Moreover the filled-in Julia set K ′
c of fc is contained in {α, α′} ∪ (Y 0

0 ∩ V c
q ) and K

′
c is

connected if and only if fn
c (0) = Qnq

c (0) ∈ {α, α′} ∪ (Y 0
0 ∩ V c

q ) for all n.

Proof. Apply a small thickening of Y 0
0 ∩ V c

q ⊂ U at the ends, se e.g. [Mi3, Corollary 1.7].

The proof given there in the case Qnq
c (0) ∈ Y 0

0 for all n works for all c ∈ WM
q−1(p/q).

In the following fix c ∈ Lp/q.Then precisely one of the following two cases occur

D1. For all n ∈ N : Qnq
c (0) ∈ Y 0

0 .

D2. There exists m ≥ 1 minimal such that Qmq
c (0) /∈ Y 0

0 .

In the first case D1. it follows from Lemma 7.1 above that Qc is q-renormalizable.
That is, there exists a quadratic like restriction Qq

c : U −→ U ′ with connected filled-in
Julia set K ′

c ⊂ Y 0
0 ∪ {α, α′}.

We shall henceforth focus on the second case D2.

In order to describe better the second case we set up some additional notation. For
0 < k < q let Y k

0 denote the level 0 puzzle piece contained in Qk
c (Y

0
0 ). Then Q

k
c (0) ∈ Y k

0

for any c ∈ WM
q−2(p/q). Each Y k

0 is adjacent to α, Y 1
0 = Y c

0 and Y q−1
0 = Y0(β

′). The

corresponding twins Ỹ k
0 are adjacent to α′ and Ỹ q−1

0 = Y0(β). Denote by X0 the interior

of ∪q−1
k=1Y

k
0 and by X̃0 its twin. Then the common univalent image Qc(X0) = Qc(X̃0)

covers all of the level 0 puzzle except Y
c

0.
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Note that the condition Qmq
c (0) /∈ Y 0

0 in D2. is equivalent to Qmq
c (0) ∈ X̃0 and to

Qmq
c (c) /∈ Y c

0 .

When studying parameter space we shall also be interested in the following extension
of condition D2. to all of WM

0 (p/q).

D2’. There exist m ≥ 1 minimal with Qmq
c (0) ∈ X̃0.

Parameters c satisfying D2’. belongs to a dyadic sub-wake of the satellite-copy Mp/q:

Proposition 7.2. A parameter c ∈ WM
0 (p/q) satisfies D2’. if and only if

c ∈ WM
mq−1(p/q, r,m) := WM

mq−1(p/q) ∩WM(p/q, r,m)

where m ≥ 1 is from D2’. and r is odd with 0 < r < 2m.

Proof. Let c ∈ WM
0 (p/q) satsify Qmq

c (0) = Qmq−1
c (c) ∈ X̃0 for some minimal m ≥ 1. Then

c ∈ V c
mq−1 and thus also c ∈ WM

mq−1. Moreover Qmq
c (c) /∈ Y

c

0, hence Q
(m−1)q
c (c) belongs

to the 1/2 dyadic wake Wc(p/q, 1, 1) and thus c ∈ Wc(p/q, r,m) for some odd r with
0 < r < 2m by induction and minimality of m. Hence also c ∈ WM(p/q, r,m).

Recall that for m ≥ 1 and r odd 0 < r < 2m the de-rooted dyadic decoration is given
L∗(p/q, r,m) by

L∗(p/q, r,m) = Lp/q ∩WM(p/q, r,m).

This gives the following decomposition of the limb Lp/q, first observed by Douady and
Hubbard.

Corollary 7.3. The limb Lp/q has a natural stratification as

Lp/q = Mp/q ∪
⋃
r

2m

L∗(p/q, r,m).

Proof. This follows immediately from the dichotomy, D1., D2. above.

For any c ∈ WM
0 (p/q) the common image of puzzle pieces Qc(Y0(β

′)) = Qc(Y0(β))
univalently covers V0\X0, and does not intersect the set X0. It follows that the level 0

twin puzzle pieces Y0(β
′) and Y0(β) = Ỹ0(β

′) each contain q level 1 puzzle pieces, which

are mapped homeomorphically onto Y 0
0 = Ỹ 0

0 and Ỹ k
0 , 0 < k < q. By similar reasoning

every other level 0-puzzle piece contains a unique level 1 puzzle piece Y k
1 ⊂ Y k

0 respectively

Ỹ k
1 ⊂ Ỹ k

1 which is mapped properly onto Y k+1
0 .

Proposition 7.4. For any c ∈ WM
0 (p/q) the boundaries of all puzzle pieces in the β-nest

move holomorphically with c ∈ WM
0 (p/q).
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Proof. The level 0 Yoccoz graph GYc
0 ⊂ ∂ Y0(β) moves holomorphically with c over

WM(p/q), since the c ∈ Wc(p/q) ∩ V c
0 , see also Section 6. Moreover the restriction

Qc : Y1(β) −→ Y0(β) ⊃⊃ Y1(β) is biholomorphic with a univalent extension to a neigh-
bourhood of Y0(β). Hence by induction Yn+1(β) ⊂⊂ Yn(β) = Qc(Yn+1(β)). From this the
proposition follows by induction.

By construction there are q puzzle pieces of level n adjacent to αc for every n. And
thus q sequences of nested puzzle pieces adjacent to α, N α,k := {Y α,k

n }n≥0, defined by

Y α,k
0 = Y k

0 . Moreover Qc maps Y α,k
n+1 properly onto Y

α,(k+1)mod q
n for every n and k and

the degree is 1 unless k = 0 and Y α,k
n+1 = Y 0

n+1, in which case the degree is 2. It follows
immediately that either all q nests are convergent to α or none is convergent.

In order to create a fundamental system of nested neighbourhoods of αc we denote by

Y α
n the interior of ∪q−1

k=0Y
α,k
n , so that Y α

n is an open neighbourhood of αc for all n. However
no Y α

n is a puzzle piece. Let r/2m, r odd and 0 < r < 2m be a dyadic rational and let
c ∈ WM(p/q, r,m). Then Qc maps Y α

n biholomorphically onto Y α
n−1 and Y α

n ⊂⊂ Y α
n−q for

all n ≥ (m+1)q. Moreover the boundaries ∂Y α
n move holomorphically overWM(p/q, r,m)

and continuously over the closure.

Lemma 7.5. Suppose c ∈ WM
0 (p/q) satisfies D2’. for somem ≥ 1. Let fc = Qq

c : U −→ U ′

be a quadratic like map as in Lemma 7.1 with Y 0
0 ∩ Vmq ⊂ U ⊂ Vmq. Then

1. the filled Julia set K ′
c ⊂ Y α,0

mq ∪ Ỹ α,0
mq ⊂ U ,

2. the restriction fc : Y
α,0

mq −→ Y
0

m(q−1) ⊂ X̃0 is a holomorphic diffeomorphism,

3. diam(Y (n+m)q) → 0 as n → ∞ uniformly over all connected components Y(n+m)q of

f−n
c (Y α,0

mq ∪ Ỹ α,0
mq ).

4. If Y(n+1+m)q ⊂ Y(n+m)q are nested puzzle pieces with fn
c (Y(n+m)q), f

n+1
c (Y(n+1+m)q) ∈

{Y α,0
mq , Ỹ

α,0
mq }, then ∂Y(n+1+m)q ∩ ∂Y(n+m)q ∩K ′

c ⊂ f
−(n+1)
c (αc).

5. In particular for any z ∈ K ′
c either z is not prefixed to αc under fc and the nest

{Yn(z)}n is convergent to z or Qlq
c (z) = αc for some minimal l and there are q nests

{Y z,k
n }n, 0 ≤ k < q convergent to z, where Qlq

c (Y
z,k
n+lq) = Y α,k

n for each n and k.

Proof. The set U\(Y α,0
mq ∪Ỹ α,0

mq ) consists of points z with fn
c (z) ∈ X0∪X̃0 for some minimal

n, 0 ≤ n ≤ m. Thus all such points escapes and so K ′ ⊂ (Y α,0
mq ∪ Y α,0

mq ). The post-critical

orbit Of , the forward orbit of 0 under fc is finite and disjoint from (Y α,0
mq ∪ Ỹ α,0

mq ). Hence
the latter has finite hypberbolic diameter in U ′\Of . Thus the hyperbolic diameter of
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Y(n+m)q for Y(n+m)q any connected component of f−n
c (Y α,0

mq ∪ Ỹ α,0
mq ) converges geometrically

to 0, as n→ ∞.

By construction ∂Y α,0
mq ∩ ∂Y 0

(m−1)q ∩K ′
c = {αc} and ∂Ỹ α,0

mq ∩ ∂Y 0
(m−1)q ∩K ′

c = {α′
c} so

that 4. follows by induction.

Finally if z ∈ K ′
c, then z ∈ End(N ) for a unique nestN = {Yl(z)}l≥0 with f

(n−m)
c (Ynq) ∈

{Y α,0
mq , Ỹ

α,0
mq } for any n ≥ m. And by the above this nest is convergent to z. Let N α,k

denote the q nests adjacent to α. Then the nest N α,0 is convergent to α by the first part
of the proof and hence all are. Thus if z ∈ K ′

c is prefixed to α by fc, then also all q nests
adjacent to z are convergent.

By Proposition 7.2 the hypothesis D2’. of Lemma 7.5 is equivalent to c ∈ WM
mq−1(p/q, r,m)

for some odd r with 0 < r < 2m. Fix such r and define for c ∈ WM
mq−1(p/q, r,m) the set

Γ′
c := K ′

c ∪
⋃

n≥0

f−n
c (∂ Y α,0

mq ∪ ∂ Ỹ α,0
mq ) =

⋃

n≥0

f−n
c (∂ Y α,0

mq ∪ ∂ Ỹ α,0
mq ).

Proposition 7.6. Let m ≥ 1, let r be odd with 0 < r < 2m and fix c∗ ∈ WM
mq−1(p/q, r,m).

Then there exists a holomorphic motion

ψc∗
r,m : WM

mq−1(p/q, r,m)× Γ′
c∗ −→ C

with base point c∗ such that ψc∗
r,m(c,Γ

′
c∗) = Γ′

c and fc ◦ψc∗
r,m(c, z) = ψc∗

r,m(c, fc∗(z)) for every
c ∈ WM

mq−1(p/q, r,m) and every z ∈ Γ′
c∗.

Proof. For c ∈ WM
mq−1(p/q, r,m) the twin boundaries ∂ Y α,0

mq and ∂ Ỹ α,0
mq move holomorphi-

cally with c, because fm
c maps each boundary onto the boundary of Y 0

0 by degree 2m−1

without passing the critical point, so that fm
c is a local diffeomorphism around each bound-

ary point. Indeed, if the common forward orbit of the two boundaries were to pass the
critical point 0, then the critical point would end up on the q periodic rays on the boundary

of Y 0
0 , so that Qmq

c (0) ∈ Y
0

0, which contradicts that c ∈ WM
mq−1(p/q, r,m). The bound-

ary of Y 0
0 moves holomorphically over the larger set WM

0 (p/q), which compactly contains

WM
mq−1(p/q, r,m). And fc(z) is a holomorphic function of (c, z). Thus ∂ Y α,0

mq and ∂ Ỹ α,0
mq

move holomorphically with c ∈ WM
mq−1(p/q, r,m). Secondly for c ∈ WM

mq−1(p/q, r,m) the

map fc sends each puzzle piece Y α,0
mq and Ỹ α,0

mq univalently onto the larger (i.e. containing)
puzzle piece Y 0

(m−1)q and extends as a diffeomorphism of neighbourhoods of the closures.

