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Abstract

Simulating the dynamics of a nonequilibrium quantum many-body system by computing the two-time Green’s
function associated with such a system is computationally challenging. However, we are often interested in
the time diagonal of such a Green’s function or time dependent physical observables that are functions of one
time. In this paper, we discuss the possibility of using dynamic model decomposition (DMD), a data-driven
model order reduction technique, to characterize one-time observables associated with the nonequilibrium
dynamics using snapshots computed within a small time window. The DMD method allows us to efficiently
predict long time dynamics from a limited number of trajectory samples. We demonstrate the effectiveness
of DMD on a model two-band system. We show that, in the equilibrium limit, the DMD analysis yields
results that are consistent with those produced from a linear response analysis. In the nonequilibrium case,
the extrapolated dynamics produced by DMD is more accurate than a special Fourier extrapolation scheme
presented in this paper. We point out a potential pitfall of the standard DMD method caused by insufficient
spatial/momentum resolution of the discretization scheme. We show how this problem can be overcome by
using a variant of the DMD method known as higher order DMD.

Keywords: Dynamic mode decomposition, Koopman operator, Non-equilibrium quantum many-body
dynamics, Kadanoff-Baym equations

1. Introduction

Simulating a quantum many-body system away from equilibrium is a challenging task. Although time-
dependent physical observables can be computed from the solution of a time-dependent Schrödinger equation
with a time-dependent Hamiltonian, such a brute-force approach is limited to small systems defined in a
small dimensional Hilbert space. A more practical approach is to focus on the Green’s function which is a
two-point correlator of the creation and annhilation field operators defined on the Keldysh contour [9, 10].
The equation of motion satisfied by the two-time Green’s function is a set of nonlinear integro-differential
equations [15]. Evolving the Green’s function numerically on a two-time grid is highly non-trivial, and the
presence of the integral kernel in these equations makes both the memory requirement and computational
cost high if the long-time behavior of a physical observable is to be examined.

In this paper, we show how the long-term characteristics of the physical observable can be analyzed and
predicted using a model reduction technique – the dynamic mode decomposition (DMD) [13, 22, 23, 29]. The
DMD method is a practical data-driven model reduction method first proposed by Schimid [22] to analyze
the dynamics of a nonlinear and high-dimensional system. It extracts the spatial modes associated with
temporal oscillations with distinct frequencies and growth/decay rates from a few samples of the trajectory.
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These spatial and temporal modes obtained from the DMD analysis of the dynamics within a limited time
window can in turn be used to extrapolate and predict the dynamics on a much longer time scale.

One of the main advantages of DMD over other dimension reduction techniques such as the principal
component analysis (PCA) [8, 30] and proper orthogonal decomposition (POD) [6, 24] is that DMD provides
both the spatial and temporal modes at the same time. Furthermore, the spatial modes obtained from the
DMD analysis is often more physical than the eigenvectors or singular vectors produced from PCA and POD.

To use DMD to predict long time behavior of certain physical observables (such as density) associated
with the evolution of a many-body system out of equilibrium, we first solve the equation of motion satisfied
by the two-time Green’s function, i.e. the Kadanoff-Baym equation within a small time window, and perform
DMD analysis on the one-time physical observables that can be obtained from the Green’s function.

Our paper is organized as follows. In section 2, we describe the model problem we use to demonstrate the
effectiveness of the DMD method and the equation of motion satisfied by the two-time Green’s function as
well as one-time physical observable in both the equilibrium and non-equilibrium regimes. The mathematical
foundation of the DMD analysis and the numerical procedure for performing such an analysis is presented
in section 3. In section 4, we point out a potential problem of the DMD caused by an insufficient resolution
in the spatial (or momentum) discretization of the state variable. We explain how this problem can be fixed
by using a high-order DMD (HODMD) analysis which can be interpreted as time-delayed embedding of a
nonlinear dynamical system.

The effectiveness of the DMD and HODMD procedures are reported and discussed in section 5. In
particular, we demonstrate that, in the equilibrium limit when linear response analysis can be performed,
the DMD modes obtained from a real-time, time-dependent Hartree-Fock (TD-HF) simulation match well
the eigenvectors obtained from solving the Bethe-Salpeter in the Kohn-Sham basis. This agreement also
appears to hold for weakly non-equilibrium dynamics driven by a low intensity field.

As the intensity of the driving field increases, the linear response theory does not hold. To validate DMD
and HODMD results, we compare the DMD and HODMD modes with spatial and temporal modes identified
by performing a Fourier analysis of the observable trajectory and show their differences. To demonstrate
that HODMD modes are more relevant and meaningful, we compare the extrapolated trajectories produced
by HODMD and a modified Fourier scheme that tries to recover the decay rate by solving a nonlinear
optimization problem. Our numerical results show that the HODMD extrapolation is much more accurate
than the Fourier extrapolation, and the HODMD procedure is numerically more stable than the modified
Fourier extrapolation scheme.

2. The model problem and the Keldyish formalism

In this work, we focus on the dynamics of a simple two-band system, which exemplifies the semiconductor
driven by an external light field [20]. The Hamiltonian consists of a time independent component Hs that
describes the many-body interaction as well as an external time dependent component that describes the
light-matter coupling.

The system Hamiltonian has the form

Hs =
∑

k

(ǫvkc
†
vkcvk + ǫckc

†
ckcck)− U

∑

k

c†ckcck +
U

N

∑

k1,k2,q

c†vk1+qc
†
ck2−qcck2

cvk1
, (2.1)

where ǫvk (ǫck) is the band energy of the valence (conduction) band with momentum k, U is the on-site
interaction between the two bands, and N is the number of sites in the system. The energy dispersion is
given by

ǫvk = −2(1− cos(k)) − Eg/2

ǫck = 2(1− cos(k)) + Eg/2,

with Eg = 1 as the band gap.
The light-matter coupling within the dipole approximation is

Hext(t) = E(t)
∑

k

(dkc
†
ckcvk + d∗kc

†
vkcck), (2.2)
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where E(t) is a time-dependent intensity of the field, and dk is the dipole matrix element. For simplicity we
set dk = 1. (2.1) together with (2.2) describes how electrons and holes interact with each other and with a
classical light field.

