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Abstract

Active matter, responsive (“smart”) materials and materials under time-depen-
dent load are systems out of thermal equilibrium. To construct coarse-grained
models for such systems, one needs to integrate out a distribution of microstates
that evolves in time. This is a challenging task. As a preparation to the topic,
we recall equilibrium coarse-graining methods, both theoretical and numerical,
such as projection operator formalisms, united atom simulations, numerical re-
construction of memory and Markov State Modelling. Then we review recent
developments in theoretical approaches to the non-equilibrium coarse-graining
problem, in particular, time-dependent projection operator formalisms, dynamic
density functional theory and power functional theory, as well as numerical
schemes to contruct explicitly time-dependent memory kernels.
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1. Introduction

In physics, we hardly ever describe a system in terms of all of its microscopic
degrees of freedom (with a notable exception of theoretical elementary particle
physics). Physicists rely on effective coarse-grained models. Often the use
of such models is justified, because the processes of interest occur on time-,
length-, and energy-scales that can be clearly separated from the microscopic
scales. However, in principle we should be able to derive each effective model
rigorously by integrating out irrelevant degrees of freedom from the underlying
microscopic dynamics. To integrate out degrees of freedom systematically in
order to derive an effective model is the task of coarse-graining.

In addition to the fundamental desire to derive models rigorously, we fre-
quently encounter phenomena in which scale separation is not given and the
practical use of models that work on just one scale is limited. Then we resort
to multiscale modelling. The concept of multiscale modelling is applied in many
branches of engineering, physics and the life sciences[1, 2, 3, 4, 5, 6]. Already a
brief glance at the range of textbooks which cover the topic reveals that the term
multiscale modelling is not uniquely defined and that it is used for a wide range
of different numerical methods [3]. Inevitably, we need to focus this review on
one specific interpretation, select certain topics and leave out others, although
they deserve to be reviewed. This review presents the author’s personal selection
of topics.

We will discuss modelling and coarse-graining in the context of computa-
tional physics with applications in biophysics and materials science. We will
presume that a researcher starts out from a microscopic description of a given
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system in terms of Hamilton’s equations of motion, and that they attempt to
obtain a prediction regarding the system’s evolution in terms of some effective
degrees of freedom. If the reader is interested rather in the mathematical per-
spective on handling data that is sampled at different scales, we refer them to
standard texts such as e.g. ref. [7]. Also, we will only briefly touch upon the
topics of coarse-graining quantum mechanical systems and of continuum models
in mechanical engineering and the geosciences. After a brief reminder of Brow-
nian motion as a typical coarse-graining problem, we will review theoretical
approaches to coarse-graining under equilibrium and steady state conditions in
sec. 2.1-2.5. Sec. 2.4.2 is more detailed than the other sections, because we have
included a derivation of the nonlinear generalized Langevin equation, which we
have not seen anywhere in the literature. In sec. 2.6 we give a brief review
of numerical methods used mostly in coarse-grained simulations of soft materi-
als and biomolecules. Sec. 3.1 covers theoretical approaches to relaxation into
equilibrium, such as dynamic density functional theory and projection operator
formalisms. In sec. 3.2 we discuss the full non-equilibrium problem of propaga-
tors and observables with explicit time-dependence. We review power functional
theory, time-dependent projection operator formalisms, a numerical method to
construct non-stationary memory kernels and a non-equilibrium Markov State
modelling scheme.

1.1. Brownian Motion
As an introductory example of coarse-grained dynamics, let us recall Brown-

ian motion. Consider a particle of mesoscopic size suspended in a fluid of many
particles of molecular size. Our task is to predict the position of the “large”
particle as a function of time, i.e. we intend to integrate out the degrees of
freedom of the small particles, because we are not interested in the details of
their motion. Two well-known answers to this problem were given in the be-
ginning of the 20th century, one by Einstein [8] and Smoluchowski [9] and one
by Langevin [10]. Neither of them derived the equation of motion rigorously
from the underlying microscopic physics; they introduced stochastic approaches
instead. Einstein argued that within a small time interval due to collisions with
many of the solvent particles, the position of the large particle changes by a
value that is effectively random. We recall his line of arguments and consider
the one-dimensional case for simplicity: If we draw the displacement of the large
particle, ∆, from a probability distribution φ(∆) then the probability f(x, t+τ)
to find the particle at position x at a time t+ τ is given by

f(x, t+ τ) =

∫ ∞

−∞

d∆ f(x− ∆, t) φ(∆) ,

where τ is the duration of the small time-interval, during which the particle was
subjected to the collisions that produced the displacement. We expand f(x, t) to
second order in x and to first order in t, impose the symmetry condition φ(∆) =
φ(−∆), and obtain an equation of motion for the probability distribution

∂f(x, t)

∂t
≃ 1

τ

∂2f(x, t)

∂x2

∫ ∞

−∞

d∆ φ(∆)
∆2

2
.
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If the integral exists, we can define D :=
∫∞

−∞ d∆ φ(∆) ∆2

2τ . Then we obtain a
diffusion equation for f(x, t)

∂f(x, t)

∂t
= D

∂2f(x, t)

∂x2
. (1)

Further, using thermodynamic arguments, Einstein related the diffusion con-
stant D to macroscopic properties of the fluid

Dγ = kBT ,

where γ is the Stokes friction coefficient of the large particle in the fluid of the
small particles, kB is Boltzmann’s constant and T is the temperature.

