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The rapid development of quantum computing technologies already made it possible to manip-
ulate a collective state of several dozen of qubits. This success poses a strong demand on efficient
and reliable methods for characterization and verification of large-scale many-body quantum states.
Traditional methods, such as quantum tomography, which require storing and operating wave func-
tions on classical computers, become problematic to use in the regime of large number of degrees
of freedom. In this paper, we propose a numerically cheap procedure to describe and distinguish
quantum states which is based on a limited number of simple projective measurements in at least
two different bases and computing inter-scale dissimilarities of the resulting bit-string patterns via
coarse-graining. The information one obtains through this procedure can be viewed as a “hash
function” of quantum state — a simple set of numbers which is specific for a concrete many-body
wave function and can be used for certification. By studying a number of archetypal examples,
we show that it is enough to characterize quantum states with different structure of entanglement,
including the chaotic quantum states. The connection of the dissimilarity to standard measures of
quantum correlations such as von Neumann entropy is discussed. We also demonstrate that our
approach can be employed to detect phase transitions of different nature in many-body quantum

magnetic systems.

I. INTRODUCTION

Theoretical description of objects invisible to human
eye represents one of the challenging but, at the same
time, most intriguing problems in physics through its
history. For example, despite incessant improvement of
optical instruments and the ability to look into more and
more distant corners of the Universe, in many cases one
can conclude on the existence of a planet only in an in-
direct way by analyzing its tiny influence on the orbits
of neighboring visible planets! and stellar brightness®?>.
In the opposite limit of the atomic scale, the situation is
even more complicated. When the object of our principle
interest is a many-body quantum state, — wave function
or density matrix, — we should conclude on its existence
and properties indirectly on the basis of measurements.
Moreover, in contrast to observation of celestial objects
whose collective motion could be completely described
with laws of classical mechanics, a measurement in quan-
tum world does not provide a complete information about
a system due to the uncertainty principle?, and charac-
terizing quantum matter from such limited probes repre-
sents a non-trivial methodological and technical problem.

The conventional technique to analyze quantum state
of a multi-component physical system is quantum to-
mography, which is based on the idea of complete® or
partial® reconstruction of the wave function or density
matrix from a number of measurements. Complexity of
the tomographic procedure is mainly related to the num-
ber of qubits involved and the complexity of the quan-
tum state itself, about which one might or might not
have some prior expectations. In many cases, it could be
non-trivial to choose a set of observables which is tomo-

graphically complete (or sufficient for partial reconstruc-
tion) and, at the same time, experimentally accessibleS.
The main fundamental limitation of quantum tomogra-
phy is that one needs to store and manipulate the to-
be-reconstructed quantum state on a classical computer,
which makes characterization of systems that comprise
more than a few dozens of qubits unfeasible. Taking into
account that quantum states of 53 qubits can already be
generated on modern quantum devices”, and a significant
increase of this number is expected in the coming years®,
seeking an approach that overcomes this limitation ap-
pears to be a problem of high importance.

A natural way to reduce the memory required for state
reconstruction is to store it in an implicit form of a com-
pact variational ansétz. One of the most promising ap-
proaches of this kind is the recently proposed neural-
network version of quantum tomography®'?, which rep-
resents the wave function as a Neural Quantum State!'!
and reconstructs it via the learning procedure. While
this approach has many benefits such as very high ex-
pressibility of neural-network ansitze!?!3, it does not
resolve all the problems of quantum tomography. Some
quantum states, such as defined by wave functions with
random or uniform distributions of amplitudes over the
Hilbert space basis, require exponentially large number
of measurements (of the order of the Hilbert space di-
mension) for reconstruction. The situation cannot be
improved by employing neural networks, since there are
no features that the neural network can detect in the
measured data, learn and generalize’. Here, a natural
question arises: can one somehow by-pass the resource-
consuming routine of conventional quantum tomography
at least in certain contexts? A typical problem, when
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FIG. 1.

Protocol for computing dissimilarity of a quantum state. (A) First, one prepares a state on a quantum device and

chooses the measurement basis by applying rotational gates Uy to individual qubits. (B) In this paper, we work with ¢* and
random bases whose Bloch sphere representations are shown in the picture. We say that the set of measurements is performed
in a random basis if, for each shot of measurement, a random vector belonging to the highlighted sector of the Bloch sphere
is uniformly sampled and the corresponding parameters of gate Uy are applied. (C) A number of measurements is performed
and their outcomes — bitstrings of length N — are then stacked together in a one-dimensional binary array of length N X Ngpots
that serves as a classical representation of the quantum state. (D) The array is coarse-grained in several steps (indexed with
k). Different schemes can be employed, but here we use plain averaging with fixed filter size A. In the picture, blue and white
squares in the top line correspond to “0” and “1” bits in the array shown in (C), and black rectangles depict the blocks where
averaging occurs at every step of coarse-graining. Overlap-based dissimilarities Dy between subsequent arrays are computed
and summed up to the overall dissimilarity D. See Methods section for more details.

there is a chance not to get engaged in this procedure,
is certification of a state prepared on a quantum infor-
mation processing device. In this case, there are strong
prior expectations of what this state should be. Thus,
instead of its complete reconstruction, one could hope to
read out simple signature serving as a fingerprint of the
many-body state, - in a spirit similar to hash functions
in computer science!*', - to make sure that the state is,
with high probability, indeed the correct one (see Ref.16
for the usage of hash functions in quantum tomography).

In this paper, we introduce such a signature that
can be constructed by means of a reasonable number
of simple von Neumann measurements of the quantum
state and does not require computing correlation func-
tions. Ideologically, this can be viewed as going along
the line of the very recent approach of classical shadow
tomography' "8, though the signature we employ is dif-
ferent. To accomplish that, we heavily rely on the con-
cept of multi-scale structural complexity of classical pat-
terns that has been recently defined by some of the au-
thors of this paper!?. To avoid possible terminological
confusions with the well-established notion of quantum
complexity, here we call it dissimilarity (since it is based
on counting how much different spatial scales of an ob-
ject differ from each other). The detailed description of
the protocol is given in the Methods section, and here we
outline the main idea.

