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A note on derivatives, expansions and Π1
1
-ranks

Udayan B. Darji and Felipe Garcı́a-Ramos

Abstract

Π
1
1
-ranks are a natural tool for studying coanalytic sets in descriptive set theory.

In [5], Kechris provided a technique to build Π1
1
-ranks using derivatives. In this

note we will prove a variant of this result that is applicable to the Γ-rank. Some

dynamical ranks, like the entropy rank can be stated in terms of the Γ-rank.

1 Introduction

At the dawn of descriptive set theory, Lebesgue made an infamous mistake by

assuming that the continuous projection of a Borel set was Borel. Suslin spotted

this mistake 10 years later and began the study of analytic or Σ1
1

sets. One of

tools which was developed later to understand the complexity of Borel sets and the

difference between Borel and co-analytic sets were Π1
1
-ranks. One of the most well

known Π1
1
-ranks is the Cantor-Bendixson rank. Kechris developed a very general

set up were, using the concept of derivatives (or the dual version of expansions),

one can prove that the Cantor-Bendixson rank, as well as several other natural

ranks, are Π1
1

(see Theorem 2.7)[5].

A natural rank that appears in dynamics as well as other areas of mathematics

is the Γ-rank on product spaces. Though the Γ-rank can be stated in terms of

expansions it does not fit exactly in the context of the dual of Theorem 2.7. In

this note, we adapt the proof given in [5] in order to show that the Γ-rank is a

Π
1
1
-rank. A concrete example of the Γ-rank is the entropy rank for topological

dynamical systems that was introduced by Barbieri and the second author [1] to

classify dynamical systems with completely positive entropy.

We note that, using effective descriptive set theory, Westrick recently proved

that the entropy (or TCPE) rank is an effective Π1
1
-rank [9, Corollary 2]. It is

possible to transfer this result to the classic descriptive theory setting, nonetheless,

the approach of this paper gives a direct proof using only classical descriptive set

theory.

Acknowledgment: The authors would like to thank Dominik Kwietniak, Sla-

womir Solecki and Linda Westrick for motivating conversations. The second au-

thor was supported by the CONACyT grant 287764.

2 Π
1
1
-ranks

In this section we present the necessary basic definitions and background results

concerning Π1
1
-ranks. We also prove a new result concerning Borel expansions.
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Recall that a subset of a Polish space is analytic or Σ1
1

if it is the continuous

image of a Borel set of a Polish space. Complements of Σ1
1

sets are Π1
1

or coana-

lytic.

Definition 2.1 Let C be a set. A rank on C is a function ϕ : C → ω1, where ω1 is

the set of countable ordinals. Associated with ϕ we have the relations <ϕ and ≤ϕ
defined as follows:

x <ϕ y ⇐⇒ ϕ(x) < ϕ(y)

x ≤ϕ y ⇐⇒ ϕ(x) ≤ ϕ(y).

Definition 2.2 Let X be a Polish space, C ⊆ X and ϕ : C → ω1 a rank on C. We

say that ϕ is a Π1
1
-rank if C is Π1

1
and there are relations P,Q ⊆ X2, with one of

them Σ1
1

and the other Π1
1
, such that for all y ∈ C we have that

{x ∈ C : ϕ(x) ≤ ϕ(y)} = {x ∈ X : (x, y) ∈ P} = {x ∈ X : (x, y) ∈ Q}.

Loosely speaking, ϕ is a Π1
1
-rank if {x : ϕ(x) ≤ ϕ(y)} is ”uniformly Borel in y”.

We will use the following reformulation of Π1
1
-rank in our proof.

Proposition 2.3 [5, Exercise 34.3] Let X,C, ϕ as in Definition 2.2. Then, ϕ is a

Π
1
1
-rank if and only if there are Σ1

1
relations P,Q ⊆ X2 such that for all y ∈ C we

have that

{x ∈ C : ϕ(x) ≤ ϕ(y)} = {x ∈ X : (x, y) ∈ P}, and

{x ∈ C : ϕ(x) < ϕ(y)} = {x ∈ X : (x, y) ∈ Q}.

The following are fundamental results on Π1
1
-ranks [5].

Theorem 2.4 Every Π1
1

set admits a Π1
1
-rank.

Theorem 2.5 Let C be a Π1
1

set and ϕ be a Π1
1
-rank on C. If A ⊆ C is Σ1

1
, then

ϕ is bounded on A, i.e., there exists α < ω1 such that ϕ(x) < α for all x ∈ A. In

particular,

C is Borel ⇐⇒ ϕ is bounded on C.

