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Abstract

The dynamics of an inviscid and incompressible fluid flow on a Rieman-
nian manifold is governed by the Euler equations. In recent papers [5, 6, 7, 8]
several unknown facets of the Euler flows have been discovered, including uni-
versality properties of the stationary solutions to the Euler equations. The
study of these universality features was suggested by Tao as a novel way
to address the problem of global existence for Euler and Navier-Stokes [28].
Universality of the Euler equations was proved in [7] for stationary solutions
using a contact mirror which reflects a Beltrami flow as a Reeb vector field.
This contact mirror permits the use of advanced geometric techniques in
fluid dynamics. On the other hand, motivated by Tao’s approach relating
Turing machines to Navier-Stokes equations, a Turing complete stationary
Euler solution on a Riemannian 3-dimensional sphere was constructed in [8].
Since the Turing completeness of a vector field can be characterized in terms
of the halting problem, which is known to be undecidable [30], a striking
consequence of this fact is that a Turing complete Euler flow exhibits unde-
cidable particle paths [8]. In this article, we give a panoramic overview of this
fascinating subject, and go one step further in investigating the undecidabil-
ity of different dynamical properties of Turing complete flows. In particular,
we show that variations of [8] allow us to construct a stationary Euler flow
of Beltrami type (and, via the contact mirror, a Reeb vector field) for which
it is undecidable to determine whether its orbits through an explicit set of
points are periodic.
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1 Introduction

Back in 1936 Turing faced a fundamental question which had been driving the
attention of many mathematicians since the 1920’s: Is there an answer for the
decision problem for first-order logics?. A decision problem can be posed as a
yes/no question depending on the input values. Decidability is the problem of the
existence of an effective method, a test or automatic procedure to know whether
certain premises entail certain conclusions. The halting problem is one of the first
decision problems which was proved to be undecidable. Indeed, Alan Turing proved
that a general algorithm that solves the halting problem cannot exist (for all
possible program-input pairs). In doing so, he, fortuitously, invented the basic
model of modern digital computers, the so-called Turing machine.

The undecidability of the halting problem yields a cascade of related questions:
What kind of physics might be non-computational? (Penrose [19]) Is hydrodynamics
capable of performing computations? (Moore [17]). Given the Hamiltonian of a
quantum many-body system, does there exist an algorithm to check whether it
has a spectral gap? (this is known as the spectral gap problem, recently proved to
be undecidable [9]). And last but not least, can a mechanical system (including a
fluid flow) simulate a universal Turing machine? (Tao [25, 26, 27]).

Surprisingly, this last question is connected with the regularity of the Navier-
Stokes equations [24], one of the unsolved problems in the Clay’s list of problems for
the Millennium . In [28] Tao speculated on a relation between a potential blow-up
of the Navier-Stokes equations, Turing completeness and fluid computation. This is
part of a more general programme he launched in [24, 25, 28] to address the global
existence problem for Euler and Navier-Stokes based on the concept of universality.
Inspired by this proposal, in [7] we showed that the stationary Euler equations
exhibit several universality features, in the sense that, any non-autonomous flow
on a compact manifold can be extended to a smooth stationary solution of the
Euler equations on a Riemannian manifold of possibly higher dimension. As a
corollary, we established the Turing completeness of the steady Euler flows on a
17-dimensional sphere [7]. It is then natural to ask: can this dimensional bound
be improved?

We solved this problem affirmatively in [8] constructing stationary solutions of
the Euler equations on a Riemannian 3-dimensional sphere that can simulate any
Turing machine (i.e., they are Turing complete). In particular, these solutions ex-
hibit undecidable paths in the sense that there are constructible points for which
it is not possible to decide whether their associated trajectories will intersect a
certain (explicit) open set or not. The type of flows that we considered are Bel-
trami fields, a particularly relevant class of stationary solutions. Our game plan
combines the computational power of symbolic dynamics with techniques from
contact topology. Contact topology enters into the scene because Beltrami fields
correspond to Reeb flows under a contact mirror unveiled by Sullivan, Etnyre and
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Ghrist more than two decades ago. The contact mirror thus reflects a problem in
Fluid Dynamics as a problem in contact geometry and back.

The existence of Turing complete Euler flows gives rise to new questions con-
cerning undecidability of different dynamical properties. One of the potential prob-
lems to consider is that of periodic orbits: Ever, at least since the work of Poincaré
[22], periodic orbits are known to be one of the major tools to understand the
dynamics of Hamiltonian systems. Even though, not every Hamiltonian system
admits periodic orbits, the Weinstein conjecture asserts that under some topolog-
ical (compact) and geometrical (contact) conditions on the manifold, Reeb vector
fields admit at least one periodic orbit. The Weinstein conjecture is known to be
true in dimension 3, so using our contact mirror we can conclude that the Tur-
ing complete Reeb flow we constructed in [8] has at least one periodic orbit (in
fact, in our construction the Reeb vector field coincides with a Hopf field in the
complement of a certain solid torus, so it has infinitely many periodic orbits).
It is then natural to ask if for every point of the sphere it is possible to decide
whether its corresponding orbit will be closed or not. We shall see in this article
that such a decision problem has no answer. The undecidability of other dynamical
properties of Reeb flows will be also discussed. In view of Gödel’s incompleteness
theorems, undecidability of such properties of dynamical systems seems to be an
unsurmountable obstacle no matter what systems of axioms are considered.

Our goal in this article is to give an overview of this exciting area of research.
Let us summarize the contents of this work. Next, in this Introduction, we present
the Euler equations and the Beltrami fields on Riemannian manifolds, in Sec-
tion 1.1, and the connection between contact geometry and hydrodynamics (in
particular, between Beltrami fields and Reeb flows), in Section 1.2. In Section 2,
following [7], we introduce the theory of Reeb embeddings and their flexibility (in
the form of a new h-principle), and apply it to prove several universality features
of the stationary Euler flows in high dimensions. The construction of a Turing
complete Reeb field on a 3-dimensional sphere [8] is presented in Section 3; as a
novel feature, we show how variations of this result allow us to prove the existence
of Reeb fields exhibiting different undecidable dynamical properties, including pe-
riodic orbits. Finally, in Section 4 we recall the main theorem of [6] establishing
the existence of Turing complete time-dependent solutions to the Euler equations
(on compact Riemannian manifolds of very high dimension), and discuss the im-
plications of our results regarding computability with the Navier-Stokes equations.

1.1 The Euler equations on Riemannian manifolds

The Euler equations describe the dynamics of an incompressible fluid flow without
viscosity. Even if they are classically considered on R3, they can be formulated on
any n-dimensional Riemannian manifold (M, g), n ≥ 2 (for an introduction to the
geometric aspects of hydrodynamics see [2, 20]). The equations can be written as:{

∂
∂tX +∇XX = −∇p ,
divX = 0 ,
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where p stands for the hydrodynamic pressure and X is the velocity field of the
fluid (a non-autonomous vector field on M). Here ∇XX denotes the covariant
derivative of X along X. A solution to the Euler equations is called stationary
whenever X does not depend on time, i.e., ∂

∂tX = 0, and it models a fluid flow in
equilibrium.