Although all time-dependent physical obserables can be obtained from the solution to the time-dependent
Schrödinger’s equation

i~
d |Ψ(t)〉

dt
= H(t) |Ψ(t)〉 , with |Ψ(0)〉 = |Ψ0〉 , (2.3)

where H(t) = Hs +Hext(t) and Ψ0 is the initial state of the wavefunction Ψ at t = 0, the many-body nature
of (2.1) renders the full solution of (2.3) difficult. The computational complexity of the exact numerical
solution grows exponentially with the system size.

Since in most cases we are interested only in single particle physical observables, we apply the nonequilib-
rium Green’s function (NEGF) approach [9] to map the dynamics of the many-body system to the two-time

Greens function Gi,j(t, t
′) = − i

~
〈TC ĉi(t)ĉ

†
j(t

′)〉, where ĉi(t) and ĉ†j(t
′) are annihilation and creation opera-

tors in the Heisenberg picture, T is the time-ordering operator, and the expectation is evaluated along the
Keldysh contour [10]. Since the model problem we focus on in this work consists of two bands, and the
Green’s function of interest is Gc,v(t, t

′), we will drop the band indices below and simply denote the Green’s
function by G(t, t′).

It follows from the many-body perturbation theory that G(t, t′) satisfies the following equation of motion
[
i
d

dt
−H(t)

]
G(t, t′) = δ(t, t′) +

∫

C

Σ(t, t̄)G(t̄, t′)dt̄, (2.4)

where H(t) is now a single-particle Hamiltonian that includes the contribution of a time-dependent driving
field, and Σ(t, t′) is the self-energy that describes the many-body interaction. Equation (2.4) is accompanied
by an ajoint equation which describes the time evolution over t′. These equations are coupled nonlinear
integral differential equations that are collectively called the Kadanoff-Baym equations (KBE) [9]. They
must be solved numerically. Once (2.4) and its ajoint equation are solved, the single particle physical
observables can be computed through the relation between the density matrix and the time-diagonal part of
the lesser Green’s function, ρ(t) = −iG<(t, t).

In the NEGF approach, many-body interaction is captured by the self-energy term. Depending on the
physical problem, a proper choice of self-energy is essential. In this work, we will use the Hartree-Fock
(HF) and the second Born (2B) approximation of the self-energy, which can capture exciton physics and in
addition, carrier scatterings respectively [25].

Due to the presence of the integral term in (2.4) and its adjoint equation, the numerical solution of these
coupled integral differential equations is nontrivial. Depending on the choice of the self-energy, the right-
hand side of (2.4) may be a nonlinear function of the two-time Green’s function G(t, t′). As a result, each
time evolution step would require solving a nonlinear system of equations. The computational complexity
of solving the two-time KBE scales as O(t3) in the worst case. This high complexity severely limits its
application beyond HF approximation.

However, because the physical observable we are interested in, e.g., ρ(t), is often a function of t only,
it may be possible to use a data-driven model order reduction technique to characterize the spatial and
long-time temporal features of the dynamics satisfied by the one-time physical observe from samples of the
observables sampled from a small time window. These samples are computed from the the numerical solution
of the two-time KBE.

In principle, a one-time physical observable satisfies a one-time equation of motion. For example, ρ(t) is
the solution to a differential equation of the form

d

dt
ρ(t) = f [ρ(t), t], (2.5)

where f [ρ(t), t] may be a complicated nonlinear function of ρ(t) and t for which an explicit analytic form is
unknown.

For the model problem we will focus on in this work, we can write down the equation of motion for ρ
explicitly. We start from the equation of motion

i
d

dt
ρ(t) = [H(t), ρ(t)] , (2.6)
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where H(t) = Hs + Hext(t) is the total Hamiltonian. The matrix element of density matrix is defined as

the expectation value ρcv,k = 〈c†vkcck〉. In general Eq. 2.6 couples to the density matrix with higher particle
numbers and is not closed. We can close the equation of motion by taking the HF approximation of the
interaction term and obtain

i
d

dt
ρcv,k(t) = (ǫvk − ǫck)ρcv,k(t) + (fck − fvk)

[
E(t)−

U

N

∑

k′

ρcv,k′

]
, (2.7)

where fck and fvk are the occupation numbers of conduction and valence bands respectively. In the weak
field limit, fck = 0 and fvk = 1. As a result, the off-diagonal matrix element of ρ(t) decouples from the
diagonal terms to yield

i
d

dt
ρcv,k(t) + (ǫck − ǫvk)ρcv,k −

U

N

∑

k′

ρcv,k′ = −E(t). (2.8)

When E(t) = 0 or when |E(t)| is small, the solution of (2.8) can be expressed in terms of the eigenvalues
and eigenvectors of the Hamiltonian

Hcvk,cvk′ = (ǫck − ǫvk)δkk′ −
U

N
. (2.9)

This is the Bethe-Salpeter linear response Hamiltonian [2]. We will use the eigenvalues and eigenvectors of
BSE Hamiltonian (2.9) to validate the spatial and temporal features of ρcv,k obtained from a data driven
reduced order model to be presented below.

3. Dynamic mode decomposition

In this section, we briefly describe the basic principles of dynamic mode decomposition and the numerical
procedure we use to perform this decomposition.

Dynamic mode decomposition (DMD) is a data-driven dimension reduction technique that can be used
to extract important spatial and temporal features of a nonlinear dynamical system with a large number
of degree of freedoms [13, 17, 22, 28]. Future states of the nonlinear system can be predicted based on the
extracted modes and frequencies.

Consider a dynamical system described by a nonlinear ordinary differential equation of the form

dx(t)

dt
= f(x(t), t), t ≥ 0, (3.1)

where x(t) ∈ Cn is a time-dependent state variable, and f : Cn ⊗ R+ → Cn is a nonlinear function of x and
time t. The goal of DMD is to identify a set of time independent spatial modes φ1, φ2, ... φk and a set of
frequencies ω1, ω2, ... ωk so that x(t) can be well-approximated by

x(t) ≈

r∑

ℓ=1

βℓφℓe
iωℓt, (3.2)

where βℓ’s are set of coefficients, and r is relatively small.
The general strategy for obtaining the dynamic modes φℓ and corresponding frequencies ωℓ is to map

the trajectory of the nonlinear dynamics to the state of an infinite-dimensional linear system that can easily
be characterized via a spectral decomposition of the linear operator that defines such a linear system. This
strategy follows from the Koopman theory [11, 12, 26] for reduce order modeling [3, 4, 16, 21].

In practice, we do not have the trajectory x(t) before (3.1) is solved. Yet, our hope is that the most
important φi’s and ωi’s can be obtained by analyzing a small set of snapshots (or samples) of x(t) that we
can solve.