We next recall the notion of derivatives and how it induces Π1
1
-ranks in a natural

way [5, Section 34.D]. Let K(X) denote the space of all compact subsets of X

endowed with the Hausdorff metric.

Definition 2.6 A map D : K(X)→ K(X) is a derivative if the following holds:

D(A) ⊆ A & A ⊆ B =⇒ D(A) ⊆ D(B).

Derivatives appear in a variety of contexts and they induce Π1
1
-ranks in a natural

way. For a derivative D, let

D0(A) = A

Dα+1
= D(Dα(A))

Dλ(A) = ∩β<λD
β(A) if λ is a limit ordinal.

Let A ∈ K(X). Then, there exists a countable ordinal α such that Dα
= Dα+1. Such

an ordinal exists since in a separable metric space a chain of strictly decreasing se-

quence of closed sets must be countable. We let |A|D be the least such α. Moreover,

we let D∞(A) = D|A|D , i.e., the stable part of A.
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A useful classical Borel derivative is the Cantor-Bendixson derivative given by

A→ A′

where A′ is the set of limit-points of A [5, Theorem 6.11]. The αth Cantor-Bendixson

derivative of A is denoted by Aα, |A|CB denotes least ordinal α such that Aα+1
= Aα,

and A∞ = A|A|CB , i.e., the stable part of A.

The following is an important theorem which relates derivatives to Π1
1
-ranks.

Theorem 2.7 [5, Theorem 34.10] Let D : K(X) → K(X) be a Borel derivative

and

C = {A ∈ K(X) : D∞(A) = ∅}.

Then, C is Π1
1

and ϕ : C → ω1 defined by ϕ(A) = |A|D is a Π1
1
-rank on C.

A dual notion of derivatives is the concept of expansion.

Definition 2.8 A map E : K(X)→ K(X) is an expansion means that

A ⊆ E(A) & A ⊆ B =⇒ E(A) ⊆ E(B)

For an expansion E, as earlier, we let

E0(A) = A

Eα+1
= E(Eα(A))

Eλ(A) = ∪β<λEβ(A) if λ is a limit ordinal.

We let |A|E be the least such α such that Eα+1
= Eα(A). Moreover, we let E∞(A) =

E|A|E , i.e., the stable part of A.

For every expansion one can define a derivative (and vice-versa). Furthermore,

one can formulate the above Theorem 2.7 in terms of expansions. We will prove a

variant of this dual.

Theorem 2.9 Let X be a compact metric space and E be a Borel expansion on

K(X) and let

C = {A ∈ K(X) : Eα(A) = X for some α}.

Then, C is Π1
1

and ϕ : C → ω1 defined by ϕ(A) = |A|E is a Π1
1
-rank on C.

Before proving the theorem, let us show a specific instance of a Borel expan-

sion, the Γ map.

Definition 2.10 Let X be a compact metric space and E ⊆ X2 a closed set. We

define E+ as the smallest equivalence relation that contains E and Γ(E) = E+. For

an ordinal α, Γα(E) is defined by

Γ
α(E) = Γ(Γα−1(E))

if α is the successor ordinal and

Γ
α(E) = ∪β<αΓβ(E)

if α is a limit ordinal.

Recall that in a topological space with countable basis, a chain of strictly in-

creasing sequence of closed sets must be countable. From this we have the follow-

ing.
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Proposition 2.11 Let X be a compact metrizable space and E ⊂ X. There exists a

countable ordinal α such that Γα(E) = Γα+1(E).

The smallest ordinal that satisfies the statement in the previous proposition is called

the Γ-rank of E.

Before proving that Γ : K(X × X)→ K(X × X) we will prove a lemma.

Lemma 2.12 Let X be a compact metrizable space, ϕn : K(X)→ K(X) be a Borel

map, n ∈ N, and ϕ : K(X)→ K(X) defined by

ϕ(A) := ∪∞
n=1
ϕn(A)

Then, ϕ is Borel.

Proof. Define ψn : K(X)→ K(X)n by

ψn(A) := (ϕ1(A), . . . , ϕn(A)).

Then, ψn is Borel. Moreover, as the union map is continuous, we have that, for

each n ∈ N, A → ∪n
i=1
ϕi(A) is Borel. Now ϕ is simply the pointwise limit of these

maps and hence itself Borel.

Proposition 2.13 Let X be a compact metric space. Then,

Γ : K(X × X)→ K(X × X)

is a Borel map.

