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HISTORIC AND PHYSICAL WANDERING DOMAINS FOR

WILD BLENDER-HORSESHOES

SHIN KIRIKI, YUSHI NAKANO, AND TERUHIKO SOMA

Abstract. We present diffeomorphisms of wild blender-horseshoes which be-
long to Cr (1 ≤ r < ∞) closures of two types of diffeomorphisms, one of which
has a historic contracting wandering domain, and the other has a non-trivial
Dirac physical measure supported by saddle periodic orbit. It is a non-trivial
extension of Colli-Vargas’ model [CV01] to the higher dimensional dynamics
with the use of wild blender-horseshoes.

1. Introduction

1.1. Historicity and physicality. Ruelle and Takens focused on dynamics which
is irregular under Lebesgue measure by introducing the concept of “historic be-
haviour” in [Rue01, Tak08]. Here, for a map f on a Riemannian manifold M , we
say that f or some orbit of f has historic behaviour if there is x ∈M such that the
forward orbit

{
f i(x) : i ≥ 0

}
has non-converging Birkhoff averages. That is,

1

n+ 1

n∑

i=0

δfi(x)

dose not converge as n → ∞ in the weak*-topology, where δfi(x) is the Dirac

measure on M supported at f i(x). There have been sporadic studies of examples
of the non-existence of Birkhoff average, while the following open questions have
been proposed in order to study dynamical historicity from a unified point of view.

Takens’ Last Problem ([Tak08]). Are there persistent classes of smooth dynam-

ical systems such that the set of points whose orbits have historic behaviour has

positive Lebesgue measure?

Affirmative answers to the problem are already provided for non-hyperbolic sit-
uations. To explain it, recall the non-hyperbolic phenomenon given by Newhouse
[New79] that, for any C2 diffeomorphism on a smooth manifold M of dimM = 2
with a homoclinic tangency of a saddle periodic point, there is an open set N ⊂
Diff2(M) whose closure contains f and such that any g ∈ N has a C2-robust ho-
moclinic tangency of some hyperbolic sets Λg which is homoclinically related to
the continuation of the saddle periodic point. We say that such a C2-open set of
nonhyperbolic diffeomorphisms is a (C2-)Newhouse open set or domain. An affir-
mative answer was detected in any C2-Newhouse open set by the use of non-trivial
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wandering domains as follows. Here the non-trivial wandering domain for f means
a non-empty connected open set D ⊂M with the following conditions:

• f i(D) ∩ f j(D) = ∅ for any integers i, j ≥ 0 with i 6= j;
• the union of ω-limit sets of all x ∈ D, ω(D, f) =

⋃
x∈D

ω(x, f), is not equal
to a single periodic orbit.

A wandering domain D is called contracting if the diameter of f i(D) converges to
zero as i→ +∞. Existence of contracting non-trivial wandering domains was first
brought to light by Colli-Vargas [CV01] for a prototype of wild hyperbolic set, that
is, an affine thick horseshoe with homoclinic tangencies. Kiriki and Soma [KS17]
not only generalised their results in any C2-Newhouse open set, but also identified
the presence of historic behaviour as follows: any Newhouse open set in Diffr(M),
dimM = 2 and 2 ≤ r < ∞, contains a dense subset every element of which has
a historic wandering domain, i.e. a non-trivial wandering domain of points whose
orbits have historic behaviour. Note that arguments in [KS17] are not extendable to
C∞-diffeomorphisms, but Berger and Biebler [BBar] overcome this difficulty with
completely different methods.

The arguments of [New79] would not be applicable to C1-diffeomorphisms on
2-dimensional manifold M . In fact, Diff1(M) with dimM = 2 contains a generic
subset where every diffeomorphism has no homoclinic tangency [Mor11]. Thus any

method similar to that in [KS17] might be irrelevant for Diff1(M) if dimM = 2.
On the other hand, if dimM ≥ 3, Bonatti and Dı́az [BD12] presented an open

set of Diff1(M) such that every diffeomorphism in the open set has a C1-robust
homoclinc tangency. Nowadays, it is called a C1-Newhouse domain.

Before stating our result, we recall the notion of classical regularity which is
quite opposite to that of historic behaviour. We say that f has a Dirac physical

measure ν associated with a wandering domain D if for every x ∈ D

lim
n→+∞

1

n+ 1

n∑

i=0

δfi(x) = ν

and the support of ν is equal to a periodic orbit of f . Moreover such a ν is non-

trivial if the periodic orbit is of saddle type. It implies that D is contained in
the basin of ν, which has positive Lebesgue measure because D is a non-empty
open set. In this sense, it is traditional usage to refer to ν as physical or SRB,
see [CTV19]. Dirac physical measures were studied for some transitive flows such
that the supports of measures are non-attracting orbits in [SSV10, SV13]. On
the other hand, for diffeomorphisms, using the prototype of wild hyperbolic set,
Colli and Vargas presented a non-trivial Dirac physical measure associated with a
wandering domain in [CV01], which can be extended in some dense subset of the
Cr(2 ≤ r < ∞)-Newhouse domain in [KS17]. In a C1-generic standpoint, several
negative observations about the existence of Dirac physical measures supported on
non-attracting periodic orbits and examples are provided in [San18, GGS20].

We are now ready to state the main theorem.

Theorem A. There is a 3-dimensional diffeomorphism f in the C1 Newhouse

domain such that every Cr (1 ≤ r < ∞) neighbourhood of f contains two types of

diffeomorphisms, one of which has a historic contracting wandering domain, and

the others have non-trivial Dirac physical measures supported by saddle periodic

orbits.
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Remark 1.1. The following scenario may come to mind to detect historic wan-
dering domains using several known facts in C1 dynamics of dimension at least 3.
In fact, Barrientos [Bar] essentially implemented the scenario. In [BDP03] Bonatti,
Dı́az and Pujals gave C1 open sets of diffeomorphisms with a C1 dense subset of
diffeomorphisms admitting a periodic disk, that is, there is a large integer n such
that fn is equal to the identity map on some disk. Then perturb fn in order to get
a C2-homoclinic tangency in a smooth normally contracting surface Σ by [Rom95],
and apply [KS17] to get a historic wandering domain by perturbation of the restric-
tion fn|Σ. However, the proofs in [KS17] are founded on some unbalanced weight

assumption to control dynamics, see [KS17, Remark 2.1]. Thus, one can use the
scenario to confirm the existence of non-trivial Dirac physical measure supported
on the saddle fixed point, but one cannot use it to confirm that on the 2-periodic
orbit. On the other hand, the direct way provided in this paper is not only useful
for both, but may be applied to non-trivial Dirac physical measure supported by
saddle periodic orbit of every period. See the final Remark 5.6.

We believe that there exist a locally dense C1 diffeomorphisms which satisfy the
same properties as in Theorem A and Remark 5.6. In particular, there will be Dirac
physical measures for periodic orbits of every period. While this paper is limited
to specific models, it will shed light on “pluripotentiality” of wandering domains,
that is, the existence of them whose orbits can approximate statistically to every
dynamics on given invariant sets.

Note that the residual subset of blender-horseshoe causing historic behaviour in
[BKN+20] has zero Lebesgue measure, while the historic wandering domain given
in Theorem A has positive Lebesgue measure. We mention another novelty that
this paper contains. To prove Theorem A, we borrow the key idea called “critical
chain” from [CV01]. However Colli and Vargas proved their main technical results
(Linking and Linear Growth Lemmas) which support the proof of their Critical
Chain Lemma by using C2-robust homoclinic tangencies, and hence they did not
employ contexts of C1-robust ones. So, instead of their technical results, we present
an innovation (Lemma 2.1 with Proposition 2.3 in Section 2), which takes advantage
of the distinctive property of inverse dynamics of the cs-blender horseshoe. It should
also be emphasised that our proof might be considerably simpler than that of Colli-
Vargas.

1.2. Centre stable blender-horseshoes. In this subsection and the next, we
give a concrete construction of f in Theorem A. All this can be extended to struc-
tures called blender-horseshoes, which can be defined for diffeomorphisms of all
dimensions greater than or equal to three. However, a 3-dimensional case contains
all essential properties on blender-horseshoes, and therefore we discuss them only
in this case.

Let λss, λcs0, λcs1 and λu be real positive constants with

(1.1) λss < λcs0 < 1/2 < λcs1 < 1 < λcs0 + λcs1, 2 < λu.