Assume, we have access to a many-body quantum
state. To do benchmark tests, in this paper we use both
numerical wave functions (e.g., resulting from exact di-
agonalization) and physical quantum states generated on
the IBM quantum simulator??. With no loss of general-
ity, we will be considering spin-1/2 systems. A single-
shot projective measurement of such a state results in
a string of bits of length N, — measured spin projec-
tions on a chosen direction: |S;) = 0110...010) (0 for

spin-down and 1 for spin-up), — where N is the num-
ber of qubits. Performing the measurement many times
(denote this number with Ngpots) and collecting the out-
comes in a string, we obtain a bit-string array of length
L = N X Ngpots. This array can then be viewed as a
one-dimensional pattern, and its inter-scale dissimilarity
can be computed. For that, we do several steps of coarse-
graining (we label the steps with index k) and for each
pair of subsequent scales compute how distinct the cor-
responding coarse-grained strings are. The distinction
is assumed to be large if overlap of arrays at two sub-
sequent scales is small. For two neighboring scales, we
call these measures partial dissimilarities, Dy, and their
sum over all scales D = )", Dy, gives the total inter-scale
dissimilarity. Different schemes of coarse-graining can be
employed, and here we resort to the simplest option: we
fix filter of width A (usually A = 2), and at step k we
substitute all the pixels within a window of size A* with
the average value of pixels in this window at the previous
step, Fig.1. Despite probabilistic nature of the measure-
ments, in all the tested cases dissimilarity turns out to
be a statistically robust signature of the state.

If this procedure is performed in a single basis, it
does not reveal any information on the phase structure
of the quantum state, since measurement outcomes are
defined solely by probability distribution on the Hilbert
space basis |¥(S;)|?. Also, unique characterization of a
many-body quantum state with a single number is clearly
impossible. However, if such bit-string arrays are con-
structed in two or more different Hilbert space bases, one
obtains a sequence of numbers that implicitly contains in-
formation on both amplitude and phase structure of the
state. The more bases are involved, the less is it likely
that two different quantum states would share the same
dissimilarity signature (in a different context, the tomo-
graphic advantage of using several bases was discussed in
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(A) Quantum circuit generating Schrodinger cat states. (B, C) Partial dissimilarities Dy of 16-qubit Schrédinger cat

states calculated in the o* and the random bases correspondingly. Here, A = 2. (D) Visualization of bit-string arrays. In these
images, individual bitstrings are horizontal lines of 16 bits that are stacked vertically in an array (16 strings in total). Left

picture shows an example of array sampled from a cat state with 0 = 7

in the o® basis, and the right one — measured in the

random basis. Here k = 0 represents texture of the measured array per se, and k > 0 show its evolution upon coarse-graining.

Ref.21).

In this paper, we do not go beyond measurements in
two bases, and this seems enough to characterize sev-
eral important families of quantum states. As a warm
up, in Sec. IT A we consider the families of Dicke and
Schrodinger cat states which have compact analytical
representations, and demonstrate how the concept of bit-
string inter-scale dissimilarity can be used for dimen-
sional reduction and visualization of specific signatures of
wave functions. We also reveal the connection between
the dissimilarity measure and the von Neumann bipar-
tite entanglement entropy which plays a central role in
quantum information theory. In Sec. IIB, we test our
approach by using it for certification of random quan-
tum states characterized by complete delocalization in
the Hilbert space, which we do both numerically and ana-
lytically. We also show that the proposed approach scales
nicely and requires the same experimental efforts to cer-
tify 16-qubit and 53-qubit states. In Sec. I1C, using the
transverse-field Ising model and the Shastry-Sutherland
model as playgrounds, we show that the inter-scale dis-
similarity can be used as a universal tool for detecting
quantum phase transitions in many-body systems. Fi-
nally, in Sec. IID we discuss how the concept of inter-
scale dissimilarity can be used for dimensional reduction
and visualization of many-body quantum states.

II. RESULTS
A. Notable entangled quantum states

To demonstrate the idea of bit-string arrays and inter-
scale dissimilarity, we begin with the Schrédinger cat

states defined by superposition of merely two basis vec-
tors in the Hilbert space

(1)

Parametrized by angle 6, this family of states interpolates
between trivial product state [0)®V at § = 0 and the fa-
mous Greenberger-Horne-Zeilinger (GHZ) state Ugnz =
%(\0)®N+ [1)®N) at § = Z. These states can be realized
with quantum circuit?? shown in Fig.2 A. First, with ro-
tational gate Uy one prepares cos($)[0) +sin(%)|1) state
of one of the qubits in the system and takes it as a con-
trol qubit to perform controllable-NOT operation on the
second qubit. This operation results in a two-qubit en-
tangled state cos(%)|00) +sin(£)[11). Repeating it N —1
times, one eventually entangles all the qubits and obtains
the target Schrodinger cat state.

In o0,-basis, projective measurements of such states
can only result in either 0000...0 or 1111...1 bitstring.
Clearly, first steps of coarse-graining affect only inter-
nal content of individual bit-strings of length N, where
it simply maps 0000...0 — 0000...0 and 1111...1 —
1111...1. Thus the randomly assembled array of bit-
strings remains intact, and partial dissimilarities Dy =0
for k such that A¥ < N (for k < 4 when we take N = 16
and A = 2). At A¥ > N, the coarse-graining flow starts
mixing individual bitstrings, and non-trivial contribu-
tions to the dissimilarity emerge. In random basis, Dy
take finite values at all scales k, though due to the trivial
structure of basis vectors defining Wy partial dissimilari-
ties do not depend on 4 at A* < N.

