
 

1 

 

Investigation on the properties of  Sine-Wiener noise and its 

induced escape in the particular limit case D   

Jianlong Wang, Xiaolei Leng*, Xianbin Liu, Ronghui Zheng 

State Key Laboratory of  Mechanics and Control of  Mechanical Structure, Nanjing University of  

Aeronautics and Astronautics, Nanjing 210016, China 

*Corresponding author, email: lengxl@nuaa.edu.cn 

Abstract   

Sine-Wiener (SW) noise is increasingly adopted in realistic stochastic modeling for its bounded 
nature. However, many features of  the SW noise are still unexplored. In this paper, firstly, the properties 

of  the SW noise and its integral process are explored as the parameter D  in the SW noise tends to 
infinite. It is found that although the distribution of  the SW noise is quite different from Gaussian 
white noise, the integral process of  the SW noise shows many similarities with the Wiener process. 
Inspired by the Wiener process, which uses the diffusion coefficient to denote the intensity of  the 
Gaussian noise, a quantity is put forward to characterize the SW noise’s intensity. Then we apply the 
SW noise to a one-dimensional double-well potential system and the Maier-Stein system to investigate 
the escape behaviors. A more interesting result is observed that the mean first exit time (MFET) also 
follows the well-known Arrhenius law as in the case of  the Gaussian noise, and the quasi-potential and 
the exit location distributions are very close to the results of the Gaussian noise.  
Keywords: Sine-Wiener noise, noise-induced escape, mean first exit time, exit location distribution. 

1. Introduction  

For the fact that the very nature of  real physical quantity is always bounded, various bounded 
noises are introduced in the modeling of  the stochastic systems [1, 2]. Especially in the biological 
domain, more and more researches have focused on the influence of  bounded noise [3–8]. One of  the 
most widely employed bounded noises is called Sine-Wiener noise, which can be presented as a 
sinusoidal function with a constant amplitude and a random phase described by a Wiener process [9, 
10]. It has been widely adopted in various dynamic systems as a random perturbation after the first time 
being treated as a turbulent fluctuation in the wind flow[7, 8, 11, 12]. Recently, the references [1, 5, 9, 
10] found that the SW noise can also induce transitions in the tumor-immune systems and genotype 

selection models, even though the values of  the noise are limited. Nevertheless, these works only 
observed the SW noise-induced transition and did not give a more in-depth investigation on the escape 
behavior.  

For a dynamic system perturbed by the Gaussian white noise, noise-induced escape has been 
extensively studied [13–16]. Since the supremum of  the Gaussian noise is infinite with probability 1 for 

 0,t  [17], the system will eventually exhibit large fluctuations no matter how slight the noise is. 

Moreover, if  the system has multiple coexisting-steady states, these fluctuations will cause the 
transitions between the attractors. In the weak noise limit, the Fredlin-Wentzell theory of  large 
deviations provides a framework to study the exit problem systematically [17, 18]. Some other methods, 
such as Hamiltonian formalism and WKB approximation, are also useful for the case of  small noise 
perturbation [19, 20]. By applying these methods, laws and characteristics of  the mean first passage 
time(MFPT), the most probable exit path(MPEP), and the exit location distribution(ELD) under the 
Gaussian noise have been researched[17, 21–23]. The MFPT from one attractor to one another is 
exponentially proportional to the inverse of  the noise intensity in the weak noise limit. When the escape 
occurs, the realization of  the transition moves along the MPEP with an overwhelming probability. And 
the way how the MPEP approaches the exit boundary determines the shape of  the exit location 
distribution, a Gaussian distribution, or a non-Gaussian distribution [23–26] 

All these above-mentioned theories and results of  the escape problem are based on the weak 
Gaussian white noise assumption. For other kinds of  noise, even the Gaussian colored noise, the above-
mentioned theories and results are not suitable anymore. The latest scholars are devoted to studying the 
escape properties of  the non-Gaussian noise[27–30]. Due to the complexity of  the dynamical system 
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perturbed by the SW noise, so far, little research has been done in studying the properties of  the SW 
noise-induced escape.  

In this paper, a heuristic study on the characteristics of  the bounded noise-induced escape is 
presented. First, the properties of  the SW noise and its integral process are analyzed in Sections 2 and 
3, respectively, and a quantity is put forward to characterize the noise’s intensity. Then in Section 4, a 
fundamental requirement for the SW noise-induced escape is given and the escape of  a one-dimensional 
double-well potential system is studied. Then, in Section 5, we extended the research to a two-
dimensional system, the Maier-Stein System, to study the MFETs and ELDs. At last, the conclusion is 
drawn in Section 6.  