Furthermore, we suppose that λcs0 is relatively small compared to λcs1 and λu so
that

(1.2) λcs0λcs1λ
2
u < 1,

which corresponds to the partially dissipative condition for 3-dimensional diffeo-
morphisms given below. We first consider the 2-dimensional affine horseshoe map
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F with

F (x, y) =

{
(λux, λssy) if (x, y) ∈ [0, λ−1

u ]× [0, 1],

(λu(1− x), 1 − λssy) if (x, y) ∈ [1− λ−1
u , 1]× [0, 1],

and the iterated function system consisting of the pair of contracting 1-dimensional
maps defined as, for z ∈ [0, 1],

(1.3a) ζ0(z) = λcs0z, ζ1(z) = λcs1z + β,

where β = 1 − λcs1. Let B be the unit cube [0, 1]3 and let f : B → R3 be a local
diffeomorphism satisfying the following conditions:

• f |V0∪V1 is the skew product F ⋉ (ζ0, ζ1) given by

(1.3b) f(x, y, z) =

{
(λux, λssy, λcs0z) if (x, y, z) ∈ V0,

(λu(1− x), 1 − λssy, λcs1z + β) if (x, y, z) ∈ V1,

where V0 = [0, λ−1
u ]× [0, 1]2 and V1 = [1− λ−1

u , 1]× [0, 1]2.
• For G = B \ (V0 ∪ V1), f(G) is contained in R3 \ B.

We now consider the hyperbolic set Λ =
⋂

i∈Z
f i(V0 ∪ V1) of f in B on which f is

conjugate to the full shift of two symbols, and besides Λ contains the saddle fixed
points

P = (0, 0, 0) ∈ V0 ∩ f(V0), Q =
(
λu(1 + λu)

−1, (1 + λss)
−1, 1

)
∈ V1 ∩ f(V1).

Remark 1.2 (Asymmetricity). The inequalities (1.1) and (1.2) imply a partially
dissipative situation for f |Λ, which gives asymmetrical contractions along the centre-
stable direction for the cs-blender horseshoe, see Figure 1.1. We will see that these
conditions are essential to show Lemma 4.5 and Theorem 4.4. Note that these
conditions cannot be fulfilled if both ζ0 and ζ1 are close to the identity. Therefore,
the cs-blender horseshoe with partially dissipative situation might be C1-away from
usual one which can be derived from a heterodimensional cycle via some strongly
homoclinic intersection by an arbitrarily small perturbation in [BD08, Section 4].
See also Remark 5.6.

V0

V1

f(V1)

B
B

G

Q

P

f(V0)

λcs0

λ
−1

u

λss

β

x

y

z

Wu

loc
(P )

Figure 1.1

Despite its asymmetric structure, Λ still satisfies all the standard properties of
blender. In fact, Λ is an example of cs-blender horseshoe, refer to [BD12, Definition



HISTORIC AND PHYSICAL WANDERING DOMAINS 5

3.9] for the precise definition. Note that there is a C1-neighbourhood Nf of f such

that every f̃ ∈ Nf has the continuation Λf̃ of Λ which is a cs-blender horseshoe
containing the continuations Pf̃ and Qf̃ of P and Q, respectively. Moreover it

follows from (1.1) that β < λcs0, that is, f̃ still has a superposition region associated
with Λf̃ and lying between W u

loc(Pf̃ ) and W
u
loc(Qf̃ ). See [BD96, Lemma 1.11] and

[BD12, Lemma 3.10] for details.

1.3. Configurations of tangency. Next, to investigate homoclinic tangencies un-
der the setting of cs-blender horseshoe, we assume the following conditions on the
second iterate of f |G: for a given 0 < δ < 1

2 − λ−1
u , the restriction of f2 to the

δ-neighbourhood Uδ of the 2-dimensional disc {x = 1/2} ∩G is given by

(1.4a) f2(x, y, z) =

(
−a1

(
x−

1

2

)2

+ a2z, a3

(
y −

1

2

)
+

1

2
, a4

(
x−

1

2

)
+

1

2

)

for (x, y, z) ∈ Uδ, where the coefficients a1, a2, a3 and a4 are nonzero real constants
with

(1.4b) a1 > (1 − 2λ−1
u )−1, a2, a4 > 0, |a3| < 1− 2λss.

The first condition is used to show Proposition 4.3 which leads to wandering do-
mains disjoint from Λ, and the second one is necessary to show Lemma 1.3. The
last one assures that f2(G) ∩ B has no intersection with f(V0) ∪ f(V1), see Figure
1.2.

f2( )

P

G
B

f(V1)

f(V0)

Figure 1.2

We say that a blender horseshoe Λ is wild if there are points x, x′ ∈ Λ such
that W u(x) and W s(x′) have a non-transverse intersection. Let the f2-image of
(1/2, 0, 0) ∈ G be written as X , which satisfies

X = (0, 1/2− a3/2, 1/2) ∈ W u(P ) ∩W s
loc(P ), TXW

u(P ) ( TXW
s
loc(P ).

That is, f has a homoclinic tangency of P ∈ Λ. See Figure 1.3-(a). Therefore the
cs-blender horseshoe Λ for (1.3b) is wild. Furthermore, this homoclinic tangency is
robust for small C1 perturbation:

Lemma 1.3. Let f be a diffeomorphism with (1.3b) and (1.4a). Then f has a

C1-robust homoclinic tangency of the cs-blender horseshoe Λ.

The proof of this lemma is given in the Appendix A as it is just comfirmed that
[BD12, Theorem 4.8] can be applicable to our setting.
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PP

Figure 1.3

Remark 1.4 (Generality of configuration). We here explain why the above setting
is a non-trivial extension of [CV01], which is also the second novelty of the present
paper. For a certain map instead of (1.4a), we have another situation such that the
direction of TXW

u(P ) is parallel to the ss-direction of Λ, as in Figure 1.3-(b). This
is an actually trivial extension of Colli-Vargas’ 2-dimensional model with one more
dimension, and hence one might obtain similar results as in [CV01] with the help
of several techniques in [PV94]. However, such a strategy will not get us out of the
C2-category. Furthermore, with a little perturbation, it is possible to maintain the
tangency but make a direction different from the ss-direction. Thus, the tangent
directions at forward images of such a perturbed tangency are gradually close to the
cs-direction, since it is pressed strongly along the ss-direction. As a consequence,
the situation will be essentially the same as defined by (1.4a) as in Figure 1.3-(a).
In this sense, the configuration of tangency in this paper is general. Combining this
situation with Lemma 1.3, we now obtain a diffeomorphism having both cs-blender
horseshoe and C1-robust homoclinic tangency simultaneously.

It follows from the above definitions and facts that Theorem A is a consequence
of the next theorem.

Theorem A′. Every Cr(1 ≤ r <∞)-neighbourhood of the above diffeomorphism f
with a wild blender-horseshoe contains a diffeomorphism which has a historic con-

tracting wandering domain. Moreover, it contains another diffeomorphism having

non-trivial Dirac physical measures supported by saddle periodic orbits associated

with a contracting wandering domain.

For the proof of Theorem A′, we need to prepare some tools associated with
the blender-horseshoes, and give key results (Lemma 2.1, Proposition 2.3) for pro-
jected dynamics in Section 2 and some infinite sequence of perturbations in Section
3. Using the results, the existence of the wandering domain is proved by several
geometric steps in Theorem 4.4 of Section 4. Finally, the existences of historic
behaviour (Theorem 5.1) and Dirac physical measure (Theorem 5.5) are shown by
probabilistic approaches in Section 5.
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2. Critical chains of bridges

The results given in this section are keys to this paper, which is associated with
several subsequences of u-bridges and its copies in the cs-direction.

2.1. Unstable bridges and gaps. Let f be a diffeomorphism with the cs-blender
horseshoe Λ by (1.3b). We first extend the notations of bridges and gaps given in
[CV01] as follows. For any integer n ≥ 1, let w be an n-tuple of binary codes, that
is, w = w1 · · ·wn with wi ∈ {0, 1}. Define dynamically defined rectangular solids
as

Bu(n;w) =
{
x ∈ B : f i−1(x) ∈ Vwi , i = 1, . . . , n

}
,

Gu(n;w) = Bu(n;w) \ (Bu(n+ 1;w0) ∪ Bu(n+ 1;w1)) .

The former set is called an unstable bridge or a u-bridge, while the latter one an
unstable gap or a u-gap. Sometimes n and w of Bu(n;w) are called the generation

and itinerary for the u-bridge, respectively. If there is no confusion, the number of
generation may be omitted and Bu(n;w) and Gu(n;w) may be written as Bu(w) and
Gu(w), respectively. Observe that if n is fixed, the family {Bu(w) : w ∈ {0, 1}n}
consists of 2n mutually disjoint rectangular solids, which consequently contains 2n

mutually disjoint arcs of W u
loc(P ). For every n ≥ 1 and w ∈ {0, 1}n, we denote by

Bu(n;w) (or Bu(w) for short) the arc Bu(n;w) ∩W u
loc(P ), which can be regarded

as a subinterval in [0, 1], that is,

Bu(w) ∩W u
loc(P ) = Bu(w)× {(0, 0)}.