Importantly, each state reveals a distinct set of Dy
which can be used to distinguish states from each other.
Schrédinger cat states are the simplest example of many-

0 .0
Vo) = COS(§)|0>®N + Sln(§)|1>®N-



body entangled wave functions, but in what follows we
will show that the same idea can be exploited when deal-
ing with much more complex states. It has to be stressed
out one more time that, while individual bitstrings are as-
sembled into array in a random order set by outcomes of
consequent projective measurements, the partial dissim-
ilarities and their total sum are robust upon repeatedly
performing the set of measurements.

Another type of entangled states that are instructive
to consider is the family of Dicke states?,
=SB P o), @

yes 5

where the sum goes over all possible permutations of
qubits. By increasing D from 1 to %, one increases
the number of basis vectors involved into the quantum
state. Recently, these states have been experimentally
realized?*?%, and their verification?® is a challenging task
if the number of qubits is large?”. As a proof of concept,
in this paper we study Dicke states of 16 qubits, and ini-
tialize them on quantum simulator using the Least Sig-
nificant Bit procedure??.

Partial dissimilarities of 16-spin Dicke states computed
in o,-basis and in the random basis with filter size A = 2
are shown in Fig. 3. One can see that two different
bases encode information about two ranges of scales. For
any given parameter D, when bit-string arrays are con-
structed from measurement in the o* basis, Dy take non-
zero values only for k < 4, which follows from the fact
that all the Hilbert space basis vectors possessing non-
zero amplitudes have equal amount of spin-up entries,
and after 4 steps of averaging every bit string reduces to
exactly the same number, and all the patterns are de-
stroyed. Contrary, in the random basis, states with dif-
ferent D can be distinguished from Dy at larger spatial
scales, k > 4.

Since both families of states smoothly interpolate be-
tween regimes of low and high entanglement, it is in-
teresting to study if there are any relations between the
introduced measure of inter-scale dissimilarity and quan-
tum correlations. To do that, we consider the von Neu-
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FIG. 3. Partial dissimilarities of Dicke states with different

D index calculated in the o* (A) and the random (B) bases.
The trivial state (|0)®'®) profiles (dashed red lines) are given
for comparison.

mann entanglement entropy

S(pa) = —Trapalogy(pa), (3)
pa = Trppas,

where the system is divided into two equal parts A and
B of N/2 qubits, compute its dependence on either 6 or
D (depending on the family), and plot it alongside the
inter-scale dissimilarity of bit-string arrays computed in
the o, basis.

A 1+ »7__D__»» —10.5
L -
S o5 5 b —> D
o "u_
0g I I I 2730
0 ﬁ a 3w 70
4 2 4
)
B r g ---0--9
2F b a
L o =] =102
< o uf
S L6 o —> D*
o 5 qo01
12 F
° 1 1 1 1 1 1 1 b
2 4 6 8 10 12 14
Index of Dicke state
FIG. 4. Top: entanglement entropy S (blue circles) and

overall dissimilarity D* (white squares) of the Schrédinger
cat states as functions of angle §. Bottom: the same charac-
teristics of the Dicke states as functions of index D.

The result is shown in Fig. 4. While the Dicke and
the Schrodinger cat states are quite different in the re-
gard that variation of parameter D modifies the structure
of the wave function support in the Hilbert space basis,
and 6 only changes the balance between two basis vectors
bearing non-zero amplitudes, in both cases dissimilarity
nicely captures dependence of entropy on the parameters
labeling the state within the family. Although the precise
analytical correspondence between these two concepts is
still to be revealed, it could be a good indication that it
is possible to employ dissimilarity to estimate entangle-
ment entropy, which is generally very difficult to recon-
struct from experimental measurements, especially when
dealing with multi-qubit systems inaccessible to quan-
tum tomography. In a certain way, it is similar to the
approach proposed in Ref.29, where it was shown that,
with the help of neural networks, entanglement can be re-
constructed from visual pattern representations of quan-
tum states.
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FIG. 5.

(A) Fragment of a quantum circuit generating chaotic quantum state according to the protocol proposed in Ref.36.

(B) Partial dissimilarities (red circles) of bit-string arrays resulting from 8192 projective measurements of a 19-layer-deep
quantum chaotic circuit with 16 qubits in the o, basis. Here, filter size A = 2. Dashed line shows the analytical fit with
(4). (C) Partial dissimilarities of bit-string arrays resulting from 8192 projective measurements of the state produced by the
53-qubit Sycamore quantum processor by Google. These data were taken from Ref.7, and different filter sizes A were used to

compute Dj. Dashed lines show the analytical fits.

B. Random quantum states

Our next goal is to demonstrate that the dissimi-
larity measures can serve as a signature not only of
highly structured states with simple analytical represen-
tations, but of rather generic many-body states. To do
that, we consider Haar-random wave functions uniformly
sampled from the Hilbert space and characterized by
the Porter-Thomas distribution of bit-string probabili-
ties p = [(w1,...2x[1)[* that have recently been used
to demonstrate quantum supremacy’. These states play
an important role in studying quantum chaos theory3°,
quantum information theory3'32 and information pro-
cessing, including research domains of superdense cod-
ing of quantum states®® and data hiding?*3°, and even
transport phenomena3%. While complete tomography of
a given random state is an extremely complicated task
since the minimal number of measurements to be per-
formed to reconstruct a random quantum state should be
of order of the Hilbert space dimension®®, here we show
that to certify if a state belongs to the Haar-random class
one can resort to computing inter-scale dissimilarities of
relatively short bit-string arrays.