2. The Sine-Wiener noise  

In this section, we give some essential properties of  the Sine-Wiener noise, which are crucial for 
the escape problem of  the SW noise. First, the mathematical model of  the SW noise is expressed as [1]:  

  = sin( )tt A Dw .   (1) 

where A denotes the amplitude of  the noise, 
tw  is a standard Weiner process that initially starts from 

zero, and D is the Weiner process’s diffusion coefficient. Using the well-known properties of  the Weiner 

process, it is easy to verify that   0t  , and    
2

2 (1-exp 2 )
2

A
t Dt   , and   

      
2

+ exp( )(1-exp 2 )
2 2

A D
t t Dt


      , 0    (2) 

Applying the Fourier-Transform to the correlation function in Eq.(2), then the power spectrum of  the 

SW noise can be estimated as: 

  
2

2 2

2
(1 exp 2 )

2 4

A D
Dt

D 
 


.   (3) 

When D  is small, the noise becomes a narrow-band random process, and its correlation time is 
so considerable that it can almost be viewed as a deterministic process in a short period of  time. 

Especially when =0D , this noise becomes a deterministic excitation. For the papers[1, 9, 31] where a 

small D  is employed, the observed MFETs are very short, and the induced transitions almost have 
no difference with those induced by a deterministic harmonic excitation.  

When D  is large, this noise becomes a wide-band random process, the motion of  the process 
changes direction frequently and becomes very unpredictable. The following work is mainly attempted 

to investigate the features of  the noise as D  . 
First, we need to work out the stationary density of  the SW noise process. Form Eq.(1), one have  

       = sin( )= sin(mod ,2 )t A Dw t A Dw t  .   (4) 

The phased process  Dw t  can be viewed as a motion on a circle (mod2 )S  . It is easy to verify 

that the stationary probability distribution on this circle is a uniform distribution  U 0 2， . Therefore, 

according to Eq.(4), the SW noise process has a stationary probability density function (PDF), which 
can be given as 

   2 2

1

0

A x A
x A x

others

 


  

 



.   (5) 

As shown in Fig.1, Eq.(5) is verified by the numerical simulation. The second moment of  the 

stationary SW noise process equals precisely to the value 
2 2A  derived from Eq.(2) as t  . From 

the form of  Eq.(5), we can see the stationary PDF of  the SW noise only depends on A  but not D . 

While, from Eq.(2), it can be observed that the D  controls the convergence speed of  the SW noise. 

The larger D  is chosen, the faster the noise converges to the stationary state. Hence, in the limit case, 
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as D ,  1t  and  2t  become independent of  each other for any 
1 2t t ; In addition, it can 

be seen that the mean and the autocorrelation function of  the SW noise process are independent of  

time t ,   0t  ,    + 0t t    . Hence, as D , the SW noise becomes a weak 

stationary process.  

 
Fig.1 Stationary PDF of  the SW noise with 1A  . 

Base on the above analysis, we summarize the following properties of  the SW noise in the limit 

case D : 

(i)   0t    for 0t  . 

(ii) 
1 2t t    1t and  2t are independent of  each other. 

(iii)  t  is a stationary process. 

As is seen, in the limit case, the SW noise has a lot in common with the Gaussian white noise, 
while the bounded nature of  the SW noise makes it more suitable than the Gaussian noise to model 
the real physical perturbation. For some further properties of  the SW noise, the readers are referred to 
the recent paper [32], where some properties and relationships of  the most commonly employed 
bounded noises are investigated within a solid mathematical ground.  

3. The integral process of  the Sine-Wiener noise   

As we all know, the movement of  a particle in a liquid or gas, caused by being hit by molecules of  
that liquid or gas, forms a Brownian motion. The higher the temperature is, the greater the impact force 
on the particle is, and the more violent the Brown motion is. In math, the impact force of  the molecules 
is modeled by the Gaussian white noise, and the Brown motion is hence depicted by the integral process 
of  that noise. Furthermore, the diffusion capability of  the perturbed particles is weighed by the second 
increment moment of  that integral process per unite time, called the diffusion coefficient. In the 
following, by theoretical and numerical analysis, we show that the integral process of  the SW noise in 

the limit case D  also forms a Brown motion. Hence we use the diffusion coefficient to denote 
the intensity of  the SW noise as in the case of  Gaussian noise. 

