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FIBER DECOMPOSITION OF DETERMINISTIC REACTION
NETWORKS WITH APPLICATIONS

CARSTEN WIUF AND CHUANG XU

ABSTRACT. Deterministic reaction networks (RNs) are tools to model diverse biological
phenomena characterized by particle systems, when there are abundant number of particles.
Examples include but are not limited to biochemistry, molecular biology, genetics, epidemi-
ology, and social sciences. In this chapter we propose a new type of decomposition of RNs,
called fiber decomposition. Using this decomposition, we establish lifting of mass-action
RNs preserving stationary properties, including multistationarity and absolute concentra-
tion robustness. Such lifting scheme is simple and explicit which imposes little restriction
on the reaction networks. We provide examples to illustrate how this lifting can be used
to construct RNs preserving certain dynamical properties.

1. INTRODUCTION AND STATE OF THE ART

Reaction networks (RNs) can be regarded as a modelling machinery for many real-world
dynamical systems. Examples include networks in epidemiology [4], pharmacology [6], ecology
[18], and social sciences [31], as well as gene regulatory networks [9], biochemical reaction net-
works [21], signalling networks [29], and metabolic networks [32]. An RN is a finite nonempty
set of reactions between complexes consisting of species. When there are abundant species
and all species are homogeneously well mixed, an RN can be modelled deterministically by
ordinary differential equations (ODEs), called the rate equation.

Multistationarity of deterministic reaction networks. A reaction network is multista-
tionary if its rate equation admits multiple steady states (subject to the linear subspace the
dynamics is confined to) [21]. Endowed with mass-action kinetics, the rate equation associ-
ated with an RN has a polynomial vector field. Hence to determine steady states of an RN
amounts to determining zeros of a polynomial, which in general is challenging [21, 22]. Sev-
eral approaches have been proposed to ensure the existence of multiple positive steady states
(steady states with positive entries), e.g., based on deficiency theory [26, 19, 21], injectiv-
ity based tests using a Jacobian criterion [12, 13, 14], and homotopy and other approaches
[15, 27, 10].

Lifting of RNs preserving multistationarity is well investigated in the literature [11, 27,
5]. The reason for studying lifting procedures is two-fold. First of all, whether an RN is
multistationary might be solved for a smaller/simpler RN and if it is so, then the larger RN
of interest is also multistationary by lifting. Secondly, lifting procedures might provide means
to construct complex examples of RNs with the same properties as the simpler RN. The
lifting scheme based on the so-called “atoms of multistationarity” [27] is valid for fully open
continuous-flow stirred-tank reactors (CFSTRSs), a network in which all chemical species enter
the system at constant rates and are removed at rates proportional to their concentrations,
that is, there are reactions 0 == S for all species in the RN.

An RN R is nondegenerately multistationary provided a subnetwork R C R with the
same stoichiometric subspace as R is so [27] (Here “nondegenerate” is in the sense of the
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Jacobian matrix of the vector field). This in particular implies two networks share the same
set of species. The proof depends on constructing a mapping from every positive steady state
(PSS) of the subnetwork R to a nearby point which is a PSS of R. Based on the construction,
the set of PSSs of R is not necessarily a subset of those of R.

In contrast, our lifting scheme (Theorem 5.2) based on the fiber decomposition proposed
in this chapter (i) does allow for two RNs to have different sets of species; (ii) under a certain
assumption, the projection of the set of PSSs of the original reaction network R onto the set
of species of the subnetwork recovers precisely the set of PSSs of the subnetwork; (iii) the
networks are not necessarily CFSTRs. Nevertheless, the specific construction of lifting does
impose certain conditions on the reaction rate constants of the two RNs.

Absolute concentration robustness. One interesting property of RNs is absolute concen-
tration robustness. An RN is absolute concentration robust (ACR) if the system has at least
one PSS, and all PSSs projected to a given species S; are identical (say, z}). Such a species
S; is called an ACR species with z} being the ACR value. Many biological systems have such
ACR property, e.g., the EnvZ-OmpR osmoregulatory system, and double-phosphorylation
systems of transcriptional regulatory proteins [34, 8]. This ACR property is closely related
to a desirable property in bioengineering, called robust perfect adaption, which means that a
biological system can adapt after an external stimulus has been applied, and be insensitive
to variations in the biochemical parameters of the system [7]. We remark that ACR is also
closely related to sensitivity analysis of parameters for biological systems [33].