The fundamental idea of Einstein’s approach, as well as of the approach by
Smoluchowski, was to treat the position of the large particle as a stochastic vari-
able. Given that the equations of motion of all microscopic degrees of freedom
in the system are deterministic, this idea contained a leap of faith that needed
to be justified by a more detailed analysis after their work (we will discuss this
justification in sec. 2.2 and sec. 2.3.)

A few years later, Langevin took a route via Newtonian mechanics and
introduced a stochastic description of the velocity of the Brownian particle [10].
He started out from Newton’s equation of motion for a particle of mass m
subject to an external force ξ(t) embedded in a Stokesian fluid with a friction
constant γ

m
dv(t)

dt
= −γv(t) + ξ(t) , (2)

where again, for simplicity we consider the one-dimensional case. Langevin
argued that the collisions with the solvent particles produce a stochastic force,
i.e. he treated ξ(t) as a stochastic process – and overlooked the fact that the
interpretation of the term dv

dt as a derivative is then incorrect1.
As the forces excerted by the embedding fluid have to be symmetrical, the

stochastic force needs to fulfill

〈ξ(t)〉 = 0 ,

where the angle brackets indicate the average over the distribution from which
ξ(t) is drawn. Further, Langevin argued that ξ(t) has a vanishingly short auto-
correlation time

〈ξ(t)ξ(t′)〉 = cδ(t− t′) ,

because the motion of the fluid molecules is much faster than the motion of the
large particle. (c is a constant, which we will speficy below.) If we solve eq. 2 for
the velocity v(t), compute the corresponding position x(t) and then determine
the mean-squared displacement of the particle, we obtain

〈x(t)2〉 =
c

γ2
t .

1If this aspect is new to the reader, we suggest to consult the didactic article on the
Langevin equation by Gillespie [11].
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The diffusion equation in Einstein’s approach, eq. 1, also produces a mean
squared displacement that is linear in time

〈x(t)2〉 = 2Dt .

Thus we recognize that the two approaches are equivalent on the level of the
ensemble average and we can identify the constant c

c = 2Dγ2 = 2γkBT . (3)

Eq. 3 relates a transport coeffcient, a friction coefficient and the thermal energy
kBT . This is an example of a fluctuation-dissipation relation.

Despite its lack of mathematical rigour, the approach by Langevin was picked
up rapidly in various disciplines of physics. Today it is widely used to develop
coarse-grained models. We will encounter versions of the Langevin equation in
several chapters in this review.

2. Equilibrium and Non-Equilibrium Steady State

In the introductory example of Brownian motion we recalled a coarse-grained
model that has been brought forward by an educated guess about 100 years
ago. At the time, the model was not derived from the equation of motion of
the underlying microscopic system. In this chapter we recall methods to derive
coarse-grained models, and we show, in particular, how eq. 1 and eq. 2 can
be justified. At first, we restrict the discussion to systems under steady state
conditions, i.e. to systems in which the microscopic density of states does not
depend on time. Coarse-graining over a time-dependent density of states will be
discussed in sec. 3. We also focus the discussion on classical systems, but most of
the theoretical considerations we present have either been originally developed
for quantum mechanical systems or can be applied to them in the same form as
shown here (see ref. [12, 13, 14, 15] for projection operator formalisms, ref. [16,
17] for time-dependent projection operators and ref. [18, 19, 20] for density
functional theory).

2.1. The Structure of Liquids

To derive a coarse-grained model from the underlying microscopic equa-
tion of motion, we start out with Hamiltonian mechanics. Consider a three-
dimensional system of N identical, classical particles of mass m with positions
~rN = {~r1, . . . , ~rN} and momenta ~pN = {~p1, . . . , ~pN} which is governed by a
Hamiltonian H(~pN , ~rN ).2 Let the Hamiltonian consist of a potential for pair-
wise interactions Vint(~ri, ~rj), an external potential Vext(~ri) and the kinetic energy
1
2m~pi · ~pi. If we prepare an ensemble of copies of this system with a phase space

2We use arrows to indicate vectors in R3 and boldface symbols to indicate elements of
other linear spaces with the exception of some elements of function spaces.
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probability density ρN (~pN , ~rN , t = 0), the ensemble will evolve according to the
Liouville equation

∂

∂t
ρN (~pN , ~rN , t) = {H, ρN} =: −iLρN , (4)

where the curly brackets are Poisson brackets and we have defined the Liouvillian
iL. This equation is formally solved by

ρN (~pN , ~rN , t) = e−iLtρN (~pN , ~rN , 0) .

Now we tackle the coarse-graining problem and formally integrate out the de-
grees of freedom of all particles except a subset of n particles

ρn(~pn, ~rn, t) =
N !

(N − n)!

∫

d~rN−n d~pN−n ρN (~pN , ~rN , t) .