Suppose snapshots of x(t) are available at tj = t1 + (j − 1)∆t, where j = 1, ...,m and ∆t is a small time
interval. We denote these snapshots by xj = x(tj), and define

X = (x1 x2 · · · xm) .
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It follows from Koopman’s theory that, in the limit of ∆t → 0 and m → ∞, there exists an infinite-
dimensional operator A such that

AX = XS, (3.3)

where

S =




0 . . . 0 c1
1 0 c2
...

...
...

...
0 . . . 1 cm


 , (3.4)

where cj (j = 1, 2, ...,m) is a set of coefficients [1].
When m is finite, (3.3) may not hold. In particular, we may not find a closure defined by the last column

of S. However, it is possible to construct a finite dimensional approximation to A, denoted by A that
minimizes the difference between the leading m columns between the left and right hand sides of (3.3). To
simplify notation, let us define

R = AX1 −X2 (3.5)

where
X1 = (x1 x2 · · · xm−1) and X2 = (x2 x3 · · · xm) . (3.6)

It is easy to show that the minimizer of ‖R‖F is

A = X2X
†
1, (3.7)

where X
†
1 denotes the Moore-Penrose pseudoinverse of X1, which can be obtained from the singular value

decomposition (SVD) [7] of X1, i.e.
X1 = UΣV∗, (3.8)

where U ∈ C
n×n, Σ ∈ C

n×m, and V ∈ C
m×m, U∗U = I and V∗V = I.

For many large-scale problems, the snapshots contained in X1 may have a low rank r ≪ min{n,m},
i.e., the singular values on the diagonal of Σ decay rapidly. In this case, important dynamic modes can be
obtained by projecting A into the subspace spanned by the leading right singular vectors of A.

Take
Ũ = U(:, 1 : r), Σ̃ = Σ(1 : r, 1 : r), Ṽ = V(:, 1 : r), (3.9)

then ŨΣ̃Ṽ∗ projects X1 onto an r-dimensional subspace. Substituting X1 ≈ ŨΣ̃Ṽ∗ into (3.7) yields a
rank-r estimation of A, i.e.,

Ã = Ũ∗X2ṼΣ̃−1Ũ∗Ũ = Ũ∗X2ṼΣ̃−1. (3.10)

To propagate the original system (3.1), what remains to be solved is the eigenvalue problem

ÃW = WΛ, (3.11)

where

Λ =



λ1

. . .

λr


 (3.12)

is composed of the eigenvalues, and the columns ofW give the corresponding eigenvectors. To obtain spectral
modes in the original state space of Cn, we perform the transformation

Φ = X2ṼΣ̃−1W. (3.13)

The columns of Φ are called the DMD modes. Denote

Ω =
lnΛ

∆t
=



iωDMD

1

. . .

iωDMD
r


 , ωDMD

ℓ = −i
lnλℓ

∆t
, ℓ = 1, ..., r, (3.14)
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then the dynamics of x can be expressed as

x(t) ≈

r∑

ℓ=1

φℓ exp(iω
DMD
ℓ t)bℓ = Φ exp(Ωt)b. (3.15)

In the expression, the amplitude vector b := [b1, ..., br]
T is taken to be the projection of initial value on to

the DMD modes as
b = Φ†x1, (3.16)

or the least squares fit of (3.15) on the sampled trajectories:

b = arg min
b̃∈Cn

m∑

j=1

‖Φ exp(Ωtj)b̃− xj‖
2
l2 , (3.17)

where ‖ · ‖l2 denotes the standard Euclidean norm of a vector. This completes the procedures of DMD.
From the flow of DMD, it is straightforward to see that the major computational cost comes from SVD

(3.8), which is O(min(m2n,mn2)).
As mentioned in Section 1, DMD is an equation-free, data-driven method. There is no need to know

about the underlying dynamics function f(x(t), t) in (3.1). Based on the data from first few time steps, it
is possible to predict future states of the system. Moreover, it only focuses on the principal r dimensions
instead of the overall n dimensions of the state in order to reduce computational cost. As a result, the
method is probably of great value for many complicated nonlinear, or high-dimensional dynamical systems.

4. Higher order dynamic mode decomposition

The number of spatial (momentum) and temporal modes r in (3.15) is determined by the dimension of
the projected Koopman operator Ã defined in (3.10), which is projected from the approximate Koopman
operator (3.7) that maps X1 to X2. When the snapshots xj are discretized on a small number of spatial

or momentum grid points, the dimension of A, and consequently the dimension of Ã may be too small to
accommodate the number of spatial and temporal modes present in the true dynamics of x(t).

This problem can possibly be resolved by using a finer spatial or momentum discretization scheme to
increase the dimension of A and Ã. However, this would inevitably increase the cost for generating the time
snapshots for performing the DMD analysis. It is not clear, a priori, how fine a spatial or momentum grid
one needs to resolve all significant spatial and temporal modes in the true dynamics satisfied by x(t).

Fortunately, this problem can be addressed by using the technique of time-delay embedding [5, 18, 19, 27]
to construct a better approximation to the Koopman operator without increasing number of spatial or
momentum grid points in xj .

The key observation used in time-delay embedding can be described as follows. Let us partition a snapshot
x discretized on a fine spatial or momentum grid as x = (xc,xf )

T , where xc corresponds to a subset of x
defined on a (coarse) subset of grid points. If A is the Koopman operator that maps x(td) to x(td+1), i.e.

[
xc(td+1)
xf (td+1)

]
=

[
A11 A12

A21 A22

] [
xc(td)
xf (td)

]
, (4.1)

where A is partitioned conformally with the partition of x, then it is easy to show that

xc(td+1) = A11xc(td) +

d−2∑

j=0

A12A
j
22A21xc(td−j−1) +A12A

d−1
22 xf (t1). (4.2)

If the last term in (4.2) is negligibly small, we can represent a coarsely sampled state xc(td+1) as a linear
combination of time delayed states xc(td−j) for j = 0, 1, 2, ..., d− 1. If this relationship holds for all t, we
can construct an augmented Koopman operator

C̃ =




0 I 0 ... 0 0

0 0 I ... 0 0

... ... ... ... ... ...
0 0 0 ... I 0

B̃1 B̃2 B̃3 ... B̃d−1 B̃d



, (4.3)
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that maps x̃j to x̃j+1 where B̃1 = A12A
d−2
22 (A21 +A22), B̃j = A12A

d−j−1
22 A21, j = 2, ..., d− 1, B̃d = A11,

and

x̃j =




xj

xj+1

...
xj+d−2

xj+d−1



. (4.4)

An approximation to C̃ can then be obtained by solving the least squares problem

min
C̃

‖C̃X̃1 − X̃2‖F , (4.5)

where the snapshot matrices X̃1 and X̃2 are defined as

X̃1 = (x̃1 x̃2 · · · x̃m−d) , and X̃2 = (x̃2 x̃3 · · · x̃m−d+1) ,

where m is the total number of sampled snapshots of x(t).
When X̃1 is low rank, the solution to (4.5) can be approximated from a subspace defined by the singular

vectors associated with dominant singular vectors of X̃1 using the same procedure described in the previous
section. This modified procedure yields the higher order dynamic mode decomposition (HODMD) described
in [14].