We will show that our lifting procedure also works for ACR. For this we briefly review
the literature on ACR. Based on linear algebra, a simple sufficient condition for a system of
deficiency one to be ACR can be given [34] (see Proposition 5.10). This has recently been
extended to a class of RNs with a weaker condition than deficiency one [8]. Also lifting of RNs
preserving the ACR property under the former conditions is discussed therein. The notion
of ACR has likewise been generalized to local ACR and necessary conditions for local ACR
have been given [30]. An RN is local ACR with local ACR species S; if the projection of the
set of PSSs onto the i-th coordinate is nonempty and finite. We mention that results for a
stochastic analogue of the ACR property are sparse [3, 2, 1, 20].

2. NOTATION

Let R, R>, and Q@ be the set of real numbers, nonnegative real numbers, and rational
numbers, respectively. Given a finite index set J C N, for any z = (z;)jes € R’, denote
suppx :={j € J: x; #0}.

3. REACTION NETWORKS

In this section, we introduce reaction networks as well as elementary propositions, as
prerequisites of the fiber decomposition of reaction networks.
A reaction network (RN) is composed of a triple (S,C,R) of three non-empty finite sets:
(i) 8 ={Si}ti<i<a is a set of symbols, termed species;
(ii) C C NOS is a set of linear combinations of species, termed complezes, and
(iii) R € C x C is a set of reactions. A reaction (y,y’) is denoted y — y’. The complex
y is called the reactant and 3y’ the product.

For convention, we assume every species is in some complex and every complex is in some
reaction. Hence we also identify an RN with R since S and C can be deduced from R. We
emphasize that R is a set without multiplicity, and hence does not contain multiple identical
reactions.

A reaction is degenerate if its reactant coincides with its product; otherwise it is non-
degenerate. An RN is degenerate if it contains degenerate reactions; otherwise, it is non-
degenerate. Given an RN R, let R, C R be the subnetwork (with S, and C, being its sets
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of species and complexes) only consisting of non-degenerate reactions. The concept of an RN
herein is more general than the standard one in the literature of chemical reaction network
theory (CRNT) [21] simply because we allow for degenerate reactions. Other definitions of
RNs, similar to our definition, have also been explored in the literature [16, 17].

The pair (C,R) forms a (possibly non-simple) digraph referred to as the reaction graph.
Hence the reaction graph is non-simple and contains a self-loop if and only if there exists a
degenerate reaction in the RN. We adopt the convention that every node is strongly connected
to itself. Any weakly connected component is called a linkage class. All nodes in a strongly
connected component (called a strong linkage class) are terminal if there are no edges from
any node in this component to a node in any other strongly connected component. Any
node in a terminal strongly connected component is a terminal complex; otherwise it is a
non-terminal complex. Let £ be the number of linkage classes of R.

Let Q :={y —y:y — ¢y € R} be the set of reaction vectors and Q, = Q\ {0} =
W —y:ry — vy € Ri}. Let S:= {3 cqcuw: cw € R} be the span of Q over R, termed
the stoichiometric subspace of R. Note that S =S, :={}_ cow: ¢y € R} and dim S < d.
Define the deficiency of a reaction network R:

§ = #C, — I, — dim§.

Then R and R, share the same deficiency. For every ¢ € RS, let S. = (S + ¢) NRE,, be the
stoichiometric compatibility class through c. - a

Given two RNs R! and R?. Let y — 3 € R' and § — ¥ € R%. Wesay y — ¢/ is
representable by ¥ — 3’ and denoted {y — ¢/} < {y — ¥’} if

WEN

i) ¥’ — y is a multiple of §’ — ¥, that is, there exists r € R such that y' —y = r(¥’ — ¥),
ii) suppy C suppy.
A subnetwork A C R is representable by § — ¢, denoted A < 7 — ¥’ if every reaction
in A is so. R! is representable by R?, denoted by R' < R? if every reaction in R! is
representable by one reaction in R2.