 First of  all, we define the integral process of  the SW noise as  

  
0

( ) d
t

W t s s  , 0t  .   (6) 

Since the SW noise is continuous and bounded,  A s A   , the integral process should be 

differentiable with respect to time t . In the limit D , the SW noise  t  is almost white and 

obeys the identical distribution, as shown in Eq.(5). Therefore, the integral equation in Eq.(6) can be 
viewed as a generalization of  the summation of  independent random variables and should follow the 
Gaussian distribution. If  the first and second moments of  this integral are known, then the specific 
distribution of  the integral equation (6) can be determined.  

The first moment of  the integral process is derived as  

        
0 0

( ) d d 0
t t

W t s s s s        , as D   (7) 

The calculation of  the second moment is a bit more complicated. According to Ito’s formula, 
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       d sin cos d sin d
2

t t t t

D
Dw D Dw w Dw t  .   (8) 

the integral Eq. (6) can be rewritten as : 

    
0 0

2
( ) sin d cos d

t t

s s s

A
W t A Dw s D Dw w

D
 
    (9) 

                      0sin sintDw Dw  


 

Square both sides of  the Eq. (9), and take
0 0w  , it yields 

      
2 2

2

2 0

4
( ) cos d sin

t

s s t

A
W t D Dw w Dw

D
  
   .   (10) 

Taking the expectation on both sides of  the last equation, then the second moment of  the integral 

equation (6) is obtained as 

 
     

    

22 2
2

2 0

0

4
( ) cos d sin

2 cos d sin

t

s s t

t

s s t

A
W t D Dw w Dw

D

D Dw w Dw

       
    

   
    





.   

        
   

   

2 2 2
2

2 20

2

2 0

4 4
cos d sin

8
cos sin d

t

s t

t

s t s

A A
D Dw s Dw

D D

A
D Dw Dw w

D

       
    

 
  





 

   
2 2

2

20

4 2
cos d (1-exp 2 )

t

s

A A
Dw s Dt

D D
    
   

   
2 2

20

4 1 2
1 [1 exp 2 ] d (1 exp 2 )

2

tA A
Ds s Dt

D D

 
       

 
  

 
2 2 2

2 2

2 3 3
exp 2

A t A A
Dt

D D D
    .                 (11) 

Therefore, as D , the distribution of the integral process ( )W t  obeys a normal distribution with

 2N 0 2A t D， . Furthermore, as is seen, the second moment of  the integral process is proportional to 

time t , hence it is really a diffusion process. Similarly, it can be proved that the increment of  the 

process ( ) ( )W t W s  should also obey a normal distribution with  2N 0 2 ( )A t s D， for any 

0t s  .  

Next, we need to prove the increments of  the integral process ( )W t are independent from each 

other i.e.  

 
1 2 1 1( ), ( ) ( ), , ( ) ( )k kW t W t W t W t W t    are independent for all 

1 20 kt t t     (12) 

For the fact that normal random variables are independent, if they are uncorrelated, it is enough to 

prove that  

   1 1( ) ( ) ( ) ( ) 0i i j jW t W t W t W t 
    
 

 when 1i jt t    (13) 

Replacing ( )W t  by Eq.(9) into the left side of  the above function (13), the equation’s correctness is 

easily verified. Here, we do not give the proof  because the procedure is very similar to Eq.(11). 

Now, we use numerical simulation to validate those theoretical results. 2000 sample trajectories of  the 

integral process (6) are conducted by the Monte Carlo simulation, with 100D  and 1A  . The 

distributions of  these trajectories at different times are shown in Fig.2. The comparison shows that the 
theoretical and numerical results are in good agreement. In addition, the probabilities of  the process 
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surpassing the value a  within time =500sT  and at the time =500sT  are tallied respectively by these 

sample trajectors. As is shown in Table.1, the following useful identity is also verified: 

  
0

sup =2t T
t T

P W a P W a
 

 
  

 
.   (14) 

 

Fig.2 Probability distribution of  the integral process at the time =100s,200s,500st : the lines are 

theoretical prediction: a normal distribution with  2N 0 2A t D， ; circles are Monte Carlo simulation. 