This extension of the Euler equations to high dimensional manifolds turns out
to be very useful to show that the steady and time-dependent Euler flows exhibit
remarkable dynamical [7] (see also [26, 27, 29]), computational [6] or topological [4]
universality features.

A short comprehensive dictionary:

• A volume-preserving (autonomous) vector field X on M is Eulerisable [21] if
there exists a Riemannian metric g on M compatible with the volume form,
such that X satisfies the stationary Euler equations on (M, g)

∇XX = −∇p , divX = 0 (1.1)

for some pressure function p.

• A divergence-free vector field X on an odd-dimensional manifold (M, g) of
dimension n = 2m+ 1 is Beltrami if

curlX = fX ,

for some factor f ∈ C∞(M). The curl of X is defined as the unique vector
field that satisfies the equation

icurlXµ = (dX[)m

where µ is the Riemannian volume form and [ stands for the musical iso-
morphism associated to the metric g. The classical Hopf fields on the round
sphere S2m+1 and the ABC flows on the flat 3-torus T3 are examples of
Beltrami fields.

1.2 Contact hydrodynamics

Let M2m+1 be an odd-dimensional manifold equipped with a hyperplane dis-
tribution ξ. Assume that there is a one-form α ∈ Ω1(M) with kerα = ξ and
α∧ (dα)m > 0 everywhere. Then we say that (M2m+1, ξ) is a (cooriented) contact
manifold.

The one-form α is called a contact form. Of course, the contact structure ξ
does not depend on the choice of the defining one-form α. It is well known that dα
induces a symplectic structure on the hyperplane distribution ξ (of even dimension
2m). The unique Reeb vector field R associated to a given contact form α is defined
by the equations

ιRα = 1 , ιRdα = 0 . (1.2)
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We will now explain the connection between contact geometry and hydrody-
namics. In order to understand this remarkable correspondence it is convenient
to rewrite the Euler equations in a dual language. Duality is given by contrac-
tion with the Riemannian metric g. With the one-form α defined as α := X[ and
the Bernoulli function as B := p + 1

2g(X,X), the steady Euler equations can be
equivalently formulated as {

ιXdα = −dB ,
dιXµ = 0 ,

where µ is the Riemannian volume form.
Observe that:

• The equation curlX = fX, with f ∈ C∞(M), satisfied by a Beltrami vector
field on an odd-dimensional manifold, can be equivalently written as (dα)m =
fιXµ . Assume that X is rotational, i.e., f > 0, then if X does not vanish
on M we infer that

α ∧ (dα)m = fα ∧ ιXµ > 0 ,

thus proving that α defines a contact structure on M .

• Obviously, X satisfies ιX(dα)m = fιXιXµ = 0. Therefore, since α∧(dα)m >
0, it is easy to conclude that X ∈ ker dα, and hence it is a reparametrization
of the Reeb vector field R by the function α(X) = g(X,X), i.e., R = X

α(X) .

These observations prove one of the implications of the following theorem,
which is due to Etnyre and Ghrist [11].

Theorem 1.1. Let M be a Riemannian odd-dimensional manifold. Any smooth,
nonsingular rotational Beltrami field on M is a Reeb-like field for some contact
form on M . Conversely, given a contact form α on M with Reeb field X, any
nonzero rescaling of X is a smooth, nonsingular rotational Beltrami field for some
Riemannian metric on M .

Remark. The original proof by Etnyre and Ghrist is for three dimensional man-
ifolds. The fact that the correspondence holds on any odd-dimensional manifold
was detailed in [7]. See also [5] for an extension of this result to b-manifolds.

2 Embedding dynamics into Reeb flows

In [7], we studied several universality features of the stationary Euler equations.
In view of the correspondence established in Theorem 1.1, we can reformulate the
question of embedding dynamics into steady Euler flows in terms of Reeb flows.
Let us fix a nonvanishing vector field X on a compact manifold N and some
compact contact manifold (M, ξ) of dimensions n ≤ m, respectively. The question
we answer in this section is the following: Can we give sufficient conditions for the
existence of an embedding e : N ↪→ M and a contact form α ∈ Ω1(M) defining ξ
such that the Reeb field R satisfies e∗X = R|e(N)?
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2.1 Flexibility of Reeb embeddings

We will address the question above using a classical framework for flexibility prob-
lems in contact geometry: the homotopy principle. The world of contact geometry
exhibits a lot of flexibility which reduces geometrical problems to their associ-
ated purely homotopical algebraic problems. The pioneering work of Gromov [14]
showed that this approach is extremely fruitful for symplectic and contact geomet-
rical problems. Some of Gromov’s results in contact geometry were generalized
in [3] when the ambient manifold is closed and the contact structure is “over-
twisted”. We will not introduce this notion here, the only thing that we need in
our discussion is that being “overtwisted” is a property that a given contact struc-
ture may satisfy.

A first observation concerning our motivating question of embedding dynamics
on Reeb fields is that the vector field X cannot be arbitrary.

Definition 2.1. A vector field X on N is geodesible if there is some metric for
which the orbits of X are geodesics.

When X is of unit length for such a metric, we say that X is geodesible of unit
length. From now on, by geodesible we mean geodesible of unit length. A char-
acterization of geodesible vector fields was given by Gluck in terms of differential
forms: X is geodesible if and only if there is some one-form β such that β(X) = 1
and ιXdβ = 0. In particular, if a Reeb vector field R defined by a form α on a
contact manifold M has some invariant submanifold N , then R restricted to N is
geodesible. Indeed, if X is the vector field R restricted on N and i : N ↪→ M is
the inclusion of N into M , then i∗α satisfies{

i∗α(X) = 1

ιXdi
∗α = 0

. (2.1)

Note that i∗α is not necessarily a contact form, so that X is not necessarily a Reeb
field (in general, it is not even volume-preserving). However, it is always geodesible
according to Gluck’s characterization.

Conversely, start with any geodesible (hence non-vanishing) vector field X on
a compact manifold N .

Definition 2.2. An embedding e : (N,X) ↪→ (M, ξ) is called a Reeb embedding
if there is a contact form α defining ξ such that the associated Reeb field satisfies
e∗X = R|e(N).

The main theorem in [7] gives sufficient conditions in terms of the codimension
of an arbitrary smooth embedding to be isotopic to a Reeb embedding.

Theorem 2.3 ([7]). Let e : (N,X) ↪→ (M, ξ) be a smooth embedding of N into
a contact manifold (M, ξ) where X is a geodesible vector field on N . Assume that
dimM ≥ 3n + 2. Then e is isotopic to a C0-close Reeb embedding ẽ : (N,X) ↪→
(M, ξ).
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Remark. If we impose the additional assumption that (M, ξ) is an overtwisted
contact manifold, then dimM ≥ 3n is enough, although the Reeb embedding ẽ is
not necessarily C0 close to e if dimM < 3n+ 2. In [7], parametric versions of the
previous statement are also discussed.