A deterministic reaction network is a pair consisting of an RN and a kinetics
K = (A——y)y——syer, where Ay~ : RS, — Rsq is the rate function of y — o/,
expressing the propensity of the reaction to occur. A special kinetics is mass-action kinetics,

d
(3.1) Ayosy (T) = Ky——y @Y1 = Ky HZE??
i=1
where k,— s, is referred to as the reaction rate constant. Hence, Ay—,/(z) > 0 if and
only if suppx D suppy for z € R?.

For the ease of exposition rather than for generality, we assume throughout that all RNs
are endowed with mass-action kinetics, and hence we also use R to refer to the RN with
mass-action kinetics.

The rate equation for a deterministic RN R as well as for the corresponding R*, charac-
terizing the change in species concentrations over time is then given by the ODE system

(3:2) T = Z Ay—y (@) (Y = y).
y——y ER*

Hence for every c € R‘OS , S¢ is an invariant subspace under the flow generated by (3.2).

4. FIBER DECOMPOSITION OF RNSs

In this section, we define a fiber decomposition of an RN and use it to construct an explicite
lifting scheme from one RN (reference reaction network) to another “larger” RN (with more
species, complexes, and/or reactions) while preserving various stationary properties, including
multistationarity and ACR. propery. We mention that converse to lifting, reduction of RNs



4 CARSTEN WIUF AND CHUANG XU

can be derived mutatis mutandis. Hence the main results can be potentially used to simplify
large networks in biochemistry and synthetic biology.
Reference RN and base RN. Given an RN (S,C,R), let S' LUS? = S be a partition of S
into two disjoint sets S* and S?. We refer to S' as the reference subset of species. Let P; is
the natural projection from RS onto RS" for i = 1,2. Hence for i = 1,2, for y € C, P,y = 0 if
suppyNS* = @, and for y — ¢y’ € R, P;(y — ') = P;y — P,y defines a reaction confined to
the species set S¢. Furthermore, let P,R = {P;y — P;y': y — v’ € R} (without multiplicity)
and P;,C = {P;y: y € C}.

Hence (S?,CP, RP) with C® = P;C and RP = PR forms a new RN, called the base reaction
network (BRN) of R, denoted RP. Let R2 C R be the subset of non-degenerate reactions.

In addition to R, we consider another mass-action RN, termed the reference RN, given as
R° = {yr — Y}, }keke, where K, is an index set. Let RS C R° be the RN consisting of the
non-degenerate reactions of R° and K¢ C K° its index set.

Now we are ready to come up with a decomposition of R w.r.t. the reference RN R°.
Assume

(A1) R® # @.

(A2) R = UgekoRy is a partition in disjoint RNs, such that for & € K¢, P1Ry < yr — v,
and for k € K°\ K¢, P1 Ry, C RP consists of degenerate reactions.

For y — 3 € Ry, k € K2, let
(4.1) ai” (e —ye) =P1(y' —y), oV €Q
Assumption (A2) implies R® < R°. By definition of representability, a reaction in R can
only be representable by a reaction in R°. Moreover, if R° is non-degenerate, then so are R

and R.
Nevertheless, a BRN of a non-degenerate RN can be degenerate.

Example 4.1. Consider the non-degenerate RN
S1+ Sy — Sy

Let 8' = {S;}. Then its BRN {S; — S;} is an RN consisting of a degenerate reaction. Hence
R° must be degenerate.

A reaction in RP can be representable by more than one reaction in R°.

Example 4.2. Consider the RN R:
Sy +Sg +S3 —— 251 +So+ Sz,  2S; +Sg + 253 —— 351 + So + 3S3.
Let R°:
S1+Sy — 251 +So, 251+ Sy —— 351 + So.
Hence RP = R°. Since either reaction in R° is representable by the other, then either reaction
in RP is representable by either reaction in R°.

We further emphasize that such a decomposition given in (A2) may not be unique.
Example 4.3. Revisit Example 4.2. Then
R =R1URy,

gives two decompositions with either

R1={S1+Sa+S3 —2S; +S2+ Sz}, R2 = {251 + Sz + 2S5 — 3S; + So + 3S3}
or

R1={2S; +Sa+2S3 — 3S; + S2 + 3S3}, Ra = {S1 +Sa + S3 — 2S; + S + Sz},
where y; — y} = S1 + Sz — 251 + S2 and yo2 — y5 = 251 + Sy — 351 + So.
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We remark that decompositions of reaction networks are proposed in other contexts [24,
23, 25], e.g., for the pursuit of explicit formulas of stationary distributions [25].