Table.1 The probability of
0

sup t
t T

W a
 

 , with =500sT  

 =2.5a  =5a  =8a  

0

sup t
t T

P W a
 

 
 

 
 

0.4170 0.1006 0.0098 

 2 TP W a  
0.4296 0.1142 0.0114 

Therefore, we conclude that the integral process ( )W t  of  the SW noise is almost a Wiener 

process in the limit D . For a Wiener Process generated by the Gaussian white noise, its diffusion 

coefficient could denote the diffusion capability of  the particles under the noise. Hence, it is reasonable 

for us to use the quantity 
22A D  to denote the diffusion capability of  the particles under the SW 

noise or denote the intensity for the SW noise. Note that, as D , the high-frequency switching 

direction together with the symmetrical probability distribution of  the noise will make the action of  the 

SW noise very weak, 
22 0A D  . For a system perturbed by Gaussian White noise, the features of  

the escape behavior in weak noise limit have been studied extensively. For example: the MFPT from 

one attractor to one another is exponentially proportional to the inverse of  the noise intensity; When 

the escape occurs, the realization of  the transition moves along the MPEP with an overwhelming 

probability. So what about the escape behavior of  the SW noise when the noise intensity 
22 0A D  ? 

That is what we want to investigate in the following section. 

4. The escape from a one-dimensional double-well potential system  

In the rR space, we consider the following type of  differential equation: 

  x b xt t t  .   (15) 

here       1b x x , , xrb b is an r -dimensional vector, 
t  is an r -dimensional random 

process with each component independent from each other.  
 Before moving on, it should be noted that the SW noise’s value is bounded by its amplitude; 

therefore, a particle excited by this noise can never transcend the domain where the field intensity is 

stronger than the amplitude. Here we give a fundamental requirement for the SW noise-induced escape. 

In math, it is expressed as follows: if  a particle wants to fluctuate from point 
1x  to point 

2x , only if  

there exists a differentiable path 
t , 0 t T  , connecting 

1x  and  
2x  such that 

0

sup( ( ) )i i

t t
t T

b A 
 

  , 1,2, ,i r  , can the fluctuation be realized. While, for the Gaussian white 
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noise, no matter how small the noise is, the supremum of  the noise is infinite as t  . Hence the 
particle excited by the Gaussian noise always has the opportunity to overcome the field and fluctuates 
to anywhere it wants to go [17]. 

Now we consider the escape of  a particle from a double-well potential field[31]. The potential 

function is given by 
2 41 1

( )
4 8

V x x x   and the vector field  b( )x V x  . For this system, two 

stable states are located on 1x   , respectively, and an unstable steady state on 0x  , see Fig.3. Due 

to the symmetry of  the system, we need only to consider the escape from 1x    to 1x  . If  a 

particle wants to escape from one stable position to another, it must overcome the height of  potential 

well from the stable state 1x    to the unstable state 0.  

 
Fig.3 The potential well  

In the first case, we assume the random perturbation 
t  is an SW noise. Through a simple 

analysis, it can be found that the steepest slope from 1x    to 0x   lies in the position 

3 3x    with min 3 9x   . Hence the escape only happens when the amplitude of  the SW noise 

3 9A  . Otherwise, even a constant excitation 3 9F   can not bring the particle from 1x    

to 1x  , see Fig.3. Now assuming the noise’s amplitude is large enough to escape, three groups of  

numerical simulations are conducted. In each group, the parameter D  is fixed, and various noise 

amplitudes A  are chosen. The MFETs of  these groups are shown in Table.2. Plotting the MFETs 

versus the quantity 
22A D , which is obtained to denote the diffusion capability under the SW noise 

in Section 3, we can see the MFETs in each group in Fig.4 obey the following asymptotic law  

 
2

exp
2

D
A D




 
 
 

.   (16) 

This is identical to the Arrhenius law, which is obtained by Kramers[25]. The ration coefficients   

found by fitting these datas are 0.466, 0.283, and 0.269 for 5D  , 50D  , and 2000D  , respectively. 

For comparison, the perturbation under the white Gaussian noise with noise intensities D  is 
also considered. Because it is a one-dimensional system, according to the large deviation theory, the 
optimal fluctuation path should move along with the inverse of  the vector field, and the quasi-potential 

of  the system can be directly given as ( ) 2 ( )x V x  [17]. Through numerical simulation, the MFETs 

for different noise intensities D  are shown in Table.3. Plotting the MFET versus the noise intensity 

D  shows the coefficient 0.243   derived by fitting the data according to Eq.(16) is very close to 

the theoretical value 0.25  . Compared with the   of  the SW noise of  50D  and 

2000D  , we can see that they are in good agreement. This is really interesting that the distributions 

of  the SW noise and the Gaussian noise are totally different, but their quasi-potentials are so close.   
Table.2 The MFET of  the SW noise 