We apply the Liouvillian iL to ρn(~pn, ~rn, t) in order to propagate the coarse-
grained n-particle system. After a few transformations, which are discussed in
detail e.g. in ref. [21], this leads us to the Bogolyubov-Born-Green-Kirkwood-
Yvon equation [22, 23, 24, 25]





∂

∂t
+

n
∑

i=1

~pi
m

· ∂

∂~ri
−

n
∑

i=1





∂Vext(~ri)

∂~ri
+

n
∑

j=1

∂Vint(~ri, ~rj)

∂~ri



 · ∂

∂~pi



 ρn

=

n
∑

i=1

∫

∂Vint(~ri, ~rn+1)

∂~ri
· ∂ρn+1

∂~pi
d~rn+1 d~pn+1 . (5)

Eq. 5 is an exact expression which couples the evolution of the n-particle density
to the (n+ 1)-particle density. In principle, it would allow us to systematically
coarse-grain the full N -particle equation of motion into an equation of motion
for the n-particle system. In practice, however, this cannot be done unless the
interaction potential is very simple. Instead, eq. 5 is used as a starting point
for the construction of approximative models. Typical approximations either
preserve the non-equilibrium nature of the equations of motion, but considerably
simplify the higher order densities, or they preserve more of the complexity of the
interactions, but consider stationary densities. The first type of approximation
leads us to the Boltzmann equation and the Vlasov equation for dilute gases,
which we discuss in sec. 3.1.1. The second type leads us to density functional
theory (DFT) and liquid structure theory.

The basic idea of DFT is to express the condition for the thermal equilib-
rium structure in terms of a variational principle. The grand potential Ω as a
functional of the configurational one-particle density ρ1(~r), is mimimized by the

equilibrium structure ρEQ
1 (~r)

δΩ[ρ1]

δρ1(~r)

∣

∣

∣

∣

ρ1(~r)=ρEQ
1 (~r)

= 0 . (6)
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Note that we have removed the dependence on the momenta from ρ1(~p,~r),
because in thermal equilibrium the momenta produce only a trivial prefactor.
In the canonical ensemble ρ1(~p,~r) is related to ρ1(~r) by

ρ1(~p,~r) =

(

β

2πm

)− 3
2

exp

(

−β ~p · ~p
2m

)

ρ1(~r) ,

where β := 1/kBT . Throughout this article, we will use the notation ρm(~rm) for
the configurational part of ρm(~pm, ~rm), implying that the trivial contribution
of the momenta has been factored out. Once we know the one-particle density,
for which the condition eq. 6 is fulfilled, the m-particle densities ρm(~rm) can
be obtained as functional derivatives of the grand potential with respect to the
corresponding intrinsic chemical potential.

The condition on the grand potential, eq. 6, can be written in terms of the
excess free energy functional Fexc [ρ1] (“excess” here means excess over the free
energy of the ideal gas), the external potential Vext and the chemical potential
µ as

kBT ln

(

(

h2β

2πm

)
3
2

ρ1(~r)

)

+ Vext(~r) − µ+
δFexc [ρ1]

δρ1(~r)
= 0 .

The first term is the contribution of the free energy of the ideal gas to the
grand potential, the second term is provided by the definition of the microscopic
problem, the third term is specified as a thermodynamic parameter, but, in
general the last term, the excess free energy functional, is not known. It is the
task of DFT to develop suitable, approximative excess free energy functionals
to predict the properties of specific classes of materials.

When modeling materials, the two-particle density ρ2(~r1, ~r2) is of particular
interest, because many material properties can be derived from it and it is closely
related to the structure factor, which can be measured in scattering experiments.
Thus on the level of ρ2, models can be easily validated experimentally. Typical
approaches to the liquid structure problem take a route via the Ornstein-Zernike
relation [26]. We define the pair correlation function

h(~r1, ~r2) :=
ρ2(~r1, ~r2)

ρ1(~r1) ρ1(~r2)
− 1

and the direct correlation function

c(~r1, ~r2) := −β δ2Fexc[ρ1]

δρ1(~r1)δρ1(~r2)
.

The Ornstein-Zernike relation decomposes h(~r1, ~r2) into

h(~r1, ~r2) = c(~r1, ~r2) +

∫

d~r3 ρ1(~r3)c(~r1, ~r3)h(~r3, ~r2) . (7)

If the system is homogeneous, ρ1(~r3) is a constant. Then eq. 7 is a Fredholm
integral equation of the second kind [27], which could be solved by the resolvent
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formalism, if we knew c(~r1, ~r2). However, we do not know c(~r1, ~r2), unless we
know Fexc. One task of liquid structure theory is to propose approximative clo-
sure relations for the Ornstein-Zernike relation, i.e. additional relations between
h(~r1, ~r2) and c(~r1, ~r2), which allow to solve eq. 7 in order to construct models
on the level of ρ2.

We do not extend the discussion on DFT and liquid structure theory here,
because these are equilibrium theories and our review focuses on theories and
models for systems out of equilibrium. This subsection is intended to serve as
an introduction to the non-equilibrium extensions of DFT (dynamic DFT and
power functional theory) which we discuss in sections 3.1.3 and 3.2.1. If the
reader is interested in an introduction to classical DFT and liquid structure
theory, the book by Hansen and McDonald provides a good basis [21].

2.2. Projection Operator Formalism I: Zwanzig’s Projection Operator

The Liouville equation, eq. 4, can also be used as a starting point for a rather
different kind of coarse-graining strategy. Assume that we are interested in a
more general kind of averaged variable, not just a position or momentum of a
particle, but any set of phase space observables {A1(~pN , ~rN ), . . .Ak(~pN , ~rN )},
which we will write for short as A(~pN , ~rN ) or A(Γ) with Γ := (~pN , ~rN ). To
give a few examples, these quantities could be the order parameters of a phase
transition, the centers of mass of certain groups of atoms in a macromolecule,
or a set of parameters characterizing the roughness of a moving interface.