Proof. We first note that A → A+ is a continuous map. Define ∼n: K(X × X) →

K(X × X) by ∼n (A) := {(x, y) : ∃x = x0, . . . xn = y such that (xi, xi+1) ∈ A ∀ 0 ≤

i < n}. We note that ∼n is a continuous map. Hence, the map A →∼n (A+) is

continuous. Now we have that

Γ(A) = ∪∞
n=1
∼n (A+)

is Borel by Lemma 2.12.

We now proceed to prove Theorem 2.9. We follow the general outline of [5,

Theorem 34.10] adapted to this set up.

Proof of Theorem 2.9. It suffices to show that | · |E is a Π1
1-rank on C \ {X}.

We first show that C is Π1
1
. As E is Borel, gr(E), the graph of E, is also Borel.

Let ∆ be the diagonal of K(X) \ {X}. Then, gr(E) ∩ ∆ is Borel. As

F = {A ∈ K(X) : E(A) = A & A , X}

is the 1-1 projection of the Borel set gr(E) ∩ ∆, we have that F is Borel. Hence,

G = {(A, B) ∈ K(X) × K(X) : B ∈ F & A ⊆ B}

is Borel as it is the intersection of two sets, one closed and the other Borel, namely,

{(A, B) ∈ K(X) × K(X) : A ⊆ B} K(X) × F .

As the projection of Borel sets are Σ1
1
, and

A < C ⇐⇒ (A, B) ∈ G for some B,

we have that K(X) \ C is Σ1
1
, or, equivalently, C is Π1

1
.
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We proceed to construct required Σ1
1

sets as in Proposition 2.3. In order to do

this we need a a variant of a standard combinatorial Π1
1

set as in the proof of [5,

Theorem 34.10]. We recall the basic terminology.

For x ∈ 2N×N we let

D∗(x) = {m ∈ N : x(m,m) = 1}

and we define

m≤∗xn⇔ [m, n ∈ D∗(x) & x(m, n) = 1].

We let LO∗ be the set of all x ∈ 2N×N such that ≤∗x is a linear order, 0 ∈ D∗(x)

and 0≤∗xm for all m ∈ D∗(x) and let WF∗ be the set of all x ∈ LO∗ such that ≤∗x
is a wellordering. It is known that LO∗ is a closed subset of 2N×N and WF∗ is a

Π
1
1
-complete subset of 2N×N and x 7→ |x|∗ is a Π1

1
rank on WF∗ where |x|∗ is the

order type of x ∈WF∗. Moreover, the range of WF∗ is ω1 \ {0}.

We next show that it suffices to construct Σ1
1

subsets R and S of LO∗ × K(X)

which satisfy the following properties:

∀A ∈ C \ {X}, {x ∈ LO∗ : (x, A) ∈ R} = {x ∈WF∗ : |x|∗ ≤ |A|E} (R)

∀x ∈WF∗, {A ∈ K(X) : (x, A) ∈ S} = {A ∈ C : |x|∗ = |A|E}. (S)

Indeed, let

P = {(A, B) ∈ K(X)2 : ∃x ∈ LO∗ such that (x, B) ∈ R & (x, A) ∈ S}.

Then, P is Σ1
1

and for all B ∈ C \ {X} we have that

{A ∈ C \ {X} : |A|E ≤ |B|E} = {A ∈ K(X) : (A, B) ∈ P}.

Indeed, the containment ⊆ of the above equality is clear. To see the containment

⊇, let (A, B) ∈ P and x ∈ LO∗ be such that (x, B) ∈ R and (x, A) ∈ S. Applying

Condition (R) to our set B ∈ C \ {X}, we have that x ∈ WF∗ and |x|∗ ≤ |B|E. As

x ∈ WF∗ and (x, A) ∈ S, by Condition (S) we have that A ∈ C and |x|∗ = |A|E. As

|x|∗ > 0, we have that A , X. Hence, we have that A ∈ C \ {X} with |A|E ≤ |B|E.

In order to obtain Q, we choose a Borel function x 7→ x′ from LO∗ to LO∗

such that |x′|∗ = |x|∗ + 1 and x ∈WF∗ iff x′ ∈WF∗. We let

Q = {(A, B) ∈ K(X)2 : ∃x ∈ LO∗ such that (x′, B) ∈ R & (x, A) ∈ S}.

As x 7→ x′ is Borel, we have that Q is Σ1
1
. Moreover for all B ∈ C \ {X} we have

that

{A ∈ C \ {X} : |A|E < |B|E} = {A ∈ K(X) : (A, B) ∈ Q}.