Fiber decomposition. For a reaction y — y € R, we write P1(y — ¢') ® Pa(y — ) for
the direct sum decomposition y — ¢y’ = P1y @ Poy — P1y’ @ Poy/'.

With a decomposition as in (A2) specified, define the associated fiber reaction network
(FRN) (82%,Ck, Rf) on 82 at every reaction yx — yj, € R° as

Crhi= U _{Pyy, Py}, RL=PyR;.
y—=y' €ERk
Let 7'\’,2* (- R; be the subset of non-degenerate reactions.

Let Rz = P1R:. Hence R = UkeKORz- Recall by the definition of the decomposition in
(A2), for every k € K¢, R2 = y-y,. Note that for two different reactions v, — vy}, yw —
Y € R, Rz and R®, may have a non-empty intersection or even coincide. Similarly, 7'\’,§C
and R;« may also have a non-empty intersection or coincide. Moreover, R is non-degenerate
if either (i) all FRNs are so or (ii) R® is so.

Finally we remark that depending on the choice of S', an RN can have different fiber
decompositions in terms of the BRNs together with the FRNs.

Example 4.4. Consider the RN R:
S1+Se ——+So+S3 —— S;+S3 —— S1 +So.

(i) Let S' = {S;1} and R° = {S; — 0,0 — S1,S; — S;1}. Label the three reactions in R°
by 1-3 in the given order. Then R° = R° is degenerate. There exists a unique decomposition
(irrespective of the reaction rate constants) satisfying (A2) with Ry = {S; + S2 — Sa + S5},
Ry = {SQ +S3 — S1 + S3}, and R3 = {Sl +S3 — S1 + SQ} Hence the FRNs RE = {Sg —
So + Sz}, RE = {Sa 4+ S5 — S3}, and RE = {S3 — Sz} are all non-degenerate.

(i) Let S' = {S1,S2} and R° = {S; + Sa — S2,S2 — S1,S1 — S1 + So}. Label the three
reactions in R° by 1-3 in the given order. Hence RP = R° is non-degenerate. However, with a
unique decomposition satisfying (A2), Rf = {0 — S3}, R, = {S3 — S3}, and R = {S3 — 0}
are not all non-degenerate.

5. LIFTING OF REACTION NETWORKS

Using the setup in the above two sections, we will construct a larger RN from a smaller
RN (the reference RN), so that the set of positive steady states of the larger RN projected
onto the species set of the smaller one coincides with the set of PSSs of the latter. Such
reference RN plays a role as the core module of the larger RN. Specifically, in terms of a fiber
decomposition of an RN, we look for an RN of the set E of PSSs with a prescribed reference
RN of the set E° of PSSs such that @ # E C E° & R‘iz.

Based on the fiber decomposition of an RN, given a reference RN R°, there will be diverse
ways to construct an RN R with R° as its prescribed BRN. In the following, we propose
several ways to construct R preserving the aforementioned stationary property.

Recall that we assume mass-action kinetics. For y — 3’ € R, let £,_,,s denote the corres-
ponding rate constant, and for y, — y;, € R°, let j, denote the corresponding rate constant.

Assume

" Ky, _ P
(A3) >, yers. al™v %wply vrpP2¥ is independent of k € K.

Recall that mass-action kinetics of an RN is determined only by the reactants and the
reaction rate constants. Hence there is no restriction on the products of R (or equivalently,
those of the FRNs). Assumption (A3) guarantees that the Pi-projection of the set E of PSSs
of R is a subset of the set E° of PSSs of R°, due to (4.1).

In the light of (A3), assume
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(A4) there exists w v € E° @ R‘iz such that

Z Z Ry W WOPPy(y —y) = 0.

keKe y—y' €Ry «

This assumption guarantees that @ # E C E° @R§20~ It is readily verified that the following
assumption implies (A4) and ensures F = E° @ R‘fo.
(A5) There exists a mapping o: S — S such that for k € K° and y — ¢’ € Ry, there exists
Y = (007 Viesz € (Q\ {0})S" such that for i € S2,

Po(y; —yi) = 00" (k) o(i) — (k) o))

and

3 szy “yjy’ WP 1YYk Poy
Y=y ERk, i
is independent of k € K.