In the 1960s, Zwanzig proposed to derive an equation of motion for such
a set of observables by means of a projection operator formalism [28, 15]. We
recall the basic steps of his derivation: Consider an ensemble of copies of the
system of interest, initialized such that the observables have the same values a0
in each copy of the system. If we propagate each copy for a certain duration of
time t, trajectories which start from different phase space points Γ and Γ′ will in
general produce different values of the observables at time t, even though they
were initialized with coinciding values. It is interesting to study the probability
g(a, t) of finding a given set of values a at time t.

Zwanzig proposed to split the equation of motion of any other observable
f(Γ) into a contribution that depends on the microscopic degrees of freedom
via A, f1(A(Γ)), and a remaining part f2(Γ) = f(Γ) − f1(A(Γ)). If the set of
observables A characterizes the macroscopic properties of the system well, then
this separation should produce a useful effective description of the dynamics.
In Zwanzig’s work the distinction between f1 and f2 is therefore motivated as
a separation between contributions from “relevant” and “irrelevant” degrees of
freedom. To associate “relevance” with certain observables obviously requires
knowledge or at least intuition about the system. This point seems to have
caused some misinterpretations of Zwanzig’s work. Let us stress that Zwanzig’s
derivation is exact, irrespective of whether the observables A are “relevant” or
“irrelevant” to the effective model of a specific problem. (The same holds for the
derivation by Mori presented in sec. 2.3.) Only the approximations made after
the derivation in order to simplify the equations require this kind of knowledge.
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In his work from 1961 [28], Zwanzig focused on an equation of motion for
the probability g(a, t) of finding specific values a of the observables A(Γ)

g(a, t) :=

∫

dΓ δ(A(Γ) − a)ρN (Γ, t)

To obtain the equation of motion, Zwanzig introduced a projection operator

PZ
X(Γ) :=

∫

dΓ′ δ(A(Γ′) −A(Γ))X(Γ′)
∫

dΓ′ δ(A(Γ′) −A(Γ))
. (8)

PZ acts on an observable X(Γ) in such a way that it averages X over all phase
space points Γ′ for which A(Γ′) = A(Γ). With this definition we can express
g(a, t) as

g(a, t) = W (a)
(

PZρN (Γ, t)
)

|A(Γ)=a

where

W (a) :=

∫

dΓ δ(A(Γ) − a) .

We define QZ◦ := (1 − PZ)◦ and apply PZ and QZ to the Liouville equation,
eq. 4. Thus we obtain equations of motion for g(a, t) as well as for the dynamics
“orthogonal to A”, i.e. for the evolution of QZρN (Γ, t).

PZ ∂

∂t
ρN (Γ, t) = −PZiLρN (Γ, t) = −PZiL

(

PZρN (Γ, t) + QZρN (Γ, t)
)

(9)

QZ ∂

∂t
ρN (Γ, t) = −QZiLρN (Γ, t) = −QZiL

(

PZρN (Γ, t) + QZρN(Γ, t)
)

.(10)

Recall that PZρN (Γ, t) is proportional to the density g(a, t), i.e. eq. 9 is the type
of equation we are looking for. To shorten the notation, we define a density cor-
responding to the “orthogonal” dynamics ρ⊥ := QZρN (Γ, t). Then we express
eq. 10 in terms of the dynamics of PZρN (Γ, t) [13]. An operator equation of the
form

∂

∂t
G(t)◦ = −QZiLG(t)◦

is formally solved by

G(t)◦ = e−QZiLtG(0) ◦ .

We apply this solution iteratively to eq. 10 (depending on context, the names
Dyson, Duhamel or Picard are used when refering to this procedure) and obtain

ρ⊥(t) = e−QZiLtρ⊥(0) −
∫ t

0

dτe−τQZiLQZiLPZρN (Γ, t− τ) .

Then we insert this expression into eq. 9, note that the term e−QZiLtρ⊥(0)
vanishes under the projection PZ, and obtain

∂

∂t
PZρN (Γ, t) = −PZiLPZρN (Γ, t)+

∫ t

0

dτPZiLe−QZiLτQZiLPZρN (Γ, t−τ) .

9



From this equation follows the equation of motion for the coarse-grained ob-
servables

∂g(a, t)

∂t
= −

∑

j

∂

∂aj
(vj(a)g(a, t)) (11)

+

∫ t

0

dτ

∫

da′
∑

j,k

∂

∂aj
(W (a)Kjk(a, a′, τ)))

∂

∂a′k

(

g(a′, t− τ)

W (a′)

)

with the transport coefficients

vj(a) :=

∫

dΓ δ(A(Γ) − a)iLAj(Γ) :=

〈

dAj

dt
; a

〉

and

Kjk(a, a′, t) :=
∫

dΓ

(∫

dΓ′ iLAj(Γ)e−tQZiLQZiLAk(Γ′)δ (A(Γ′) − a′)

)

δ(A(Γ) − a)

=

〈

dAj

dt
e−QZiLtQZ dAk

dt
δ (A− a′) ; a

〉

.