Indeed, the containment ⊆ of the above equality is clear. To see the containment

⊇, let (A, B) ∈ Q and x ∈ LO∗ be such that (x′, B) ∈ R and (x, A) ∈ S. Applying

Condition (R) to our set B ∈ C \ {X}, we have that x′ ∈ WF∗ and |x′|∗ ≤ |B|E. As

x′ ∈ WF∗, we have that x ∈WF∗. Now, as x ∈ WF∗ and (x, A) ∈ S, by Condition

(S) we have that A ∈ C and |x|∗ = |A|E. As |x|∗ > 0, we have that A , X. Hence, we

have that A ∈ C \ {X} with |A|E = |x|
∗ < |x′ |∗ ≤ |B|E, i.e., |A|E < |B|E

By Proposition 2.3, we have that | · |E is a Π1
1
-rank on C \ {K}, provided that we

construct Σ1
1

sets R,S with the required properties.
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We define

R = {(x,A) ∈ LO∗ × K(X) : ∃h ∈ K(X)N s.t. h(0) = A,

& ∀m ∈ D∗(x), h(m) , X

& m ∈ D∗(x) \ {0} ⇒ ∪n<∗xmE(h(n)) ⊆ h(m)}.

S = {(x, A) ∈ LO∗ × K(X) : ∃h ∈ K(X)N s.t. h(0) = A,

& ∀m ∈ D∗(x), h(m) , X

& m ∈ D∗(x) \ {0} ⇒ ∪n<∗xmE(h(n)) ⊆ h(m)

& ∪m∈D∗(x)E(h(m)) = X}

By Proposition 2.12 we have that ∪n : K(X)N → K(X) defined by ∪n(An) = ∪n(An)

is Borel. This fact together with the standard quantifier counting technique imply

that R and S are Σ1
1
.

Let us now observe that R and S satisfies Conditions (R) and (S), respectively.

To see that R satisfies Condition (R), let A ∈ C \ {X}. That containment ⊇

holds in Condition (R) follows directly from the definition of R. For the contain-

ment ⊆, we note that if m > 0 is in D∗(x), then for some α < |A|E we have that

∪n<∗xmE(h(n)) + Eα+1(A). This is so, for otherwise, for all α < |A|E we would have

that Eα+1(A) ⊆ ∪n<∗xmE(h(n)) ⊆ h(m) , X, implying that E∞(A) = ∪α<|A|E Eα+1(A) ,

X and that A < C. Now we define f from <∗x into |A|E. Define f (0) = 0 and for

m ∈ D∗(x) \ {0}, let

f (m) = the least α < |A|E such that ∪n<∗xmE(h(n)) + Eα+1(A).

It suffices to show that f is order preserving, i.e., m<∗x p implies f (m) < f (p).

Indeed, this would imply that x ∈ WF∗ and |x|∗ ≤ |A|E. Finally, to see that f is

order preserving, let m<∗x p, m , 0. Then,

E f (m)(A) = ∪α< f (m)Eα+1(A) ⊆ ∪n<∗xmE(h(n)).

Hence, E f (m)(A) ⊆ h(m), implying that E f (m)+1(A) ⊆ E(h(m)). As m<∗x p, we have

that E f (m)+1(A) ⊆ E(h(m)) ⊆ ∪q<∗x pE(h(q)), implying that f (q) ≥ f (m) + 1 and

exhibiting that f is order preserving.

To see that S satisfies Condition (S), let x ∈WF∗. That containment ⊇ holds in

Condition (S) follows directly from the definition of S. That containment ⊆ holds

follows from our order preserving function f from <∗x into |A|E and the fact that

∪m∈D∗(x)E(h(m)) = X.

3 Application: entropy rank

A set I ⊆ N has positive density if lim infn
|I∩[1,n]|

n>0
> 0.

We say (X,T ) is a topological dynamical system (TDS) if X is a compact

metrizable space and T : X → X is a continuous function. We say (X2,T2) is

a factor of (X1, T1) if there exists a surjective continuous function φ : X2 → X1

(called a factor map) such that ϕ ◦ T1 = T2 ◦ ϕ.
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Given a TDS (X,T ) and {U,V} ⊂ X, we say I ⊂ N is an independence set for

{U,V} if for all finite J ⊆ I, and for all (Y j) ∈
∏

j∈J A, we have that

∩ j∈JT− j(Y j) , ∅.

Let (X,T ) be a TDS and U,V open covers of X. We denote the smallest

cardinality of a subcover ofU with N(U), and

U ∨V = {U ∩ V : U ∈ U and V ∈ V}.