From (A5) it follows that Ry . = @ for all k£ € K°\ K. In other words, all FRNs at
degenerate reactions in the reference RN consist of degenerate reactions.

Example 5.1. Consider the mass-action RN R°:
81— 25
K2

with K° = K¢ = {1, 2} consistent with the indices of the reaction rate constants. Hence (A1)
is satisfied. Consider its lifting R:

k2°/2

2S1 + 3So i> 3S1 + 2S5, 3S; +3Syg —— Sq + 5S,,

where the labels k9 and k$/2 over the arrows are the rate constants associated with the
reactions, which are ordered by the indices of k7, ¢ = 1,2. Let R = R U Ry with R;
composed of the k-th reaction of R for £ = 1,2. Hence for k = 1,2 and y — 3’ € Ry,

az_)y/ =k and Py — yx = 1 and Poy = 3. Hence P1 Ry, <y, — vy}, for k =1,2, and (A2) is
satisfied. Moreover, (A3) is satisfied with

'K ’

— — _

E az y v~y Oy WPy Yk P2y — wv?, for k=1,2.
K

Y=y ER k
In addition, o(2) = 1, and bzzy/ = —k. Hence (Ab) is satisfied with
'K ’
Z szv y’;y wply_ykvPQy — —wvl.
Y=y ERp k
It is easy to verify that E° = {k3/k{} and E = {k3/k}} ® Rso.

We remark that one can make a more general assumption than (A3), similar to (A5), by
assuming the independence coordinate-wise. Such an assumption, however, will sacrifice the
structure of the reference RN R° as a core module of R.

Theorem 5.2. Given a non-degenerate mass-action RN R. Let E and E° be the set of PSSs
of R and R°, respectively. Assume (Al)—(A;l). Then E C E° @ R‘fo # @. In particular,
assume (A5) additionally, then E = E° ® RS,,.

Proof. Rewrite (3.2) as

(5.1) T = Z Z Ky—y 2 (Y — y).

keKe y—y' €Rkek
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Let 2 = w & v with w € RS, and v € RS,. In the light of (4.1) and
>0 >0

(5.2) v —yr =0, forall keK°\KS,
rewrite (5.1) as
[ K ’ ’ _
(5.3) b= K ()Y yTﬁoyazay W P1Y—Vk P2y
keks Y=y €ERg k
(5-4) RO DY %wmy—ykva(sz’ — Pyy).
keKe y—oy Ry K

From (5.3) it follows that (A3) and (A4) together imply that F C E° & Ri% # .
Now assume (A5) additionally. For each i € 82,

. ' R ’ _
b= > R (U)o — Wko) D, bV e wP vy Py

keK? Y=y ERk Pk
! K ’ _ °
= D WY TR S T s () — Wk)a(n):
Y=Y ERE k keK?
Therefore for all z* € E° @ R‘gz # 9, x* isa PSS for R. By (i), E = E° @ R‘EZ- 0

We propose more checkable assumptions than (A3) and (A5).

(A6) The sets C; = {P1y—yr: y = ¢y € R} and Cy = {Pay: y — ¢ € Ry} do not depend
on k € K°.

By (A6), for all k € K°, Ry, can be decomposed as:
R = Uz ecy,206 Rk 21,205
where Ry 2, 2, ={y = ¢ € Ri: Pry = 21 + yi, Poy = 22},
(A7) There exists a mapping o: S? — S* such that for k € K° and y — 3’ € Ry, there exists
bV = (Y7 Vies € (Q\ {0})S” such that for i € 82,
Po(y —y)i = szyl((y;c)a(i) = (Yk)o(i))s

Y=y Fyoy! Y=y Fyoy! - ; -
both >0, er, ., ., =t and Dy €Runy g Db ="~ are non-zero and independ

ent of k € K¢.

Theorem 5.3. Let R be a non-degenerate mass-action RN. Let E and E° be the set of PSSs
of R and R°, respectively. Assume (Al)-(A2) and (A6)-(A7). Then E = E° @Riz.