Hence also all pre-images of ∂ Y α,0
mq and ∂ Ỹ α,0

mq under iterates of fc move holomorphically
with c ∈ WM

mq−1(p/q, r,m). Finally K ′
c is contained in the closure of the union of all

pre-image puzzle boundaries in Γ′
c. Thus the proposition follows by the λ-lemma for

holomorphic motions.
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Note that z ∈ Kc with Q
l
c(z) = αc will be adjacent to 2q nests if 0 belongs to the orbit

of z.

For 0 < k < q let Xk
1 ⊂ Y0(β

′) denote the unique such level 1 puzzle piece with

(univalent) image Ỹ k
0 and let X1 denote the interior of ∪kX

k

1, so that Qc maps X1 diffeo-

morphically onto X̃0.

Proposition 7.7. Let c ∈ Lp/q, then for any z ∈ Kc the orbit falls in precisely one of the
following three categories:

i) There exists l ≥ 0 such that Ql
c(z) = β.

ii) There exists l ≥ 0 such that Ql
c(z) ∈ K ′

c.

iii) There exists a strictly increasing sequence {ln}n≥0 with Qln
c (z) ∈ X1 for all n.

Proof. Notice at first that for any point z ∈ Kc which does not satisfy i) there exists l ≥ 0,

such that Ql
c(z) ∈ Y 0(β

′). If Ql
c(z) /∈ X1, then Q

l+1
c (z) ∈ Y 0

0 , and thus Ql+q
c (z) ∈ Y 0(β

′).

Hence eitherQl+1+nq
c (z) ∈ Y 0

0 for all n ≥ 0 so that the orbit of z satisfies ii), by Lemma 7.1,
or there exists some n such that Ql+nq

c (z) ∈ X1, set l0 = l + nq. Then apply the same
argument recursively to first Ql0

c , noting that Qc(Q
l0
c (z)) /∈ Y0(β

′) ⊃ X1, to obtain the
desired strictly increasing sequence with Qln

c (z) ∈ X1.

Proposition 7.8. Let c ∈ Lp/q satisfy D2. In the first two cases i) and ii) of Proposi-
tion 7.7 any nest {Yn}n such that z ∈ Y n for every n is convergent to z. Moreover if
z = c then there exists N ≥ l such that the restriction Ql

c : YN −→ Ql
c(YN) is univalent.

Recall that there is a unique Yn = Yn(z) with z ∈ Yn except if Qk
c (z) = αc for some k,

in which case there are precisely q such nests if the orbit of z avoids the critical point 0
and 2q such nests if not.

Proof. If there exists l ≥ 0 such that Ql
c(z) = β, take l minimal with this property. Then

the restrictions Ql
c : Yn+l −→ Yn(β) are proper maps of non-increasing degrees dn for every

n ≥ 0. Since the nest {Yn(β)}n is convergent to β the nest {Yn}n is convergent to z. If
0 = Qr

c(z) for some r ≤ l then dn = 2 for every n ≥ 0. Otherwise, since the nest {Yn}n is
convergent to z, there exists N ≥ l so that 0 /∈ Qk

c (YN) for any k < l and so the restriction
f l : YN+l −→ YN(β) is univalent. In particular if z = c, then this restriction is univalent.

For the remaining cases let m ≥ 1 be given by c satisfying D2..

If there exists l ≥ 0 such that Ql
c(z) := w ∈ K ′

c, with l minimal and z is not prefixed to
α. Then the restrictions Ql

c : Yn+l −→ Yn(w) are proper maps of non-increasing degrees dn
for every n ≥ 0. Since the nest {Yn(w)}n is onvergent to w by Lemma 7.5, the nest {Yn}n
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is convergent to z. If 0 = Qr
c(z) for some r ≤ l then dn = 2 for every n ≥ mq. Otherwise,

since the nest {Yn}n is convergent to z, there exists N ≥ mq so that 0 /∈ Qr
c(YN) for

any r < l and thus dn = 1 for n ≥ N . In particular if z = c then the restriction
Ql

c : YN+l −→ YN(w)is univalent.

Finally if there exists l ≥ 0 such that Ql
c(z) = α ∈ K ′

c, with l minimal. Then there
exists k, 0 ≤ k < q such that the restrictions Ql

c : Yn+l −→ Y α,k
n are proper maps of non-

increasing degrees. Since the nest {Y α,k
n }n is convergent to α by Lemma 7.5, the nest

{Yn}n is convergent to z. And hence also any other nest adjacent to z is convergent.

The above Proposition immediately gives the following Corollary for parameterspace.

Corollary 7.9. Let c ∈ Lp/q and suppose there exists m ≥ 1 minimal such that Qmq
c (0) /∈

Y 0
0 . Then precisely one of the following three cases occur

i) There exists l ≥ mq such that Ql
c(0) = β.

ii) There exists l > mq such that Ql
c(0) ∈ K ′.

iii) There exists a strictly increasing sequence {ln}n≥0 with l0 = mq− 1 with Qln
c (0) ∈ X1

for all n.

Moreover in both cases i) and ii) any nest {Yn}n such that c ∈ Y n for every n is convergent
to c.

In the last statement there is a unique such Yn = Yn(c) except if Q
k
c (c) = αc for some

k, in which case there are precisely q such nests, which all are convergent to αc by the
discussion above.

Note that Y q−1
0 \X1 is a non degenerate annulus contained in any of the annuli Y q−1

0 \Xk

1,
0 < k < q.

Theorem 7.10. Let c ∈ Lp/q satisfy the hypotheses of Corollary 7.9 and the property
iii) therein. Then there exists a non degenerate annulus An0 = Yn0\Y n0+1 between nested
puzzle pieces of the Yoccoz puzzle for Qc with Qn0

c (Yn0) = Y q−1
0 , Qn0

c (Yn0+1) = Xk
1 for

some 0 < k < q. And there exists a nested sequence of annuli Ac
ni

= Y c
ni
\ Y c

ni+1, i > 0
with n0 < n1 ↗ ∞ surrounding the critical value c such that :

• the map Qni−n0
c : Ac

ni
→ An0 is a covering map of degree 2di, di ≥ 0 for i ≥ 1 ;

• in particular also all the annuli Ac
ni
, i > 0 are non degenerate ;
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• – either the sum
∑

i≥1

mod(Ac
ni
) = mod(An0)

∑

i≥1

1

2di
is infinite and

the intersection
⋂

n≥0

Y c
n reduces to a point,

– or there exists k > 0 such that for all n large enough the map
Qk

c : Y
c
n+k → Y c

n is quadratic-like with connected filled-in Julia set.

Note that the annulus An0 does not necessarily surround the critical value.

Theorem 7.10 follows from a classical tableaux argument, see e.g.. [Mi3]. The degree
2d0 of the restriction Qn0

c : Yn0 −→ Y q−1
0 may be larger than the degree of the restriction

Qn0
c : Yn0+1 −→ Xk

1 . This happens precisely when Y q−1
0 \Xk

1 contains one or more critical
values for the restriction of Qn0

c to An0 However as the long composition of Qc with itself
has degree either 1 or 2 in each step, it easily follows that

mod(An0) ≥ mod(Y q−1
0 \Xk

1)/2
d0 ≥ mod(Y q−1

0 \X1)/2
d0 .

Note that Theorem 7.10 can also be proved using the following results : [R2, Lemma 1.22]
for the non-recurrent case and [R2, Lemma 1.25 case 1)] for the recurrent case.

7.2 Yoccoz-type estimates for the parabolic maps gB

In this section we port the results above for the quadratic polynomials Qc to the parabolic
quadratic rational maps g = gB = z + 1/z + B, ℜ(B) > 0 with βB = ∞ a parabolic
fixed point of multiplier 1 and a unique finite fixed point αB = −1/B of multiplier
A(B) = 1−B2. We let τ(z) = 1/z denote the covering involution for g.

As for quadratic polynomials we denote by β′ = β′
B = 0 the finite preimage of β.

Similarly we denote by α′ = α′
B = −B the non fixed pre- image of αB. The critical point

1 for gB is first attracted in the sense that the extended attracting Fatou coordinate ϕB

for gB maps 1 to 0 and the domain ΩB with 1 ∈ ∂ ΩB univalently onto H+. The other
or second critical point −1 for gB and its critical value vB = gB(−1) = −2 + B play the
same role for gB as the critical point 0 and its critical value c plays for Qc. In particular
the second critical point and value belong to the filled-in Julia set KB, if and only if KB

is connected and is otherwise in Λg\gB(ΩB).

In the rest of this subsection we shall fix an irreducible rational p/q and consider
B ∈ WM1(p/q). We setup notation for special puzzle pieces for gB corresponding to the
notation for special puzzle pieces for Qc.

Recall that V P
n is the interior of the union of closures of level n universal parabolic
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puzzle pieces for n ≥ 0. And that

WM1
n (p/q) := LM1

p/q ∪ {B ∈ WM1(p/q) | hB(vB) ∈ V P
n }

for n ≥ 0.

Let B ∈ WM1
0 (p/q). We shall use the abbreviations P 0

n := Pn(−1) ∈ Pn for the critical
puzzle piece of depth n and PB

n := Pn(vB) = gB(P
0
n+1) ∈ Pn for the critical value puzzle

piece of depth n, whenever there is such a puzzle piece. We shall use the symbol P̃ = τ(P )

for the dynamical twin of the puzzle piece P , i.e. gB(P̃ ) = gB(P ).

Lemma 7.11. Let B ∈ WM1
q−1(p/q). Then the map gqB has a quadratic-like restriction

f = fB = gqB : U −→ U ′ with P 0
0 ∩ V B

q ⊂ U ⊂ V B
q .

Moreover the filled-in Julia set K ′
B of f is contained in {α, α′} ∪ (P 0

0 ∩ V B
q ) and K ′

B

is connected if and only if fn(−1) = gnqB (−1) ∈ {α, α′} ∪ (P 0
0 ∩ V B

q ) for all n.

Proof. See the proof of the similar Lemma 7.1 above for the corresponding polynomials
Qc.

In the following fix B ∈ LM1

p/q . Then just as for quadratic polynomials precisely one of
the following two cases occur

DB1. For all n ∈ N : gnqB (−1) ∈ P 0
0 .

DB2. There exists m ≥ 1 minimal such that gmq
B (−1) /∈ P 0

0 .

In the first case DB1. it follows from Lemma 7.11 above that gB is q-renormalizable.
That is, there exists a quadratic like restriction fB = gqB : U −→ U ′ with connected filled-
in Julia set K ′

B ⊂ P 0
0 ∪ {α, α′}.