We define the entropy of (X,T ) with respect toU as

htop(X,T,U) = lim
n→∞

1

n
log N(∨n

m=1T−m(U)).

The (topological) entropy of (X,T ) is defined as

htop(X,T ) = sup
U

htop(T,U).

Definition 3.1 A TDS has complete positive entropy (CPE) if every non-trivial

factor has positive entropy.

Let X be a compact metrizable space and C(X,X) be the set of all continuous

functions from X into X endowed with the uniform topology. We will now define

a subspace of C(X, X).

Definition 3.2 Given a compact metrizable space X we define

CPE(X) = {T ∈ C(X,X) : (X,T ) has CPE}.

Local entropy theory was initiated in [2]. For more information see the survey

[4] or the book [7].

Definition 3.3 Let (X,T ) be a TDS. We say that [x1, x2] ∈ X × X is an indepen-

dence entropy pair (IE-pair) of (X,T ) if for every pair of open sets A1, A2, with

x1 ∈ A1 and x2 ∈ A2, there exists an independence set for {A1, A2} with positive

density. The set of IE-pairs of (X,T ) will be denoted by E(X, T ).

We are particularly interested in studying the Γ-rank in the case when E =

E(X, T ) is the set of independence entropy pairs.

Definition 3.4 Let (X,T ) be a TDS. The Γ-rank of the set of entropy pairs is called

the entropy rank of (X,T ).

An equivalent statement of the following result was proved in [2] (also see [7,

Theorem 12.30]).

Theorem 3.5 A TDS has CPE if and only if Γα(E(X,T )) = X2 where α is the

entropy rank of (X,T ).

The following proposition was proved in [3]. We give a proof for completeness.

Proposition 3.6 Consider the mapping E : C(X, X)→ K(X × X) given by E(T ) =

E(X, T ). Then, E is a Borel map.
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Proof. Let U,V be open in X. We first observe that

{T ∈ C(X,X) : E(T ) ∩ (U × V) , ∅} (†)

is Borel. Indeed, using an equivalent definition of independence given in [6,

Lemma 3.2] we have that † is satisfied by T if and only if there is a rational number

r > 0 such that for all l ∈ N there is an interval I ⊆ N with |I| ≥ l and a finite set

F ⊆ I with |F| ≥ r|I| such that F is an independent set for (U,V). It is easy to

verify that for fixed U,V, r, l, I,F set

{T ∈ C(X,X) : F is an independent set for (U,V) for T } (‡)

is open. Now the set in † is the result of a sequence of countable union and count-

able intersections of sets of type ‡. Hence, † is Borel. Since X has a countable

basis, by taking unions, we have that † is Borel when U × V is replaced by any

open set W ⊆ X × X. Every closed set in X × X is the monotonic intersection of a

sequence of open sets in X × X. This and the fact that E(T ) is closed imply that †

is Borel when U ×V is replaced by a closed set C ⊆ X × X. Reformulating the last

statement, we have that for all open W ∈ X × X, the set

{T ∈ C(X, X) : E(T ) ⊆ W} (⋄)

is Borel. Putting † and ⋄ together, we have that

{T ∈ C(X,X) : E(T ) ⊆ ∪n
i=1(Ui × Vi) & E(T ) ∩ (Ui × Vi) , ∅, 1 ≤ i ≤ n}

is Borel whenever U1, . . . ,Un,V1, . . .Vn are open in X, completing proof.

Theorem 3.7 Let X be a compact metrizable space. Then, ϕ : C(X,X) → ω1

defined by ϕ(T ) = |E(X,T )|Γ is a Π1
1
-rank on C(X, X).

Proof. By Proposition 2.13, we have that Γ is Borel. Setting E = Γ in Theorem 2.9,

we have that the map that takes A ∈ K(X × X) to |A|Γ is a Π1
1
-rank on the set

C′ = {A ∈ K(X × X) : Γ|A|Γ (A) = X}. By the definition of Π1
1

rank, there are

sets P,Q ∈ K(X × X)2, as in the Definition 2.2, which verify that | · |Γ is a Π1
1

rank on C′. By Lemma 3.6, we have that E is Borel and hence (E × E)−1(P) and

(E × E)−1(Q), are Σ1
1
, and Π1

1
in C(X,X) × C(X,X), respectively. This and the fact

that E−1(C′) = C, we have that (E × E)−1(P) and (E × E)−1(Q) exhibit that ϕ is a

Π
1
1
-rank on C.

Examples of TDSs with CPE and arbitrarily high entropy rank have been con-

structed in [1, 8, 3].
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