Proof. By (A6) and (A7), we can rewrite (5.3) and (5.4) as

W= Ry — k) Y wt Yy v

55 keKge z1€Cy z2€Ca
( ° ) ay_>y/ Iiy—ﬂ//
k KO
/ R k
Y=Y EREK, 21,29
O o, Yk / o . zZ1 zZ2
Vi = E KW ((yk)a(Z) (yk)a(z)) E w § v
keK?e z1€Cy z2€Co
(56) } : y—y Fy—y' - o2
bk,i T, 1€ S8”.
y%y’GRk,zl,ZQ
. y-)y/ Ky_’y/ y-}y/ Ky—»y’ _ . _
Since Ey‘)ylehaLzz aj, Y e and Zyay'eRk,zl,ZQ by ; e are both non-zero and inde

pendent of k € K?, we have E = E° & R‘fo. O
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FIGURE 1. Streamlines for Example 5.5. Red circle: PSSs.

Definition 5.4. An RN is called multistationary if there exists a stoichiometric compatibility
class with more than one PSS. Hence potentially an RN may admit multiple PSSs on some
stoichiometric compatibility classes while admitting at most one PSS on other stoichiometric
compatibility classes, as illustrated by Example 5.5 below. An RN is called absolute concen-
tration robust (ACR) if the projection of all positive steady states onto a species S; (1 <i < d)
are identical [34].

Example 5.5. Consider the mass-action RN R

S1 4+ S L)?Sh S1+2S, L)382, S1 + 352 %281 + 2Ss,
251 + So L) 3S2, 3S1+Ss % 4S,.
It is readily verified that the rate equation for R is

w =wv(w? — 4w + v* — 4v + 6)
= —wu(w? — 4w +v? — 4v + 6).

Moreover, R is conservative with w(t) + v(t) = w(0) +v(0) for all ¢ > 0. Hence E = {(z,y) €
R2,: (z —2)2 + (y — 2)% = 2} is the set of PSSs. Hence for ¢ = (c1,c2) € R, S, admits two
PSSs (with the left one being an unstable node and the right one stable) if 2 < ¢ + ¢2 < 6,
one PSS (saddle) if ¢; + ¢ =2 or ¢; +¢2 =6, and no PSSif 0 < ¢; +¢c2 <2 o0r ¢ +¢2 > 6.
See Figure 1.

The following two corollaries provide a lifting result pertaining to multistationarity and
the ACR property. One can also view the results regarding reductions (of a larger RN), as
opposed to lifting (of a smaller RN).

For c € R‘glo, denote S5° and S¢ the stoichiometric subspace and the stoichiometric compat-
ibility class of the reference RN R°, respectively.

Assume

(A8) For k € K, R} # @.

Corollary 5.6. Given a non-degenerate mass-action RN R with non-degenerate mass-action
reference RN R°. Assume (A1)-(A2), (A8), and that R® is multistationary. Then R is
multistationary provided either (i) (A3) and (A5) or (ii) (A6) and (AT). In this case, R is
called a multistationarity lifting of R®.
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Proof. We only prove the conclusions under (i). The other case can be proved analogously.
Let S, be the stoichiometric subspace of R°. Then

S° = ch(yl/c—yk)zckER
keKy?

By (A1), (A2) and (A8), we have P1S = S°. For every ¢ € Ri},, let E? be the set of PSSs
on the stoichiometric compatibility class S.. Assume R° is multistationary. Then #ES > 1
for some ¢ € Rﬁlo. By Theorem 5.3, we have ' = E° @ Rsfo. Choose a ¢ € RS, with
Pic = c. Hence B~ = ENS; Since P1E~= E;’ﬁ’ we have B~ = E;?@ (PgSvcvﬂ RS;O). By
(A3), (A5) and (A8), we have P,S~NRS, # . Hence #E~ > #E? ~> 1, ie., R is also
multistationary. ' O

Example 5.7. Consider R

Sl—‘rSQK—l)QSg, 2Sl+82K—2>3S1, 381+Sgn—3>281+52.
Let 8! = {S;} and the reference RN R° be

S; s g, 28 == 3S;.

K3

Assume k3 > 4rik3. Then it is readily verified that #E° = 2. Moreover, in this case,
ay7? =1, b)Y = —1. All assumptions (A1), (A2), (A6) and (A7) are satisfied. By
Corollary 5.6, E = E° ® R, and R is a multistationarity lifting of R!.