5D   
2 0.36A   

2 0.25A   
2 0.16A   

2 0.144A   
2 0.12A   

MFET(s) 60 188 2180 5400 42498 

50D   
2 2.5A   

2 1.69A   
2 1.44A   

2 1.25A   2 1A   

MFET(s) 77 318 588 1289 5487 
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2000D   
2 100A   

2 67.6A   
2 57.6A   

2 50A   
2 40A   

MFET(s) 80 298 591 1206 4535 

 

Table.3 The MFET of  the Gaussian noise 

D  0.100 0.0636 0.0576 0.0500 0.0400 

MFET(s) 64 206 384 729 2452 

 

 
Fig.4 MFET: the circles are derived by Monte Carlo simulation; the lines are derived by fitting the MC data. Black: The 

Gaussian noise. Yellow： 5D  ; Blue： 50D  ; Red: 2000D  ;  

     At last, two sample trajectories of  the SW noise-perturbed system are shown in Fig.5. The 

amplitudes A  of  both the noises are the same, while the parameters D  are different. As is seen in 

Fig.5(a), the sample trajectory with a small D  is relatively smooth, and the noise mainly manifests as 

a positive excitation when the transition happens. While for the trajectory with large D , as shown in 
Fig.5(b), the transition trajectory is zigzag and erratic, and the direction of  the noise changes frequently 
when the transition happens. The transition mechanism is totally different for these two noises. For the 

noise with a small parameter D , due to the long-term correlation of  the noise, the noise behaviors 
more like a deterministic excitation, and the continuous positive excitation pushes the particle to 
transfer quickly. That is the reason that the observed MFETs are very short in the papers[1, 9, 31]. In 

contrast, for the noise with a large parameter D , due to the frequent change of  the noise’s direction, 
the particle wanders aimlessly, and the transition happens very occasionally. The larger the diffusion 

coefficient 
22A D  is, the more violently the particle diffuses, the more likely the transition happens.   

 
(a) 5D  , 1.2A  
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(b) 50D  , 1.2A  

Fig.5 The sample transition trajectories and noises 

5. The escape from the Maier-Stein System 

 Now we extend our investigation to a two-dimensional system, the Maier-Stein system. The 

system is given as follows[33]: 

 3 2 2, (1 )x x x xy y y x       .   (17) 

here   and   are parameters. The vector field of  the system is symmetric about both the 𝑥-Axis 

and the 𝑦-Axis. Two stable points are located at (±1,0), and a saddle point at (0,0). The basins of  

attraction are separated by the 𝑦-Axis, which are the stable manifolds of  the saddle point. Assuming 

the system is perturbed by random noise, the motion equation of  the particle becomes 

 

3 2

1

2

2(1 )

x x x xy

y y x

 

 

   

   
   (18) 

here    1 2 0t s   . For the symmetry about the 𝑦-Axis, we need only to study the exit from the 

left half-plane. 

If  the perturbation is Gaussian white noise, and     ( )i j ijt s D t s    , a steady probability 

density function is supposed to assume the form[18] 

  (x) (x)exp( (x) / ), x= ,p C D x y  .   (19) 

asymptotically for small D . Here, (x) is the quasi-potential of  the system. 

Substituting Eq.(19) into the Fokker-Plank equation and denoting the vector field Eq.(17) by  b x , 

result in 

 
1 1

(b+ ) b+ 0
2 2

D  
 

        
 

.   (20) 

Obviously, the Freidlin Hamilton-Jacobi equation for   

 
1

(b+ ) 0
2

      (21) 

yields the weak noise asymptotics. To solve (21) is to consider the Hamiltonian 
1

b p p p
2

H       

with the momenta p
x





, and to integrate 

 

 

 

dx
b x +p

d p

b xdp
p

d x x

T

H

t

H

t


 


 
     

  

.    (22) 
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as well as p x   .  

More specifically, Eq.(22) can be rewritten as 

 
 

 

3 2

2

2 2

2

(1 )

1 3 2

2 1

x

y

x x y

y x y

x x x xy p

y y x p

p x y p xyp

p xyp x p





 

 

   

   

   

  

.   (23) 

Then, solving the Hamilton-Jacobi equation (23), the quasi-potential of  the system can be derived.  
Maier and Stein[23, 33] have shown that when the MPEP approaches the saddle point, the 

parameters and the ration
s u   (

s and
u are the stable and unstable eigenvalues of  the 

linearized deterministic dynamics at the saddle point, respectively.) determine the angle of  the MPEP 
to the attraction boundary. If  the MPEP is perpendicular to the separatrix, then the exit location 
distribution(ELD) will be a Gaussian centered on the saddle. Otherwise, the ELD will be skewed, 
asymptotic to a non-Gaussian distribution. 