The notation with angular brackets is Zwanzig’s notation for the microcanonical
average over all phase space points for which A(Γ) = a. In ref. [28], Zwanzig
states that this equation is “too complicated to be useful for any but the most
formal applications”. Seen from today’s perspective this assessment might be
too negative, as equations similar to eq. 11 can be tackled by numerical methods
with modern computers (see sec. 2.6.5). In the 1960s, however, Zwanzig pro-
ceeded to discuss approximations to eq. 11. The assumptions used in ref. [28]
to simplify eq. 11 are

• that A varies slowly in time compared to the microscopic degrees of free-
dom and therefore time derivatives dnAk

dtn can be neglected for orders n > 2,

• that g(a, t) remains sharp, i.e. fluctuations around the mean remain small
for all times.

We define ensemble averages

αj(t) :=

∫

da aj g(a, t) ,

take their time derivatives, combine them with the equation of motion for g(a, t),
eq. 11, and apply approximations according to the two assumptions given above
to obtain an equation of motion for the observables

dαj(t)

dt
= vj(αj(t))

+

∫ t

0

dτ
∑

k

[

Kjk(α(t− τ), τ)Fk(α(t − τ)) +
∂

∂αk
Kjk(α(t − τ), τ)

]

(12)
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with the thermodynamic force Fk(a) := ∂ lnW (a)
∂ak

.
If we compare eq. 12 to the equations of motion for the Brownian particle,

eq. 1 and eq. 2, which we discussed in the introduction, we notice a crucial dif-
ference: the non-locality in time. In general, the evolution of a coarse-grained
observable depends on the entire history of the process, but the stochastic de-
scriptions of Brownian motion introduced by Langevin, Smoluchowski and Ein-
stein are Markovian (i.e. time-local). Hence these descriptions can only be
approximative.

The goal of Zwanzig’s work was to generalize Onsager’s reciprocal relations
and to establish criteria for their validity. We recall the central statement of the
reciprocal relations [29, 30]: for a system that is perturbed only slightly from
equilibrium and that obeys a time-reversible microscopic equation of motion,
the evolution of the observables is given by

dαj(t)

dt
=
∑

k

LjkFk (α1, α2 . . . αn) , (13)

where the quantities Ljk are transport coefficients and Fk is defined as above.
Direct comparison of eq. 12 to eq. 13 shows that the reciprocal relations can be
recovered as a limiting case of the equation of motion derived by Zwanzig, if
one chooses the observables A such that all vj = 0 and ∂

∂αk
Kjk = 0. Then the

transport coefficients are given by

Ljk =

∫ τ

0

dt Kjk(t) ,

where τ is a time “of macroscopic size”[28], for which the effects of memory
decay. In this sense, Onsager’s result can be seen as the Markovian limit of
Zwanzig’s result.

2.3. Projection Operator Formalism II: Mori’s Projection Operator

The relation between the exact equation of motion, eq. 11, and the Langevin
Equation, eq. 2, becomes clearer if we use a different projection operator. First,
however, it is useful to introduce a notation that allows us to distinguish between
the field on phase space A(Γ) defined by the observable and the value of the dy-
namical variable taken at a specific point in time on a specific trajectory of the
system At := A(Γt).

3 The time-dependence denoted by a subscript indicates the
evolution along a specific trajectory (in contrast to the time-dependence on the
level of an ensemble as e.g. in the transport coefficients in eq. 12). This notation,
which follows ref. [31], will become convenient later when we discuss explicitly
time-dependent Liouvillians. In Mori’s work [14] the distinction between A(Γ)
and At is not clearly made, because Mori intended to study steady-state dy-
namics.

3To simplify the equations, we consider the case of a single observable in this subsection.
However, the entire derivation can be done analogously for a set of observables.
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In sec. 2.2 we applied the projection operator PZ to the equation of motion
of the phase space density ρN , the Liouville equation. Here we instead apply a
projection operator to the equation of motion of the observable

dAt

dt
=

dA(Γt)

dt
= Γ̇t ·

∂A

∂Γ
(Γt) = iLA(Γt) , (14)

which is formally solved by At = eiLtA(Γ0). In analogy to quantum mechan-
ics, we can say that we switch from the Schrödinger picture to the Heisenberg
picture. We take the time derivative of the solution eiLt

A(Γ0) and insert a pro-
jection operator (which we will specify later) to split the equation of motion
into two parts

∂

∂t
eiLt

A(Γ0) = eiLtP iLA(Γ0) + eiLtQiLA(Γ0) , (15)

with Q◦ = (1 − P)◦. Then we make use of the fact that

eiLt◦ = eQiLt ◦ +

∫ t

0

dτ eiL(t−τ)P iLeQiLτQiL◦

and obtain

∂

∂t
eiLt

A(Γ0) = eiLtP iLA(Γ0) + eQiLtQiLA(Γ0)

+

∫ t

0

eiL(t−τ)P iLeQiLτQiLA(Γ0)dτ . (16)

In this part of the derivation it becomes obvious that the convention of the
physics community to name the time-evolution operator iL is rather inconve-
nient. We could now multiply all factors i to simplify the equations, but then
the structure of the equations would become unclear. Therefore we opt instead
for leaving all factors i in place and treating iL as one symbol.