Since Gu(w) ⊂ Bu(w), one can obtain the open interval Gu(n;w) (or Gu(w) for
short) on [0, 1] satisfying

Gu(w) ∩W u
loc(P ) = Gu(w)× {(0, 0)}.

The closed interval Bu(w) is called a u-bridge, while the open interval Gu(w) is
called a u-gap of the u-Cantor set Λu = Λ ∩ W u

loc(P ). Finally, we write Gu
0 =

[0, 1] \ (Bu(0) ∪Bu(1)), and hence G ∩W u
loc(P ) = Gu

0 × {(0, 0)}.

2.2. Projected dynamics. The following simple projection can be used, since our
model consists of the affine forms by (1.3b) with a tangency without any distortion
given in (1.4a). For any (x, y, z) ∈ B and integer n > 0, we write

(2.1) ϕn(x, z) = π̂(fn(x, y, z))

if the value of the right-hand side of the equation does not depend on y, where
π̂ : B −→ R2 is the projection defined by π̂(x, y, z) = (x, z). By (1.4a), we have

(2.2) ϕ2(1/2, z) = (a2z, 1/2).

First, we define sequences {Bu
k}k≥1 and {B̃u

k}k≥0 of unstable bridges as follows.

For any integer n0 ≥ 0 and any code w̃(0) ∈ {0, 1}n0, let us define

B̃u
0 = Bu(n0, w̃

(0)),

which is a u-bridge contained in π1 ◦ ϕ
2({1/2} × [0, 1]). One can take n0 so that

B̃u
0 ⊂ (0, a2), see Figure 2.1. Let Bu

1 , B̃
u
1 be the pair of maximal sub-bridges of B̃0

such that B̃u
1 lies in the left side of Bu

1 , that is, max B̃u
1 < minBu

1 . Then they are
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represented as Bu
1 = Bu(n0 + 1, w̃(0)α1) and B̃

u
1 = Bu(n0 + 1, w̃(0)α̃1), where α1 is

either 0 or 1 and α̃1 = 1− α1. If we write w̃(0)α1 = w(1) and w̃(0)α̃1 = w̃(1), then

Bu
1 = Bu(n0 + 1, w(1)), B̃u

1 = Bu(n0 + 1, w̃(1)).

For integer k > 1, we inductively define the sub-bridges Bu
k and B̃u

k of B̃u
k−1 satis-

fying

Bu
k = Bu(n0 + k, w(k)), B̃u

k = Bu(n0 + k, w̃(k)),

where w(k) = w̃(k−1)αk and w̃(k) = w̃(k−1)α̃k for some αk, α̃k with {αk, α̃k} =
{0, 1}. See Figure 2.1.

Figure 2.1

Next, we define a sequence {Jcs
k }k≥1 of ϕ2-inverse images of Bu

k as follows. For

every integer k ≥ 1 and sub-bridge Bu
k of B̃u

0 , let I
cs
k be the arc in {1/2} × [0, 1]

with

π1 ◦ ϕ
2(Icsk ) = Bu

k ,

where π1 : R2 → R is the projection with π1(x, z) = x. Define Jcs
k as the sub-

interval of [0, 1] such that

{1/2} × Jcs
k = Icsk ,

and call it the cs-interval associated with Bu
k . By (2.2),

(2.3) Jcs
k = a−1

2 Bu
k .

For any code γ = γ1γ2 · · · γn ∈ {0, 1}n, the map ζ
n
γ (or ζγ for short) is defined

by

ζn
γ = ζγn ◦ · · · ◦ ζγ2 ◦ ζγ1 ,

where each ζγi is the function given in (1.3a). Moreover, we define the length
∣∣γ
∣∣

of γ as the total number of symbols in γ, that is,
∣∣γ
∣∣ = |γ1γ2 · · · γn| = n.
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Lemma 2.1. For any integer L > 0, any u-bridge B̄u
k (k = 1, 2, . . .) with B̄u

k =

Bu(n0 + k+Lk,w(k+Lk)) ⊂ Bu
k and any code u(k) with |u(k)| ≥ 0, there exist codes

ŵ(k)
and sub-bridges B̂u

k = Bu(n̂k, ŵ
(k)) of B̄u

k satisfying the following conditions.

(1) ŵ(k) = w(k+Lk)v(k)γ(k), where

• γ(k) = γmk
γmk−1 · · · γ2γ1, γi ∈ {0, 1} (i = 1, 2, . . . ,mk), for some integer mk

satisfying 0 < mk ≤ N0+N1k, where N0, N1 are positive integers independent

of k,
• either v(k) = u(k) or v(k) = u(k)α for some α ∈ {0, 1}.

(2) ζŵ(k)(1/2) ∈ J̄cs
k+1 and Ĵcs

k+1 ⊂ J̄cs
k+1, where J̄

cs
k+1 is the cs-interval associated

with B̄u
k+1.

Remark 2.2. The freedom of the choice of u(k) in Lemma 2.1 is crucial in the
study of historic behaviour of wandering domains for diffeomorphisms C1-close to
f .

Proof of Lemma 2.1. Take γ1 ∈ {0, 1} with J̄cs
k+1 ( Image (ζγ1), where Image(ζγ1)

is the image of ζγ1 . Define

J̄
cs(1)
k+1 = ζ−1

γ1
(J̄cs

k+1).

For any integer i ≥ 1, define the interval J̄
cs(i)
k+1 in [0, 1] inductively if J̄

cs(i−1)
k+1 ⊂

Image (ζγi) holds for at least one γi of 0, 1. Suppose that this process finishes mk

times. Accordingly, J̄
cs(mk−1)
k+1 is contained in Image (ζγmk

). We here note that
∣∣B̄u

k+1

∣∣ = (λ−1
u )n0+k+1+L(k+1)

and

π1 ◦ ϕ
2({1/2} × J̄cs

k+1) = B̄u
k+1.

Then, by (2.2),

|J̄cs
k+1| = |a−1

2 |(λ−1
u )n0+k+1+L(k+1).

Thus, there are integers m
(0)
k−1,m

(1)
k−1 with mk − 1 = m

(0)
k−1 +m

(1)
k−1 such that

|J̄
cs(mk−1)
k+1 | = λ

−m
(0)
k−1

cs0 λ
−m

(1)
k−1

cs1 (|a−1
2 |(λ−1

u )n0+k+1+L(k+1)) ≤ 1− β,

where λcs0 and λcs1 are derivatives of ζ0 and ζ1, respectively, see (1.3a). Since
λcs0 < λcs1 < 1, we have

mk ≤
log |a2|(1 − β)λn0+1+L

u

logλ−1
cs0

+ 1 +
logλ1+L

u

logλ−1
cs0

k.

Thus the smallest integers N0 and N1 with

N0 ≥
log |a2|(1− β)λn0+1+L

u

logλ−1
cs0

+ 1, N1 ≥
logλ1+L

u

logλ−1
cs0

fulfill the required condition on mk.

From the definition of mk, neither J̄
cs(mk)
k+1 ( Image (ζ0) = [0, λcs0] nor J̄

cs(mk)
k+1 (

Image (ζ1) = [β, 1] occurs. It follows that

max
{
J̄
cs(mk)
k+1

}
≥ λcs0, min

{
J̄
cs(mk)
k+1

}
≤ β.

So J̄
cs(mk)
k+1 contains the interval [β, λcs0]. In the case when ζw(k+Lk) u(k)(1/2) ∈

[β, λcs0], we set v
(k) = u(k). When ζw(k+Lk)u(k)(1/2) ∈ [0, β) (resp. ζw(k+Lk)u(k)(1/2) ∈



10 SHIN KIRIKI, YUSHI NAKANO, AND TERUHIKO SOMA

(λcs0, 1] ), we set v(k) = u(k)1 (resp. v(k) = u(k)0). Since 1/2 < λcs < 1, we have in
either case ζw(k+Lk)v(k)(1/2) ∈ [β, λcs0]. Hence the code

ŵ(k) = w(k+Lk)v(k)γmk
γmk−1 · · · γ2γ1

satisfies our desired conditions. �

Proposition 2.3. For any integer L > 0, let B̂u
k = Bu(n̂k, ŵ

(k)) (k = 1, 2, . . .) be

the sub-bridges of B̄u
k = Bu(n0+k+Lk,w

(k+Lk)) and Ĵcs
k+1 the cs-interval associated

with B̂u
k+1 given in Lemma 2.1. Then there exists a tk+1 ∈ R such that

• ϕn̂k(x̂uk, 1/2) = (1/2, ẑcsk+1)−(0, a−1
2 tk+1), where x̂

u
k and ẑcsk+1 are the centres

of B̂u
k and Ĵcs

k+1, respectively,

• |tk+1| < λ
−(n0+k+1+L(k+1))
u .