By applying the ordered upwind method [34] to the Hamilton-Jocabi function (23), the system’s 
quasi-potential and the MPTPs are derived, shown in Fig.6. The quasi-potential at the saddle point (0,0) 

are 0.500 and 0.456 for =0.8  and =1.6 , respectively. For =0.8 , from the shape of  the quasi-

potential, it is easy to see that the MPTPs from point(-1,0)to the section x a , 1 0a   , always 

lies on the 𝑥-Axis, so the exit location distributions on these sections are Gaussian distributions 

centered on 0y  , as shown in Fig.7(a),(b). For another parameter =1.6 , we can see the MPTPs 

from point(-1,0)to the sections 0.3x    and 0x   move along near the red curves, resulting in 

the ELDs on those sections having double peaks, shown in Fig.7 (c) (d). 
For the SW noise, there is no such theoretical work can be done for the scarce of  corresponding 

theory. Hence, we can only use the numerical simulation method to investigate the escape behavior. We 

choose the parameters of  the SW noise such that 22A D D , which means the diffusion ability under 

the SW noise and the Gaussian noise are equal. Simulating the system with such an SW noise, the ELDs 
on these sections are obtained as shown in Fig.7, and the MFETs to the right half-plane are shown in 
Fig.8. We can see that the ELDs on these sections agreed quite well with that of  Gaussian noise. Based 
on fitting the MFETs, according to Eq.(16), the quasi-potential under the SW noise are 0.497 and 0.440 

for =0.8  and =1.6 , respectively. And the quasi-potential under the Gaussian noise 0.470 are and 

0.433. Both the results are very close to the theoretical prediction derived from the ordered upwind 
method. Furthermore, by the good agreement of  the ELDs on these sections, we can even judge that 
the MPEP under the SW noise should also follow along with the MPEP of  white Gaussian noise. For 

the SW noise with a small parameter D , a much smaller amplitude is required to equivalent the 
Gaussian noise, resulting in no escape for the system. Hence, we did not plot its ELDs or MFETs here. 

 
(a)                                   (b) 

Fig.6 Quasi-potential of  the system under white Gaussian noise, the red lines are the MPTPs: (a) =0.8  and

=0.4 . (b) =1.6  and =0.4 .  
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Fig.7 Exit location distribution. lines: white Gaussian noise with intensity 0.04; circles: SW noise with 200D   and

2A  ; (a) =0.8 , =0.4 , = 0.5x  . (b) =0.8 , =0.4 , =0x . (c) =1.6 , =0.4 , = 0.3x  .(d) =1.6 ,

=0.4 , =0x . 

 
Fig.8 MFET: Red: =0.8 , =0.4 ; Black: =1.6 , =0.4 ; Squares: derived by the MC simulation under the 

SW noise with 200D  . Circles: derived by the MC simulation under the Gaussian noise; Lines are derived by fitting 

the MC datas.  

6. Conclusion  

In this paper, the properties of  the SW noise and its integral process are explored in the limit case 

D . It is shown that although the probability distribution of  the SW noise is totally different from 
the Gaussian noise, the integral process of  the SW noise has many similarities with the Wiener process. 
Inspired by the Wiener process, which uses the diffusion coefficient to weigh the diffusion capability 
under the noise or the intensity of  the noise, a quantity is put forward to characterize the intensity of  
the SW noise. By investigating noise-induced escape in a One-dimensional double-well potential system 
and the Maier-Stein system, we found that when the amplititude of the SW noise is large enough for 

the escape, the MFET of  the SW noise with large D  also follows the Arrhenius law with respect to 
the noise intensity and the quasi-potential is very close to that of Gaussian noise. Furthermore, when 
both the noise intensities are equal, the ELDs also show good agreement, and we judge that the MPTP 
of the SW noise should also follow that of the Gaussian noise. Therefore, the excellent agreement 
between these two noises provides us a new window to consider the SW noise perturbed system. For 
the system excited by the SW noise, it is usually very difficult to analyze its dynamic behavior. According 
to the results of this paper, if an equivalent Gaussian white noise replaces the SW noise, then the study 
of the system can be greatly simplified while many statistical properties are preserved. On the other 
hand, the good agreement between these two noises might explain why using the Gaussian noise to 
model the system could still get some useful statistical results while many random excitations in real 
physic are bounded.  
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