When each column of X̃1 consists of the concatenation of d consecutive snapshots, each spatial HODMD
mode is a vector of length nd. To reconstruct or extrapolate the trajectory of x(t) by (3.15), we take φℓ to
be the first n elements of the ℓth spatial HODMD mode.

Because the number of rows in the snapshot matrices X̃1 and X̃2 used in HODMD can be much larger
than those in a standard DMD, the computational cost of HODMD is generally higher. Furthermore, when
∆t is relatively small, columns of the snapshot matrix can become more linearly dependent. Although this
problem can in principle be resolved by the truncated SVD performed in (3.9), sometimes it may be difficult
to choose an optimal singular value cutoff threshold for truncation. To reduce the computational cost and
the level of linear dependency among columns of X̃1, we can increase the temporal distance between the
augmented snapshots in X̃1 and X̃2. For example, we can define them as

X̃1 =




x1 xs+1 ... xps+1

x2 xs+2 ... xps+2

...
...

...
...

xd xs+d ... xps+d


 , X̃2 =




x2 xs+2 ... xps+2

x3 xs+3 ... xps+3

...
...

...
...

xd+1 xs+d+1 ... xps+d+1


 , (4.6)

where p and s are some integers that satisfy ps + d + 1 ≤ m. A HODMD method associated with the
parameters d and s will be denoted by HODMD(d,s).

5. Results and discussions

In this section, we give some examples on how to use DMD to extract spatial and temporal modes of
the dynamics associated with the simple two-band system defined by (2.1) when it is driven by a time-
dependent field E(t) = Iδ(t) through the light-matter interaction term (2.2). As we indicated in section 2,
instead of solving the many-body problem directly, we use a NEGF formalism to compute a single particle
Green’s function by solving the KBE (2.4) and its adjoint equation. As this is a two-band system, if we
take n k-points, and evolve the system for m time steps, then the results of Green’s function G forms an
n×2×2×m×m matrix. From the solutions, the density matrix ρ is obtained by ρ(·, ·, ·, t) = −iG<(·, ·, ·, t, t),
which gives an n×2×2×m matrix. We use DMD to analyze and predict the dynamics of ρ with the second
and third indices fixed by 1 and 2, respectively. The data of ρ(k, t) can thus be seen as an n-by-m matrix,
and we denote the entries by

ρs,j = ρ(ks, tj), s = 1, ..., n, j = 1, ...,m (5.1)
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for simplicity, where

ks = −π + 2(s− 1)π/n, tj = t1 + (j − 1)∆t, s = 1, ..., n, j = 1, ...,m. (5.2)

Each snapshot can be represented as

xj = [ρ1,j , ρ2,j, ..., ρn,j ]
T , j = 1, ...,m, (5.3)

where T stands for the transpose of a matrix. The data matrices X1 and X2 are then constructed through
(3.6).

We consider both the HF and second Born self-energies in (2.4). We also test DMD for different levels of
field intensity I. In all cases, we compare the DMD modes with spectral modes obtained from the Fourier
analysis of the density trajectory.

In the weak intensity limit, it is known that we can perform a linear response analysis to obtain the
spectral modes of the dynamics by solving the Casida equation or the Bethe-Salpeter equations (BSE) for
two-particle neutral excitations. In this regime, we can compare the modes extracted by DMD with the BSE
eigenvectors. On the other hand, when E(t) is sufficiently large, linear reponse can no longer accurately
capture the dynamics of the Green’s function whereas DMD can still be performed because it is designed to
analyze nonlinear dynamics.

5.1. KBE with Hatree-Fock self-energy approximation

When E(t) = 0 and the self-energy term Σ(t, t′) is chosen to be the HF approximation, which is static,
the HF self-energy term can be absorbed into the single particle Hamiltonian. As a result, the KBE reduces
to time-dependent Hartree-Fock equations. We solved this time-dependent problem by using a second-order
Runge-Kutta integrator within the time interval [0, 500], with a time step of ∆t = 0.1. Note that the time
unit is defined as 1/energy unit. We have not assign specific unit to either the time or energy. Four k-points
are sampled in the Brillouin zone, i.e., n = 4. Therefore, each snapshot of the data matrices is a vector with
4 elements.

We took the first m = 500 out of a total of N = 5000 snapshots to perform the DMD of ρ. The nonzero
singular values of the snapshot matrix X1 are plotted in Figure 5.1. We can clearly see that the first three

1 2 3 4
10-20

10-15

10-10

10-5

100

Figure 5.1: Four singular values for data matrix X1 from the TDHF model.

singular values are orders of magnitudes larger than the last singular value in this case. Consequently, we
can approximate X1 by the three leading singular values and vectors. This approximation also yields three
DMD modes obtained from (3.13), which we plot in the left panel of Figure 5.2. The frequencies associated
with these DMD modes, which are obtained from the eigenvalues of the matrix Ã defined in (3.10) are

ωDMD
1 = −0.656− 0.008i, ωDMD

2 = −2.525− 0.008i, ωDMD
3 = −4.803− 0.007i. (5.4)

Due to the convention we used in (3.2), the real part of ωDMD
j corresponds to the frequency of temporal

oscillation, and the imaginary part represents the rate of exponential growth or decay of the oscillation in
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time. In this case, the imaginary part of ωDMD
j should be zero. The small imaginary components in (5.4)

are introduced by the numerical error in the approximate solution to the TDHF equation.
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Figure 5.2: left: Three DMD modes obtained from snapshots of the numerical solution of the KBE for the 2-band model
problem with HF self-energy. right: Three eigenvectors of the corresponding BSE.