Remark 2.4. Note that B̂u
k ⊂ B̄u

k ⊂ Bu
k , and B

u
k will be used to specify the domain

of a perturbation. On the other hand, B̂u
k determined from B̄u

k controls the size
of the perturbation, and it will be important in the proof of Proposition 3.1 that
its size, which is exactly |tk+1| above, can be much smaller than the size of Bu

k by
taking a sufficiently large L.

Proof of Proposition 2.3. Since |ŵ(k)| = n̂k, we have π1 ◦ ϕn̂k(x̂uk, 1/2) = 1/2 and
hence, by Lemma 2.1, there is the cs-interval J̄cs

k ⊂ Jcs
k and

ϕn̂k(x̂uk, 1/2) =
(
1/2, ζŵ(k)(1/2)

)
∈ {1/2} × J̄cs

k+1 = Īcsk+1.

See Figure 2.2. Furthermore,

Figure 2.2

ẑcsk+1 ∈ IntĴcs
k+1 ⊂ J̄cs

k+1.

We here set

(2.4) tk+1 = a2(ẑ
cs
k+1 − ζŵ(k)(1/2)).
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Since both ζŵ(k)(1/2) and ẑcsk+1 belong to J̄cs
k+1, it follows from (2.3) that

|tk+1| ≤ a2|J̄
cs
k+1| = |B̄u

k+1| = λ−(n0+k+1+L(k+1))
u . �

3. Perturbations

We construct some map arbitrarily Cr-close to f by countably many small per-
turbations near homoclinic tangencies.

For any integer k ≥ 1 let Bu
k = Bu(n0 + k, w(k)) be the u-bridge and Jcs

k the
cs-interval associated with Bu

k defined in the previous section.

Proposition 3.1. For any ε > 0, there is a diffeomorphism g which is contained in

the ε-neighbourhood of f in the Cr-topology (1 ≤ r <∞) and satisfies the following

conditions:

• g|Uc
3δ/2

= f for any 0 < δ < 1
3 (1 − 2λ−1

u ), where U3δ/2 is the 3δ/2-

neighbourhood of the 2-dimensional disc {x = 1/2} ∩ B and U c
3δ/2 is the

complement of U3δ/2 in B.

• For every k ≥ 1 and (x, y, z) ∈ [ 12 − δ, 12 + δ]× [0, 1]× Jcs
k+1,

g2(x, y, z) = (tk+1, 0, 0) + f2(x, y, z),

where tk+1 is the number given in Proposition 2.3.

Proof. The idea of the proof is already described in Remark 2.4. Here we prove it
in practice.

Let b : R −→ R be a non-negative, non-decreasingCr function such that b(x) = 0
if x ≤ −1 while b(x) = 1 if x ≥ 0. Using b, we consider the bump function bρ,I
with bρ,I = 1 on I as follows:

bρ,I(x) = b

(
x− a

ρ|I|

)
+ b

(
−
x− b

ρ|I|

)
− 1,

where ρ is a positive constant and I is the interval [a, b] with a < b. The function
satisfies

‖bρ,I‖Cr ≤
1

(ρ|I|)r
‖b‖Cr ,

where ‖ ·‖Cr is the supremum norm of the derivatives of corresponding maps. Next
we set

bu = b 1
4 ,[

1
2−δ, 12+δ], bss = b 1

4 ,[0,1]
, bcs,k = b 1

3τcs
,Jcs

k
,

where τcs = λ−1
u /(1− 2λ−1

u ), which is independent of k.
For every k ≥ 1, let tk+1 be the constant given in Proposition 2.3, the absolute

value of which has an upper bound depending on a given L > 0. We write

t(L) = (t2, . . . , tk+1, . . .),

and define the perturbation map ht(L) : R
3 −→ R3 as

(3.1) ht(L)(x, y, z) =
(
x, y, z + a−1

2 bu(x)

∞∑

k=1

tk+1bss(y)bcs,k+1(z)
)
.
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Then we have

∥∥ht(L) − id
∥∥
Cr =

∥∥∥∥∥a
−1
2 bu(x)

∞∑

k=1

tk+1bss(y)bcs,k+1(z)

∥∥∥∥∥
Cr

< |a2|
−1

(
18τssτcs

δ

)r

‖b‖Cr

∞∑

k=1

|tk+1|

|Jcs
k+1|

r
.

Moreover, it follows from (2.3) and Proposition 2.3 that

(3.2)

∞∑

k=1

|tk+1|

|Jcs
k+1|

r
≤

∞∑

k=1

λ
−(n0+k+1+L(k+1))
u

(|a−1
2 |λ−n0−k−1

u )r

=
|ar2|λ

(n0+1)(r−1)
u

λLu

∞∑

k=1

(
λru
λ1+L
u

)k

=
|ar2|λ

(n0+1)(r−1)+r
u

λLu (λ
1+L
u − λru)

.

Consequently, ht(L) can be taken arbitrarily Cr-close to the identity map if L is
sufficiently large as long as r is fixed.

By using the perturbation map, we define

(3.3) g = f ◦ ht(L),

which is arbitrarily C1-close to f if L is large.
We first note that [ 12 − δ, 12 + δ] × [0, 1] × Jcs

k+1 ⊂ U3δ/2 for every k ≥ 1 and
ht(L)|Uc

3δ/2
is equal to the identity. That is, g|Uc

3δ/2
= f . On the other hand, for any

(x, y, z) ∈ [ 12 − δ, 12 + δ]× [0, 1]× Jcs
k+1, we have

g(x, y, z) = f ◦ ht(L)(x, y, z) = f(x, y, z + a−1
2 tk+1) ∈ U c

3δ/2.

Since ht(L)|Uc
3δ/2

= id, it follows from (1.4a) that

g2(x, y, z) = f2(x, y, z + a−1
2 tk+1) = (tk+1, 0, 0) + f2(x, y, z).

This ends the proof. �

Remark 3.2. As r = ∞, the evaluation (3.2) is useless. Hence the regularity
condition in Proposition 3.1 does not reach infinity.

4. Contracting wandering domains

4.1. Two conditions in freedom term. From the results for B̂u
k = Bu(n̂k, ŵ

(k))

obtained in Lemma 2.1, one can make some further conditions. Since ŵ(k) =
w(k+Lk)v(k)γ(k), we have

∣∣∣w(k+Lk)
∣∣∣ = n0 + k + Lk = O(k),

∣∣∣γ(k)
∣∣∣ = mk = O(k).

Also, as in Remark 2.2, the sub-code u(k) of v(k) can be chosen freely. Thus, we
may assume that the length of v(k) is quadratic for k such that

(4.1a)
∣∣∣v(k)

∣∣∣ = k2,

which is called the quadratic condition. Note that the same condition was already
used in [CV01]. It follows from (4.1a) that

n̂k+1

n̂k
=

(k + 1)2 +O(k + 1)

k2 +O(k)
→ 1 as k → +∞.
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That is, we have the subexponential growth in generations of B̂u
k (k = 1, 2, . . .) as

follows:

Lemma 4.1. For any η > 0, there is an integer k0 > 0 such that for any integer

k ≥ k0,

n̂k < n̂k+1 < (1 + η)n̂k. �

In addition to (4.1a), we have to make another condition on B̂u
k = Bu(n̂k, ŵ

(k)).

From the freedom of the choice of u(k) again, one can assume that the total number

n̂k(0) of zeros in ŵ
(k) is greater than or equal to the number n̂k(1) of ones, that is,

(4.1b) n̂k(1) ≤ n̂k(0),

which is called the majority condition.

Remark 4.2. Both (4.1a) and (4.1b) are indispensable to show Lemma 4.5 which
is a key to Theorem 4.4. On the other hand, (4.1b) may be an obstacle to realise
some type of dynamics of wandering domain. See also Remark 5.4.

In order to see the region in the code occupied by each symbol, we sometimes

denote n̂k(0) and n̂k(1) by
∣∣∣ŵ(k)

∣∣∣
(0)

and
∣∣∣ŵ(k)

∣∣∣
(1)

, respectively. So we have

(4.2) n̂k = n̂k(0) + n̂k(1) =
∣∣∣ŵ(k)

∣∣∣
(0)

+
∣∣∣ŵ(k)

∣∣∣
(1)

=
∣∣∣ŵ(k)

∣∣∣ .