As for polynomials we shall henceforth focus on the second case DB2.

We continue to set up notation analogous to the polynomial case. For 0 ≤ k < q
let P k

0 denote the level 0 puzzle piece contained in gkB(P
0
0 ). Then gkB(−1) ∈ P k

0 for any
B ∈ WM1

q−2(p/q). Each P k
0 is adjacent to α and P q−1

0 = P0(β
′). The corresponding twins

P̃ k
0 are adjacent to α′ and P̃ q−1

0 = P0(β). Denote by S0 the interior of ∪q−1
k=1P

k
0 and by S̃0 its

twin, that is S0 plays the role of X0. Then the common image gB(S0) = gB(S̃0) covers the

level 0 puzzle except for P
B

0 and the subset DB
0 between the shortcut γ̌B0 = ∂ P0(β)∩DB

0

and gB(γ̌
B
0 ) ⊂ DB

0 .

Note that the condition gmq
B (−1) /∈ P 0

0 in DB2. is equivalent to gmq
B (−1) ∈ S̃0.

When studying parameter space we shall as for polynomials also be interested in the
following extension of condition DB2. on B ∈ WM1

0 (p/q).
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DB2’. There exist m ≥ 1 minimal with gmq
B (−1) ∈ S̃0.

Parameters B satisfying DB2’. (see Definition 4.27 for the definition) belongs to a dyadic
sub-wake of the satellite-copy MM1

p/q :

Proposition 7.12. A parameter B ∈ WM1
0 (p/q) satisfies DB2’. if and only if

B ∈ WM1
mq−1(p/q, r,m) := WM1

mq−1(p/q) ∩WM1(p/q, r,m)

where m ≥ 1 is from DB2’. and r is odd with 0 < r < 2m.

Proof. Let B ∈ WM1
0 (p/q) satsify gmq

B (−1) = gmq−1
B (vB) ∈ S̃0 for some minimal m ≥ 1.

Then vB ∈ V B
mq−1 and thus also B ∈ WM1

mq−1. Moreover gmq
B (vB) /∈ P

B

0 , hence g
(m−1)q
B (vB)

belongs to the 1/2 dyadic wake WB(p/q, 1, 1) and thus B ∈ WB(p/q, r,m) for some odd r
with 0 < r < 2m by induction and minimality of m. Hence also B ∈ WM1(p/q, r,m).

Recall that for m ≥ 1 and r odd 0 < r < 2m the derooted dyadic decoration
LM1∗ (p/q, r,m) is the set of parameters

LM1
∗ (p/q, r,m) = LM1

p/q ∩WM1(p/q, r,m).

Let LM1(p/q, r,m) denote the limb with root, i.e. LM1∗ (p/q, r,m) union the root point of
WM1∗ (p/q, r,m) (see also Definition 4.27 and trailing comments). This gives the follow-
ing decomposition of the limb LM1

p/q , corresponding to the decomposition of limbs of the
Mandelbrot set.

Corollary 7.13. The limb LM1

p/q has a natural stratification as

LM1

p/q = Mp/q ∪
⋃
r

2m

LM1
∗ (p/q, r,m).

Proof. This follows immediately from the dichotomy, DB1., DB2. above.

As an immediated corollary of Proposition 5.3 we obtain

Proposition 7.14. The boundaries of the puzzle pieces in both the βB-nest N (βB) =
{Pn(βB)}n≥0 and the β′

B-nest N (β′
B) = {Pn(β

′
B)}n≥0 move holomorphically with B ∈

WM1
0 (p/q).

It was proven in [PR2] that the β and β′-nest are convergent to β and β′ respectively.

Similarly to the polynomial case, for any B ∈ WM1
0 (p/q) the level 0 twin puzzle

pieces P0(β
′) and P0(β) = P̃0(β

′) each contain q level 1 puzzle pieces, which are mapped
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homeomorphically onto P 0
0 = P̃ 0

0 and P̃ k
0 , 0 < k < q except for the slight variation that due

to the short cuts P
q−1

1 ⊂ P q−1
0 and similarly for the twins, but gB(P

q−1
1 ) = gB(P̃

q−1
1 )∩DB

0

differs in an inessential way from P̃ q−1
0 ∩DB

0 . And every other level 0-puzzle piece contains

a unique level 1 puzzle piece P k
1 ⊂ P k

0 respectively P̃ k
1 ⊂ P̃ k

1 which is mapped properly
onto P k+1

0 .

By construction there are q puzzle pieces of level n adjacent to αB for every n. And
thus q sequences of nested puzzle pieces N α,k := {Pα,k

n }n≥0, adjacent to αB and defined

by Pα,k
0 = P k

0 . Moreover gB maps Pα,k
n+1 properly onto P

α,(k+1)mod q
n for every n and k and

the degree is 1 unless k = 0 so that Pα,k
n+1 = P 0

n+1. It follows immediately that either all q
nests are convergent to α or none is convergent.

Lemma 7.15. Let m ≥ 1 and suppose that B ∈ WM1
mq−1(p/q) satisfies DB2. with this m.

Let f : U −→ U ′ be a quadratic like map as in Lemma 7.11 with k = mq, then

1. the filled Julia set K ′
B ⊂ Pα,0

mq ∪ P̃α,0
mq ⊂ U ,

2. the restriction fB : P
α,0

mq −→ P
0

m(q−1) ⊂ S̃0 is a holomorphic diffeomorphism,

3. diam(P (n+m)q) → 0 as n → ∞ uniformly over all connected components P(n+m)q of

f−n
B (Pα,0

mq ∪ P̃α,0
mq ).

4. If P(n+1+m)q ⊂ P(n+m)q are nested puzzle pieces with fn
B(P(n+m)q), f

n+1
B (P(n+1+m)q) ∈

{Pα,0
mq , P̃

α,0
mq }, then ∂P(n+1+m)q ∩ ∂P(n+m)q ∩K ′

B ⊂ f
−(n+1)
B (αB).

5. In particular for any z ∈ K ′
B either z is not prefixed to αB under gqB and the nest

{Pn(z)}n is convergent to z or glqB(z) = αB for some minimal l and there are q nests
{P z,k

n }n, 0 ≤ k < q convergent to z and with glqB(P
z,k
n+lq) = Pα,k

n for each n and k.

In order to create a fundamental system of nested neighbourhoods of αB we denote

by Pα
n the interior of ∪q−1

k=0P
α,k
n , so that Pα

n is an open neighbourhood of αB for all n.
However no Pα

n is a puzzle piece. Let r/2m, r odd and 0 < r < 2m be a dyadic rational
and let B ∈ WM1(p/q, r,m). Then for all n ≥ (m + 1)q gB maps Pα

n biholomorphically
onto Pα

n−1 and Pα
n ⊂⊂ P al

n−q. Moreover the the union ∪∂Pα
n of boundaries of ∂Pα

n move
holomorphically over WM1(p/q, r,m) and continuously over the closure.

Recall that f similarly maps Pα,0
mq diffeomorphically onto Pm(q−1).

Proof. The proof is completely analogous to the proof of Lemma 7.5 above for polynomials
and is left to the reader.
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By Proposition 7.12 the hypothesis DB2’. of Lemma 7.15 is equivalent toB ∈ WM1
mq−1(p/q, r,m)

for some odd r with 0 < r < 2m. Fix such r and define for c ∈ WM1
mq−1(p/q, r,m) the set

Γ′
B := K ′

B ∪
⋃

n≥0

f−n
B (∂ Pα,0

mq ∪ ∂ P̃α,0
mq ) =

⋃

n≥0

f−n
B (∂ Pα,0

mq ∪ ∂ P̃α,0
mq ).

Proposition 7.16. Letm ≥ 1, let r be odd with 0 < r < 2m and fix B∗ ∈ WM1
mq−1(p/q, r,m).

Then there exists a holomorphic motion

ψB∗
r,m : WM1

mq−1(p/q, r,m)× Γ′
B∗ −→ C

with base point B∗ such that ψB∗
r,m(B,Γ

′
B∗) = Γ′

B and fB ◦ψB∗
r,m(B, z) = ψB∗

r,m(B, fB∗(z)) for

every B ∈ WM1
mq−1(p/q, r,m) and every z ∈ Γ′

B∗.

Proof. The proof is completely analogous to the proof of Proposition 7.6 above for poly-
nomials and is left to the reader.

Note that z ∈ KB with glB(z) = αB will be adjacent to 2q nests if −1 belongs to the
orbit of z.

For 0 < k < q let Sk
1 ⊂ P0(β

′) and S̃k
1 ⊂ P̃0(β

′) = P0(β) corresponding to Xk
1 and X̃k

1

denote the level 1 such puzzle pieces different from Pα,q−1
1 and P̃α,q−1

1 respectively indexed

so that gB(S
k
1 ) = P̃ k

0 for 0 < k < q − 1 and Sq−1
1 = P1(β

′). As with X1 in the polynomial

case let S1 denote the interior of ∪kSk
1 .

Proposition 7.17. Let B ∈ LM1

p/q and assume g
(m−1)q
B (−1) ∈ P 0 and gmq

B (−1) /∈ P 0 for
some m ≥ 1. Then for any z ∈ KB the orbit falls in precisely one of the following three
categories:

i) There exists l ≥ 0 such that glB(z) = β.

ii) There exists l ≥ 0 such that glB(z) ∈ K ′.

iii) There exists a strictly increasing sequence {ln}n≥0 with glnB (z) ∈ S1 for all n.

Moreover in both cases i) and ii) any nest {Pn}n such that z ∈ P n for every n is convergent
to z.

In the last statement there is a unique such Pn = Pn(z) except if g
k
B(z) = αB for some

k, in which case there are precisely q such nests. By the above these q nests are either all
convergent or all divergent.
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Proof. Again the proof is analogous to the proof of Proposition 7.7 and is left to the
reader.

Proposition 7.18. Let B ∈ LM1

p/q satisfy DB2. In the first two cases i) and ii) of Propo-

sition 7.17 any nest {Pn}n such that z ∈ P n for every n is convergent to z. Moreover
if z = vB then there exists N ≥ l such that the restriction gl−1

B : PN −→ PN−l+1(β
′) is

univalent in .i) and glB : PN −→ glB(PN) is univalent in ii).

Recall that there is a unique Pn = Pn(z) with z ∈ Pn except if gkB(z) = αB for some
k, in which case there are precisely q such nests if the orbit of z avoids the critical point
−1 and 2q such nests if not.

Proof. The proof is mostly analogous to the proof of Proposition 7.8 we point out the
difference and leave the rest to the reader. The difference is due to the fact that the
relation between Pn+1(β

′) and Pn(β) is only partly dynamical because of the short-cuts
on the boundary. However the only way to β from vB is via β′ and all pre-images under
iteration of any of the puzzle pieces Pn(β

′) are dynamical, hence the l − 1 in place of l
in the formula above in the case i). Other than this the proof is completely analogous to
the proof of Proposition 7.8.

As in the polynomial case the above Proposition immediately gives the following Corol-
lary for parameterspace.