As it was shown in Refs.7, 36-38, random quantum
states can be initialized with shallow pseudo-random cir-
cuits that can differ in the number and types of gates,
and practical realization of these circuits on a real quan-
tum device depends on its architecture. In this work, we
generate random quantum states of a 16-qubit system on
the IBM quantum simulator with the protocol proposed
in Ref.36, which guarantees an accurate approximation
of the Haar-random state with a compact circuit shown
in Fig.5 A. More specifically, the circuit is formed in cy-
cles, each having one- and two-qubit-gate layers. Within
the first layer, for each qubit in system one randomly
chooses from vX , VY and T gates, where VX (VY)
are 7/2 rotations around the z-axis (y-axis) of the Bloch
sphere, and the non-Clifford gate T = diag(1,e™/*).
In turn, the second layer comprises controlled-Z gates,

diag(1,1,1, —1), whose topology is randomly chosen from
the set of configurations with fixed couplings between
qubits, as described in Ref.36.

In both o, and random bases, the inter-scale partial
dissimilarities of the array generated by sampling 8192
bit-strings from a random quantum state follow the same
decaying profile, Fig.5 B. Such a profile is a robust sig-
nature of typical Haar-random states. It remains the
same even in the presence of noise and gate imperfections
which we simulated by using the noise models provided
by IBM with parameters corresponding to real quantum
devices Paris and Montreal. It can be shown that, for
a chosen filter size A, the dependence of Dy on the step
index k obeys a simple analytical law in the averaging
coarse-graining scheme:

Dy = %(1 —A"HATE, (4)
To derive this law from Eq.8, the central limit theorem
must be employed as elaborated in the Methods section.
This dependence is easy to reconstruct from a limited
number of simple projective measurements, and it serves
as a signature of the class of typical Haar-random states.

To go beyond the simple 16-qubit case and perform an
ultimate test of the method, we have applied it to the real
experimental data generated on the Google Sycamore
quantum processor’. For systems of 16, 32 and 53 qubits,
we have taken 8192 bitstrings measured in the o* basis
and calculated partial dissimilarities, which turned out
to perfectly fit Eq.(4). The result for the prominent ex-
ample of 53-qubit system is presented in Fig.5 C.

In a real-world scenario, the bit-string arrays are
clearly a subject to the gate errors and other sources
of noise, and we have to understand how these imper-
fections are reflected in the dissimilarity signatures of
the state. Previous studies”3” have demonstrated that
random quantum states are hypersensitive to the gate
errors, which is considered to be a defining property of
quantum chaos. When the error rates increase, the dis-
tribution of probabilities of the bitstrings generated by



a random circuit deviates from the Porter-Thomas law
Pr(p) = 2N e=2"P and converges to equal probabilities
of all the bitstings: Pr(p) = 6(1/2Y — p). To quan-
tify this deviation, the authors of Refs.7 and 37 have in-
troduced the cross-entropy benchmarking procedure. It
allows to estimate with a limited number of measure-
ments how close a sampler — a given quantum circuit —
to one of the two limiting cases: the ideal random quan-
tum circuits with Porter-Thomas distribution of proba-
bilities and uniform sampler with identical probabilities
p(r1,...2,) = 27N, In this respect, it is naturally to ask:
can one distinguish between outputs of quantum circuits
with the Porter-Thomas and the uniform probability dis-
tributions by calculating the inter-scale dissimilarity?

To answer this question, we prepared a quantum cir-
cuit consisting of only the Hadamard gates that gener-
ates a 16-qubit state with uniform probabilities in the o*
basis: |X) = (H|0))®'°. Each qubit is then in the super-
position (|0)+]1))/v/2. The obtained dissimilarity profile
of the generated uniform state fully coincides with that
obtained for random quantum circuits (Fig.5 B), with
the overall dissimilarity D* = 0.25. Thus, from ¢* ba-
sis measurements we cannot distinguish these two states
that are fully delocalized in the Hilbert space. However,
in the random basis they have different profiles of Dy, and
overall D. While the chaotic quantum circuit is charac-
terized by an isotropic character of the dissimilarity that
is independent on the measurement basis, the | X) state in
the random basis reveals its trivial nature and the result-
ing dissimilarity D" = 0.204 coincides with that obtained
for |0)®1¢. This suggests that the inter-scale dissimilarity
can be used to quantify deviations from a truly chaotic
quantum states, which would be interesting to verify ex-
perimentally.

C. Phase transitions in magnetic systems

Since the inter-scale bit-string dissimilarity appears to
be a rather unique signature of many-body state, it is
natural to expect that it should be sensitive to cross-
ing phase boundaries in the parametric spaces of many-
body quantum systems. If so, one can hope that it can
be used as a sensitive indicator of phase transitions and
directly used for constructing quantum phase diagrams,
which is a crucial task in understanding phenomenology
of correlated materials and designing new materials. The
common practice is to distinguish different phases of a
quantum or classical many-body system by calculating
the order parameter3®4% and low-order correlation func-
tions such as susceptibility, scalar chirality and others.
However, in many cases devising the order parameter is
a non-trivial analytical problem, especially in the case
of topological phases*'*2. Besides that, a quantum sys-
tem may have a rich variety of different electronic and
magnetic phases depending on internal (interactions) and
external (temperature, pressure, magnetic field) param-
eters, and there could be no universal operator that can

probe the whole phase diagram.

To overcome this problem, a lot of effort has
been put into designing alternative approaches based
on neural networks** %, unsupervised machine learn-
ing techniques®®, and quantum information theory
concepts?*”*®. These methods usually rely on manipu-
lating eigenstates of the quantum system on a classical
computer, which puts natural limitations on the size of
systems that can be studied in this way. Also, it can
be time- and resource-demanding to conduct, e.g., the
learning procedure.

-0.2
-0.25
05 03
dD?
045 zDbasis ansE
0.4
04 045F L |
0.4 0.5 0.6
D 035F  random basis h
03
0.25 -
0.2 1 1 | 1
02 0.4 h 0.6 0.8
025moo,
k:4DDDDDD
02 - DDDD
a
a
DZ 0.15 _uk:5 o i k=1
k; _DDDDD OOgo OOOOOOOOOOEO
0.1 og 0. oe® k=2
k=6 o 000 g000000000030%
0BP0o0pgBog oo oDﬁo Dug =3
0057 7030 8a,e9080 ] 0508888%3
(0] o o Ooog
000666888888800 "ooooooagBEEEES
1 1 1 1 1 L |
02 0.3 0.4 05 0.6 0.7 0.8

FIG. 6. Top: dissimilarity of the Ising model ground state as
a function of the transverse magnetic field in the * and the
random bases; the inset shows derivative of the dissimilarity in
the o* basis with respect to h. Bottom: partial dissimilarities
Dy, in the o* basis at different coarse-graining steps k = 1...6.