It is well known that for TDHF, the absorption energy of the 2-band system and the corresponding
exciton wavefunction can be obtained by performing a linear response analysis of the TDHF equation and
solving the corresponding Bethe-Salpeter (or Casida) equation, which is an eigenvalue problem. The right
panel of Figure 5.2 shows the magnitudes of three eigenvectors of BSE match well with those of the DMD
modes shown in the left panel. The corresponding eigenvalues are

α1 = 0.657, α2 = 2.529, α4 = 4.814, (5.5)

which match well with the DMD frequencies listed in (5.4). The small difference between αi and−real(ωDMD
i )

is again due to the small numerical error present in the Runge-Kutta approximate solution of the TDHF
equation. The excellent agreement suggests that the DMD modes are physical, and they properly describe
the underlying exciton dynamics defined by the TDHF equation.

5.2. KBE with second Born approximation of the self-energy

In this example, the second Born approximation is used to construct the self-energy in the KBE (2.4).
In addition, we assume that the system is driven by an instantaneous pulse E(t) = Iδ(t) with I being the
field amplitude. We sample the Brillouin zone with n = 20 k-points. For testing purpose, we solve the KBE
for the time interval [0, 201] with time step ∆t = 0.1. We experimented with pulse amplitudes I = 0.001,
0.5 and 1.5 energy intensity. In each case, we used the first m = 500 out of total N = 2010 snapshots to
perform the DMD analysis. The singular values of the snapshot matrix X1 in (3.6) for the weak (I = 0.001)
and strong (I = 1.5) pulses are plotted in Figure 5.3. We can clearly see that, in both cases, the leading 11
singular values are orders of magnitude larger than other singular values. This is also the case for the X1

generated from I = 0.5. Consequently, in all cases, we can approximate X1 by the leading 11 singular values
and vectors.

When the intensity of the pulse is small, we can perform a linear response analysis of ρ(·, t) by solving
a n × n BSE eigenvalue problem. Figure 5.4 shows that the eigenvectors of the BSE Hamiltonian (with
Tamm-Dancoff approximation) associated with 11 smallest eigenvalues match well with the DMD modes
computed from (3.13). The eigenvalues of the BSE Hamiltonian also match well with the real part of ωDMD

j

for j = 1, 2, ..., 11.

5.3. Comparison with Fourier Analysis

In this section, we compare DMD analysis with Fourier spectral analysis, which has traditionally been
used to identify key features of a one-dimensional trajectory x(t). In such an analysis, we perform a discrete
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Figure 5.3: Singular values of the snapshot matrix X1 from the 2B model with different pulse intensities.
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Figure 5.4: A comparison between the DMD modes obtained from snapshots of the solution to the KBE for the 2B model with
I = 0.001 (left) and the eigenvectors of the BSE Hamiltonian (right).
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Fourier transform (DFT) of a uniformly sampled trajectory {x(t1), x(t2), ..., x(tN )} to obtain

f(ωℓ) =

N∑

j=1

x(tj)e
−iωℓ(tj−t1),

where
ωℓ = 2π(ℓ− 1)/(N∆t) + 2zπ, ℓ = 1, 2, ..., N, ∀z ∈ Z. (5.6)

Note that the 2zπ term is included above to match some frequencies computed from DMD that are not
within the same period. Clearly, the larger the magnitude of f(ωℓ), the more important ωℓ is for describing
the dynamics exhibited by x(t). If x(t) can be characterized by a few frequencies, |f(ωℓ)| will exhibit a few
peaks.

In Figure 5.5, we plot the magnitude of f(ωℓ) obtained from performing a DFT of the polarizability P (t)
defined as

P (t) =
∑

k

Tr(ρk(t)d̂k), (5.7)

where k denotes a k-point, and d̂k is a dipole matrix. In our two band model with a constant dipole matrix
element approximation, the polarization is simply the sum of the two off-diagonal elements of the density
matrix. By analyzing the polarization in the linear response regime, we can get the exciton energy and
wavefunctions. The positions of the three peaks of f(ωℓ) in Figure 5.5 are

-6 -5 -4 -3 -2 -1 0
0

0.1

0.2

0.3

0.4

Figure 5.5: The magnitude of f(ωℓ) obtained from the DFT of the polarizability associated with the TDHF simulation of a
2-band model. The real part of the DMD frequencies are marked by dotted lines.

ωDFT
1 = −0.654, ωDFT

2 = −2.526, ωDFT
3 = −4.813.

These frequencies match well with the real parts of the three DMD frequencies shown in (5.4). When
the Fourier analysis is applied to the polarizability obtained from the numerical solution of the KBE with
a second Born approximation to the self-energy, we observe a similar match between the peak positions of
|f(ωℓ)| and the real part of ωDMD

j obtained from (3.11) and (3.14) as long as the pulse intensity I is relatively
small. This can be clearly seen in Figure 5.6 in which the magnitude of f(ωℓ) is plotted for I = 0.001. The
positions of the peaks match well with the real part of the DMD frequencies which are marked by vertical
dotted lines.

In addition to frequencies, the DMD analysis also provides spatial (momentum) modes Φ associated with
different frequencies. Similar type of modes, which we will call Fourier modes, can be obtained from the
Fourier analysis, although the procedure for finding these modes is a bit cumbersome.
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Figure 5.6: The magnitude of f(ωℓ) obtained from the DFT of the polarizability associated with the solution of the KBE with
a second Born approximation to the self energy and driven by an instantaneous field with intensity I = 0.001. The real part of
the DMD frequencies are marked by dotted lines.

Instead of performing a DFT to the polarizability, we can perform a set of DFTs to ρ(ks, t) for each
k-point to obtain fs(ω

DFT
ℓ ), where ℓ = 1, 2, ..., r̂ if we have r̂ DFT frequencies, and s = 1, ..., n. The vector

φDFT
ℓ =

[f1(ω
DFT
ℓ ), f2(ω

DFT
ℓ ), ...fn(ω

DFT
ℓ )]T

‖[f1(ωDFT
ℓ ), f2(ωDFT

ℓ ), ...fn(ωDFT
ℓ )]‖l2

, ℓ = 1, ..., r̂ (5.8)

defines the ℓth Fourier mode associated with the frequency ωDFT
ℓ . The ℓth Fourier mode makes a significant

contribution to ρ(t) if |fs(ω
DFT
ℓ )| is sufficiently large for some s.