Corollary 7.19. Let B belong to a dyadic decoration LM1(p/q, r,m) for some r is odd
and 0 < r < 2m. Then precisely one of the following three cases occur

i) There exists l ≥ mq such that glB(−1) = βB.

ii) There exists l > mq such that glB(−1) ∈ K ′
B.

iii) There exists a strictly increasing sequence {ln}n≥0 with l0 = mq−1 with glnB (−1) ∈ S1

for all n.

Moreover in both cases i) and ii) any nest {Pn}n such that the critical value vB ∈ P n for
every n is convergent to vB.

In the last statement there is a unique such Pn = Pn(vB) except if g
k
B(vB) = αB for

some k, in which case there are precisely q such nests all of which are convergent by the
discussion above.

Note that P q−1
0 \S1 is a non degenerate annulus contained in any of the annuli P q−1

0 \Sk

1,
0 < k < q.
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For the rest of this paragraph we fix B ∈ LM1

p/q and we let c ∈ Lp/q be a parameter

with ∼B
∞ = ∼c

∞ as provided by Lemma 6.7.

Proposition 7.20. Let B ∈ LM1

p/q and let c ∈ Lp/q be a parameter with ∼B
∞ = ∼c

∞. If

B ∈ MM1

p/q then c ∈ Mp/q. And if B ∈ LM1(p/q, r,m) for some r is odd and 0 < r < 2m,

then c ∈ L(p/q, r,m) and moreover

i) glB(−1) = βB if and only if Ql
c(0) = βc.

ii) glB(−1) ∈ K ′
B if and only if Ql

c(0) ∈ K ′
c

iii) glB(−1) ∈ S1 if and only if Ql
c(0) ∈ X1.

Proof. Let ǧB : P −→ P denote the map of puzzle pieces induced by gB (defined in Def-
inition 6.6). And let χ : Y −→ P denote the dynamical correspondence between puz-
zles of Proposition 6.7. Then nests are mapped to nests and in particular the criti-
cal value nest {Y c

n}n is mapped to the critical value nest {PB
n }n. From this it follows

that c ∈ L(p/q, r,m) and iii) follows. Combining further with the descriptions of K ′
c in

Lemma 7.1 and K ′
B in Lemma 7.11 yields ii). Finally the β-nest {Yn(βc)}n is easily seen

to always be convergent. And the β-nest {Pn(βB)}n was proven to always be convergent
in [PR2, Prop 5.10]. So that also i) also follows from χ conjugating puzzle dynamics

We are now ready to state and prove a parabolic analog of Theorem 7.10:

Theorem 7.21. Let B ∈ LM1

p/q satisfy the hypotheses of Corollary 7.19 and its property

iii). Then there exists a non degenerate annulus AB
n0

= Pn0\P n0+1 between nested puzzle

pieces of the parabolic Yoccoz puzzle for gB with gn0
B (Pn0) = P q−1

0 , gn0
B (Pn0+1) = Sk

1 for
some 0 < k < q.

And there exists a nested sequence of annuli AB
ni

= PB
ni
\PB

ni+1, i > 0 with n0 < n1 ↗ ∞
surrounding the critical value vB such that :

• the map gni−n0
B : AB

ni
→ AB

n0
is a covering map of degree 2di, di ≥ 0 for i ≥ 1 ;

• in particular also all the annuli AB
ni
, i > 0 are non degenerate ;

• – either the sum
∑

i≥1

mod(AB
ni
) = mod(AB

n0
)
∑

i≥1

1

2di
is infinite,

PB
n is defined for all n and

End({PB
n }n) = vB,
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– or there exists k > 0 such that for all n large enough the map

gkB : PB
n+k → PB

n

is quadratic-like with connected filled-in Julia set.

Note that the above sums are finite only when ∼ is renormalizable of period k > q.
As with Theorem 7.10 the annulus AB

n0
will in general not surround the critical value vB.

Proof. There are two immediate proof strategies. Either redo the usual puzzle argument
or as we shall do here combine Proposition 6.7 with Theorem 7.10. And let c ∈ Lp/q be
a parameter with ∼B

∞ = ∼c
∞. Let {Yni

}i and {Yni+1}i be the sequences of Yoccoz puzzle
pieces given by Theorem 7.10. And for each i ≥ 0 let Pni

= χ(Yni
), Pni+1 = χ(Yni+1).

Then by Proposition 6.7 the desired properties for the non-degenerate annuli AB
ni

follows
from the similar properties of the annuli Ac

ni
in Theorem 7.10. Moreover the covering

degree di are the same so that

∑

i≥1

mod(AB
ni
) = mod(AB

n0
)
∑

i≥1

1

2di
=

mod(AB
n0
)

mod(Ac
n0
)

∑

i≥1

mod(Ac
ni
).

Corollary 7.22. Let B ∈ LM1

p/q satisfy the hypotheses of Corollary 7.19 and let c ∈ Lp/q

be a parameter with ∼B
∞ = ∼c

∞. Then c satisfies the hypotheses of Corollary 7.9 and for
any nest {Yn}n with c ∈ Yn for all n, vB ∈ Pn for all n where Pn = χ(Yn) and

• End({Yn}n) = {c} if and only if End({Pn}n) = {vB}

• End({Yn}n) is the filled Julia set of a quadratic-like restriction of Qk
c

if and only if
End({Pn}n) is the filled Julia set of a quadratic like restriction of gkB.

8 Parabolic Parameter-Puzzles

8.1 Parabolic Parameter Puzzle

In the p/q-wake WM1(p/q), we define the parameter puzzle pieces using three different
points of view. As a first definition, we take the universal parabolic p/q graph GPn and
the parametrization Υ (see Definition 8.1) to define a parameter parabolic graph. This
way, the complementary regions, the parameter puzzle pieces, of level n parametrize a
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holomorphic motion of the level n + 1 dynamical graph GPB
n+1. In particular this point

of view allows to compare pieces and annuli in the dynamical plane and in the parameter
plane. We characterize then the parameter puzzle pieces as the set of parameters such
that the critical value stays in the holomorphic motion of the same puzzle piece. The third
characterization is in terms of laminations. A parameter puzzle piece of level n corresponds
to the set of parameters sharing up to level n + 1 the same lamination associated to a
center.

Definition 8.1. For n ≥ 0, the parameter parabolic graph is defined by

GPPn := WM1
(p/q) ∩Υ−1(GPn).

Note that Υ−1(GPn) ⊂ C\M1. For this reason, we add the accumulation of Υ−1(GPn)
which consists of landing points of rays coming from the graph. Those rays have angles
which are pre-images of θ and θ′, therefore they land at Misiurewicz parameters (see
Lemma 4.26). Any B ∈ GPPn ∩ LM1

p/q is a Misiurewicz parameter. It is common landing
point of exactly q parabolic parameter rays in GPPn and the corresponding parabolic
dynamical rays co-land at vB (see Lemma 4.26). The graph GPPn consists in two parts :
the sides which are parts of rays with landing points and the top which are short cuts.

Definition 8.2. Denote by PPn the set of parameter parabolic puzzle pieces of level n,

they are the connected components of WM1
(p/q) \ GPPn intersecting M1. We write

PPn(B) for the one containing the parameter B.

Puzzle pieces are either disjoint or nested, in which case they have different levels.

Remark 8.3. There is a unique parameter puzzle piece of level 0 that we denote by PP0.
It is the short-cutted version of the wake : WM1

0 (p/q).

Proof. There is a unique connected component of WM1(p/q)\GPP0 intersecting M1 since
GPP0 contains in WM1(p/q) only the rays of angle θ and θ′ with its short cut : γ̂(θ, θ′).
Therefore the graph GPP0 intersects M1 only at the root Bp/q ∈ WM1(p/q) of WM1(p/q).

Lemma 8.4. Let B⋆ ∈ PP0. The graph GPB⋆

(1) admits a holomorphic motion

Ψ0 = ΨB⋆

0 : PP0(B
⋆)× GPB⋆

(1) → Ĉ such that Ψ0(B,GPB⋆

(1)) = GPB(1).

Proof. From Proposition 5.3 the graph GPB⋆

0 admits a holomorphic motion parametrized
by WM1

0 (p/q).

The graph GPB(1) is defined by GPB(1) = GPB
0 ∪ GPB

1 where

GPB
1 := g−1

B (GPB
0 \γ̌B0 ) ∪ {γ̌B1 ∪ γB1 ).
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By Corollary 4.24 we have that B ∈ WM1(p/q) if and only if vB ∈ WB(p/q). Hence,
vB /∈ GPB

0 so that we can lift Ψ0(B, .) on GPB
0 \γ̌B0 to get a holomorphic motion of

g−1
B⋆(GPB⋆

0 \γ̌B⋆

0 ) :
Ψ0(B, z) = g−1

B (Ψ0(B, gB⋆(z))).

The holomorphic motion of the short cuts γ̌B
⋆

1 ∪ γB⋆

1 , follows immediately from Proposi-
tion 5.3

Lemma 8.5. Fix n ≥ 0 and any B⋆ in a level n parameter puzzle piece PPn(B
⋆). There

exists a holomorphic motion

Ψn = ΨB⋆

n : PPn(B
⋆)× GPB⋆

n+1 → Ĉ

such that for any B ∈ PPn(B
⋆), Ψn(B,GPB⋆

n+1) = GPB
n+1.

Moreover Ψn extends to a holomorphic motion of the union GPB⋆

(n+ 1) of all graphs
upto and including n+ 1:

Ψ̃n = Ψ̃B⋆

n : PPn(B
⋆)× GPB⋆

(n+ 1) → Ĉ

by setting Ψ̃n = Ψk on PPn(B
⋆)× GPB⋆

k+1 for −1 ≤ k ≤ n.

Proof. The proof goes by induction, Lemma 8.4 provides a proof for n = 0. In the
induction we prove that for B ∈ PPn(B

⋆) the graph is GPB
n+1 = h−1

B (GPn+1).

We define Ψn+1 by lifting of Ψn. Indeed, for B ∈ PPn(B
⋆), the critical value vB never

crosses GPB
n+1 . Otherwise, if vB ∈ GPB

n+1, hB(vB) ∈ GPn+1 and Υ(B) = hB(vB) would
be on GPn+1. Therefore we can define g−1

B (GPB
n \γ̌Bn ) it coincides with h−1

B (GPn+1\γ̌n) by
induction. Then

GPB
n+1 := g−1

B (GPB
n \γ̌Bn ) ∪ {γ̌Bn+1 ∪ γBn+1).

By hypothesis of induction, for B ∈ PPn(B
⋆) the graph GPB

n+1 equals h−1
B (GPn+1) since

γ̌Bn = h−1
B (γ̌n) and γ

B
n = h−1

B (γn). The holomorphic motion follows from these considera-
tions.