4.2. Identifying of wandering domains. In the same way as in (2.1), the fol-
lowing similar notations are useful here. For any (x, y, z) ∈ B and integer n > 0,
we write

ψn(x, z) = π̂(gn(x, y, z)), ψ̃n(y) = π2(g
n(x, y, z))

if the value of the right-hand side of the former (resp. latter) equation does not
depend on y (resp. on x or z), where π̂ is the projection as in (2.1) and π2 : B −→ R

is the projection defined by π2(x, y, z) = y.
To show the existence of our desired wondering domain, we have to prepare some

notations. The first one is the following. For every integer k ≥ k0, we set

bk = a−1
1 λ

−
∑

∞

i=0 n̂k+i/2
i

u .

It implies that

(4.3) a1λ
2n̂k
u b2k = bk+1,

which will be useful for some evaluations later. The next one is the following. Let
Yk0 = [λss, 1− λss] and, for each integer k > k0,

(4.4) Yk = ψ̃n̂k−1+2 ◦ ψ̃n̂k−2+2 ◦ . . . ◦ ψ̃n̂k0
+2(Yk0).

Using these items, for each integer k ≥ k0, we define

Wk =
[
x̂uk −

bk
2
, x̂uk +

bk
2

]
× Yk ×

[1
2
− z∗k,

1

2
+ z∗k

]
,

where x̂uk be the centre point of B̂u
k = Bu(n̂k, ŵ

(k)) (k = 1, 2, . . .) given in Proposi-
tion 2.3, and

(4.5) z∗k = 20a
−1/2
1 a4b

1/2
k .

From the above definition of Wk, we can immediately see that
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Proposition 4.3. For every k ≥ k0,

π1 ◦ π̂(Wk) ⊂ Ĝu
k = Gu(n̂k, ŵ

(k)).

Proof. By (1.1), (1.4b) and nk < nk+1, we have

(λ−1
u )

∑
∞

i=1 n̂k+i/2
i

< λ−2nk
u < a1(1− 2λ−1

u )λ−nk
u ,

and hence

bk = a−1
1 λ

−
∑

∞

i=0 n̂k+i/2
i

u < (1− 2λ−1
u )(λ−1

u )n̂k = |Ĝu
k|.

Moreover, since the centre point x̂uk of B̂u
k is identical to that of Ĝu

k, the claim of
this proposition has been shown. �

Moreover for the diffeomorphism g given in Proposition 3.1, the following result
is obtained:

Theorem 4.4. There is an integer k1 ≥ k0 such that, for every integer k ≥ k1,
Dk = Int(Wk) is a contracting wandering domain for g satisfying

gn̂k+2(Dk) ⊂ Dk+1.

The proof of this theorem can be obtained immediately from Propositions 4.7,
4.8 and 4.9. To show them, we need two technical lemmas as follows. As mentioned
in Remark 1.2, this is the place where the partially dissipative condition (1.2) comes
into play.

Lemma 4.5.

lim
k→+∞

∣∣∣∣∣
a2λ

n̂k(0)

cs0 λ
n̂k(1)

cs1 z∗k
bk+1/2

∣∣∣∣∣ = 0.

Proof. By (4.3) and (4.5), we have

a2λ
n̂k(0)

cs0 λ
n̂k(1)

cs1 z∗k
2−1bk+1

= 40a
1/2
1 a2a4λ

n̂k(0)

cs0 λ
n̂k(1)

cs1 λ−2n̂k
u b

−3/2
k

= 40a
1/2
1 a2a4λ

n̂k(0)

cs0 λ
n̂k(1)

cs1 λ−2n̂k
u (a1λ

∑
∞

i=0 n̂k+i/2
i

u )3/2.

Let η be any positive integer. By Lemma 4.1 based on the quadratic condition
(4.1a), there exists k0 > 0 such that, for any integers k ≥ k0 and i ≥ 0, n̂k+i <
(1 + η)in̂k. Thus we have the following evaluation.

3

2

∞∑

i=0

n̂k+i

2i
≤

3n̂k

2

∞∑

i=0

(
1 + η

2

)i

=
3n̂k

1− η
= (3 + η1)n̂k,

where η1 = 3η/(1 − η). Recall that λcs0λcs1λ
2
u < 1 by (1.2). One can take η > 0

sufficiently small so that η1 satisfies λcs0λcs1λ
2(1+η1)
u < 1. Since λcs1λu > 1 by

(1.1) and n̂k(1) ≤ n̂k(0) by (4.1b), (λcs1λu)
n̂k(1) ≤ (λcs1λu)

n̂k(0) . It follows that
∣∣∣∣∣
a2λ

n̂k(0)

cs0 λ
n̂k(1)

cs1 z∗k
2−1bk+1

∣∣∣∣∣ ≤ 40a21|a2a4|λ
n̂k(0)

cs0 λ
n̂k(1)

cs1 λ(1+η1)n̂k
u

= 40a21|a2a4|(λcs0λ
(1+η1)
u )n̂k(0)(λcs1λ

(1+η1)
u )n̂k(1) ,

≤ 40a21|a2a4|(λcs0λcs1λ
2(1+η1)
u )n̂k(0) → 0 as k → ∞.

Thus the proof is now completed. �
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We denote by Vδ the δ-neighbourhoods of {x = 1/2} ∩ [0, 1]2 in the xz-plane.
From (2.1) and (3.3), we have

(4.6)

{
ψ(x, z) = ϕ(x, z) if (x, z) ∈ [0, 1]2 \ Vδ,

ψ2(x, z) = ϕ2(x, z + a−1
2 tk+1) if (x, z) ∈ Vδ.

Let x̂uk be the centre point of B̂u
k = Bu(n̂k, ŵ

(k)) (k = 1, 2, . . .) given in Proposition
2.3.

Lemma 4.6. For any (x̂uk + x, 1/2 + z) ∈ B̂u
k × [0, 1],

ψn̂k+2(x̂uk + x, 1/2 + z) = (x̂uk+1, 1/2) +
(
−a1λ

2n̂k
u x2 + a2λ

n̂k(0)

cs0 λ
n̂k(1)

cs1 z,

a4(−1)n̂k(1)λn̂k
u x

)
.

Proof. For simplicity, let us here write ŵ(k) = w1w2 . . . wi . . . wn̂k
. Let ξ0, ξ1 be

the functions on R defined by ξ0(x) = λux and ξ1(x) = λu(1 − x). Then, for any
x̂, x ∈ R,

ξ0(x̂+ x) = λu(x̂+ x) = ξ0(x̂) + λux, ξ1(x̂+ x) = λu(1 − x̂− x) = ξ1(x̂)− λux.

Similarly, by (1.3a), for any α, z such that α + z and z are in the domains of the
corresponding functions,

ζ0(α+ z) = ζ0(α) + λcs0z, ζ1(α+ z) = ζ1(α) + λcs1z.

Hence, by the first equation of (4.6) together with (1.3b) and (2.1), for each i ∈
{1, . . . , n̂k},

(4.7) ψi(x̂uk + x, 1/2 + z) =
(
ξwi ◦ . . . ◦ ξw2 ◦ ξw1(x̂

u
k) + λ

n̂i(0)
u (−λu)

n̂i(1)x,

ζwi ◦ . . . ◦ ζw2 ◦ ζw1(1/2) + λ
n̂i(0)

cs0 λ
n̂i(1)

cs1 z
)
.

Since x̂uk is the centre point of B̂u
k ,

ξwn̂k
◦ . . . ◦ ξw2 ◦ ξw1(x̂

u
k) = 1/2.

Moreover, by (2.4),

ζwn̂k
◦ . . . ◦ ζw2 ◦ ζw1(1/2) = ζŵ(k)(1/2) = ẑcsk+1 − a−1

2 tk+1.

Since n̂k =
∣∣∣ŵ(k)

∣∣∣
(0)

+
∣∣∣ŵ(k)

∣∣∣
(1)

= n̂k(0) + n̂k(1) by (4.2), the equation (4.7) shows

that

ψn̂k(x̂uk+x, 1/2+z) =
(
1/2+λ

n̂k(0)
u (−λu)

n̂k(1)x, ẑcsk+1−a
−1
2 tk+1+λ

n̂k(0)

cs0 λ
n̂k(1)

cs1 z
)
∈ Vδ.