Depending on the type of problem one would like to study, one can now
define a suitable projection operator and insert it into eq. 16. Mori defined

PM
X(Γ) :=

(X,A)

(A,A)
A(Γ) , (17)

where

(X,Y) :=

∫

dΓ X(Γ)Y(Γ)ρEQ
N (Γ) , (18)

i.e. the correlation between two observables in the equilibrium ensemble is inter-
preted as an inner product on the space of phase space functions [14, 16]. (This
implies that we can only consider observables for which the integral in eq. 18
exists.) Inserting PM into eq. 16, we obtain the Generalized Langevin Equation
(GLE)4

dAt

dt
= ωAt +

∫ t

0

dτ K(t− τ)Aτ + ft . (19)

4In the engineering literature, eq. 16 is often referred to as the GLE rather than the more
specific eq. 19.
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The drift ω is defined as

ω :=
(iLA,A)

(A,A)
,

the fluctuating force ft is defined as

ft := etQM iLQM iLA(Γ0) (20)

and the memory kernel K(t) is related to the fluctuating force by

K(t) :=

(

iLetQM iLQM iLA,A
)

(A,A)
= − (f0, ft)

(A,A)
. (21)

The time-dependence in parentheses indicates that K(t), in contrast to ft, is an
ensemble-averaged quantity. Eq. 21 is a generalized version of the fluctuation
dissipation relation, eq. 3. If the evolution of the observable At is slow compared
to the evolution of the degrees of freedom we have integrated out, then the
fluctuating force, ft, which by construction is orthogonal to A, evolves fast.
Under these conditions, the kernel K(t − τ) approaches a delta distribution
δ(t− τ) and the similarity to the Langevin Equation, eq. 2, becomes evident.

We need to recall, however, that ft is deterministic and that the GLE as
derived by Mori is not a stochastic differential equation. Often, in the literature,
ft is replaced by a continuous-time stochastic process Xt, which is chosen such
that its correlations fulfill eq. 21 (see sec. 2.6.5 for a discussion of methods to
generate such processes). The stochastic equation of motion obtained in this
way

dAt =

(

ωAt +

∫ t

0

K(t− τ)Aτ dτ

)

dt+ dXt (22)

is also called the Generalized Langevin Equation. We remark that the step
from eq. 19 to eq. 22 is non-trivial and needs to be taken with care. Langevin’s
mathematical negligence has been straightened out using Itō calculus [32, 33].
In principle, the same formalism can be applied to integro-differential equations
of the Volterra form to obtain stochastic integro-differential equations such as
eq. 22 [34, 35]. However, there are conditions on the process Xt and on the
function K(t− τ), which need to be fulfilled for a unique solution to exist and
to be stable against perturbation. In the physics literature, these conditions are
usually not verified before eq. 22 is used.

In summary, if we assume that the distribution of microstates is stationary,
and that there is time-scale separation between the observable of interest and
the other degrees of freedom, and if we interpret the fluctuating force as a
stochastic process, the projection operator formalism allows us to derive the
Langevin equation from Hamiltonian dynamics.

2.4. Nonlinear Versions of the Langevin Equation

In the introduction, sec. 1.1, we recalled Langevin’s arguments and wrote
down a stochastic equation of motion for the velocity of a Brownian particle

13



based on an analogy to Newtonian mechanics. We could, of course, also have
used the position of the particle as the coarse-grained variable and could have
suggested an equation of the form

mẍt = − dU(x)

dx

∣

∣

∣

∣

x=xt

− γẋt +
√

2γkBTξt , (23)

where γ is a friction coefficient, U(x) is an effective potential, kBT is the ther-
mal energy and ξt is white Gaussian noise. Note that the effective potential
U(x) takes xt as input, hence in contrast to the equations discussed in sec. 2.3,
this version of the GLE is nonlinear. We followed the convention of the physics
literature and used ẍ and ẋ to denote the time derivatives. This notation em-
phasizes the interpretation of eq. 23 as the Newtonian equation of motion of a
particle in a potential energy landscape – an interpretation which seems to enjoy
great popularity in introductory texts on biomolecular modelling. However, as
said above, the terms ẍ and ẋ need to be understood in the sense of stochastic
processes, and the functional form of U(x) depends on the properties of all other
degrees of freedom of the system. Hence the analogy to Newtonian mechanics
should not be overstretched.

2.4.1. One particle in a harmonic bath

Like the Langevin Equation eq. 2, also nonlinear differential equations of a
form similar to eq. 23 can be derived by means of projection operators [36, 37,
38, 39]. Before we discuss a full derivation, we first consider a simple example
as discussed in the book on non-equilibrium statistical mechanics by Zwanzig
[40, 15]. We consider one particle of mass m, position x and momentum p, which
is coupled to N independent harmonic oscillators and an external potential
Vext(x). 5 The Hamiltonian of the particle is

Hparticle(x, p) :=
p2

2m
+ Vext(x) ,

and the Hamiltonian of the harmonic bath, including the coupling to the parti-
cle, is

Hbath :=

N
∑

j=1





p2j
2

+
1

2
ω2
j

(

qj −
γj
ω2
j

x

)2


 ,

where qj and pj are the positions and momenta of the bath particles, ωj are the
frequencies of the oscillators and γj are the coupling constants. The equations
of motion of the bath can be solved exactly

qjt −
γj
ω2
j

xt =

(

qj0 −
γj
ω2
j

x0

)

cosωjt+ pj0
sinωjt

ωj
− γj

∫ t

0

dτ
pτ
m

cosωj(t− τ)

ω2
j

.