Figure 5.7 shows that the first four Fourier modes obtained from the solution of the KBE with a second
Born self-energy approximation and driven by a pulse with intensity I = 0.001 match well with the corre-
sponding DMD modes after being scaled by a phase factor. (i.e. like eigenvectors, DMD modes are unique
up to a phase scaling factor eiθ for some phase angle θ.)
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Figure 5.7: DMD modes (left) match well with the Fourier modes (right) with matching frequencies for the two-band model
driven by a field with intensity I = 0.001.

However, when the pulse intensity increases to I = 0.5 and I = 1.5, not all frequencies identified from
the Fourier analysis can be matched with those obtained from the DMD analysis. In fact, f(ωℓ) cannot be
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characterized by a few isolated peaks. Figure 5.8 shows that when I = 1.5, we can only match six frequencies
obtained from the Fourier analysis with those obtained from DMD (marked by blue dotted lines). These
matches are not perfect.

0 1 2 3 4 5 6
0

50

100

150

200

Figure 5.8: The magnitude of f(ωℓ) obtained from the DFT of the polarizability for the two-band model driven by a field
with intensity I = 1.5. The DMD frequencies are marked by dotted lines. The DMD dotted lines corresponding to matching
frequencies are colored in blue.

In Figure 5.9, we compare 4 most significant modes obtained from DMD and DFT. The significance of
each DFT mode can be quantified by the height of the peak associated with the frequency of that mode.
The significance of each DMD mode can be measured by the magnitude of the corresponding expansion
coefficient in the reconstruction or extrapolation (see the next section) of the trajectory as described by
(3.15).

The frequencies of the four most significant DMD modes are

ωDMD
1 = −0.581 + 0.226i, ωDMD

3 = 0.409 + 0.030i,

ωDMD
4 = 0.712 + 0.029i, ωDMD

9 = 2.935 + 0.049i.

The real parts of these frequencies which describe the oscillatory behavior of ρ(t) in real time by our con-
vention do not closely match (with the exception of ωDMD

3 ) the four most significant frequencies obtained
from the DFT, which are

ωDFT
1 = 0.406, ωDFT

2 = 1.125, ωDFT
3 = 1.782, ωDFT

4 = 2.438.

Note that the real part of ωDMD
3 matches well with ωDFT

1 . For these two matching frequencies, the corre-
sponding DMD and Fourier modes also match well as we can see in Figure 5.9. All the other three DMD
modes are different from the other three Fourier modes. In particular, the most significant DMD mode φDMD

1

is not seen in the Fourier analysis. The DMD mode φDMD
9 looks similar to both φDFT

3 and φDFT
4 . However,

their values are clearly different at k = −π and k = 0.

5.4. Extrapolation of the density dynamics

The discrepancy between the frequencies identified by Fourier analysis and DMD analysis raises the
question about which analysis is more useful or reliable. In the case of a low intensity driving field, we can
compare the spectral modes with the eigenvectors of the BSE problems. However, when the pulse intensity
is high, we can no longer rely on the BSE which, is validate in the linear response regime, to validate the
spectral modes.
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Figure 5.9: The four most significant modes from DMD (left) and from DFT (right) for the 2-band model driven by a field with
intensity I = 1.5.

One way to assess the validity or quality of the spectral modes is to examine how well they can be used
to reconstruct the sampled density trajectory and extrapolate the density dynamics outside of the sampling
window.

For DMD analysis, we follow (3.15) to reconstruct and extrapolate the density trajectory ρDMD at k-point
ks as

ρDMD(ks, t) ≈
r∑

ℓ=1

φDMD
ℓ (ks) exp(iω

DMD
ℓ t)bℓ, s = 1, ..., n, (5.9)

where bℓ are obtained either from the projection of initial density onto the DMD modes as (3.16), or from
performing a linear least squares fit on the snapshots used to perform the DMD analysis as given in (3.17).

On the other hand, the Fourier analysis in the above subsection cannot be directly applied to do the
extrapolation, as the whole trajectory instead of the sampled trajectory is required there. In order to use the
sampled snapshots only, we need to first pad them with zeros before taking the discrete Fourier transform,
i.e., we construct {ρ̃(ks, ·)} as

ρ̃(ks, tj) =

{
ρ(ks, tj), j = 1, 2, ...,m

0, j = m+ 1, ..., N
(5.10)

for s = 1, ..., n, and take the discrete Fourier transform of the polarization P (t) of these trajectories.
This is equivalent to convolving the discrete Fourier transform of P (t) (5.7) with a sinc function. Such a

convolution broadens the high peaks in f(ωℓ) and introduces artifical wiggles not present in f(ωℓ) as can be
seen in Figure 5.10 where the discrete Fourier transforms of the full polarization trajectory and the truncated
and zero padded polarization are compared for models with driving field intensities I = 0.5 and I = 1.5. We
take m = 150 and m = 50 respectively for the two cases, in order to show the comparison clearly.

Once the frequency peaks of f̃(ωℓ) are identified, we denote them by ω̃DFT
ℓ , ℓ = 1, 2, ..., r̃ to reconstruct

an approximate trajectory as

ρDFT(t) ≈

r̃∑

ℓ=1

φ̃DFT
ℓ exp(iω̃DFT

ℓ t)cℓ exp(dlt), dl ≤ 0, (5.11)

where φ̃DFT
ℓ is the DFT mode associated with ω̃DFT

ℓ as defined in (5.8), cℓ and dℓ are parameters to be
determined, with exp(dℓt) being introduced to account for the exponential decay of the dynamics. We fit
the model (5.11) to the sampled snapshots in the least-squares sense, and obtain the fitting coefficients
c := (c1, ..., cr̃)

T and d := (d1, ..., dr̃)
T by solving a nonlinear least squares problem.

To compare the reconstructed trajectories, we perform a renormalization so that

‖ρa(ks, t1 : tm)‖l2 = ‖ρ(ks, t1 : tm)‖l2 , s = 1, ..., n, (5.12)
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Figure 5.10: Comparison between the magnitude of f(ωℓ) and f̃(ωℓ) when I = 0.5 and I = 1.5.

where a = DMD or DFT, and ρ(ks, t) is the sampled data.
Figure 5.11 shows that, when I = 0.001, ρDMD matches with ρ much better than ρDFT at k = 0. Similar

results can be obtained for other k-points. In both extrapolations, the number of sampled snapshots is
m = 500, as shown by the shaded window.