Let PPn be a parameter puzzle piece, B⋆ ∈ PPn and recall that PB⋆

n denotes the puzzle
piece of level n containing the critical value. We want to compare the situation in the
parameter plane around B⋆ to the situation around the critical value vB⋆ in the dynamical
plane of gB⋆ : compare the puzzle pieces and the annuli. Following the graph through the
holomorphic motion, we have seen that the puzzle pieces up to level n are homeomorphic
so the situation is stable. Nevertheless, the critical value might cross the graph. Therefore
the notion of puzzle piece containing the critical value is not continuous. For this reason,
we give the name P̂B

n to the preferred puzzle piece, which is the holomorphic motion of
this piece PB⋆

n . More precisely,
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Figure 25: Parameter Parabolic Puzzle of first depths.

Lemma 8.6. For i ≤ n+1 and B ∈ PPn(B
⋆), there is a unique parabolic puzzle piece P̂B

i

bounded by the holomorphic motion Ψn(B, ∂P
B⋆

i ) of the critical value puzzle piece PB⋆

i .

Proof. For i ≤ n + 1 let CB⋆

i be the boundary of the puzzle piece PB⋆

i containing the
critical value for gB⋆ . It is a Jordan curve separating the critical value from GPB⋆

i \ CB⋆

i .
Following CB⋆

i in PPn(B
⋆) through the holomorphic motion of the graph GPB⋆

i defines a
Jordan curve CB

i ⊂ GPB
i with GPB

i \ CB
i in a unique complementary component. Thus,

we can define the connected component of the complement of CB
i which is disjoint from

GPB
i , it is our preferred puzzle piece denoted by PB

i .

Lemma 8.7. The puzzle piece PPn+1(B
⋆) ⊂ PPn(B

⋆) is the set of parameters B in

PPn(B
⋆) such that the prefered puzzle piece P̂B

n+1 = PB
n+1. In particular P̂B

i = PB
i for all

0 ≤ i ≤ n

Proof. For parameters B ∈ PPn+1(B
⋆), the critical value is clearly in PB

n+1 since it never
crosses the boundary of PB

n+1. Then, being on the boundary of PPn+1(B
⋆) and using

the coordinates in the Blaschke model, one see that locally, if the parameter crosses the
boundary of PPn+1(B

⋆) transversely, then the critical value follows the corresponding

path in the dynamical plane. Hence it leaves the preferred puuzle piece P̂B
n+1 and so has
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either to go into the puzzle piece adjacent to P̂B
n+1 obtained by the holomorphic motion

of the graph or to leave the level n+ 1 puzzle.

Corollary 8.8. If PB⋆

n+1 ⊂ PB⋆

n then also PPn+1(B⋆) ⊂ PPn(B
⋆).

Proof. For a parameter B in PPn(B
⋆), the critical value belongs to P̂B

n+1 ⊂ P̂B
n = PB

n and

through the holomorphic motion we know that P̂B
n+1 ⊂ PB

n , so that if the critical value

vB belongs to the annulus PB
n \ P̂B

n+1, then parameter B ∈ PPnB
⋆\PPn+1(B⋆).

For B⋆ ∈ M1, and p/q such that B⋆ ∈ WM1(p/q), denote by ∼B⋆

∞ the lamination
associated with the filled-in Julia set KB⋆ ( see Section 6).

Definition 8.9. Define PPn(∼B⋆

∞ ) = PP (∼n+1) to be the set of parameters B in WM1(p/q)
such that ∼B

n+1= (∼B⋆

∞ )|n+1 =∼n+1.

Recall from Section 5.2.3 that V P
n is the interior of the union of closures of level n

universal parabolic puzzle pieces and the reduced wakes WM
n (p/q) are

WM1
n (p/q) := LM1

p/q ∪ {B ∈ WM1(p/q)|hB(vB) ∈ V P
n },

so that

Lemma 8.10. PPn(∼B⋆

∞ ) ∩WM1
n (p/q) = PPn(B

⋆).

Proof. By definition B⋆ ∈ PPn(∼∞). Now in PPn(B
⋆) we have a holomorphic motion of

the parabolic rays in the graph GPB⋆

n+1 that gives the graph GPB
n+1. Therefore, we keep the

landing relations for the parabolic rays in this graph in all the parameter puzzle piece.
Hence, PPn(B

⋆) ⊂ PPn(∼∞) and thus PPn(∼∞) ∩WM1
n (p/q) ⊃ PPn(B

⋆).

For a parameter B on the boundary of PPn(B
⋆) the critical value vB is on the graph

GPB
n , so either the second critical point −1 is on a pair of rays of the graph GPB

n+1 so that
∼B⋆

n+1 ̸=∼B
n+1 or the critical value has escaped the level n puzzle PB

n .

Proposition 8.11. For every n there is

1. a 1 : 1 correspondence between the parameter puzzle pieces of level n and the set of
distinct fertile towers ∼n+1 of level n+ 1.

2. a 1 : 1 correspondence between the set of level n terminal towers and the set of points

L∗
p/q ∩ (GPPn\GPPn+1).
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Proof. The proof is by induction. For level n = 0 there is only 1 tower of level n+1 = 1, it
is fertile, the graph GPB(1) moves holomorphically overWM1

0 (p/q) and induces the unique
level 1 tower ∼1 and finally GPP0 does not intersect LM1∗ (p/q). Suppose the statement
holds for n ≥ 0, let ∼n+1 be any fertile tower, let PPn = PP (∼n+1) be the corresponding
level n parameter puzzle piece and let B⋆ be a parameter therein, i.e. ∼n+1=∼B⋆

n+1.
By Lemma 8.5 the graph GPB⋆

(n + 1) moves holomorphically over PPn and hence by
definition of puzzle pieces Υ defines a homeomorphism between the parameter sub-graph

GPP(n+1)∩PP n and the dynamical sub-graph GPB⋆

(n+1)∩PB⋆

n and hence induces a
1 : 1 correspondence between the parameter puzzle pieces of level n+1 contained in PPn

the level n+ 1 dynamical puzzles pieces for gB⋆ contained in the critical value piece PB⋆

n .
And a 1 : 1 correspondence between the points of GPPn+1 ∩PPn ∩L∗

p/q and the points of

GPB⋆

n+1 ∩ PB⋆

n ∩KB⋆ . The (dynamical) puzzle pieces are in 1 : 1 correspondence with the
gaps of ∼n+1 contained in the critical value gap G′

n+1 of ∼n+1, i.e. the gap of ∼n, which
is the image of the critical gap of ∼n+1. And the graph points are in 1 : 1 correspondence
with the set of level n + 1 classes contained in G′

n+1. By definition of towers each gap
G′ ⊂ G′

n+1 of ∼n+1 defines the unique level n+2 fertile tower extension ∼n+2 of ∼n+1 with
critical value gap G′ and their totality enumerates all level n+ 2 fertile tower extensions
of ∼n+1. Similarly each class K ′ ⊂ G′

n+1 defines the unique terminal tower extension of
∼n+1 with critical value class K ′ and their totality enumerates all level n + 2 terminal
tower extensions of ∼n+1.

Figure 26: Lamination for the puzzle pieces of first levels.
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Definition 8.12. In wiev of 2 of the above Proposition we shall abuse notation and for
every terminal tower ∼ write PP (∼) for the singleton consisting of the unique parameter
B⋆ such that ∼B⋆

=∼. For this parameter gn+1
B⋆ (vB⋆) = αB⋆, where n is the level of the

critical value class for ∼.

9 Parabolic Parameter Yoccoz Theorem, transfer to

the parameter space

This section is devoted to proving that M1 is locally connected at any Yoccoz parameter,
for a definition of such parameters see the item c. below.

Following Yoccoz approach to local connectivity of the Mandelbrot set we distinguish
3 different types of parameters B ∈ M1:

a. Parameters B ∈ M1 such that the finite fixed point αB is not repelling.

b. Parameters B ∈ M1 such that some iterate gkB is renormalizable around the second
critical point −1 or equivalently around the second critical value vB

c. Parameters B ∈ M1 which is not in any of the two previous categories, also called
Yoccoz parameters.

Local connectivity of M1 at a parameter B of type a. is most conveniently described
in terms of the parameter A = 1 − B2 ∈ D. As a fundamental system of connected
neighbourhoods of a parameter A with |A| = 1 we may take a sequence of open intervals
Jn ⊂ S1 shriking down to A and with endpoints of irrational arguments, together with
semi-disks in ∆n ⊂ D, say bounded by the hyperbolic geodesic connecting the end-point
of Jn and together with the Limbs LM1

p/q with root in Jn. By Theorem 4.7, Theorem 4.21
and Corollary 4.25 such sets form a fundamental system of connected neighbourhoods of
A.

We shall not here prove local connectivity of M1 at renormalizable parameters. It is
not even known to be true in full genrality for the corresponding parameters in M. In
fact our proof that M1 is homeomorphic to M works because it essentially does not rely
on properties of renormalization copies beyond the second renormalization level.

In order to handle Yoccoz parameters we look to Section 7. Firstly we will consider one
limb at a time, so we fix an irreducible rational p/q and consider the limb LM1

p/q . Secondly
we have the basic Dichotomy for such parameters :

DB1. For all n ∈ N : gnqB (−1) ∈ P 0
0 .
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DB2. There exists m ≥ 1 minimal such that gmq
B (−1) /∈ P 0

0 .

Where the first is equivalent to gB is q-renormalizable also denote immediate satelite type.
And the second is equivalent to B ∈ LM1(p/q, r,m) for some odd r with 0 < r < 2m by
Proposition 7.12.

Thridly by Corollary 7.19 the second condition B ∈ LM1(p/q, r,m) for some odd r
with 0 < r < 2m splits into three disjoint subsets or types of parameters:

i) There exists l ≥ mq such that glB(−1) = βB.

ii) There exists l > mq such that glB(−1) ∈ K ′
B.

iii) There exists a strictly increasing sequence {ln}n≥0 with l0 = mq−1 with glnB (−1) ∈ S1

for all n.

All three cases will be handled by using holomorphic motions to define a homeomor-
phism from the boundaries of puzzle pieces surrounding vB in dynamical space to the
boundaries of puzzle pieces surrounding B in parameter space, where B is any Yoccoz
parameter in LM1(p/q, r,m). In the two first types there are a sequence of boundaries
puzzle pieces nesting down to vB which move holomorphically over a fixed domain where
as in the third case the domain of holomorphic motion of puzzle piece boundaries shrink,
when the level increases. Moreover as it appears in Theorem 7.21 the third case splits-up
further into two sub-cases renormalizable and not renormalizable.