5There exist straightforward extensions of this type of analysis to nonlinear coupling [41]
and to systems under oscillatory external driving [42].
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If we insert the solutions qjt into the equation of motion of the momentum of
the particle, we obtain a GLE which looks similar to eq. 23,

dpt
dt

= − d

dx
Vext(x)

∣

∣

∣

∣

x=xt

−
∫ t

0

dτ KHB(τ)
pt−τ

m
+ fHB

t . (24)

The memory kernel KHB is given explicitly by

KHB(t) :=
∑

j

γ2j
ω2
j

cosωjt

and the fluctuating force is given by

fHB
t :=

∑

j

γjpj0
sinωjt

ωj
+
∑

j

γj

(

qj0 −
γj
ω2
j

x0

)

cosωjt .

We have not yet specified the initial conditions on the bath degrees of freedom.
If we use the canonical distribution and set

ρ(pj , qj, 0) ∝ e−βHbath(x0,pj0
,qj0

) ,

we obtain a fluctuation-dissipation relation similar to eq. 21

〈fHB(t)fHB(t′)〉 = kBTK
HB(t− t′) .

For suitably chosen coupling constants and frequencies, the support of the mem-
ory kernel becomes infinitesimally small and KHB(t) → δ(t). Then eq. 24 is
reduced to the nonlinear Langevin Equation, eq. 23.

In summary, for the special case of a particle in a harmonic bath, an equilib-
rium initial distribution of the bath degrees of freedom and the correct choice
of the system parameters, the form of eq. 23 is justified.

2.4.2. The Generalized Langevin Equation with a Potential of Mean Force

An equation of the same structure as eq. 23 is widely used in materials science
and biophysics to model the coarse-grained dynamics of complex systems [43].
The nonlinear term U(x) is then interpreted as a potential of mean force

UMF(x) := −kBT ln
(

ρEQ
X (x)

)

,

where ρEQ
X (x) is the probability of finding a value x of the observable X(Γ) in

the equilibrium ensemble

ρEQ
X (x) :=

∫

dΓ ρEQ
N (Γ) δ (X (Γ) − x) . (25)

Instead of the term potential of mean force, one also often encounters the terms
effective free energy and free energy landscape denoted by ∆G(x). In equilib-
rium, these are identical, ∆G(x) := UMF(x).
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Also integro-differential equations of a form similar to eq. 24 are often used
to model coarse-grained variables, such as

µ
d2xt
dt2

= − dUMF(x)

dx

∣

∣

∣

∣

x=xt

−
∫ t

0

dτ KNL(t− τ)
dxt′

dt′

∣

∣

∣

∣

t′=τ

+ fNL
t , (26)

where µ is a generalized mass and we used the superscript NL to indicate that
the kernel and the flucutating force enter a nonlinear GLE. These are versions
of the GLE in which the memory term is linear in the time derivative of the
coarse-grained variable, but the drift term is replaced by a nonlinear expression.
In most cases the systems which are modeled by these equations are much more
complex than the example of the single particle in a hamornic bath given above
(see ref. [44, 45, 46, 47, 48, 49, 50, 51] for a few examples in which this equation
of motion is used.) Let us therefore check whether an equation of motion of the
form of eq. 26 can be derived for the general case.

We will present this derivation in more detail than the discussions of the
previous sections, because we are not aware of a similar analysis in the literature.
To skip the details of the derivation, the reader may read the following brief
summary and move to sec. 2.5.

• In general, a nonlinear potential of mean force is accompanied by a non-
linear memory term. Equations of the form of eq. 26 are, at best, approx-
imate.

• There is no fluctuation-dissipation relation that would relate the memory
kernel of the nonlinear GLE to the corresponding fluctuating force.

• Even if there is time-scale separation, the resulting equation of motion in
general does not have the form of eq. 23.

• Probably, the frequent use of eq. 26 in models of complex systems is caused
by a misunderstanding regarding the exchangeability of the derivations in
ref. [28, 14] and [15].

We start from eq. 16 for a set of observables A = {A1(Γ), . . . ,Ak(Γ)}, which
we interpret as the components of a vector (A1(Γ), . . . ,Ak(Γ))⊤

∂

∂t
eiLtA(Γ0) = eiLtP iLA(Γ0) + eQiLtQiLA(Γ0)

+

∫ t

0

eiL(t−τ)P iLeQiLτQiLA(Γ0)dτ . (27)

The equation of motion we aim for, eq. 26, is of second order in time and
contains only one coarse-grained variable. To produce an equation of this form,
we treat the observable A(Γ) and its time derivative as two observables At :=
(A(Γt), Ȧ(Γt))

⊤, and then use eq. 27.
The next step is to choose a suitable projection operator. As eq. 25 defines

a so-called relevant density, which relates a phase space function (here X(Γ)) to
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the “macroscopic value” it takes in equilibrium (here x), the projection operator
formalism by Zwanzig (sec. 2.2) is a reasonable choice. However, it turns out
that the self-evident definition

ρEQ
A

(a) :=

∫

d~rNd~pNρEQ
N

(

~rN , ~pN
)