The progress in developing quantum simulators and
quantum computing devices suggests a distinct way for
large-scale representation of a quantum systems and
analysis of their phase diagrams. Instead of solving the
Hamiltonian numerically, one can imitate it in an, e.g.,
optical experiment. For example, by varying depth of
the potential in optical lattices, one can change the ra-
tio between hopping integrals and on-site Coulomb inter-
action in the simulated strongly-correlated electronic or
bosonic system, and scan through its parametric space
in this way. Recent advances in this field include simula-
tion of the electronic metal-to Mott insulator transition*®
and destruction of the antiferromagnetic long-range or-
der with temperature and doping®®. Analysis of such



experiments is then conducted by means of a limited
set of site-resolved measurements performed on the sys-
tem, and the relevant information should be extracted
from these measurements, whose number is much smaller
than the Hilbert space dimension. We refer the reader to
Refs. 51 and 52 for an interesting machine learning-based
approach to the analysis of optical lattice experiments,
and in what follows we discuss how the concept of bit-
string arrays and their inter-scale dissimilarity can enter
the game and aid reconstruction of phase diagrams of
simulated quantum matter.

As some of us have shown in Ref.19, the classical pro-
totype of inter-scale dissimilarity, - the structural com-
plexity of patterns, - can be used to detect phase tran-
sitions in classical systems without any prior knowledge
of the order parameter, and in an extremely numerically
cheap unsupervised manner. Now, we will show how it
can be extended onto the quantum case and help recon-
struct quantum phase diagrams of many-body systems
from simple projective measurements. We will be us-
ing the transverse-field Ising and the Shastry-Sutherland
models as examples.

The simplest example of a quantum phase transition
is the paramagnet-to-ferromagnet transitions in the fer-
romagnetic Ising model in the transverse magnetic field
given by the Hamiltonian

H=7Y 88 +hy 8, (5)
iJ 1

where J and h are the exchange interaction between near-
est neighbour spins and the external magnetic field along
z-axis, respectively, and we consider the case of one-
dimensional chain with periodic boundaries. The critical
value of magnetic field is known to be h. = 0.5|J|, and to
reproduce this value is the first benchmark test for our
method before we consider more sophisticated examples.

In the regime of weak magnetic field, the system’s
ground state obtained with the exact diagonalization
approach®? is a superposition of two fully polarized states
1Y and [})®", which is nothing but the entangled
GHZ state discussed above. In the o7 basis, the bit-
string array generated by projective measurements is a
random sequence of 000...0 and 111...1 blocks. In turn,
at very high magnetic fields the qubits are pointing in
the same direction along x axis, and the state is just a
trivial product state that can be obtained from |0000...0)
by rotating all the qubits with the same Hadamard gate.

Fig.6 shows the overall dissimilarity as a function of the
magnetic field. One can see that in both o,- and random
bases, the dissimilarity steadily decreases with increas-
ing h, and the corresponding derivative D’(h) reveals the
well-known transition point at h = 0.5 (we take J=-1).
The phase transition is also reflected in the partial dissim-
ilarities Dy, corresponding to individual renormalization
steps. At low magnetic fields, the state is close to GHZ
and there is clearly little inter-scale dissimilarity at small
k: on the fine scale, coarse-graining of |0000...0) does not
bring any dissimilarity, — and the main contributions to

D come from larger k, i.e. from the spatial scales cover-
ing several IN-qubit blocks. Contrary to that, at larger
fields finer scales start playing more important role. For
each k, the phase transition at h = 0.5 is visible in the
derivative Dy (h).

Energy
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FIG. 7. Upper right inset: schematic representation of the

Shastry-Sutherland model 16-spin supercell used in this work.
Main plot and the inner inset: low-energy part of its spectrum
as a function of the inter-dimer exchange interaction Jo/Ji.
Arrows highlight transitions between quantum states. The
green line represents the ground state.

A much less trivial test of the method is to check
whether it can reveal transition points in highly-
frustrated spin systems with richer phase diagrams.
For that, we consider the Shastry-Sutherland model®*
with competing antiferromagnetic interactions on the
orthogonal dimer lattice, which plays a crucial role in
understanding physical properties of the SrCu(BOs)s
system® 58, The corresponding Hamiltonian contains
intra- and inter-dimer interactions, which are denoted J;
and Jy correspondingly (Fig.7):

H= Z J1Siéj + Z

dimer inter—dimer

JQSZ‘SJ‘. (6)

As it was previously shown, the system features a gapped
singlet ground state at J; = 0, gapless long-range anti-
ferromagnetic Néel state at Jo > Ji, but also a plaquette
phase in-between, in the range of 0.67 < Jy/J; < 0.76.
While, strictly speaking, the quantum phase transition
is defined in the thermodynamics limit of infinite lat-
tices, its precursor could be detected already in a small
system?”. For example, in the case of Shastry-Sutherland
model it has been suggested that by analyzing spin gap
and spin-spin correlation functions one can extract the
singlet-plaquette and plaquette-Néel transitions from ex-
act diagonalization studies of small clusters®. We are
going to show that it can also be done with the inter-
scale dissimilarity measure, which is agnostic about the
nature of phase transition and much easier to implement
on quantum simulators and quantum computers.