Example 2.4. The existence of a Reeb embedding of any pair (N,X) into some
contact manifold is easy to establish, since there is a natural source of examples
of such embeddings. Denote by β the one-form such that β(X) = 1 and ιXdβ = 0.
Gluck’s characterization implies that there is a metric for which X is of unit-length
and its orbits are geodesics which satisfies g(X, ·) = β. Recall that the cotangent
bundle T ∗N is equipped with the canonical Liouville one-form λstd ∈ Ω1(T ∗N).
Such one-form is characterized by the property that, given any one-form γ on N ,
which can be understood as an embedding γ : N → T ∗N , we have γ = γ∗λstd. For
a given metric one can define the unit tangent bundle STN defined fiberwise by
STpN = {X ∈ TpN | gp(X,X) = 1}. A standard property (see e.g. [12, Section
1.5]) of λstd is that given the metric g on N , it restricts on ST ∗N (the unit
cotangent bundle) as a contact form λ whose Reeb field is dual to the geodesic
vector field on STN . In particular, the section β, seen as an embedding

β : N → ST ∗N

satisfies β∗λ = β and actually the Reeb field R defined by λ satisfies β∗X = R.
Thus, it is a Reeb-embedding according to Definition 2.2. This further motivates
a systematic examination of Reeb-embeddings from a contact topology point of
view, a study that leads to Theorem 2.3.

Sketch of the proof of Theorem 2.3. The proof of Theorem 2.3 follows the usual
procedure of h-principle type results. We first define a “formal” notion of Reeb
embedding, which satisfies a property that is purely homotopic in terms of its
differential. We then prove that, under certain conditions, any formal Reeb em-
bedding is isotopic to a genuine Reeb embedding (i.e., they satisfy the h-principle).
To conclude, we use obstruction theory to analyze the minimal codimension for
which any smooth embedding is a formal Reeb embedding satisfying the condi-
tions for the h-principle to apply. We will now sketch each of these steps of the
proof, under the simplifying assumption that M is overtwisted.

Step 1: Iso-Reeb embeddings and extension lemma. Let X be a geodesible
vector field on N , and denote by β a one-form such that β(X) = 1 and ιXdβ = 0.
We need to fix such a choice of one-form, and let η := kerβ. Let (M, ξ) be an
overtwisted contact manifold with defining contact form α, i.e., kerα = ξ.

With a slight abuse of notation, we will denote α ◦F1 for α(F1(·)) and dα ◦F1

for dα(F1(·), F1(·)). This is also denoted by F1
∗α and F1

∗dα in the discussion of
“generalized iso-contact immersions” in [10, Section 16.2].

Definition 2.5. An embedding f : (N,X, η = kerβ) → (M, ξ) is an iso-Reeb
embedding if f∗(η) = ξ.
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The corresponding formal notion is

Definition 2.6. An embedding f : (N,X, η) → (M, ξ) is a formal iso-Reeb em-
bedding if there exists a homotopy of monomorphisms

Ft : TN −→ TM,

such that Ft covers2 f , F0 = df , h1α ◦ F1 = β and dβ|η = h2dα ◦ F1|η for some
strictly positive functions h1 and h2 on N .

Any (genuine) iso-Reeb embedding is clearly a formal iso-Reeb embedding, with
Ft constanly equal to df . Both conditions h1α◦F1 = β and dβ|η = h2dα◦F1|η have
to be imposed, since F1 does not commute with the exterior derivative in general
(when F1 is not holonomic). This formal notion of Reeb embedding is enough to
obtain the main theorem for an overtwisted target contact manifold. For the most
general case, an extra formal hypothesis needs to be imposed (confer [7]).

The following lemma by Inaba [15] (see also [7]) provides the desired property
of iso-Reeb embeddings.

Lemma 2.7. Let N be a submanifold of (M, ξ), and denote by i the inclusion
map of N into M . Let η be the restriction i∗ξ. A nonvanishing vector field X on
N can be extended to a Reeb field on all M if and only if X is transverse to η and
the flow of X preserves η.

An iso-Reeb embedding f is in particular a Reeb embedding according to
Definition 2.2. The vector field X is transverse to η and preserves it if and only if
there is a one form β such that β(X) = 1, ιXdβ = 0 and kerβ = η. These are our
hypotheses in the case of an iso-Reeb embedding, hence by the previous lemma
there is a contact form whose Reeb field R satisfies f∗X = R.

Step 2: An h-principle via isocontact embeddings. Our goal in this sec-
ond step is to prove that any formal iso-Reeb embedding e : (N,X, η) → (M, ξ)
into an overtwisted contact manifold, is homotopic through formal iso-Reeb em-
beddings to a genuine iso-Reeb embedding. This is tantamount to saying that iso-
Reeb embeddings satisfy an existence h-principle. Other versions of the h-principle
(parametric, relative to the domain, etc...) are discussed in [7]. Recall that α is a
defining contact form of ξ. The sketch of the argument is the following:

1. The embedding e satisfies that de(η) ⊂ TM |N , but de(η) is not, in general,
contained in kerα = ξ. We extend the homotopy Ft and use it inversely to
deform ξ via an homotopy of symplectic vector bundles (ξt, ωt) (defined over
all M , but which is identically (ξ, dα) outside a neighborhood U of e(N))
such that (ξ0, ω0) = (ξ, dα), (ξ1, ω1) satisfies de(η) ⊂ ξ1 and ω1|η = dβ along
N . The last condition is guaranteed, up to conformal transformation, by the
formal iso-Reeb condition.

2We say that Ft : TN → TM covers f : N → M if the map between bases induced by Ft is
constantly equal to f .
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2. Using partitions of unity, the fact that ω1 is non degenerate on ξ1, and that
ω1|η = dβ, it is now possible to make another deformation. We extend the
homotopy (ξt, ωt) to t ∈ [1, 2] such that (ξ2, ω2) is a contact structure in a
smaller neighborhood U ′ of e(N) and still satisfies de(η) ⊂ ξ2. In particular,
we can achieve that ω2 = dγ for some one form γ such that γ satisfies e∗γ = β
(the form such that kerβ = η and β(X) = 1). The pair (ξ2, ω2) will not be a
contact structure globally, since this small neighboorhod is a priori smaller
than the neighborhood U where (ξ1, ω1) was not anymore of contact type.
Hence in some parts U \ U ′, ξ2 is not of contact type.

3. We will now reduce to a formal isocontact embedding (confer [10, Section
12.3] for more details on such embeddings). We endow the neighborhood
U ′ with the contact structure (ξ2, ω2). We use the previous deformations
(ξt, ωt), t ∈ [0, 2] defined on U ′ to endow the trivial embedding ê : U ′ → M
(defined as a neighborhood extension of the embedding e) with an homotopy
of monomorphisms Gt : TU ′ → TM such that G0 = dê, G1 satisfies ξ2 =
G−11 (ξ) and the map induces a conformally symplectic map.