Corollary 5.8. Given a non-degenerate mass-action RN R with mass-action reference RN
Re°. Assume (A1)-(A2), and R° is ACR in a species S;, i € St. Then R is also ACR in
a species S; with the same ACR walue, provided either (i) (A3) and (A4) or (ii) (A3) and
(A5) or (iii) (A6) and (A7). In any case, R is called an ACR lifting of R°.

Proof. The conclusions follow directly from Theorems 5.2 and 5.3. O
Example 5.9. Consider the following RN R [34],
S1+ 59 K—1>282, So K—2>Sl

Let S* = {S;} and R° = {S; == 0} be the mass-action reference RN. This reaction network

K2
is the simple closed SIS epidemic contact network (S; represents the number of susceptibles
and S, that of the infected). Hence (A1) is satisfied with R? = R°. Moreover, (A2) is satisfied
with the decomposition R = Ry U R where Ry = {Ss LN 252} and Re = {Ss LN 0}. Tt
is readily verified that (A6) is satisfied with C; = {0} and Cy = {S2}, and (A7) is satisfied

with (2) = 1, bjL527252 — 52751 — _1 and
! Ry—qy’ ! Ry—sq’
P s oy By=y
k K© ’ k,i KO
Y=Y ER k21 29 k Y=Y ERk, 2y 29 k

Since R' is ACR in species S; with ACR value %7 we have by Corollary 5.8 that R is also
ACR in S; with the same ACR value.

A celebrated result provides a sufficient condition for ACR regardless of the reaction rate
constants [34].

Proposition 5.10. Let R be a non-degenerate mass-action RN. Assume E # & and R has
deficiency one. If there exist a pair of non-terminal complexes which differ only in species S;,
then R is ACR in S;.
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From the construction of the ACR lifting given in Corollary 5.8, the defi- ciency of the RN
is generally not preserved. Hence one can combine Corollary 5.8 with Proposition 5.10 to
generate RNs of high deficiency from deficiency one core modules, as illustrated by the two-
species toy example below, which provides a different ACR lifting than given in Corollary 5.8.

Example 5.11. Consider the following mass-action RN R:

K1

5S1 + 655 251 + 35, 0

:

3S; + 3Sy —1> 38, + 4Sy === 25, + 4S,

K1
\Lﬁa iﬁi&

S, 481 + 4S5 <2 4S8y + 3S,
4S1 + 2S5

(note that same reaction rates are identical to each other). The reaction graph associated with
R contains 10 nodes, 2 linkage classes and S = R?. Hence the deficiency of R is 10—2—2 = 6.

1

Assume kg > k3. Let R° = {0 K: S, =2 251} be the reference RN. Label the reactions
K2
in R° by the indices of the reaction rate constants. It is easy to show that the rate equation

for R is
W= K1 — (K2 — K3)w.
Hence the set of PSSs of R° is given by E° = {*2-"3} and R° is ACR (one can also deduce

this from Proposition 5.10). Hence R has the decomposition R = LI?_; R;. It is easy to verify
that the rate equation for R is

{w = (v — 2)w?v? (k1 — (k2 — K3)W),

(5.7) v = (w — 3)wv? (k1 — (k2 — K3)w),

which implies that
dw_0=2 23
v w-3 '

This gives the first integral of (5.8):
H(w,v): = (w—3)* - (v—2)2

and R is an integrable system. Moreover, the set of PSSs F = F° x R.oU{(3,2)}. Hence R
is ACR in species S; with ACR value 3 whenever “2%1"3 =3.

Moreover, the equilibrium (3,2) is a saddle, (3,v*) are a stable node for v* > 2 and an
unstable node for v* < 2. The invariant manifold through (3, v*) is {(w,v) € R%: (w—3)*—
(v—2)% = —(v—v*)?}, which is not a line (1-d hyperplane) but a hyperbola, for every v* # 2.
This is different from the conservative system in Example 5.9. See Figure 2.

Example 5.11 illustrates that even certain assumptions (e.g., (A7)) fail, similar lifting still
is valid, and can produce stationary dynamics with different geometries. In particular, it
demonstrates that the ACR system can have invariant manifolds (characterized in terms of
first integrals) which are not hyperplanes (for conservative systems) but hyperbolas, different
from what has been observed in the literature (e.g., Example 5.9). This may shed a new light
on the study of ACR systems.