We have performed exact diagonalization study®? of a
16-spin Shastry-Sutherland supercell — the smallest clus-
ter on which the model can be defined. Its energy spec-
trum is presented in Fig.7. Omne can see that up to
Jo = 0.66J; the ground state of the system is the sin-
glet state separated from the first excited state with a
non-zero spin gap, and its energy is independent on the
inter-dimer coupling value Jo. At Jy = 0.66J7 a quantum
phase transition takes place. The previous studies®® have
shown that increasing the supercell size does not change
the position of the critical point. The inter-scale dissimi-
larity naturally captures this transition: for Jy < 0.66J1,
D of the ground state computed from 8192 measurements
is a constant, D = 0.25, and an abrupt transition occurs
at the critical point in both the 0% and the random bases.
The corresponding partial dissimilarities at Jo = 0 and
Jo = Jp are shown in Fig.8.

In the thermodynamic limit, the cases of Jy = 0 and
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FIG. 8. Dissimilarity of the ground and the first excited states
of the Shastry-Sutherland model as a function of the inter-
dimer coupling in the 6 (A) and the random (B) bases. (C)
Comparison of the partial dissimilarity profiles obtained for
the singlet (J2 = 0) and the Néel (J2 = 1) states in the o*
basis.

Jo = 1 correspond to the magnetic phases with and with-
out spin gap between the ground and the first excited
state. In the finite-size system, it means that non-trivial
signatures of phase transitions could be encoded not only
in the ground state, but also in the excitation spectrum.
At Jy < 0.55J7, the first excited state has three-fold kind
degeneracy: it is of triplet type with total spin values S$*
= 0, £1. Above the transition point, it is replaced with
a two-fold degenerate state with zero total spin. This
state reconfiguration causes the difference in magnetiza-
tion profiles for the inter-dimer order parameter above
and below the point of Jo = 0.55J; when the exter-
nal magnetic field is applied. According to the previous
studies®’, the magnetization features a plateau at 1/8 of
the full moment for J5=0.65, but not for Jo=0.4.

At the point of Jo = 0.76J; (Fig.7), the plaquette-
Néel phase transition take place. Stability of this point
upon varying the system size was previously confirmed
by different methods®-59:61,

From Fig.8, one can see that all three transitions, —
at J2 = 055<]17 J2 = 066J1, and JQ = 076J1, — are
accurately reflected in the inter-scale dissimilarity of bit-
string array sampled in ¢, and random bases from the
first excited state of the Shastry-Sutherland model. We
also show that the partial dissimilarities of the ground
state calculated for Jo = 0 and Jy = 1 have specific dis-
tinguishable profiles. We believe this to be a strong argu-
ment in favour of universality of the suggested approach
to automatic construction of phase diagrams of many-
body systems simulated on quantum devices.

So far we have been computing inter-scale dissimilar-
ity of arrays composed out of 8192 measured bitstrings.
However, it can be shown that in fact a much smaller
number of measurements would suffice to complete the
task of detecting phase transition points in many-body
quantum systems. We found that, in the o* basis, partial
dissimilarities Dy, of the Ising model ground states remain
almost the same when we do 256 measurements instead
of 8192. In the random basis, the minimal number of
measurements that allows to reveal the ferromagnetic-
paramagnetic transition is about 1024. In turn, the
abrupt changes in the inter-scale dissimilarity of the
Shastry-Sutherland model states could be revealed with
mere 16 measurements. Thus, the method we propose
allows one to accurately reconstruct phase diagrams of
quantum spin Hamiltonians by using small-size super-
cells and a limited number of measurements.

D. Multi-basis dissimilarity map

So far, we have analyzed a number of distinct exam-
ples of quantum states and demonstrated that their inter-
scale dissimilarities (both overall and partial) computed
in different measurement bases can be regarded as eas-
ily measurable signatures. To make this discussion more
concise, it is natural to consider all the states within a
single unifying context.
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studied in this work. Wo, Ws, Uiaar denote the trivial |0)®N7
the singlet and the random quantum states, respectively.

To accomplish that, we shall introduce the concept of
dissimilarity map. For the sake of nicer visualization, as-
sume that we characterize each quantum state with only
two numbers — its overall dissimilarities D* and D" mea-
sured in the o, and random bases correspondingly. Each
state is then represented by a point in two-dimensional
space. Fig.9 shows several classes of states plotted on
such a map. One can see that states belonging to dif-
ferent families nicely group in recognizable lines. The
dissimilarity map can be then thought of as an approach
to dimensional reduction that embeds higher-dimensional
data in a plane (if more bases were used, it would be a
three- or four-dimensional space instead). Some states
still share the same location on the map, like the sin-
glet state of the Shastry-Sutherland model ¥4 and the
chaotic state WUy,a, both having D" = D? = 0.25. This
is not unexpected, since a many-body state cannot be
uniquely represented with only two numbers. However,
taking into account also their partial dissimilarity profiles
(Figs.5 and 8) we can distinguish the states. This way,
D and Dy computed in several (two or more) different
bases altogether form a hash of quantum state.

III. DISCUSSIONS

In this paper, we have shown that bit-string arrays
resulting from projective measurements of many-body
quantum systems should be viewed as objects possessing
internal hidden structure that contains important infor-
mation about the measured quantum state. By comput-
ing inter-scale dissimilarities of the arrays, it is possible
to define a specific characteristic of the state which serves
as its “hash” that can be then used to certify the state
and to estimate its closeness to the desired target state.

Two measures have been introduced: the overall dis-
similarity D of the array in a chosen measurement basis,
and the scale-dependent set of partial dissimilarities Dy,
which are building blocks of the quantum state signature.

Since the bit-string array in a fixed basis is defined only
by the probability distribution over the Hilbert space ba-
sis [1(S;)|?, it does not distinguish between two wave
functions with the same set of amplitudes but different
structure of phase. Thus it is important to compute D
and Dy, in two or more different bases. Since the proce-
dure of performing projective measurements and comput-
ing dissimilarities is experimentally simple and numeri-
cally cheap, it is easy to repeat this procedure in several
bases and construct a hash consisting of several numbers.