4. The map ê is a formal isocontact embedding of codimension 0 with open
source manifold. The h-principle for such embeddings into overtwisted tar-
gets applies [3, Corollary 1.4]. We obtain an embedding ẽ : U ′ →M (isotopic
to ê through formal isocontact embeddings) such that dẽ satisfies dẽ(ξ2) = ξ
and the map induces a conformally symplectic map. Since (ξ2, ω2) restricted
to N ⊂ U ′ corresponds to (η, dβ), we deduce that ẽ|N is a genuine iso-Reeb
embedding isotopic to e = ê|N .

Step 3: Obstruction theory. The final step of the proof consists in showing
that for dimM ≥ 3 dimN , any smooth embedding e : N → (M, ξ) is a formal iso-
Reeb embedding for any choice of (X,β) where X is a non-vanishing geodesible
field and β is a choice of one-form for which β(X) = 1 and ιXdβ = 0. We will
assume the following lemma, confer [7] for the details.

Lemma 2.8. Let e : (N,X, η) → (M, ξ) be an embedding such that there is an
homotopy of monomorphisms Ft : TN → TM covering e satisfying F0 = de and
F1(η) is an isotropic subbundle of ξ. Then e is a formal iso-Reeb embedding.

For 2m > dimN , it can be proved that there is a family of monomorphisms
Ht : TN → TM such that F1(X) t ξ, and furthermore F1(η) ⊂ ξ. The previous
lemma shows that a sufficient condition for being a formal iso-Reeb embedding is
that F1(η) can be deformed into an isotropic subbundle of ξ. Recall that n denotes
the dimension of N , hence η has rank n−1. The manifold M is of dimension 2m+1
hence ξ is of rank 2m. Denote by Gr = Grass(n − 1,R2m) the space of (n − 1)-
subspaces of Rm. Similarly, denote by Gris = Grassis(n − 1,R2m) the space of
isotropic subspaces of dimension n− 1 in R2m seen as Cm. To find a path between
η and an isotropic subspace of ξ over N , we need to find a global section of the
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bundle E over N whose fiber is

P = Path(Grass(n− 1,R2m),Grassis(n− 1,R2m)),

i.e., the space of paths between any (n − 1)-subspace and any isotropic (n − 1)-
subspace of R2m. On the other hand, we know that the homotopy groups of such
a path space depend on the relative homotopy groups

πj(P ) ∼= πj+1(Grass(n− 1,R2m),Grassis(n− 1,R2m)).

We now use that

Gr ∼=
SO(2m)

SO(n− 1)× SO(2m− (n− 1))
,

Gris ∼=
U(m)

SO(n− 1)× U(m− (n− 1))
.

Combining the exact sequence for relative pairs, the exact sequence for quotients,
and using the stable range of the involved groups, we can show that

2m ≥ 3n− 1 =⇒ πj(P ) = 0 for all j ≤ n− 1 .

Hence, if dimM ≥ 3 dimN , we can find a global section along N . Using this section
and the previous family of monomorphisms, we find a family of isomorphisms
Gt : TN → TM covering the smooth embedding e such that G1(η) is an isotropic
subbundle of ξ. Applying Lemma 2.8, we conclude that e is a formal iso-Reeb
embedding.

Step 4: Conclusion. In step 3 we showed that any smooth embedding is a
formal iso-Reeb embedding for any pair (N,X) embedded into a contact manifold
(M, ξ) such that dimM ≥ 3 dimN . Note that smooth embeddings in this context
always exist by Whitney’s embedding theorem. Under the assumption that M
is overtwisted, we can apply the h-principle proved in Step 2 and deduce that
there is an iso-Reeb embedding ẽ isotopic to e. Since an iso-Reeb embedding is in
particular a Reeb embedding, we can find some contact form α defining ξ whose
Reeb field R satisfies ẽ∗X = R|ẽ(N). This concludes the proof of the theorem.

The previous theorem “fixes” the target contact structure, which forces to take
an embedding that is isotopic to the original smooth embedding e : N → (M, ξ). If
we simply want to extend the vector field X to a Reeb vector field, without fixing
the ambient contact structure, then we can fix the embedding.

Corollary 2.9. Let X be a geodesible vector field on a compact manifold N . Let
e : N → (M, ξ) be a smooth embedding into a contact manifold with dimM ≥
3 dimN + 2. Then there is a contact form α on M whose Reeb field R satisfies
e∗X = R|e(N). The contact form α defines a contact structure contactomorphic
to ξ.
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Proof. It follows from Theorem 2.3 that there is a Reeb embedding ẽ (with respect
to the contact structure ξ) isotopic to e. According to Definition 2.2, there is a
contact one-form α′ defining ξ such that the Reeb field R′ of α′ satisfies ẽ∗X =
R′|ẽ(N). Let ϕt be an isotopy of M such that ϕ1 ◦ ẽ = e. Then α := (ϕ−11 )∗α′

is a contact one-form, defining a contact structure (ϕ1)∗ξ, whose Reeb field R =
(ϕ1)∗R

′ satisfies
e∗X = (ϕ1)∗ ◦ ẽ∗X = (ϕ1)∗R

′ = R ,

thus concluding the proof.

2.2 Applications to universality

We are now ready to give some applications of Theorem 2.3. The following concept
is inspired by Tao’s definition of Euler-extendibility in [27] (albeit it is different
in the sense that it is adapted to the context of stationary solutions of the Euler
equations).

Definition 2.10. A non-autonomous time-periodic vector field u0(·, t) on a com-
pact manifold N is Euler-extendible if there exists an embedding e : N × S1 → Sn
for some dimension n > dim N + 1 (that only depends on the dimension of N),
and an Eulerisable flow u on Sn, such that e(N × S1) is an invariant submanifold
of u and e∗(u0(·, θ) + ∂θ) = u|e(N×S1), θ ∈ S1. If the non-autonomous field u0(·, t)
is not time-periodic, we say that it is Euler-extendible if there exists a proper em-
bedding e : N × R → Rn for some dimension n > dim N + 1 (that only depends
on the dimension of N), and an Eulerisable flow u on Rn, such that e(N × R)
is an invariant submanifold of u and e∗(u0(·, θ) + ∂θ) = u|e(N×R), θ ∈ R. If any
non-autonomous dynamics u0(·, t) is Euler-extendible, we say that the stationary
Euler flows are universal.

Roughly speaking, the extendibility of a non-autonomous dynamics implies
that, in the appropriate local coordinates, u0 describes the “horizontal” behavior
of the integral curves of the extended vector field u. Observe that the original
vector field u0 is not assumed to be volume-preserving, although certainly u will
be. We introduce another definition for embeddability of discrete dynamics.

Definition 2.11. We say that a (orientation-preserving) diffeomorphism φ : N →
N is Euler-embeddable if there exists an Eulerisable field u on Sn (for some n that
only depends on the dimension of N) with an invariant submanifold exhibiting a
cross-section diffeomorphic to N such that the first return map of u at this cross
section is conjugate to φ.

Two main corollaries of the previous construction can be expressed in terms of
these two definitions.