To evaluate the quality of reconstruction/extrapolation quantitatively, we introduce a metric defined in
terms of the cosine of the angles between the original KBE trajectory vector and the extrapolated trajectory
vector at each k-point, i.e.,

cak =
〈ρ(k, ·), ρa(k, ·)〉

‖ρ(k, ·)‖l2‖ρa(k, ·)‖l2
, k = k1, ..., kn, (5.13)

where a is either DMD or DFT, and 〈·, ·〉 denotes the standard Euclidean inner product of two complex
vectors. It is clear that |cak| ∈ [0, 1]. If the reconstruction/extrapolation ρa(k, ·) fits the original trajectory
ρ(k, ·) well, then |cak| should be close to 1 for all k = k1, ..., kn. On the contrary, a small value of |cak| suggests
a large deviation of ρa(k, ·) from ρ(k, ·) at the k-point k.

Figure 5.12 shows that, when I = 0.001, |cDMD
k | is between 0.82 and 0.92 for all k-points, indicating a

good agreement between the extrapolated trajectory from DMD and the original trajectory. By contrast,
|cDFT

k | is small for most k-points, which means the extrapolation from DFT does not give good results. These
are consistent with the results in Figure 5.11.

When the pulse intensity I is increased to 0.5 or 1.5, it is observed from Figure 5.13 that the values of
|cDMD

k | is significantly lower. In both cases, |cDMD
k | is less than 0.8 for all k-points, which suggests ρDMD(k, ·)

fails to capture the features of ρ(k, ·) from the sampled trajectories. Such failure can also be clearly seen in
Figure 5.14 where we plot the magnitude of ρDMD and ρDFT at the zero k-point, and compare them with
that of ρ(t). We remark that when I = 1.5, although the values of |cDFT

k | are large for all k-points, there
is still noticeable difference between ρDFT(k, ·) and ρ(k, ·) as we can see in Figure 5.14 within the sampling
window. The reason that the value of |cDFT

k | is close to 1.0 in this case is that the inner product between
ρDFT(k, t) and ρ(k, t) is largely determined by the tails of these two trajectories, which are both nearly zero.
In fact, having a |cak| value close to 1 is a necessary but not sufficient condition for a good extrapolation.
Nonetheless, in this case, the Fourier based extrapolation appears to do a better job in capturing the general
trend of the dynamics than the DMD based approach.

We believe the reason why DMD fails to capture the decay rate when I = 0.5 and I = 1.5 is that the
stronger driving fields introduce more spectral degrees of freedom that are not fully captured by the projected
Koopman operator when it is constructed by simply mapping the vector ρ(t) to ρ(t+∆t). In other words,
as explained in section 4, there is a discrepancy between the dimension of the projected Koopman operator,
i.e., the value of r in (3.15), and the intrinsic number of spectral components in the dynamics of ρ(t).

As we indicated in section 4, there are two possible ways to address this problem. One is to increase the
number of k-points. But it is not clear how many k-points are needed to ensure the rank of the projected
Koopman operator is sufficiently large. In fact, we have tried to increase the number of k-points to n = 100.
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Figure 5.11: Comparisons of the trajectories at k = 0 when light intensity I = 0.001. The shaded parts indicate the sampled
window of the original trajectory.

16



- 0
0

0.2

0.4

0.6

0.8

1

Figure 5.12: The cosine of the angle between the computed ρ(k, t) from KBE and extrapolated ρDMD(k, t), ρDFT(k, t) when
I = 0.001.
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Figure 5.13: The cosine of the angle between the computed ρ(k, ·) from KBE and extrapolated ρDMD(k, ·), ρDFT(k, ·),
ρDMD(5,5)(k, ·) when I = 0.5 and I = 1.5 respectively.

Figure 5.14: A comparison of |ρDMD(0, t)| , |ρDFT(0, t)| and |ρDMD(5,5)(0, t)| with |ρ(0, t)| for I = 0.5 and I = 1.5. The shaded
area indicates the sampled window of the trajectories.
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That does not appear to yield significant improvement in extrapolation accuracy, but incurs a significant
increase in computational and memory cost. This is because the two-time Green’s function we need to
compute by solving the KBE in order to generate the one time snapshots have more degrees of freedom.

The other remedy is to use the HODMD algorithm to increase the dimension of the projected Koopman
operator by augmenting a single snapshot with d consecutive snapshots as explained in section 4. These
snapshots are concatenated into a single vector and the DMD procedure is then applied to the augmented
snapshots (4.4).

Although it may be possible to estimate the minimum number of time delays to be concatenated into a
single column of a snapshot matrix analytically [19], we experimented with several values of d numerically,
and found that for the model problem we tested with I = 0.5 and I = 1.5, d = 5 is a good choice.

Furthermore, as we discussed in section 4, to reduce the computational cost of HODMD and the potential
level of linear dependency among the column vectors in the snapshot matrix, we can increase the temporal
distance between adjacent columns to yield matrices of the form (4.6). Both Figure 5.13 and Figure 5.14
show that by introducing time delays by 5 ∆t’s and increasing the temporal distance between adjacent
columns to 5 ∆t, which yields the HODMD(5,5) scheme, we can obtain extrapolated trajectories that are
nearly indistinguishable from the true trajectories (obtained by solving the KBE numerically) even when the
driving field intensities are increased to I = 0.5 and I = 1.5 respectively.

Figures 5.15 and 5.16 show that with a reduced number of sampled snapshots, the extrapolated trajec-
tories produced by HODMD(5,5) still match perfectly with the true trajectories associated with the driving
field intensity I = 0.5 and I = 1.5 respectively. They are clearly better than the trajectories produced from
the DFT based extrapolation, which fails to accurately capture the decay rate of the dynamics. Moreover,
the computational cost of the DFT based extrapolation is much higher because a nonlinear least squares
optimization problem needs to be solved in order to determine the coefficients in the extrapolation model.
The solution of the optimization problem depends sensitively on the initial guess of the coefficients.

Figure 5.15: Comparisons of the trajectories at k = 0 when the driving intensity I = 0.5. The trajectories are reconstructed
and extrapolated with m = 340. The shaded parts demonstrate the sampled window of the original trajectory.

In addition, it can be clearly seen from Figure 5.16 that when I = 1.5, HODMD(5, 1) fails to extrapolate
the trajectory correctly with m = 120 snapshots. The failure is likely due to the linear dependency among
columns of the X̃1 snapshot matrix, and a less optimal singular value threshold used in the truncated SVD
performed on this matrix.