We shall apply variations of the following Proposition from the book of applications
of holomorphic motions

For B ∈ WM1
0 (p/q) and GB ⊂ GPB a sub-graph consisting of the boundary of one

or more puzzle pieces, not necessarily of the same level, denote by DGB the connected
component of Ĉ\GB containing the first critical point 1. So that for any puzzle piece P

and G = ∂P we have DGB = Ĉ\P .
Proposition 9.1. Let B⋆ ∈ WM1

0 (p/q) and let GB⋆ ⊂ GPB⋆

be a sub-graph consisting of
the boundary of one or more puzzle pieces Pn with vB⋆ ∈ P n. Suppose there exists a topo-
logical disk U ⊂ WM1

0 (p/q) with B⋆ ∈ U and a holomorphic motion H : U ×GB⋆ −→ Ĉ
with base point B⋆ and with hB(H(B, z)) = hB⋆(z) for every (B, z) ∈ U × (GB⋆\JB⋆). Let
GB := H(B,GB⋆

) and suppose that the second critical value vB ∈ DGB on U\M for some
connected compact set M . Then there exists a graph G ⊂ M consisting of boundaries of
parameter puzzle pieces PPn with B⋆ ∈ PPn such that vB ∈ GB for all B ∈ G and the
map

B 7→ ζ(B) := H−1
B (vB) : G→ GB⋆

, where H−1
B (H(B, z)) = z
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is the restriction of a quasi-conformal homeomorphism ζ, which is asymptotically con-
formal at B⋆. Moreover for each Pn with vB⋆ ∈ P n and ∂Pn ⊂ GB⋆

the pre-image
ζ−1(∂Pn) ⊂ G is the boundary of a level n parameter puzzle piece PPn with B⋆ ∈ Pn.

Note that the condition hB(H(B, z)) = hB⋆(z) for every (B, z) ∈ U×(GB⋆\JB⋆) means
that H is a holomorphic motion of puzzle piece boundaries, so that GB ⊂ GPB for every
B. Thus if vB⋆ ∈ Pn for some level n and ∂Pn ⊂ GB⋆

, then the holomorphic motion H
coincides with the holomorphic motion ΨB⋆

n−1 of Lemma 8.5 where ever both are defined
and H(B, ∂Pn) is the boundary of the prefered puzzle piece in the sence of Lemma 8.7.
And B ∈ PPn(B

⋆) precisely when the preferred puzzle piece equals the critical value

puzzle piece P̂B
n .

Proof. By Slodkowskis Theorem there exists a holomorphic motion extension Ĥ : U × Ĉ −→ Ĉ
of H. Define a quasi-regular map ζ : U −→ Ĉ, which is asymptotically conformal at B⋆

by ζ(B) := Ĥ−1
B (vB) and let G = ζ−1(GB⋆

). Then by construction G ⊂M and G consists
of boundaries of parameter puzzle pieces and ζ has a non-zero degree over GB⋆

. Since Υ
is univalent, the degree is 1 so that the restriction ζ : G −→ GB⋆

is a homeomorphism.
Finally for each Pn with vB⋆ ∈ P n and ∂Pn ⊂ GB⋆

the pre-image ζ−1(∂Pn) ⊂ G is the
boundary of a level n parameter puzzle piece PPn with B⋆ ∈ PP n.

Corollary 9.2. Suppose for some parameter B⋆ ∈ LM1

p/q and some nest N = {Pn}n≥0 that

{vB⋆} = End(N ) and that for some increasing sequence {nk}k∈N the graph GB⋆
:= ∪k∂Pnk

satisfies the hypotheses of Proposition 9.1 then the corresponding parameter nest {PPn}n
with ∂PPn := ζ(∂Pn) is convergent with

End({PPn}n) = {B⋆}

Corollary 9.3. Let B⋆ ∈ LM1

p/q be a parameter satisfying DB2. of type i. or ii. then
the set M1 is locally connected at B⋆. If vB⋆ is not prefixed to αB⋆ then intersection
∩PPn(∼B⋆

) reduces to one point and thus {M1 ∩PPn(∼B⋆
)}n≥0 is a fundamental system

of connected neighbourhoods of B⋆ in M1. And if vB⋆ is prefixed to αB⋆ then B⋆ has a
fundamental system of connected neighbourhoods consisting for each n of the interior of
the union of closures of the q level n parameter puzzle pieces with B⋆ on the boundary.

For DB2. type iii. we need a refinement of Proposition 9.1 above due to Shishikura.

Fix any B⋆ ∈ M1 of type iii) for the rest of the section. Recall that Theorem 7.21
provides a non degenerate annulus AB⋆

n0
= Pn0\P n0+1 between nested puzzle pieces of

the parabolic Yoccoz puzzle for gB⋆ with gn0
B⋆(Pn0) = P q−1

0 , gn0
B⋆(Pn0+1) = Sk

1 for some

0 < k < q and a nested sequence of annuli AB⋆

ni
= PB⋆

ni
\ PB⋆

ni+1, i > 0 with n0 < n1 ↗ ∞
surrounding the critical value vB⋆ such that :
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• the map gni−n0
B⋆ : AB⋆

ni
→ AB⋆

n0
is a covering map of degree 2di , di ≥ 0 for i ≥ 1 ;

• in particular also all the annuli AB⋆

ni
, i > 0 are non degenerate ;

• – either the sum
∑

i≥1

mod(AB⋆

ni
) = mod(AB⋆

n0
)
∑

i≥1

1

2di
is infinite,

– or there exists k > 0 such that for all n large enough the map

gkB⋆ : PB⋆

n+k → PB⋆

n

is quadratic-like with connected filled-in Julia set.

By Corollary 8.8, the parameter B⋆ belongs to a complete sequence of puzzle pieces
PPn(∼) defining non degenerate annuli for the subsequence Ani

(∼) where An(∼) denotes
the annulus PPn(∼) \ PPn+1(∼).

From Lemma 8.5, for n = n0, the parameter puzzle piece PPn0(B
⋆) ⊂ WM1

0 (p/q),
parametrizes a holomorphic motion of the graph

GPB⋆

n0
∪ (GPB⋆

n0+1 ∩ PB⋆

n0
) ⊂ GPB⋆

(n0 + 1)

as a restriction of
Ψ̃n0 = Ψ̃B⋆

n0
: PPn0(B

⋆)× GPB⋆

(n0 + 1) → Ĉ

Then, applying Slodkowsky’s extension, we obtain a global holomorphic motion over

PPn(B
⋆) ⊂ WM1

0 (p/q) of Ĉ (we are however only interested in the part inside P
B⋆

n0
.)

Therefore by restriction, we get a holomorphic motion of the annulus AB⋆

n0
, which gives

an annulus that coincides with the annulus AB
n0

= PB
n0

\ PB
n0+1.

Shishikura’s trick consists in lifting the holomorphic motion of the annulus to get a
holomorphic motion of the annulus AB⋆

ni
defined in Ani

(∼) with the same dilation. The
lifting is possible since the map gni−n0

B⋆ : AB⋆

ni
→ AB⋆

n0
is a covering map of degree 2di ,

di ≥ 0 for i ≥ 1. Moreover, by Lemma 8.7, for parameters B in PPni
(B⋆), the maps

gni−n0
B : AB

ni
→ AB

n0
are all of the same type (covering map of degree 2di), since the critical

value vB never passes though the boundary of PB
ni
.

Lemma 9.4. There exists a constant K such that for any integer n ∈ {ni | i ≥ 0}

mod (AB⋆

n )

K
≤ mod AN(∼) ≤ K mod (AB⋆

n ).

Proof. The holomorphic motion of the boundary of AB⋆

n0
is defined in the whole para-puzzle

piece PPn0(∼). By Slodkovskis Theorem we can extend it to a holomorphic motion of
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Ĉ still parametrized by PPn0(∼). Denote it by H0(B, z). Now, one can lift H0(B, z)
to a holomorphic motion H i(B, z) of AB⋆

ni
using the unramified covering gni−n0

B⋆ . This
holomorphic motion defines a quasi-conformal homeomorphism H i

B(z) := H i(B, z), it has
the same bound K on the dilatation. Now, it follows from [DH3]Lemma IV.3, that the
map ζ(B) = (H i

B)
−1(vB) is a quasi-conformal homeomorphism, it maps An(∼) to AB⋆

n .
The proof is exactly the same as in [R1].

Corollary 9.5. Let B⋆ ∈ LM1

p/q be a parameter satisfying DB2. and of type iii.. If gB⋆

is not renormalizable or equivalently ∼B⋆
is not renormalizable, then the intersection

∩PPn(∼B⋆
) reduces to one point and thus {M1 ∩PPn(∼B⋆

)}n≥0 is a fundamental system
of connected neighbourhoods of B⋆ in M1.

Proof. If ∼B⋆
is not renormalizable, then the sum

∑

i≥1

mod(AB⋆

ni
) = mod(AB⋆

n0
)
∑

i≥1

1

2di

is infinite, we deduce from previous Lemma that the sum
∑

i≥1

mod(An(∼B⋆

)) is infinite.

Then the result follows from Grötzsch inequality see [A].

9.1 The renormalizable case

We consider now a parameter B⋆ ∈ LM1

p/q satisfying DB2., of type iii. such that gB⋆

is renormalizable (equivalently ∼B⋆
is renormalizable). We use the Douady-Hubbard

theory of polynomial like mapping to get that the intersection ∩PPn(∼B⋆
) is a copy of

the Mandelbrot set and we obtain in this way a straightening map that will serve to
construct the bijection Ψ1 : M1 −→ M.

Definition 9.6. A subset M0 of M1 is a copy of M if there exists a homeomorphism χ
and an integer k > 1 (the period) such that

1. M0 = χ−1(M) ;

2. χ−1(∂M) ⊂ ∂M1 and ;

3. every B ∈ M0 corresponds to a renormalizable map with gk topologically conjugated
to z2 + χ(B) on neighbourhoods of the filled Julia sets.

Proposition 9.7. Suppose ∼=∼∞ is a renormalizable tower of period k ≥ q and combi-
natorics ∼N . Then for any B ∈ PPN(∼) = PP (∼N+1) the restriction

gkB : PB
N → PB

N−k
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is quadratic like and the intersection

M∼ =
⋂

n≥0

PPn(∼) =
⋂

n≥0

PP (∼n+1)

is a copy of M.

Note that by definition M∼ = {B | ∼B
∞=∼∞} =: MM1(∼∞).

Proof. We develop here the case where the period is k ̸= q. If the period is k = q,
it corresponds to the satellite renormalizable case, the proof is similar except that one
should consider enlarged puzzle pieces at the α fixed point for PB

n .

The proof for k > q is as follows. Let c0 be the parameter with Qk
c0
(c0) = c0 and

∼c0∞=∼∞. Then Qk
c0
: Y c0

N −→ Y c0
N−k is quadratic like and hybridly equivalent to Q0. By

Proposition 6.7 it follows that gkB : PB
N → PB

N−k is quadratic like for any B ∈ PPN(∼) =
PP (∼N+1). Moreover the filled-in Julia set of this restriction is connected if gmk

B (vB) ∈ PB
N

for all m.

To simplify notation write PPn = PPn(∼) for all n. Consider the mapping g : W ′ → W
defined by W = {(B, z) | B ∈ PPN , z ∈ PB

N−k}, W ′ = {(B, z) | B ∈ PPN , z ∈ PB
N }

and g(B, z) = (B, gk(z)). It is an analytic family of quadratic-like maps in the sense of
Douady and Hubbard [DH3, p.304] since it satisfy the following three properties :

• the map g : W ′ → W is holomorphic and proper ;

• the holomorphic motion of the disk PB
N , resp. PB

N−k, is a homeomorphism between
W ’, resp. W , and PPN × D which is fibered over PPN (since B ∈ PPN) ;

• the projection W ′∩W → PPN (i.e. the first coordinate) is proper, since W ′∩W =

{(B, z) | B ∈ PPN , z ∈ PB
N }.