By the second equation of (4.6),

ψ2 ◦ ψn̂k(x̂uk + x, 1/2 + z) = ϕ2
(
ψn̂k(x̂uk + x, 1/2 + z) + (0, a−1

2 tk+1)
)

= ϕ2
(
1/2 + λ

n̂k(0)
u (−λu)

n̂k(1)x, ẑcsk+1 − a−1
2 tk+1 + λ

n̂k(0)

cs0 λ
n̂k(1)

cs1 z + a−1
2 tk+1

)

= ϕ2
(
1/2 + (−1)n̂k(1)λn̂k

u x, ẑcsk+1 + λ
n̂k(0)

cs0 λ
n̂k(1)

cs1 z
)
,

by (1.4a), (2.1) and (4.2),

=
(
−a1λ

2n̂k
u x2 + a2λ

n̂k(0)

cs0 λ
n̂k(1)

cs1 z + a2ẑ
cs
k+1, a4(−1)n̂k(1)λn̂k

u x+ 1/2
)
.
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Since a2ẑ
cs
k+1 = x̂uk+1 from (2.3), we have obtained the equation required in this

lemma. �

For each k > 0, we have the rectangle Wk = π̂(Wk) with the sides ∂zWk =
π̂(Wk ∩ {z = 1/2 ± z∗k}), ∂xWk = π̂(Wk ∩ {x = x̂uk ± bk/2}) and the central line
c(Wk) = π̂(Wk ∩ {x = x̂uk}). See Figure 4.1.

Figure 4.1

Proposition 4.7. There is an integer k
′

0 ≥ k0 such that, for any integer k > k
′

0,

π1(ψ
n̂k+2(Wk)) ⊂ π1(Wk+1),

where π1 is the projection with π1(x, z) = x.

Proof. From the form (1.4a), ψn̂k+2(∂zWk) consists of two quadratic curves. See
Figure 4.1. Points of ψn̂k+2(Wk) furthest from c(Wk+1) are endpoints of one of the
quadratic curves. By Lemma 4.6 and (4.3), we have

dh

(
c(Wk+1), ψ

n̂k+2(Wk)
)
= a1(λ

n̂k
u bk/2)

2 +
∣∣∣a2λ

n̂k(0)

cs0 λ
n̂k(1)

cs1 z∗k

∣∣∣

= 4−1bk+1 +
∣∣∣a2λ

n̂k(0)

cs0 λ
n̂k(1)

cs1 z∗k

∣∣∣ ,

where dh is the Hausdorff distance of the two subsets. It follows from (4.3) and
Lemma 4.5 that the width comparison along the x-direction is the following:

dh
(
c(Wk+1), ψ

n̂k+2(Wk)
)

dh (c(Wk+1), ∂xWk+1)
=

1

2
+

∣∣∣∣∣
a2λ

n̂k(0)

cs0 λ
n̂k(1)

cs1 z∗k
bk+1/2

∣∣∣∣∣ .

Note that, from Lemma 4.5, the right-hand side of the inequality is less than 1 if
one takes k sufficiently large. This proves the desired assertion and completes the
proof of the proposition. �
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Proposition 4.8. There is an integer k
′′

0 ≥ k0 such that, for any integer k > k
′′

0 ,

π3(ψ
n̂k+2(Wk)) ⊂ π3(Wk+1),

where π3 is the projection with π3(x, z) = z.

Proof. By the same reason stated in the beginning of the proof of Proposition 4.7,
it is sufficient to evaluate how the endpoints of components of ψn̂k+2(∂zWk) are
far from {z = 1/2}. More concretely, it follows from Lemma 4.6 that it suffices to
prove that the following inequality:

|a4λ
nk
u bk/2| < z∗k+1/2.

By (4.5), it is equivalent to

a1λ
2nk
u b2k < 400bk+1.

This is established from (4.3) and the proof is accomplished. �

Now let us turn our attention to Yk defined in (4.4).

Proposition 4.9. For every integer k > k0, Yk is contained in
(
1
2 − a3

2 ,
1
2 + a3

2

)

and

lim
k→+∞

|Yk| = 0.

Proof. For the generation n̂k0 of B̂u
k0

= Bu(n̂k0 , ŵ
(k0)), we have

∣∣∣ψ̃n̂k0 (Yk0)
∣∣∣ = λ

n̂k0
ss |Yk0 | = λ

n̂k0
ss (1− 2λss).

From (1.4a) together with (1.4b), Yk0+1 = ψ̃n̂k0
+2(Yk0) ⊂

(
1
2 − a3

2 ,
1
2 + a3

2

)
and

|Yk0+1| = |a3|λ
n̂k0
ss |Yk0 | = |a3|λ

n̂k0
ss (1− 2λss).

By inductive steps, one can show that, for every integer k > k0, Yk ⊂
(
1
2−

a3

2 ,
1
2+

a3

2

)

and

|Yk| = |a3|
k−k0λ

∑k−k0
i=0 n̂k+i

ss (1− 2λss).

Hence, it converges to 0 as k → +∞. �

Proof of Theorem 4.4. From Propositions 4.7 and 4.8, there is an integer k1 ≥ k0
such that, for any integer k ≥ k1,

ψn̂k+2(Wk) ⊂ Int(Wk+1),

and moreover

lim
k→+∞

diam(Wk+1) = 0.

On the other hand, Proposition 4.9 implies that, for any k > k1, diameter of
Yk converges to zero as k → +∞. Since Wk × Yk is equal to Wk, the proof is
complete. �
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5. Probabilistic representations

Let g be the diffeomorphism defined in (3.3), Dk = Int(Wk) the contracting
wandering domain of g and k1 the integer obtained in Theorem 4.4. Also with
Proposition 4.3, for each k > k1,

(5.1a) gn̂k+2(Dk) ⊂ Dk+1, π1 ◦ π̂(Dk) ⊂ B̂u
k = Bu(n̂k, ŵ

(k)),

where π̂ and π1 are the projections given as in (2.1) and Proposition 4.7, respec-

tively, and n̂k =
∣∣∣ŵ(k)

∣∣∣. The itinerary ŵ(k) consists of three parts as

(5.1b) ŵ(k) = w(k+Lk)v(k)γ(k),

where the sub-code v(k) is a k2-tuple v(k) = (v1v2 . . . vk2 ), at least k2 − 1 elements
of which can be chosen freely, and the other parts satisfy

(5.1c)
∣∣∣w(k+Lk)

∣∣∣ = n0 + k + Lk,
∣∣∣γ(k)

∣∣∣ = mk,

where n0 + k + Lk and mk are integers given in Lemma 2.1. Let us now take
advantage of this freedom of v(k) to realise historicity and physicality.

5.1. Historicity. The following theorem guarantees half of the claim in Theorem
A′, the part about historicity.

Theorem 5.1. There exists a sequence v = (v(k))k>k1 of codes such that Dk is a

historic contracting wandering domain for g = gv.

To show this claim we needs the following two conditions:

Era condition: We consider an increasing sequence (ks)s∈N of integers, which
satisfies the following condition: for every s ∈ N,

(5.2)

ks+1−1∑

k=ks

k2 > s

ks−1∑

k=k1

k2.

Note that this setting provides us with a situation that the new era from
ks until ks+1 − 1 to be so dominant as to ignore the old one from k1 until
ks − 1, see Claim 5.2.

Code condition (for historic behaviour): On the era condition, for any
integer k = k(s) with ks < k ≤ ks+1, we consider each entry of v(k) =
(v1v2 . . . vk2 ) satisfying (4.1b) and the following rules:

• if s is even,

(5.3a) vi =

{
0 for i = 1, . . . ,

⌊
3k(s)2/4

⌋

1 for i = ⌈3k(s)2/4⌉, . . . , k(s)2,

that is, v(k) =

⌊3k2/4⌋
︷ ︸︸ ︷
000 . . . . . . 0

⌈k2/4⌉
︷ ︸︸ ︷
1 . . . 1,

• if s is odd,

(5.3b) vi =

{
0 for i = 1, . . . ,

⌊
7k(s)2/8

⌋

1 for i = ⌈7k(s)2/8⌉, . . . , k(s)2,

that is, v(k) =

⌊7k2/8⌋
︷ ︸︸ ︷
000 . . . . . . 0

⌈k2/8⌉
︷ ︸︸ ︷
1 . . . 1,
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where ⌊·⌋ and ⌈·⌉ indicate the floor and ceiling functions, respectively.

Note that both (5.3a) and (5.3b) satisfy the quadratic condition (4.1a) and the
majority condition (4.1b).

It may be obvious that historic behaviour appears under (5.3a) and (5.3b). In-
deed, in [CV01, KS17] they gave constructions similar to ours, but did not provide
detailed proofs. However, we here describe a proof in detail for the convenience of
readers.

Proof of Theorem 5.1. The proof is carried out under the era and code conditions,
which are required to show Claims 5.2 and 5.3.

For given non-negative integers n, m with n < m and x ∈ Dk1 , the empirical

probability measure is defined by

ν(n,m)
x =

1

m− n

m−1∑

i=n

δgi(x).

For any integer ks > 0, we write

N̂ks =

ks−1∑

k=k1

(n̂k + 2).