Corollary 2.12 ([7]). The stationary Euler flows are universal. Moreover, the
dimension of the ambient manifold Sn or Rn is the smallest odd integer n ∈
{3 dim N + 5, 3 dim N + 6}. In the time-periodic case, the extended field u is
a steady Euler flow with a metric g = g0 + δP , where g0 is the canonical metric on
Sn and δP is supported in a ball that contains the invariant submanifold e(N×S1).
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It is clear that the extension to an Euler flow u is not unique, since Theorem
2.3 shows that iso-Reeb embeddings exist in abundance. Corollary 2.9, via the
correspondence Theorem 1.1, illustrates the flexibility of steady Euler flows in
the sense that any fixed smooth embedding in high enough codimension can be
realized as an invariant submanifold (with arbitrary induced geodesible dynamics)
of a steady Euler flow. Our second corollary is expressed in terms of Definition
2.11.

Corollary 2.13 ([7]). Let N be a compact manifold and φ an orientation-preserving
diffeomorphism on N . Then φ is Euler-embeddable in Sn, where n is the smallest
odd integer n ∈ {3 dim N + 5, 3 dim N + 6}.

As in Corollary 2.12, the metric can also be assumed to be the canonical one
outside an embedding of the mapping torus of N by φ. This is ensured by applying
Theorem 2.3 with a tight contact sphere as the target contact manifold. The
dimensional bounds can be slightly improved if we use an overtwisted contact
sphere as target manifold, as explained after the statement of Theorem 2.3. In the
following section, we shall introduce the concept of “Turing complete” flows, which
are flows that are universal in a computational sense. Using the fact that there are
diffeomorphisms that simulate any Turing machine (see [25] for an example), and
the fact that our construction via an h-principle is constructible (i.e., algorithmic),
we obtain as a by-product that there is a Turing complete Euler flow on S17. In the
next section, we will focus on this property and drastically improve the dimension
of the ambient manifold.

3 A Turing complete steady Euler flow on S3

In this section we review the construction of a Turing complete stationary Euler
flow on a Riemannian three-sphere [8]. We end up by proving a new result (Corol-
lary 3.7) on the existence of Reeb flows (and their Beltrami counterparts) with
orbits whose periodicity is undecidable.

3.1 Turing machines and symbolic dynamics

A Turing machine is a mathematical model of a theoretical device manipulating a
set of symbols on a tape following some specific rules. It receives, as input data, a
sequence of symbols and, after a number of steps it might return as output another
string of symbols. More concretely:

A Turing machine is defined via the following data:

• A finite set Q of “states” including an initial state q0 and a halting state
qhalt.

• A finite set Σ which is the “alphabet” with cardinality at least two.

• A transition function δ : Q× Σ −→ Q× Σ× {−1, 0, 1}.



Universality and undecidability in Euler and Reeb flows 13

We will denote by q ∈ Q the current state, and by t = (tn)n∈Z ∈ ΣZ the current
tape of the machine at a given step of the algorithm of the Turing machine. This
gives a configuration (q, t) of the machine. In particular, the space of all possible
configurations of a Turing machine is given by P := Q×ΣZ. The algorithm works
as follows, for a given input tape t ∈ ΣZ.

1. Set the current state q as the initial state and the current tape t as the input
tape.

2. If the current state is qhalt then halt the algorithm and return t as output.
Otherwise compute δ(q, t0) = (q′, t′0, ε), with ε ∈ {−1, 0, 1}.

3. Replace q with q′ and t0 with t′0, obtaining a modified tape t̃ = (...t−1.t
′
0t1...).

4. Shift t̃ by ε, obtaining a new tape t′. The resulting configuration is (q′, t′).
Return to step (2).

Our convention is that ε = 1 (resp. ε = −1) corresponds to the left shift (resp. the
right shift). This algorithm (determined by the transition function δ) induces a
global transition function in the space of configurations ∆ : Q \ {qhalt}×ΣZ → P,
which sends a non-halting configuration in P to the configuration obtained after
one step of the algorithm.

Remark. Without loss of generality, one can assume that the configurations of
the machine are those pairs (q, t) ∈ Q × ΣZ for which only a finite number of
symbols in t are different from 0 (also called the “blank” symbol). We will not
need this simplifying assumption in this section, although it is certainly useful in
other constructions [6].

The halting problem: In computability theory, the halting problem is the
problem of determining, from a description of an arbitrary computer program and
an input, whether the program will finish running (halting state), or continue
to run forever. Alan Turing proved in 1936 that a general algorithm to solve the
halting problem for all possible program-input pairs cannot exist. A key part of the
proof is the formulation of a mathematical definition of a computer and program,
which is the previously introduced notion of Turing machine; the halting problem
is undecidable for Turing machines. The halting problem is historically important
as it was one of the first problems to be proved undecidable.

Turing machines and universality An Eulerisable field on a manifold M is
Turing complete if it can simulate any Turing machine. In fact, Turing machines
can be simulated by dynamical systems in a large sense (a vector field, a diffeo-
morphism, a map, etc...). Following [25], we give a formal definition of such a
“simulation”.

Definition 3.1. Let X be a vector field on a manifold M . We say it is Turing
complete if for any integer k ≥ 0, given a Turing machine T , an input tape t,
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and a finite string (t∗−k, ..., t
∗
k) of symbols of the alphabet, there exist an explicitly

constructible point p ∈M and an open set U ⊂M such that the trajectory of X
through p intersects U if and only if T halts with an output tape whose positions
−k, ..., k correspond to the symbols t∗−k, ..., t

∗
k. A completely analogous definition

holds for diffeomorphisms of M .

Remark. In the construction explained in this Section, the point p depends on
T , the input and the finite string, while the open set U is always the same. In
other constructions of Turing complete flows [25, 7, 5], the point p only depends
on T and the input, and the open set U depends on the finite string of the output.
In particular, for a fixed machine and input we construct a point p and we can
“measure” a posteriori what is the output of the machine up to some precision by
looking which open sets are intersected by the trajectory of the flow through p.

Remark. One might as well avoid fixing a finite string of the output (t∗−k, ..., t
∗
k)

and just require that the machine halts if and only if the trajectory through p
enters certain open set. As detailed in [8, Lemma 5.5], the computational power
is the same with this simplification.

In 1991, Moore [17] introduced the notion of generalized shift to be able to
simulate any Turing machine; a generalized shift is a map that acts on the space
of infinite sequences on a given finite alphabet.

Let A be an alphabet and S ∈ AZ an infinite sequence. A generalized shift
φ : AZ → AZ is specified by two maps F and G which depend on a finite number
of specified positions of the sequence in AZ. Denote by DF = {i, ..., i+ r− 1} and
DG = {j, ..., j+ l−1} the sets of positions on which F and G depend, respectively.
These functions take a finite number of different values since they depend on
a finite number of positions. The function G modifies the sequence only at the
positions indicated by DG:

G : Al −→ Al

(sj ...sj+l−1) 7−→ (s′j ...s
′
j+l−1)

Here sj ...sj+l−1 are the symbols at the positions j, ..., j+l−1 of an infinite sequence
S ∈ AZ.