Now we present another RN whose invariant manifolds being ellipses.
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S
> <

~N

FIGURE 2. Streamlines for Example 5.11 with k1 = 3, k3 — ko = 1. Red
line: PSSs.

Example 5.12. Counsider the following mass-action RN R:

2S; + 4S5 —L =S, + 48, 487 + 2S5

K3 K2 T

351 + 45, e 4S1 4+ 4S, < 4S1 + 35S,

K1

3S; + 38y —2 = 55,

K2

S; + 6Ss 2S; + 38y —1 5 45,

(note that some reaction rates are identical). The reaction graph associated with R contains
11 nodes, 2 linkage classes and S = R2. Hence the deficiency of R is 11 —2 — 2 =7.

Assume ko > k3. Let R° defined in Example 5.11 be the reference RN. Hence R° is ACR.
Moreover, R has the decomposition R = I_IleRi, and the rate equation for R is

{w = —(v —2)w?v? (k1 — (K2 — K3)w),

(5-8) D = (w — 3)w21}3 (Iﬁ - (52 - HS)w) ’

which implies that

dw v—2

—_— == if .
dv w_3 Y 73

This gives the first integral of (5.8):

H(w,v): = (w—3)2+(v-2)%

and R is an integrable system. Moreover, the set F of PSSs coincides with that in Ex-
ample 5.11. Hence R is ACR in species S; with ACR value 3 whenever "”K;l’“s = 3.

Moreover, the equilibrium (3,2) is a saddle, (3,v*) are a stable node for v* < 2 and an
unstable node for v* > 2. The invariant manifold through (3,v*) is {(w,v) € R2;: (w—3)2+
(v —2)? = (v* — 2)?}, which is an ellipse for every v* # 2. This is also different from the
conservative system in Example 5.9. See Figure 3.
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6. OUTLOOKS

(i) In the main results, we provide conditions ensuring the projection of the set of PSSs
of an RN R coincides with that of the reference RN R°. Nevertheless, it remains unknown
if stability of the PSS of R is consistent with that of PSS of R°. This is the case for some
known lifting schemes [27].

(ii) In this chapter, lifting of RNs preserving the ACR property is based on the fiber decom-
position of a large RN. Such a decomposition is expected to preserve good properties of RNs.
We list a few questions here:

(a) Under what conditions can dynamical/algebraic properties of an RN be deduced
barely from its BRN and the FRNs?

(b) Are properties consistent for an RN and its BRN and FRNs? For instance, if all
FRNs are of deficiency zero, is the original reaction network so? Or, if all FRNs are
complex-balanced [26], are the original reaction network also complex-balanced?

(iii) The notion of decomposition of RNs has been applied to analysis of metabolic reaction
networks and in bioinformatics [35, 24, 28]. We expect the fiber decomposition may play a
role in these regards as well.

(iv) The fiber decomposition of RNs is readily adapted to stochastic reaction networks (by
only adjusting the kinetics). In light of the applications of fiber decomposition in the de-
terministic setting, we believe the analogue for stochastic reaction networks might also play
an important role on similar topics (i.e., lifting stochastic reaction networks preserving for
example stationary properties [25] and structural classification [36]).

Example 6.1. Consider R°:

K K 5
0:1 S1 :j 281 H—O) 381,
K2 Ka

where r; > 0, ko > k3, kg < k5 and (k3 — K2)? = 4k1 (k5 — K4). The rate equation for R° is

W = (ks — ka)(w — w,)?,

where w, = ;72="3-. Hence R° is ACR. Consider the lifting R of R°:

2(/{571{4)

Szn—l)sl, 2SQ(£81+SQK—3>281, Sl+282£281+82n—5>381.
The rate equation for R is
W =v(ks — ka)(w — ws)?,

v =—v(ks — ka)(w —w,)2
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It is readily verified that R is conservative and an ACR-lifting of R°. Nonetheless, by [36,
Theorem 4.6], R is positive recurrent on each of its finite compatibility classes while R® is
explosive a.s. on Ng.

This example reveals that an ACR lifting may not preserve the stochastic dynamics (e.g.,
explosivity) for the respective stochastic reaction networks.
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