Let Mg = {B ∈ PPN | K(gkB) is connected} denote the connectedness locus of g,

where K(gkB) =
⋂

i≥0

(gkB)
−i(PB

N ) denote its filled Julia set. Then Mg coincides with M∼.

Indeed, for B ∈ M∼, the critical point and its orbit under gB never cross the graphs.
Therefore the critical point of gkB|PB

n
does not escape the piece PB

N (by iteration by gk).
Hence K(gkB) is connected and B ∈ Mg. Conversely, for n ≥ 0 and B ∈ PPN+nk \
PPN+(n+1)k, the common critical value vB for gB and gkB restricted to PB

N belongs to the

annulus PB
N+nk \P

B

N+(n+1)k. Thus g
(n+1)k
B (vB) is not in P

B
N , that is the critical point of gkB

escapes the domain. Hence the filled Julia set is not connected and so B /∈ Mg.
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Moreover, by Corollary 8.8 and Proposition 7.21, there exists a sequence ni such that

PP ni+1 ⊂ PPni
. Then M∼ is also the intersection of the (open) pieces : M∼ =

⋂

n≥0

PPn

and therefore is compactly contained in any of the parameter puzzle pieces PPm, m ≥ N .

The theory of Mandelbrot-like families of Douady and Hubbard (see [DH3], Theorem
II.2, Propositions II.14 and IV.21) gives a continuous map χ : PPN → C such that the
maps gkB and z2 + χ(B) are quasi-conformally conjugate on a neighbourhood of the filled
Julia sets, for every B ∈ PPN .

Moreover, since M∼ = Mg is compactly contained in PPN , the map χ induces a
homeomorphism between Mg and the Mandelbrot set M if we are in the following situa-
tion (see [DH3]) : for a closed disk ∆ ⊂ PPn containing Mg in its interior, the quantity
gkB(xB) − xB = vB − xB, (where xB denotes the unique critical point of gkB|PB

n
) turns

exactly once around 0 when B describes ∂∆. We verify this property in the following.

Let n = N + k so that M∼ ⊂ PPn =: ∆ ⊂⊂ PPN . For B ∈ PPN both the bound-
ary ∂ PB

N and the critical point xB ∈ PB
n move holomorphically with B and thus gkB is

a locally diffeomorphic covering map of degree 2 from ∂ PB
n onto ∂ PB

N . Thus also ∂ PB
n

move holomorphically with B over the parameter disk PPN . We compute the degree of
γ(B) = vB − xB on ∂∆. Fix B⋆ ∈ PPn. In order to do so we make use of the above
holomorphic motions to transfer the problem to a problem of winding number of a curve
in the dynamical plane of gB⋆ Let H : PPN × (∂ PB⋆

n ∪ {xB⋆}) −→ C be the holomor-
phic motion with base point B⋆ just described and extend it to a global holomorphic
motion H : PPN × C −→ C using Slodkovskis theorem. Let ζ : ∂ PP n −→ ∂ PB⋆

n be the
homeomorphism given by H(B, ζ(B)) = vB.

Assume that ∆ = PPn is a round disk with center B⋆ (if not use a conformal repre-
sentation) ; then the map G : [0, 1]× ∂∆ −→ C given by

G(t, B) = H(B⋆ + t(B −B⋆), ζ(B))−H(B⋆ + t(B −B⋆), xB⋆)

is a homotopy between ζ(B)−xB⋆ and vB−xB. And the degree of the first curve is simply
the winding number 1 of ∂ PB⋆

n around xB⋆ . Hence M∼ is a copy of the Mandelbrot set
M.

Corollary 9.8. For every c ∈ L∗
p/q there exists a B ∈ L∗

p/q with ∼c
∞ = ∼B

∞

Proof. Let c ∈ L∗
p/q and let ∼ = ∼c

∞. If ∼ is a terminal tower then there exists a unique

B ∈ L∗
p/q with ∼B

∞ = ∼c
∞ by 2. of Proposition 8.11. If c ∈ MM

p/q, i.e. Qc is q renormalizable

take any B ∈ MM1

p/q i.e. the unique B such that fc and fB are hybrid equivalent.

Finally if c is any other parameter then Y c
n is defined for all n and the parameter nest

{Y Yn(c)}n is a system of nested neighbourhoods of c. And for every n there is n′ > n
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such that Y
c

n′ ⊂ Y c
n so that also Y Y n′(c) ⊂ Y Yn(c). By the theorems of this section

the similar statement PP n′(∼) ⊂ PPn(∼) also holds so that for B ∈ ∩PP n(∼) we have
∼B

∞ = ∼ = ∼c
∞.

10 Proof of the Main Theorem

10.1 The map Φ1 is a homeomorphism.

In [PR2, Proof of Theorem 1.1] we have constructed a projection Ψ1 : M1 −→ M with
the following properties, recall that A = 1−B2:

1. For B ∈ H0 define Ψ1(B) := c where c is the unique parameter such that the fixed
point αc for Qc has multiplier A = 1−B2.

2. For B /∈ H0 let p/q be the irreducible rational such that B ∈ LM1

p/q and thus ∼B
∞ is

well defined.

a. If ∼B
∞ is renormalizable of period k, then gB is k renormalizable and B ∈MM1 =

MM1(∼B
∞) a copy of M in M1. Let MM := MM(∼B

∞) be the copy of M in
M such that c ∈ MM if and only if ∼c

∞=∼B
∞. Let χ :MM1 −→MM be the

homeomorphism induced by straightening. Define Ψ1(B) = χ(B).

b. If ∼B
∞ is not renormalizable, i.e. a Yoccoz parameter let c ∈ M be the unique

parameter such that ∼B
∞=∼c

∞ and define Ψ1(B) = c.

Define a map between parameter puzzles Ξ : PP −→ Y by Ξ(PP (∼n)) := Y Y (∼n),
where the parameter puzzles Y Y (∼n) for M are defined similarly to those for M1. Then
by construction of Ψ1 for any finite tower ∼n

Ψ1(PP (∼n) ∩M1) = Y Y (∼n) ∩M = Ξ(PP (∼n)) ∩M.

By construction Ψ1 is dynamic and unique:

For B ∈ H0 let c = Ψ1(B) ∈ Card, we shall first construct using Häıssinsky’s surgery

a homeomorphism ρc : Ĉ −→ Ĉ, which is conformal a.e. on the filled-in Julia set K(Qc)
and which conjugates dynamics of Qc to that of some g of the form g(z) = z + B′ + 1/z
on their filled-in Julia sets.

K(Qc)
Qc //

ρc

��

K(Qc)

ρc

��
K(g) g

// K(g)
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And then secondly see that B = B′.

If A ∈ D or is a root of unity, then clearly the critical point is not recurrent to the
beta fixed point and Häıssinsky’s theorem applies. And if A ∈ S1, but not a root of unity,
then Dudko and Lyubich [D-L] have recently shown the existence of a ”Mother hedgehog”
for Qc, a compact set Hc containing the critical point 0 and the fixed point αc and such
that the restriction Qc : Hc −→ Hc is a homeomorphism. It follows that βc /∈ Hc and
hence that 0 is not recurrent to βc in this case [D3]. So that also in this case Häıssinsky’s
theorem applies.

If A ∈ D of then the finite fixed point of g also has multiplier A since ρc is conformal
on the interior of K(Qc). And if A ∈ S1 it follows from Naishul’s Theorem [N] that the
the finite fixed point of g also has multiplier A. Thus in either case B′ = B. And Ψ1 is
uniquely defined on H0.

If B /∈ H0 and c = Ψ1(B), then we distinguish two cases. If gB is not renormalizable
then the Julia sets are locally connected and the puzzle bijection ΞB induces a conjugacy
between the dynamics on the Julia sets. Moreover this conjugacy extends to a global
homeomorphism, conformal a.e. on K(Qc) since the Julia sets are locally connected and
K(Qc) has measure 0. In this case injectivity of Ψ1 follows from uniqueness of the com-
binatorial invariant. And if gB is renormalizable, then it is conjugate to Qc on the little
Julia sets by straightening. And this conjugacy extends to a conjugacy on the Julia sets
through the puzzle bijection ΞB. Thus the maps have the same combinatorial-analytic
invariants. Existence of a global homeomorphism ρc : Ĉ −→ Ĉ, which is conformal a.e. on
the filled-in Julia set K(Qc) and which conjugates dynamics of Qc to that of some gB fol-
lows from Häıssinsky’s theorem, because the critical point 0 is not recurrent to βc. This
gives uniqueness also in this last case.

We proceed to show that Ψ1 is a homeomorphism.

Injectivity of Ψ1 is an immediate consequence of Corollary 9.3 and Corollary 9.5.

For the surjectivity we need only to consider the case c ∈ L∗
p/q for some irreducible

rational p/q. Let ∼ = ∼c.

If ∼ is renormalizable let MM1 = ∩PPn(∼), MM = ∩Y Yn(∼) and χ :MM1 −→MM

be as in 2a., then Ψ1(χ−1(c)) = c and we are done.

If ∼ is not renormalizable then by Corollary 9.8 there exists B⋆ ∈ L∗
p/q with ∼B⋆

= ∼c

and Ψ1(B⋆) = c by construction of Ψ1. Thus Ψ1 is a bijection.

We shall prove continuity of Ψ1. The continuity of Φ1 = (Ψ1)−1 then follows since Ψ1

is a continuous bijection between compact sets in a metric space.

For the continuity of Ψ1 fix B⋆ ∈ M1\H0, c
⋆ = Ψ1(B⋆) and ∼n=∼B⋆

n =∼c⋆

n , n ≥ 0.
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Let us start by noting that Ψ1 is continuous at B⋆, when B⋆ is any Yoccoz parameter,
by construction and by local connectivity of both M1 and M at all Yoccoz parameters.
Indeed the parameter nest {PPn(B

⋆)}n = {PP (∼n)}n form a fundamental system of
neighbourhoods ofB⋆ and similarly {Y Yn(c⋆)}n = {Y Y (∼n)}n form a fundamental system
of neighbourhoods of c⋆.

Thus we only need to prove that Ψ1 is continuous at the boundary of any top-level
renormalization copy MM1(∼B⋆

∞ ) in M1. So let B⋆ ∈ MM1 ⊂ LM1

p/q be a boundary point,

MM =MM(∼B⋆

∞ ) and χ :MM1 −→MM be as in 2a..

We must show that Ψ1 is continuous at B⋆. By construction Ψ1 coincides with χ and
so is continuous on MM1 . Hence we only need to show that if {Bn}n ⊂ LM1

p/q \MM1 is a

sequence converging to B⋆, then the sequence cn := Ψ1(Bn) converges to c
⋆ := Ψ1(B⋆) =

χ(B⋆).

To this end we invoke the shrinking of dyadic decorations theorem. Recall that any
renormalization copy comes equipped with dyadic limbs, which are the extremities of M
or M1 beyond a renormalization copy (see e.g. Definition 4.27).