Let B̂ be a compact subset of R3 containing
⋃2

i=0 g
i(B). For any Φ ∈ C0(B̂,R), we

have

(5.4)

∫
Φdν

(N̂ks ,N̂ks+1
)

x =
1

N̂ks+1 − N̂ks

N̂ks+1
−1∑

i=N̂ks

Φ ◦ gi(x).

Claim 5.2. For any x ∈ Dk1 ,

lim
s→+∞

∣∣∣∣
∫
Φdν

(N̂ks ,N̂ks+1
)

x −

∫
Φdν

(0,N̂ks+1
)

x

∣∣∣∣ = 0.

Here we show the claim. Consider

|As +Bs| =

∣∣∣∣
∫
Φdν

(N̂ks ,N̂ks+1
)

x −

∫
Φdν

(0,N̂ks+1
)

x

∣∣∣∣ ,

where

As =
1

N̂ks+1 − N̂ks

N̂ks+1
−1∑

i=N̂ks

Φ ◦ gi(x)−
1

N̂ks+1

N̂ks+1
−1∑

i=N̂ks

Φ ◦ gi(x),

Bs =
1

N̂ks+1

N̂ks+1
−1∑

i=N̂ks

Φ ◦ gi(x)−
1

N̂ks+1

N̂ks+1
−1∑

i=0

Φ ◦ gi(x).

Thus, the proof will be complete if |As| and |Bs| converge to 0 as s→ 0. In fact,

|As| ≤

∣∣∣∣∣
(N̂ks+1 − N̂ks)(N̂ks+1 − (N̂ks+1 − N̂ks))‖Φ‖C0

(N̂ks+1 − N̂ks)N̂ks+1

∣∣∣∣∣

=
N̂ks

N̂ks+1

‖Φ‖C0 <
1

1 + s
‖Φ‖C0,
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where the last inequality follows from (5.2). On the other hand,

|Bs| ≤

∣∣∣(N̂ks+1 − N̂ks)− N̂ks+1

∣∣∣ ‖Φ‖C0

N̂ks+1

=
N̂ks

N̂ks+1

‖Φ‖C0 <
1

1 + s
‖Φ‖C0 .

Hence, |As|, |Bs| → 0 as s→ +∞. This ends the proof of Claim 5.2.

Based on the result of Claim 5.2, we focus only on (5.4). So we divide it into
three parts as follows:

1

N̂ks+1 − N̂ks

N̂ks+1
−1∑

i=N̂ks

Φ(gi(x)) =
1

N̂ks+1 − N̂ks

(S1 + S2 + S3),

where

S1 =

N̂ks+(n0+ks+Lks)−1∑

i=N̂ks

Φ(gi(x)), S2 =

N̂ks+(n0+ks+Lks)+k2
s−1∑

i=N̂ks+(n0+ks+Lks)

Φ(gi(x)),

S3 =

N̂ks+1
−1∑

i=N̂ks+(n0+ks+Lks)+k2
s

Φ(gi(x)).

Note that the number of terms in the sum of S1 and S3 is O(ks), while that of S2

is k2s . Since

N̂ks+1 − N̂ks = n̂ks + 2 = (n0 + ks + Lks) + k2s +mks + 2 = k2s +O(ks),

we have

(5.5) lim
s→+∞

∣∣∣∣∣∣∣

1

N̂ks+1 − N̂ks

N̂ks+1∑

i=N̂ks

Φ(gi(x)) −
S2

k2s

∣∣∣∣∣∣∣

= lim
s→+∞

∣∣∣∣
(

S1

n̂ks + 2
+

k2s
n̂ks + 2

(
S2

k2s

)
+

S3

n̂ks + 2

)
−
S2

k2s

∣∣∣∣ = 0.

For simplicity, write x̂ := gN̂k+(n0+ks+Lks)(x) and hence

S2 =

k2
s−1∑

j=0

Φ(gj(x̂)).

It is sufficient to prove the following claim for Theorem 5.1:

Claim 5.3.

lim
s→+∞

S2

k2s
=

{
(3Φ(Pg) + Φ(Qg))/4 if s is even,

(7Φ(Pg) + Φ(Qg))/8 if s is odd,

where Pg and Qg are the continuations of the fixed points P and Q, respectively.
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To prove this claim, define

N (Pg)
s = N (Pg)

s (ρ) = max
{
N > 0 : gi(x̂) ∈ Uρ(Pg) for 0 ≤ ∀i ≤ N

}
,

Ñ (Pg)
s = max

{
N > 0 : gi(x̂) ∈ V0 for 0 ≤ ∀i ≤ N

}
,

N (Qg)
s = N (Qg)

s (ρ) = max
{
N > 0 : gi(x̂) ∈ Uρ(Qg) for N

(Pg)
s ≤ ∀i < N

}
,

where Uρ(Pg) and Uρ(Qg) are the ρ-neighbourhoods of Pg and Qg, respectively,
for a given constant ρ > 0, and V0 is the component of g−1(B) ∩ B containing Pg.
Using them, we have

k2
s−1∑

i=0

Φ(gi(x̂)) =

N
(Pg )
s −1∑

i=0

Φ(gi(x̂)) +

Ñ
(Pg)
s −1∑

i=N
(Pg )
s

Φ(gi(x̂))

+

N
(Qg)
s −1∑

i=Ñ
(Pg )
s

Φ(gi(x̂)) +

k2
s−1∑

i=N
(Qg )
s

Φ(gi(x̂)).

For any small ε > 0, there is a ρ > 0 such that

∣∣∣∣∣∣

∑N
(Pg )
s −1

j=0 Φ(gj(x̂))

N
(Pg)
s

− Φ(Pg)

∣∣∣∣∣∣
< ε,

∣∣∣∣∣∣∣

∑N
(Qg)
s −1

i=Ñ
(Pg )
s

Φ(gj(x̂))

N
(Qg)
s − Ñ

(Pg)
s

− Φ(Qg)

∣∣∣∣∣∣∣
< ε.

It implies that

1

k2s

k2
s−1∑

i=0

Φ(gi(x̂)) <
N

(Pg)
s

Ñ
(Pg)
s

Ñ
(Pg)
s

k2s
(Φ(Pg) + ε) +

1

k2s

Ñ
(Pg)
s −1∑

i=N
(Pg )
s

Φ(gi(x))

+
1

k2s

k2
s−1∑

i=N
(Qg)
s

Φ(gi(x)) +
N

(Qg)
s − Ñ

(Pg)
s

k2s − Ñ
(Pg)
s

k2s − Ñ
(Pg)
s

k2s
(Φ(Qg) + ε),

and

1

k2s

k2
s−1∑

i=0

Φ(gi(x̂)) >
N

(Pg)
s

Ñ
(Pg)
s

Ñ
(Pg)
s

k2s
(Φ(Pg)− ε) +

1

k2s

Ñ
(Pg)
s −1∑

i=N
(Pg )
s

Φ(gi(x))

+
1

k2s

k2
s−1∑

i=N
(Qg)
s

Φ(gi(x)) +
N

(Qg)
s − Ñ

(Pg)
s

k2s − Ñ
(Pg)
s

k2s − Ñ
(Pg)
s

k2s
(Φ(Qg)− ε).

Since ρ is already fixed, it follows from code conditions (5.3a) and (5.3b) that

lim
s→+∞

N
(Pg)
s

Ñ
(Pg)
s

= lim
s→+∞

N
(Qg)
s − Ñ

(Pg)
s

k2s − Ñ
(Pg)
s

= 1,

and

lim
s→+∞

Ñ
(Pg)
s

k2s
=

{
3/4 if s is even,

7/8 if s is odd,
lim

s→+∞

k2s − Ñ
(Pg)
s

k2s
=

{
1/4 if s is even,

1/8 if s is odd.
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Moreover,

lim
s→+∞

1

k2s




Ñ
(Pg )
s −1∑

i=N
(Pg)
s

Φ(gi(x)) +

k2
s−1∑

i=N
(Qg)
s

Φ(gi(x))


 = 0.

This finishes the proof of Claim 5.3.

Finally, by Claims 5.2 and 5.3 together with (5.5),

lim
s→+∞

∫
Φdν

(0,N̂ks+1
)

x =

{
(3Φ(Pg) + Φ(Qg))/4 if s is even,

(7Φ(Pg) + Φ(Qg))/8 if s is odd.

We complete the proof of Theorem 5.1. �

5.2. Physicality. The final discussion in this paper concerns the existence of non-
trivial Dirac physical measure associated with a contracting wandering domain in
Theorem A′. To show it we need not to take any era condition as (5.2) into account.
Moreover instead of (5.3a) and (5.3b) we adopt simpler code condition, which is
the same as that in [CV01, Section 9], as follows:

Code condition (for Dirac physical measure supported on Pg): For a

given integer k > 0, we suppose that the freedom part v(k) of the itinerary

ŵ(k) in (5.1b) consists of k2 zeros, that is,

(5.6) v(k) = 0k
2

=

k2

︷ ︸︸ ︷
0000 . . .00 .