We would like to stress out that, in fact, the use of
at least two measurement bases to characterize quan-
tum system is not only practical, but also an important
conceptual requirement directly related to Bohr’s com-
plementarity principle®?%3. According to this principle,
when observing a quantum system one gains information
not about the quantum state per se but rather about the
results of its interaction with a classical measuring device.
Formally, the result of this interaction is described by the
von Neumann theory of measurements® as a projection
of the system density matrix with only diagonal elements
surviving in the basis dictated by the device. The use of
at least two noncommutative projection operators corre-
sponding to two complementary measurement devices is
a necessary prerequisite of quantumness, as follows from
a general “separation-of-conditions principle”%°. The lat-
ter dictates a description of quantum quantities by, at
least, two-index matrices rather than “classical” strings.

It has to be admitted that uniqueness of this signature
is not guaranteed, and one can not exclude the possi-
bility that two distinct quantum states have similar sets
of D and Dj. However, if the number of involved mea-
surement bases is large enough, such a coincidence seems
highly unlikely. Here, we have constructed merely two-
dimensional dissimilarity maps for bit-string arrays ob-
tained from measurements in the random and o* bases,
and this was already enough to characterize several im-
portant families of many-body quantum states. In the
cases, when two different wave functions were indistin-
guishable on the map (like the singlet and the chaotic
states), they could be distinguished by their Dy sets.
If one is concerned about issue of non-uniqueness, the
method can be used as a cheap preprocessing scheme
within a larger framework of certification. First the dis-
similarity signature is computed, and if it strongly devi-
ates from the target state signature, the prepared state
can be discarded right away. And only if the two states
appear close enough, more advanced analysis should be
performed.

An important advantage of the proposed approach is
its scalability. Due to simplicity of computing the inter-
scale dissimilarities, this procedure can be conducted for
a large number of qubits. By using a classical computer,
one could potentially characterize states of quantum sys-
tems of several thousands qubits which goes far beyond
the abilities of available intermediate-scale quantum de-
vices. For example, if one uses 128 Gb RAM, the esti-
mated sizes of quantum systems that can be character-



ized in this way lie in the range from 8192 to 1048576
qubits, if the number of bitstrings in the array is taken
to be 220 or 2!3, correspondingly.

In this paper, we have analyzed two potential appli-
cations of the inter-scale dissimilarity signature, — cer-
tification of quantum states and construction of phase
diagrams. However, other research lines can be initiated,
and we would like to briefly discuss them.

An important problem in quantum computing is to
devise a quantum circuit that represents the desired tar-
get state. Usually, it is accomplished by optimization of
the circuit architecture (topology, choice of gates) with
overlap between the circuit and the target wave func-
tion being the objective function. For a large number
of qubits, computing overlap at every iteration of opti-
mization could be quite costly. Instead, one can aim at
achieving the desired dissimilarity signature Dyqrger and
minimize the norm ||Digrget — Deircuit|| Which, as dis-
cussed before, does not require significant resources to
be computed even for a large system.

Another possible application of this concept could be
in the domain of quantum optics experiments in which
observer’s eyes play the role of photons detector®6:67
with a minimal detection threshold of single photon®®.
Such a fascinating sensitivity of human eyes to the
light has already become a basis for different scenar-
ios of experiments®® 70 aimed at detecting entanglement.
Such experiments require accumulation of statistics over
“seen” and “not seen” events. Since human eyes are
much slower in counting light pulses than real photon
detectors, collecting large amounts of data in such a set-
ting is challenging, and a method that allows to harvest
information from limited data could come handy. Repre-
senting two possible outcomes of a single measurement,
“seen” or “not seen”, as binary digits, one can construct
an array that can be analyzed from the inter-scale dis-
similarity point of view. As has been exemplified with
Dicke and Schrodinger cat states, the latter can be used
to estimate entanglement entropy of the state.

Finally, it should be highlighted that by construct-
ing the low-dimensional dissimilarity map for a number
of quantum states (as in Sec. II C) one, in fact, per-
forms automatic dimensional reduction and visualization
of a high-dimensional dataset — a common task in ma-
chine learning which is often solved in unsupervised man-
ner by employing such methods as self-organized Koho-
nen map, t-distributed stochastic neighbor embedding (¢-
SNE)™72, or uniform manifold approximation and pro-
jection algorithms™ (see Ref.74 for a primer of how the
latter can be used in the context of many-body quantum
physics). These algorithms usually require some notion
of distance between the original higher-dimensional data
points and try to approximately preserve the relative dis-
tances when projecting points onto a lower-dimensional
space (usually, two- or three-dimensional). By comput-
ing and visualizing dissimilarity signatures using two or
three complementary measurement bases, one effectively
solves the same problem for a dataset consisting of many-
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body quantum states. While it is possible to use the
conventional dimensional reduction methods to classify
and visualize quantum states by defining fidelity-based
distance between them?®®, this would require storing and
manipulating many-body states on a classical computer.
Thus, using dissimilarity maps could be an easy to im-
plement alternative that does not require much resources.
Although it is not directly related to the distance between
quantum states in the Hilbert space, it nevertheless con-
sistently and neatly clusters quantum states belonging to
different families without even relying on any optimiza-
tion scheme.

IV. METHODS

A. Calculating inter-scale dissimilarity of bit-string
arrays

To assign a characteristic hash function to a quantum
state we perform three steps (Fig.1): (i) initialization of
the quantum state on a real quantum device or simula-
tor, (ii) a number of projective measurements in at least
two different bases, and (iii) computing the inter-scale
dissimilarities of the resulting bit-string arrays.

The initialization of a quantum state may be done by
different means. For instance, one can use variational
approaches”™ 77 and adiabatic algorithms”® 8% to approx-
imate the target state on a quantum device. When deal-
ing with a some small-scale quantum system, like the
16-qubit states studied in this paper, it is possible to ini-
tialize a state by taking the wave function coefficients
obtained with exact diagonalization and employing the
Least Significant Bit procedure?® that features one-by-
one disentanglement of qubits. Some particular quan-
tum states can be directly generated with known quan-
tum circuits, which is the case for the quantum chaos and
the Schrodinger cat states. In this work, all the manip-
ulations with quantum states were performed with the
Qiskit package?°.