Theorem 10.1 ([PR3, Theorem 4], [D2]). For any copy M of M in M or in M1

lim
s→∞

diam(LM(r, s)) = 0

where diam(·) denotes Euclidean diameter and LM(r, s) denotes the r/2s dyadic limb of
M , i.e. if M = MM(θ, θ′) then LM(r, s) = LM(θ, θ′, r, s) and if M = MM1(ϵ, ϵ′) then
LM(r, s) = LM1(ϵ, ϵ′, r, s).

For {Bn}n a sequence converging to B⋆ as above let LM1
M (rn, sn) denote the dyadic

limb of MM1 containing Bn and let B′
n ∈ MM1 denote the root of that limb. Then by

construction cn = Ψ1(Bn) ∈ LM
M (rn, sn) and c

′
n = Ψ1(B′

n) is the root of that limb.

Passing to a subsequence if necessary we can assume that either B′
n and (rn, sn) are

eventually constant or sn diverges to infinity, since any two distinct dyadic limbs of MM1

are strongly separated.

If the sequence sn diverges to ∞, then both |Bn − B′
n| → 0 and |cn − c′n| → 0 as

n → ∞ by Theorem 10.1. Thus B′
n → B⋆ since Bn → B⋆ and hence c′n → c⋆ as

n → ∞ since χ is continuous. And combining with |c′n − cn| → 0 yields the desired
Ψ1(Bn) = cn → c⋆ = Ψ1(B⋆) as n→ ∞.

Next suppose B′
n = B′ and so (rn, sn) = (r, s) for n ≥ N0. Moreover c′n = c′ = Ψ1(B′)

for n ≥ N0. Then B⋆ = B′ since B⋆, B′ ∈ MM1 and B′ is the only intersection of MM1

and LM1
M (r′, s′). And similarly c′ = c⋆.

If the renormalization period k > q then MM1 = ∩PPn(∼) and MM = ∩Y Yn(∼),
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where ∼=∼B⋆

∞ =∼c⋆

∞. Thus for every N1 there exists N2 such that Bn ∈ PPN1(∼) and
hence cn ∈ Y YN1(∼) for every n ≥ N2. Hence cn → c′ = c⋆ as n→ ∞.

Finally if the renormalization period is q, so that MM1 = MM1

p/q and MM = MM
p/q.

Then gqsB⋆(vB⋆) = αB⋆ and similarly Qqs
c⋆(c

⋆) = αc⋆ . Instead of developing augmented
puzzles using more rays in the base puzzle, see e.g. [PR3] and its illustrations we shall
give here an ad hoc argument.

Recall that for B⋆ ∈ WM1
sq−1(p/q, r, s) we have defined a fundamental system of neigh-

bourhoods {Pα
n }n of αB⋆ , such that Pα

n ∩ KB⋆ is connected, where Pα
n is the interior of

∪q−1
k=0P

α,k
n . Moreover the union of boundaries ∪n∂P

α
n move continuously with B in the clo-

sure of WM1
sq−1(p/q, r, s). Similarly for the quadratic polynomials Qc, the union of bound-

aries ∪n∂Y
α
n move continuously with c ∈ WM

sq−1(p/q, r, s). By hypothesis gsqBn
(vBn) →

gsqB⋆(vB⋆) = αB⋆ as n → ∞. Thus given N1 there exists N2 such that gsqBn
(vBn) ∈ Pα

N1
\P 0

0

for every n ≥ N2. By construction gsqBn
(vBn) ∈ Pα

N1
\P 0

0 if and only if Qsq
cn(cn) ∈ Y α

N1
\Y 0

0 for
every n and N1. Thus Q

sq
cn(cn) ∈ Y α

N1
\Y 0

0 for every n ≥ N2, i.e. also Q
sq
cn(cn) → Qsq

c⋆(c
⋆) =

αc⋆ . Finally Q
sq
c⋆ is a local diffeomorphism from a neighbourhood of c⋆ to a neighbourhood

of αc⋆ and the map (c, z) 7→ Qsq
c (z) is holomorphic, so that Qsq

cn(cn) → Qsq
c⋆(c

⋆) = αc⋆ im-
plies cn → c⋆ as n→ ∞. This completes the proof that Ψ1 and Φ1 are homeomorphisms.

10.2 The homeomorphism Φ1 is nowhere Hölder on ∂M

Let c0 ∈ Lp/q be the m/2n-dyadic tip of M, where 0 < m < 2n, m odd, i.e. the
landing point of the parameter ray RM

θ of argument θ = m/2n. Let Nc0(β) = N(β) :=
{Yn(β)}n≥0 denote the nest around β = βc0 in the dynamical plane of Qc0 . And let
N (c0) := {YYn(c0)}n≥0 denote parameter nest around c0. Recall that the set

Γc0 := {β} ∪
⋃

n≥0

∂ Yn(β)

moves holomorphically and equivariantly with c in YY0(c0) := YY0.

Let H : YY0×Y0(β) −→ C be a holomorphic motion extending this motion, so that
for for all n ≥ 0 and all c ∈ YY0 : H(z, β) = βc and H : ∂ Yn(β) −→ ∂ Yn(βc) is a
homeomorphism with Qc ◦H(c, z) = H(c,Qc0(z)), where both sides are defined.

For n ≥ 0 denote by zn the unique point in ∂ Yn(β)∩Kc0 , in particular z0 = α′. Equiv-
alently let ψ = ψc0 : C −→ C denote the linearizer of Qc0 at β, normalized by ψ(1) = α′.
Let ρ = Q′

c0
(β) denote the multiplier of β. Then zk = ψ(ρ−k) and asymptotically

(zk−β)ρ−k → A as k → ∞ for some non-zero complex number A. Let zn(c) = H(c, zn) de-
note the motion of zn under the holomorphic motion. Let l be minimal such that Qk

c0
(c0) /∈

Yl(β) for 0 ≤ k < n. Then for every c ∈ YYn+l(c0) the restriction Q
n
c : Yn+l(c) −→ Yl(βc)
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is a holomorphic diffeomorphism. Define a quasi-conformal homeomorphism, asymptoti-
cally conformal at c0, ξ : YYn+l(c0) −→ Yl(β) by

ξ(c) := H−1
c (Qn

c (c)), where H−1
c ◦H(c, z) = z.

Note that a priori this map is a proper quasi-regular map, but the degree on the boundary
is 1, so that indeed it is a q.c.-homeomorphism. Let ck, k ≥ l be the sequence of parameters
ck = ξ−1(zk) ⊂ YYn+l(c0) so that for k ≥ l Qn

ck
(ck) = zk(ck) and thus Qn+k

ck
(ck) = α′(ck).

In particular ck ∈ Lp/q are Misiurewicz parameters and belong to ∂M. Moreover by
Lemma 10.2 below

(ck − c0)

ρk
−→ A

a
as k → ∞,

where a ̸= 0 is the difference of the derivatives at c0 of the functions Qn
c (c) and H(c, β).

Let B0 = Φ1(c0), so that gnB0
(B0 − 2) = βB0 and gn−1

B0
(B0 − 2) = β′

B0
. Recall that

βB ≡ ∞ and β′
B ≡ 0. For each B near B0 let ψB : C −→ Ĉ be the repelling Fatou-

parameter for gB normalized by ψB(0) = α′
B. Then ψB depends holomorphically on (B, z).

Define similarly as above a sequence of iterated pre-images of αB0 , {ẑk = ψB0(−k)}k≥0

converging directly to βB0 , i.e. ẑ0 = α′
B0
, gB0(ẑk+1) = ẑk = Pk(βB0) ∩ KB0 for k ≥ 0

and ẑk → βB0 as k → ∞. Moreover let ẑk(B) = ψB(−k) be the motion of ẑk under the
equivariant holomorphic motion on the parameter piece PP0(B0) = PP0.

Continuing similarly as above let {Bk}k≥l ⊂ PPn+l(B0) be the sequence of parameters
such that gnBk

(Bk − 2) = ẑk(Bk) for k ≥ l. Then Φ1(ck) = Bk for k ≥ l and Bk → B0 as
k → ∞. And since gB(1/z) = gB(z) the preimage of ẑk(B) near 0 is 1/ẑk+1(B), hence
gn−1
Bk

(Bk − 2) = 1/ẑk+1(Bk). Moreover since ψB(z) = Bz + B2 log(−z) + O(1) at infinity
we have ẑk/k = ψB0(−k)/k ≃ −B0 as k → ∞. And thus k/ẑk+1 → −1/B0 as k → ∞.

Applicating Lemma 10.2 similarly to above we obtain

(Bk −B0) · k −→ −1

bB0

as k → ∞

where b is the derivative of B 7→ gn−1
B (B − 2) at B = B0.

Finally we obtain that for any exponent κ > 0

∣∣∣∣
Φ1(ck)− Φ1(c0)

(ck − c0)
κ

∣∣∣∣ =
∣∣∣∣
Bk −B0

(ck − c0)
κ

∣∣∣∣ ≥
1

2

|a|κ
|bB0||A|κ

|ρ|kκ
k

−→
k→∞

∞.

Hence Φ1 is not Hölder-κ for any κ > 0 at c0. Since the dyadic tips are dense in the
boundary of M the Theorem is proved.

For completenes let us state precisely the asymptotic conformality result used above.
A variant can be found in [DH3, Lemma in prof of Prop. 20.]. Let H : D× D −→ C be a
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holomorphic motion with base point λ0 = 0 and let f : D −→ C be a holomorphic map.
Then the expression H−1

λ (f(λ)) := ϕ(λ) defines a quasi-regular map with ϕ(0) = 0 in
a neighbourhood of 0. Let ζ : D −→ C be the holomorphic map (motion of 0) ζ(λ) :=
H(λ, 0) and set σ := f ′(0)− ζ ′(0).

Lemma 10.2. If σ ̸= 0 then ϕ is quasi-conformal on a neighbourhood of 0. Moreover ϕ
is asymptotically conformal at 0 with derivative 1/σ in the sense that

lim
λ→0

ϕ(λ)

λ
=

1

σ
.

This proves Theorem B from, which the property that Φ1 admits no quasi-conformal
extension to any neighbourhood of any boundary point of M easily follows, since any
K-quasi-conformal homeomorphism is 1/K-Hölder.

References

[A] L. V. Alhfors — Lectures on quasi-conformal mappings, Wadsworth &
Brook/Cole, Advanced Books & Software, Monterey 1987.

[B-B] G. Bassanelli, F. Berteloot — Lyapunov exponents, bifurcation currents and lam-
inations in bifurcation loci. Math. Ann., 345, N1, pp. 1-23, (2009).

[B-L] S. Bullett, L. Lomonaco — Dynamics of modular matings Adv. Math. 410
(2022), Paper No. 108758, 43 pp.

[C-G] L. Carleson and T. Gamelin, Complex Dynamics, Springer-Verlag 1993.

[DH1] A. Douady, J.H. Hubbard — Etude dynamique des polynômes complexes, I, Pub-
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Toulouse 3, 31062 Toulouse Cedex 09, France. e-mail: roesch@math.univ-toulouse.fr