To demonstrate that HODMD indeed captures the fast decay of ρ(t) than DMD, we list the DMD and
HODMD(5,5) frequencies associated with the four most significant modes in Table 5.1 for the simulation
with I = 0.5, and Table 5.2 for the simulation with I = 1.5.

From these tables, we observe that, overall, the imaginary parts of ωHODMD(5,5) are much larger than
those of ωDMD. By the convention we use in (5.9), a large imaginary part corresponds to a more rapid decay
of the DMD or HODMD mode.

One practical question one may ask is how many snapshots (m) we need to collect in order to accurately
extrapolate the full (long-time) trajectory of ρ(t). This question is difficult to answer a priori in general. For
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Figure 5.16: Comparisons of the trajectories at k = 0 when the driving intensity I = 1.5. The trajectories are reconstructed
and extrapolated with m = 120. The shaded parts demonstrate the sampled window of the original trajectory.

1 2 3 4
ωDMD 0.727 2.804 + 0.015i 2.190 + 0.012i 3.419 + 0.019i

ωHODMD(5,5) 0.741 + 0.012i 2.208 + 0.059i 2.826 + 0.064i 3.455 + 0.073i

Table 5.1: The four most significant frequencies from DMD and HODMD(5,5) when the driving field intensity I = 0.5 with
m = 500.

1 2 3 4
ωDMD −0.581 + 0.226i 0.409 + 0.030i 0.712 + 0.029i 2.935 + 0.049i

ωHODMD(5,5) 0.487 + 0.193i 0.746 + 0.245i 2.400 + 0.293i 3.046 + 0.323i

Table 5.2: The four most significant frequencies from DMD and HODMD(5,5) when the driving field intensity I = 1.5 with
m = 500.
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the model problem we examined, we experimented numerically with m values ranging from 21 to 500. For
each m, we compute the root mean square error of the extrapolated trajectory errb defined as

errb =

[∑n
j=1 ‖ρ(kj , tm+1 : tN )− ρb(kj , tm+1 : tN )‖2l2

N −m

]1/2

, b = HODMD(d, s). (5.14)

In Figure 5.17, we plot this error associated with both HODMD(5, 1) and HODMD(5, 5) for these m
values. For both test problems (with I = 0.5 and I = 1.5), we observe that the extrapolation error generally
decreases as m increases, which is expected. The error clearly decreases faster for HODMD(5,5) than for
HODMD(5,1). Because the time step size used in the Runge-Kutta scheme to solve the KBE is ∆t = 0.1.
The true trajectory is only accurate up to O(10−2). Therefore, approximately 200 snapshots are sufficient to
produce an accurate HODMD(5,5) extrapolation when I = 0.5. Far fewer snapshots are needed for I = 1.5.
This is mainly due to the fact the dynamics has more features in early time and quickly decays to zero as t
increases.
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Figure 5.17: Comparisons of the root mean square errors of the extrapolated trajectories from HODMD(5,1) and HODMD(5,5),
when the driving intensity I = 0.5 and I = 1.5.

6. Conclusion

We applied DMD to study the dynamics of a one-time physical observable originated from the simulation
of a many-body system away from equilibrium through the Green’s function approach. Traditional numerical
methods to obtain the observable involve solving coupled two-time nonlinear integral differential equations,
which results in high memory requirement and large computational cost. In contrast, the data-driven DMD
method only depends on a small sampled set of the numerical solutions, and can be easily applied through
truncated SVD decomposition.

Numerical results obtained from the dynamical simulation of a two-band model system show that DMD
successfully captures the major dynamical modes and frequencies of the observable when there is no or
little external light-matter interaction. In these equilibrium or near equilibrium cases, the DMD modes are
physical as can be verified by performing a linear response analysis and comparing the DMD modes with
the eigenvalues and eigenvectors of the corresponding BSE Hamiltonian. When the driving pulse intensity
in the interaction term of the two-band model is large, the standard DMD fails to accurately reconstruct
or extrapolate the nonequilibrium dynamics, because the rank of the projected Koopman operator is too
small. Under this circumstance, we introduced HODMD(d, s) with concatenated snapshots, which is derived
from the augmented Koopman operator. Numerical examples show that HODMD(d, s) perfectly solves the
problem. Moreover, increasing s in HODMD(d, s) can improve the efficiency and accuracy of the algorithm as
the data matrix becomes more compact, and there is less linear dependency among the augmented snapshots.
Compared to Fourier analysis, DMD and HODMD(d, s) can perform the reconstruction and extrapolation
of the original trajectories more accurately with less computational cost.
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[21] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, D. Henningson, et al. Spectral analysis of nonlinear
flows. J. Fluid Mech., 641(1):115–127, 2009.

[22] P. J. Schmid. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech.,
656:5–28, 2010.

[23] P. J. Schmid, L. Li, M. P. Juniper, and O. Pust. Applications of the dynamic mode decomposition.
Theor. Comput. Fluid Dyn., 25(1):249–259, 2011.

[24] O. Semeraro, G. Bellani, and F. Lundell. Analysis of time-resolved piv measurements of a confined
turbulent jet using pod and koopman modes. Exp. Fluids, 53(5):1203–1220, 2012.

[25] G. Stefanucci and R. van Leeuwen. Nonequilibrium Many-Body Theory of Quantum Systems: A Modern

Introduction. Cambridge University Press, 1 edition, April 2013.

[26] N. Takeishi, Y. Kawahara, and T. Yairi. Learning koopman invariant subspaces for dynamic mode
decomposition. arXiv preprint arXiv:1710.04340, 2017.

[27] F. Takens. Detecting strange attractors in turbulence. In Dynamical systems and turbulence, Warwick

1980, pages 366–381. Springer, 1981.

[28] A. Towne, O. T. Schmidt, and T. Colonius. Spectral proper orthogonal decomposition and its relation-
ship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech., 847:821–867, 2018.

[29] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz. On dynamic mode
decomposition: Theory and applications. J. Comput. Dyn., 1(2):391–421, 2014.

[30] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. Chemometr. Intell. Lab. Syst.,
2(1-3):37–52, 1987.

22


	1 Introduction
	2 The model problem and the Keldyish formalism
	3 Dynamic mode decomposition
	4 Higher order dynamic mode decomposition
	5 Results and discussions
	5.1 KBE with Hatree-Fock self-energy approximation
	5.2 KBE with second Born approximation of the self-energy
	5.3 Comparison with Fourier Analysis
	5.4 Extrapolation of the density dynamics

	6 Conclusion