On the other hand, the function F assigns to the finite subsequence (si, ..., si+r−1)
of the infinite sequence S ∈ AZ an integer:

F : Ar −→ Z.

The generalized shift φ : AZ → AZ corresponding to F and G is defined as
follows:

• Compute F (S) and G(S).

• Modify S changing the positions in DG by the function G(S), obtaining a
new sequence S′.
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• Shift S′ by F (S) positions. That is, we obtain a new sequence s′′n = s′n+F (S)

for all n ∈ Z.

The sequence S′′ is then φ(S).

Given a Turing machine there is a generalized shift φ conjugate to it. Con-
jugation means that there is an injective map ϕ : P → AZ such that the global
transition function of the Turing machine is given by ∆ = ϕ−1φϕ. In fact, if the
Turing machine is reversible, it can be shown that the generalized shift is bijective.

Key observation: Generalized shifts are conjugate to maps of the square
Cantor set C2 := C × C ⊂ I2, where C is the (standard) Cantor ternary set in
the unit interval I = [0, 1].

Point assignment: take A = {0, 1} (this can be assumed without loss of
generality). Given s = (...s−1.s0s1...) ∈ AZ, we can associate to it an explicitly
constructible point in the square Cantor set. We just express the coordinates of the
assigned point in base 3: the coordinate y corresponds to the expansion (y0, y1, ...)
where yi = 0 if si = 0 and yi = 2 if si = 1. Analogously, the coordinate x
corresponds to the expansion (x1, x2, ...) in base 3 where xi = 0 if s−i = 0 and
xi = 2 if s−i = 1.

Moore proved that any generalized shift is conjugate to the restriction on the
square Cantor set of a piecewise linear map defined on blocks of the Cantor set
in I2. This map consists of finitely many area-preserving linear components. If
the generalized shift is bijective, then the image blocks are pairwise disjoint. An
example is depicted in Figure 3.1. Each linear component is the composition of
two linear maps: a translation and a positive (or negative) power of the horseshoe
map (or the Baker’s map).

Figure 1: Example of a map by blocks of the square Cantor set.

3.2 Area-preserving maps and Turing complete Reeb flows

In [8] we proved that any bijective generalized shift, understood as a map of the
square Cantor set onto itself, can be extended as an area-preserving diffeomor-
phism of the disk which is the identity on the boundary. The proof of this result
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combines three ingredients: the aforementioned piecewise linear map defined on
Cantor blocks, an explicit geometric construction using the homotopy extension
property, and Moser’s path method to ensure that the diffeomorphism that we
obtain is area-preserving. The precise statement is the following:

Proposition 3.2. For each bijective generalized shift and its associated map of
the square Cantor set φ, there exists an area-preserving diffeomorphism of the disk
ϕ : D → D which is the identity in a neighborhood of ∂D and whose restriction to
the square Cantor set is conjugate to φ.

Now the idea to construct a Turing complete Reeb flow is to take a Turing
complete bijective generalized shift (which exists because there are universal Tur-
ing machines that are reversible). Proposition 3.2 hence implies the existence of a
Turing complete area-preserving diffeomorphism of the disk which is the identity
on the boundary, as detailed in [8, Theorem 5.2]. Using a suspension construction
in contact geometry we can then show that any area-preserving diffeomorphism
of the disk can be realized as the first-return map on a cross section of a Reeb
flow on any contact three-manifold. In particular, taking the aforementioned Tur-
ing complete diffeomorphism we conclude the existence of Turing complete Reeb
flows. More precisely:

Theorem 3.3. Let (M, ξ) be a contact 3-manifold and ϕ : D → D an area-
preserving diffeomorphism of the disk which is the identity (in a neighborhood of)
the boundary. Then there exists a defining contact form α whose associated Reeb
vector field R exhibits a Poincaré section with first return map conjugate to ϕ. In
particular, there exists a Reeb field R on (M, ξ) which is Turing complete (in the
sense of Definition 3.1).

Combining Proposition 3.2, Theorem 3.3 and the correspondence Theorem 1.1
between Beltrami fields and Reeb flows, we obtain the desired result for stationary
Euler flows.

Corollary 3.4. There exists an Eulerisable field X on S3 that is Turing complete.
The metric g that makes X a solution of the stationary Euler equations can be
assumed to be the round metric in the complement of an embedded solid torus.

The fact that the metric can be assumed to be the round one in the complement
of an embedded solid torus needs some explanation. When applying Theorem 3.3,
we take as ambient manifold the standard contact sphere (S3, ξstd). Then, the con-
tact form whose Reeb field realizes a given area-preserving diffeomorphism of the
disk as a Poincaré map can be chosen to coincide with the standard contact form
αstd outside a solid torus. To conclude, one can check that the metric associated
to α via Theorem 1.1 can be taken to be the round one whenever α coincides with
αstd.

Remark. The construction of a Turing complete Reeb flow in Theorem 3.3 is
obtained by choosing a particular reversible universal Turing machine and realizing
its associated generalized shift as the first return map of the flow restricted to a
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square Cantor set on a Poincaré section (see Proposition 3.2). Had we chosen
another reversible Turing machine (not necessarily universal), its dynamics would
have been induced in the square Cantor set via the first return map of a Reeb
flow. We will use this observation in Corollary 3.8.

3.3 Undecidable dynamical properties in Reeb dynamics

In this subsection, we prove some new corollaries that follow from our construction
in [8]. A straightforward implication of Theorem 3.3 is the existence of certain
phenomena of contact dynamics that are undecidable. Specifically, there is no
algorithm to assure that a Reeb trajectory will pass through a certain region of
space in finite time. The precise formulation of this result is the following:

Corollary 3.5. Let R be a Turing complete Reeb flow on (M, ξ). Then there exist
an explicitly constructible compact set of points K ⊂ M and an explicit open set
U ⊂M such that it is undecidable to determine if the (positive) integral curves of
R through the points in K will intersect the set U .

A variation of our construction also allows us to construct a Reeb field R for
which there exist explicit points on M such that the problem of determining if
the orbit of R through each of these points is closed is undecidable. The use of
generalized shifts to find orbits whose periodicity is undecidable was also discussed
by Moore in [17].

The aforementioned result follows from this auxiliary lemma.

Lemma 3.6. There exists a Turing machine T ′ such that:

1. It is reversible.

2. The image of the first component of the transition function δ does not contain
q0.

3. It satisfies the “restart” property: if T ′ halts with input (q0, t), then it halts
with output (qhalt, t).

4. T ′ is universal in the following sense: the halting of any Turing machine T
and input c0 is equivalent to the halting of T ′ for some explicit input (which
depends on T and c0).

We are now ready to prove the undecidability of determining whether a tra-
jectory is periodic or not:

Corollary 3.7. Let (M, ξ) be a three-dimensional contact manifold. Then there is
a contact form α defining ξ whose associated Reeb field R satisfies that there are
explicit points on M for which determining whether the orbit through one of those
points is periodic or not is an undecidable problem.
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Proof. Let T = (Q, q0, qhalt,Σ, δ) be a universal Turing machine as in Lemma
3.6. We extend the transition function via δ(qhalt, t) = (q0, t, 0), and construct a
generalized shift φ conjugate to T by a map ϕ. Then given any input (q0, t), the
orbit of φ through ϕ(q0, t) is periodic if and only if T halts with input (q0, t).