Once a quantum state is initialized on a device, we
measure it in two or more bases. Here, we refrained
to projective measurements in the o* basis and the
random basis, though using more bases can be benefi-
cial for constructing unique hashes of many-body states.
In other words, we sample Ngpots basis vectors repre-
sented by bitstrings {x;} from the probability distri-
bution p(z;) = |¢(;)|?, where Ngpois is a reasonably
small number of measurements (16 to 8192 in the stud-
ied cases), and by doing this in two bases we should have
access not only to the amplitudes, but also to the phases
of the wave function. The measurement outputs in each
basis are then arranged into one-dimensional sequence
of bitstrings which can be regarded as a binary array of
length L = N X Ngpots- Random basis measurements
are performed in the following way. Prior to every shot

1 of measurement, rotational gate Uéi) parametrized by
randomly generated angles 6;, ¢; and \; is applied to



each qubit (Fig.1 A). For the next shot, new values 6,1,
¢i+1 and A;41 are sampled, and a new rotational gate
U(ZH) is applied. The angles are generated in such a
way that, once the procedure is repeated many times,
the single-shot gates uniformly cover a segment of the
Bloch sphere: 6 € [0,%], ¢ € [0,5] and A € [0, F]. The
reason why we choose one of the bases to be random in
the aforedescribed sense is that it is expected to be the
most unbiased one if we apply this protocol to diverse
quantum states with completely different structures.

Having constructed the bit-string arrays, we analyze
their structure using the concept of inter-scale dissimi-
larity. Recently'®, some of us have suggested a notion of
structural complexity of classical patterns based on the
idea of quantifying differences between distinct spatial
scales of a pattern obtained with a multi-step renormal-
ization (coarse-graining) protocol. Here, we formally ap-
ply this procedure to the bit-string arrays viewing them
as one-dimensional patterns.

Let us denote such an array as vector b" of length L.
At every step of coarse-graining k, a vector of the same
length is constructed as

i Ak ZbAk (i—1)/AK]+D (7)

where square brackets denote taking integer part. This
means that at each iteration the whole array is divided
into blocks of AF size, and elements within a block are
substituted with the same value resulting from averaging
all elements of the block. Initially those elements are
either 0 or 1, and for k& > 0 they take real values (in fact,
for the sake of nicer normalization in our calculations we
assumed that “0” bits have values equal to —1). Index
I enumerates elements belonging to the same block. For
simplicity, we usually assume that the bit-string length
is an integer power of filter size A: logy, N € N.

Dissimilarity between scales k and k+1 is then defined
as

1
Dy = |Op41, — 5 Ok + Okt1.641) |, (8)

where O, ,, is the overlap between vectors at scales m
and n:

i

h

There are two quantities of our principal interest: Dy
that contains scale-resolved information on the pattern
structure of the generated bit-string array and overall
dissimilarity, D = 3 Dy, where the sum goes over all the

k

renormalization steps. D and {Dy} computed in several
bases together comprise the hash function of quantum
state that can be used for its certification.
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B. Dissimilarity of the random quantum state:
analytical derivation

Inter-scale dissimilarity of bit-string arrays resulting
from projective measurements of random quantum states
Eq. (4) can be estimated analytically. First, let us
note that O = O -1 if the averaging-based coarse-
graining scheme (7) is adopted. Indeed, within n-th win-
dow of size A*:

na ZbAk(n 1+

bAk(n—1)+i ’ bA’“(n—l)—i—i =

];\k(n 1)+i — (10)

bAk(n 1)+z'AkZ Ak(n D4i
Ak
k1
Ak ZbAk(” )44 bA"(n 1)+4°

where b?nil). Ak are equal to each other for all 4 within
the window, and thus this multiplier can be taken out of
the sum over ¢. Once summed up over all windows, Lh.s.
of this identity gives Oy j, and the r.h.s. — O ;1.

Thus, the expression for partial dissimilarity Dy can
be rewritten as

(11)

For a random state, Oy can be evaluated in the as-
sumption that binary elements in the bit-string array b
are sampled from some random distribution pg(z) (with
2 = 0or1) and not correlated. In this case, the coarse-
graining procedure can be viewed as follows. In step
k = 1, the renormalized probability distribution at every
position in the array is defined over 1 = 0, 0.5, 1 with
p1(0) = pg(0), p1(0.5) = 2po(0)po(1), p1(1) = p§(1). Re-
peating this for several steps, one can notice that proba-
bility distribution pk (x) is defined over random variables
which are obtained by averaging of the original uncor-
related random variables z, and according to the cen-
tral limit theorem pr — N(u,0%/A*) as k — oo. Here
N (p,0%/A¥)(x) is a normal distribution with p and o
being the mean and variance of the original distribution
po(x) correspondingly, and normalization factor 1/AF is
due to the used scheme of averaging.

Noticing that, on average, product of a site value on
itself is

1
Dy = §\Ok+1,k+1 -

L

(@)= L Y0~ [epla)de. (2)

i=1

where the integral symbolically denotes discrete finite
sum at finite k, we can approximately rewrite Oy i as:

L
O = ZZ (bF)? /x pr(z)dz, (13)



which leads us to

2
O [ &N o/ N )i = i + .

In this way, we obtain for k£ > 0:

1 o2
Dy = =[Ok — Opq1.641) = AR

5 (1-A"Y (15)

Although the central limit theorem formally holds for
k — o0, it turns out that this estimate reproduces the nu-
merically computed partial dissimilarities already start-
ing with k£ = 1.

For k = 0 it should be computed separately. Given
Oo,0 =~ (z?), we obtain:
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