Note that (5.6) is not contradict to the quadratic condition (4.1a) and the majority
condition (4.1b).

Remark 5.4. On the other hand, since the itinerary 1k
2

does not meet (4.1b), the
other saddle fixed point Qg may not be a support of the Dirac physical measure.
See also Remark 5.6.

Theorem 5.5. There exist an integer k2 > 0 and a sequence v = (v(k))k>max{k1,k2}

of codes such that g = gv has the non-trivial Dirac physical measure supported on

Pg associated with the contracting wandering domain Dk.

Proof. For any given integers u, s > 0, we take an integer k2 which satisfies

k22 > u+ s.

Moreover, we write

Bss(s;w) =
{
x ∈ B : g−i(x) ∈ Vwi , i = 1, . . . , s

}
.

Hereafter, we suppose that the code condition (5.6) holds for every

k ≥ max{k1, k2},

where k1 is the integer given in Theorem 4.4. Consider the wandering domain Dk

with (5.1a). First, observe that, for any integers u, s > 0,

Pg ∈ Bu(u; 0(u)) ∩ Bss(s; 0(s)),

where Pg is the saddle fixed point of the cs-blender horseshoe Λg and Bu(u; 0(u)) is
the u-bridge given in Subsection 2.1.

Next, verify the following facts:
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• It follows from Proposition 4.3 that

Dk ⊂ Gu(n̂k, ŵ
(k)),

where Gu(n̂k, ŵ
(k)) is the u-gap given in Subsection 2.1.

• Thus, under the code condition (5.6), at least k2− (u+s) of the first n̂k−1
iterates of Dk are contained in the interior of Bu(u; 0u) ∩ Bss(s; 0s).

The corresponding fact for a 2-dimensional horseshoe is stated by Colli-Vargas
[CV01, Section 9]. The cs-blender horseshoe, on the other hand, is a 3-dimensional
object, but this fact is actually the same as for the 2-dimensional horseshoe. Based
on this, the following evaluations will be conducted.

For any integer k̂ > 0, we here define

N̂k̂ =

k̂∑

i=0

(n̂k+i + 2).

Then for any x ∈ Dk, the empirical probability measure from N̂k̂−1 to N̂k̂ is

ν
(N̂

k̂−1
,N̂

k̂
)

x =
1

N̂k̂ − N̂k̂−1

N̂
k̂
−1∑

i=N̂
k̂−1

δgi(x) =
1

n̂k+k̂ + 2

N̂
k̂
−1∑

i=N̂
k̂−1

δgi(x).

Hence, for any Φ ∈ C0(B̂,R),

∫
Φdν

(N̂
k̂−1

,N̂
k̂
)

x =
1

n̂k+k̂ + 2

N̂
k̂
−1∑

i=N̂
k̂−1

Φ ◦ gi(x) =
1

n̂k+k̂ + 2

n̂k+k̂+1∑

j=0

Φ ◦ gj(xN̂
k̂−1

),

where xN̂
k̂−1

= gN̂k̂−1(x). Taking (5.1c) into account, let us divide the sum from 0

to n̂k+k̂ + 1 into the following three parts:

n̂
k+k̂

+1∑

j=0

Φ ◦ gj(xN̂
k̂−1

) =

K̂+u−1∑

j=0

Φ ◦ gj(xN̂
k̂−1

)

+

K̂+(k+k̂)2−s∑

j=K̂+u

Φ ◦ gj(xN̂
k̂−1

) +

n̂
k+k̂

+1∑

j=K̂+(k+k̂)2−s+1

Φ ◦ gj(xN̂
k̂−1

),

where K̂ = n0 + (k + k̂) + L(k + k̂). Note that

n̂k+k̂ = K̂ + (k + k̂)2 +mk+k̂ = (k + k̂)2 +O(k + k̂).

Therefore, for any ε > 0, there exist integers u0, s0 > 0 such that, for any u ≥ u0
and s ≥ s0,

n̂
k+k̂

+1∑

j=0

Φ ◦ gj(xN̂
k̂−1

) ≤ (K̂ + u)‖Φ‖C0

+
(
(k + k̂)2 − s− u+ 1

)
(Φ(Pg) + ε) + (mk+k̂ + s)‖Φ‖C0 ,



24 SHIN KIRIKI, YUSHI NAKANO, AND TERUHIKO SOMA

and
n̂
k+k̂

+1∑

j=0

Φ ◦ gj(xN̂
k̂−1

) ≥
(
(k + k̂)2 − s− u+ 1

)
(Φ(Pg)− ε).

In consequence, it follows from the code condition (5.6) that for any sufficiently

large k̂,

Φ(Pg)− 2ε ≤
1

n̂k+k̂ + 2

n̂
k+k̂

+1∑

j=0

Φ ◦ gj(xN̂
k̂−1

) ≤ Φ(Pg) + 2ε,

and hence ∣∣∣∣
∫
Φdν

(N̂
k̂−1

,N̂
k̂
)

x −

∫
ΦdδPg

∣∣∣∣ < 2ε.

That is, ν
(N̂

k̂−1
,N̂

k̂
)

x converges to δPg as k̂ → +∞ in the weak*-topology. �

Remark 5.6. Instead of (5.6), for any positive integer k and n ≥ 2, consider a
n-periodic itinerary such that

v(k) =

k2

︷ ︸︸ ︷
000 . . .01︸ ︷︷ ︸

n

000 . . .01︸ ︷︷ ︸
n

. . . . . . 000 . . .01︸ ︷︷ ︸
n

000 . . .00︸ ︷︷ ︸
k2−⌊k2/n⌋n

,

where⌊·⌋ stands for the floor function. Since

lim
k→+∞

k2 − ⌊k2/n⌋n

k2
= 0,

v(k) still satisfies both (4.1a) and (4.1b). Then, for such a v(k), by the same pro-
cedure as in proof of Theorem 5.5, one can obtain the non-trivial Dirac physical
measure associated with the wandering domain supported by the n-periodic orbit.

Appendix A.

To show Lemma 1.3, we only need to verify the existence of a folding manifold
which is contained in W s(Λ), because it implies that f has a C1-robust homoclinic
tangency of Λ from [BD12, Theorem 4.8]. Here the folding manifold of Λ is a
2-dimensional manifold with the following conditions:

• S =
⋃

t∈[t−,t+] St, where t± ∈ R with t− < t+ and St is a (1-dimensional)

ss-disc of B;
• both St− and St+ intersect W u

loc(P );
• for any t ∈ (t−, t+), St lies between W

u
loc(P ) and W

u
loc(Q).

Proof of Lemma 1.3. Let ℓ0 and ℓ1 be the parallel edges of B given as

ℓ0 = [1/2− δ, 1/2 + δ]× (0, 0), ℓ1 = [1/2− δ, 1/2 + δ]× (1, 1).

By (1.4a), ℓ̃0 = f2(ℓ0) and ℓ̃1 = f2(ℓ1) are contained in the quadratic curves,
respectively, as
{
x = −a1a

−2
4

(
z −

1

2

)2

, y =
1

2
−
a3
2

}
,

{
x = −a1a

−2
4

(
z −

1

2

)2

+ a2, y =
1

2
+
a3
2

}
.

See Figure A.1.
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y

z

QQ

P

Uδ

f2(Uδ)

0

1

0̃

1̃
S

t

x0

St
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Wu

loc
(P )

Wu

loc
(Q)

Figure A.1

For a given 0 < x0 < a2, we write

t±(x0) =
1

2
±
√
a−1
1 a4(a2 − x0).

By the second condition in (1.4b), the value inside the root is positive. For any
t ∈ [t−(x0), t+(x0)], consider the vertical ss-disc defined as

S ′
t = S ′

t(x0) = {x0} ×
[1
2
−
a3
2
,
1

2
+
a3
2

]
× {t}.

Note that S ′
t(x0) can be contained inW s

loc(Λ) if one chooses x0 appropriately. Let S
′

be the collection of all of S ′
t with t ∈ [t−(x0), t+(x0)]. Observe that the intersection

of S ′ and ℓ̃0 consists of two transverse points. It implies that St−(x0) and St+(x0)

intersect W u
loc(Q). Moreover, it follows from (1.3b) and (1.4a) that f preserves the

y-direction. Thus St = f−1(S ′
t) is an ss-disc. In consequence, S = f−1(S ′) is a

folding stable manifold of Λ. �
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