The map φ is bijective (since T is reversible), and by Proposition 3.2 we can find
an area-preserving diffeomorphism of the disk F : D → D (which is the identity
in a neighborhood of the boundary) whose restriction to the square Cantor set is
conjugate to φ. Using Proposition 3.3, we construct a contact form α defining ξ
whose Reeb flow has a cross-section with a first return map that is conjugate to F .
It is then obvious that the orbit of the Reeb flow through a point representing an
input of the Turing machine is periodic if and only if T halts with such an input.
The result then follows from the undecidability of the halting problem.

Other special orbits can be constructed using the fact that the Turing machine
is universal. For example, it is possible to construct an explicit point p such that the
orbit of the Reeb flow through p is closed if and only if there is a counterexample
to the Riemann hypothesis (using a discrete equivalent formulation [25]), and
similarly with many other open problems in mathematics. This is achieved by
constructing an initial input associated to a Turing machine which halts upon
finding a counterexample.

Let us now give a proof of the auxiliary Lemma 3.6.

Proof of Lemma 3.6. We construct the Turing machine with the “restart” prop-
erty by formalizing the construction sketched in [16, Theorem 8], even though
there are several ways to construct it (another one is depicted in [17, p 220]). As
explained in [18, Section 6.1.2], we can find a reversible universal Turing machine
T = (Q, q0, qhalt,Σ, δ) which satisfies property 2: the initial state cannot be reached
from any other state. Let us construct a universal Turing machine T ′ starting from
T , which satisfies 1, 2 and 3.

This Turing machine is of the form T ′ = (Q′, q0, qhalt,Σ, δ
′). The space of states

Q′ is given by

Q′ = (Q0 × {−1,+1}) ∪ {q0, qhalt} ,

where Q0 := Q\{q0}. We basically take two copies of each state in Q except for q0,
and add q0, qhalt. The sign in {−1,+1} denotes the “direction” of the computation,
a concept that will become clear in the construction. To simplify, for any state
q ∈ Q \ {q0, qhalt}, we denote by q+ = q × {+1} ∈ Q′ and q− = q × {−1} ∈ Q′.
The halting state of T ′ is qhalt, even if there are two additional states qhalt × {1}
and qhalt × {−1} that we denote by q+halt and q−halt.

For any input of T , given by (q0, t), we associate the input (q0, t) of T ′. For any
pair of the form (q+, t) with q ∈ Q\{q0, qhalt}, we define the transition function of
T ′ exactly as the transition function δ. To formalize this, we introduce the notation
(q̃, t̃0, ε) = δ(q, t0). Then

δ′(q+, t0) := (q̃+, t̃0, ε).
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This is always well defined since q̃ is never equal to q0. Similarly, for the initial
state q0 we also use the notation (q̃, t̃0, ε) = δ(q0, t0) and we define

δ′(q0, t0) := (q̃+, t̃0, ε).

When the machine reaches the state q+halt (which happens when T halts with that
input), we reverse the computation by defining

δ′(q+halt, t0) := (q−halt, t0, 0). (3.1)

The idea now is that instead of halting with the output of T , we swapped to a
“reverse the computations” phase to undo the computations. For the states q−halt
and q− with q 6∈ {q0, qhalt}, we define T ′ as the inverse Turing machine: a step of
T ′ for a pair the form (q−, t0) is given by T−1. See for instance [18, Section 5.1.4]
for the construction of the inverse machine T−1, which is also reversible. Denote
by δ−1 the transition function of T−1; notice that δ−1 is not defined on the state
q0 by property 2. Then, for q ∈ Q \ {q0, qhalt}, if we set δ−1(q, t0) = (q̃, t̃0, ε), we
define

δ′(q−, t0) := (q̃−, t̃0, ε), if q̃ 6= q0.

If δ−1(q, t0) = (q0, t̃0, ε), it means that we have returned to the input configuration
so we can define instead:

δ′(q−, t0) := (qhalt, t̃0, ε) . (3.2)

Similarly for q−halt, if δ−1(qhalt, t0) = (q̃, t̃0, ε), we define

δ′(q−halt, t0) = (q̃−, t̃0, ε) if q̃ 6= q0

and if q̃ = q0 then
δ′(q−halt, t0) = (qhalt, t̃0, ε). (3.3)

Notice that the image state q̃ via δ−1 cannot be qhalt because the transition func-
tion δ is not defined when q = qhalt.

The global transition function of T ′ on configurations with states q0, q+ coin-
cides with the global transition function of T , where q+halt is identified with the
halting state of T . Accordingly, it is injective there. Similarly, the global transition
function on configurations with states q− and qhalt coincides with that of T−1,
where qhalt is identified with the halting state of T ′ and q−halt is identified with the
initial state of T ′. So it is also injective there. Each configuration with state q+halt
is sent to the same configuration with state q−halt in a trivial injective way. Summa-
rizing, the global transition function of T ′ is injective everywhere so T ′ is reversible

The machine T ′ satisfies 2, since q0 cannot be reached from δ, and in our
construction we attain qhalt instead of q0 when δ−1 is applied according to equation
(3.3). The machine is universal since its halting is equivalent to the halting of T .
Indeed, observe that the states of the form q− in T ′ can only be reached if T
halted, and qhalt can only be reached through negative states. This shows that if
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T does not halt with input (q0, t) then T ′ does not halt. On the other hand if T
halts, T ′ will eventually reach a negative state, reverse the computation and reach
qhalt. In fact, T halts with input (q0, t) if and only if T ′ halts with the same input.
This shows that T ′ is universal.

Property 3 is also satisfied by construction. Whenever T ′ halts with input
(q0, t), it will reach a q+halt, then q−halt and reverse the computation to halt with
configuration (qhalt, t).

Remark. Since any Turing machine can be simulated by a reversible Turing
machine that satisfies property 2 (see e.g. [18, Section 6.1.2]), the construction
presented in the proof of Lemma 3.6 allows one to start from any reversible Tur-
ing machine T , obtaining a reversible Turing machine T ′ which halts on the same
inputs than T and has the “restart” property. In particular, any undecidable prop-
erty associated to the inputs of T that halt is inherited by the inputs of T ′.

Finally, we can mention a corollary which serves as a sample of dynamical prop-
erties of Reeb flows which simulate Turing machines that can be easily shown to
be undecidable. Such undecidable properties are inherent to Turing machines and
their associated generalized shifts [17, Theorem 10]. A key ingredient is Rice’s the-
orem in computability theory, which in particular shows that non-trivial questions
about the set of inputs for which the Turing machine halts are undecidable [23].
The following result is then a straightforward consequence of the previous Remark,
the Remark after Corollary 3.4, and the existence of reversible Turing machines for
which determining if the set of inputs that halt is dense (in the set of all inputs),
has cardinality at least k ≥ 0, etc. is undecidable.

Corollary 3.8. Let (M, ξ) be a three-dimensional contact manifold. Then there is
a contact form α defining ξ and a compact set K ⊂M invariant by the associated
Reeb field R for which the following questions on the dynamics of R are undecidable
(we remark that α depends on each question):

• Are there at least k ≥ 0 periodic orbits on K?

• Is the set of periodic orbits dense in K?

• For a given µ > 0, is the set of periodic orbits on K of measure greater than
µ?

In the previous corollary, the set K is simply the union of orbits which intersect
the points associated to inputs (these points lie on a finite union of blocks of the
square Cantor set, see [8]).

4 Time dependent solutions of Euler and Navier-
Stokes

In the previous sections we have focused on stationary solutions to the Euler
equations, first in high dimensions as a consequence of a new h-principle for Reeb
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embeddings, and then in dimension three using the power of symbolic dynamics.
However, recall that the original motivation in [26, 27, 28] was to find a Tur-
ing complete time-dependent solution. The time-dependent Euler equations on a
Riemannian manifold (M, g) define a dynamical system on the space of volume-
preserving vector fields of the ambient manifold X∞vol(M). The following definition
of Turing completeness is adapted to this context by analogy with Definition 3.1.

Definition 4.1. Let (M, g) be a Riemannian manifold. The Euler equations on
(M, g) are Turing complete if the following property is satisfied. For any integer
k ≥ 0, given a Turing machine T , an input tape t, and a finite string (t∗−k, ..., t

∗
k) of

symbols of the alphabet, there exist an explicitly constructible vector field X0 ∈
X∞vol(M) and a constructible open set U ⊂ X∞vol(M) such that the solution to the
Euler equations with initial datum X0 is smooth for all time and intersects U if
and only if T halts with an output tape whose positions −k, ..., k correspond to
the symbols t∗−k, ..., t

∗
k.

In our recent article [6], we use a remarkable embedding theorem by Torres
de Lizaur [29] (building on a previous embedding theorem into time-dependent
Euler flows by Tao [26]) and the construction of Turing complete polynomial non-
autonomous ODEs [13], to obtain Turing complete time-dependent solutions to
the Euler equations:

Theorem 4.2 ([6]). There exists a (constructible) compact Riemannian manifold
(M, g) such that the Euler equations on (M, g) are Turing complete. In particular,
the problem of determining whether a certain solution to the Euler equations with
initial datum X0 will reach a certain open set U ⊂ X∞vol(M) is undecidable.

This solves the question of the Turing universality of the time-dependent Euler
equations in high dimensions with general Riemannian metrics.

We finish this article presenting an application of Corollary 3.4 in the context of
the Navier-Stokes equations (following [7]). These equations describe the dynamics
of an incompressible fluid flow with viscosity. On a Riemannian 3-manifold (M, g)
they read as [1] 

∂
∂tX +∇XX − ν∆X = −∇p ,
divX = 0 ,

X(t = 0) = X0 ,

(4.1)

where ν > 0 is the viscosity. In what follows, the differential operators are com-
puted with respect to the metric g, and ∆ stands for the Hodge Laplacian (whose
action on a vector field is defined as ∆X := (∆X[)]).

Let us analyze what happens with the solution X(t) when we take the Turing
complete vector field X0 constructed in Corollary 3.4 as initial condition (for the
Navier-Stokes equations with the metric g that makes X0 a stationary Euler flow).
Specifically, using that curlg(X0) = X0, the solution to Equation (4.1) with initial
datum X(t = 0) = MX0, M > 0 a real constant, is easily seen to be{

X(·, t) = MX0(·)e−νt ,
p(·, t) = c0 − 1

2M
2e−2νtg(X0, X0) ,

(4.2)
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for any constant c0. The integral curves (fluid particle paths) of the non-autonomous
field X solve the ODE

dx(t)

dt
= Me−νtX0(x(t)) .

Accordingly, reparametrizing the time as

τ(t) :=
M

ν
(1− e−νt) ,

we show that the solution x(t) can be written in terms of the solution y(τ) of the
ODE

dy(τ)

dτ
= X0(y(τ)) ,

as

x(t) = y(τ(t)) .

When t → ∞ the new reparametrized “time” τ tends to M
ν , and hence the

integral curve x(t) of the solution to the Navier-Stokes equations travels the orbit
of X0 just for the time interval τ ∈ [0, Mν ). In particular, the flow of the solution
X only simulates a finite number of steps of a given Turing machine, so we cannot
deduce the Turing completeness of the Navier-Stokes equations using the vector
field MX0 as initial condition. More number of steps of a Turing machine can be
simulated if ν → 0 (the vanishing viscosity limit) or M → ∞ (the L2 norm of
the initial datum blows up). For example, to obtain a universal Turing simulation
we can take a family {MkX0}k∈N of initial data for the Navier-Stokes equations,
where Mk → ∞ is a sequence of positive numbers. The energy (L2 norm) of this
family is not uniformly bounded, so it remains as a challenging open problem to
know if there exists an initial datum of finite energy that gives rise to a Turing
complete solution of the Navier-Stokes equations.
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Villars, 1899.

http://www.math.s.chiba-u.ac.jp/~inaba/


24 Robert Cardona, Eva Miranda, Daniel Peralta-Salas

[23] H. G. Rice, Classes of recursively enumerable sets and their decision problems, Trans-
actions of the American Mathematical Society, 74 (2) 358-366 (1953).

[24] T. Tao. Finite time blowup for an averaged three-dimensional Navier-Stokes equa-
tion. J. Amer. Math. Soc. 29 (2016), no. 3, 601-674.

[25] T. Tao, On the universality of potential well dynamics. Dyn. PDE 14 219–238
(2017).

[26] T. Tao, On the universality of the incompressible Euler equation on compact mani-
folds. Discrete and Continuous Dynamical Systems - A 38 (3), 1553–1565 (2018).

[27] T. Tao, On the universality of the incompressible Euler equation on compact mani-
folds, II. Nonrigidity of Euler flows. Pure Appl. Function. Anal. 5, 1425–1443 (2020).

[28] T. Tao, Searching for singularities in the Navier-Stokes equations. Nature Reviews
Physics 1 418–419 (2019).

[29] F. Torres de Lizaur, Chaos in the incompressible Euler equations on manifolds of
high dimension. Preprint arXiv:2104.00647 (2021).

[30] A. M. Turing, On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society. 2 (1937) 42: 230-265


	1 Introduction
	1.1 The Euler equations on Riemannian manifolds
	1.2 Contact hydrodynamics

	2 Embedding dynamics into Reeb flows
	2.1 Flexibility of Reeb embeddings
	2.2 Applications to universality

	3 A Turing complete steady Euler flow on S3
	3.1 Turing machines and symbolic dynamics
	3.2 Area-preserving maps and Turing complete Reeb flows
	3.3 Undecidable dynamical properties in Reeb dynamics

	4 Time dependent solutions of Euler and Navier-Stokes