δ
(

A
(

~rN , ~pN
)

− a
)

does not produce an equation of the desired form. Instead, we use a modified
density as introduced by Lange and Grubmüller [52]

ρA(a) :=

∫

dΓ ρEQ
N (Γ)δ (A(Γ) − a)

∥

∥

∥∇rA(Γ) [M ]
−1/2

∥

∥

∥

2

,

where [M ] is the mass matrix with diagonal elements corresponding to the par-
ticle masses and ∇r refers to the gradient with respect to all components of ~rN .
This definition is useful for the following reason: Assume the first observable,
A(~rN ), depends only on the positions and not on the momenta ~pN . As the
second observable is the time derivative of the first one, we obtain

A2(Γ) = iLA1(Γ) = iLA(Γ) = (∇rA(Γ)) [M ]
−1
~pN .

The factor
∥

∥

∥∇rA(Γ) [M ]
−1/2

∥

∥

∥

2

in the reduced density will absorb terms related

to (∇rA(Γ)) [M ]
−1

in the next steps of the derivation.
We define a projection operator

PY(Γ) :=
1

ρA (A(Γ))

∫

dΓ′ ρEQ
N (Γ′)δ (A(Γ′) −A(Γ))

∥

∥

∥∇rA(Γ′) [M ]
−1/2

∥

∥

∥

2

Y(Γ′) .

(28)
Note that our definition of the projection operator differs from the one given
in ref. [52], which is not normalized correctly. To simplify the following steps,
we assume that the microscopic dynamics is produced by a Hamiltonian of the
form H(Γ) =

∑

i ~p
2
i /(2mi) + V

(

~rN
)

, i.e. there is no coupling between positions
and momenta. The first term in eq. 27 for the second observable (the so-called
conservative force term) has the form

eiLtP iLA2(Γ) =

eiLt 1

ρA (A(Γ))

∫

dΓ′ ρEQ
N (Γ′)δ (A(Γ′) −A(Γ))

∥

∥

∥∇rA(Γ′) [M ]
−1/2

∥

∥

∥

2

×
(

[M ]
−1
~p′N · ∇r′

(

∇r′A(Γ′) · [M ]
−1
~p′N
)

−

∇r′V
(

~r′N
)

· ∇r′A(Γ′) [M ]
−1
)

. (29)

If one intends to relate eq. 29 to the gradient of a potential of mean force (as
e.g. the term d

dxU
MF(x) in eq. 26), it is constructive to first compute ∂ρA/∂a1.

We start by introducing mass-weighted coordinates r̃N = [M ]1/2 ~rN and p̃N =
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[M ]−1/2 ~pN . Hence, dΓ = dΓ̃ and we can write

∂ρA (a)

∂a1
=

∫

dΓ̃ ρ̃eqN

(

Γ̃
)

δ
(

Ã2

(

Γ̃
)

− a2

) ∥

∥

∥∇r̃Ã1

∥

∥

∥

2 ∂

∂a1
δ
(

Ã1

(

Γ̃
)

− a1

)

,

(30)
where all functions with a tilde correspond to the ones defined before, but for
mass-weighted coordinates. In order to have a more compact notation we do
not write out the dependencies on Γ̃ from now on. Next, we use

∥

∥

∥∇r̃Ã1

∥

∥

∥

2 ∂

∂a1
δ
(

Ã1 − a1

)

= −
(

∇r̃Ã1

)

· ∇r̃δ
(

Ã1 − a1

)

to rewrite the last term in eq. 30, and we carry out a partial integration over
r̃N to obtain

∂ρA (a)

∂a1
=

∫

dΓ̃ δ
(

Ã1 − a1

){

δ
(

Ã2 − a2

)(

ρ̃EQ
N ∇2

r̃Ã1 + ∇r̃ρ̃
EQ · ∇r̃Ã1

)

+ ρ̃EQ
N ∇r̃Ã1 · ∇r̃δ

(

Ã2 − a2

)}

.

Now we exploit the fact that A2 = Ȧ =
(

∇rA
(

~rN
))

[M ]
−1
~pN , rewrite the last

term using

∇r̃Ã1 · ∇r̃δ
(

Ã2 − a2

)

= ∇r̃

(

∇r̃Ã1 · p̃N
)

· ∇p̃δ
(

Ã2 − a2

)

and carry out a partial integration over p̃N to get

∂ρA (a)

∂a1
=

∫

dΓ̃ δ
(

Ã1 − a1

)

δ
(

Ã2 − a2

){

∇r̃ρ̃
EQ
N · ∇r̃Ã1 −∇p̃ρ̃

EQ
N · ∇r̃

(

∇r̃Ã1

)}

.

(31)

If we now use consider a canonical ensemble ρEQ
N ∝ e−βH(Γ), i.e.

∇r̃ρ̃
EQ
N = (∇r̃Ṽ )ρ̃EQ

N , ∇p̃ρ̃
EQ
N = p̃ ρ̃EQ

N

we see that the terms in the curly parentheses in eq. 31 correspond to the second
line of eq. 29 multiplied by ρEQ

N .
We define a potential of mean force

U(a) := −kBT ln ρA(a)

If A is linear in ~rN , then the term
∥

∥

∥∇rA(Γ′) [M ]−1/2
∥

∥

∥

2

contributes only a con-

stant prefactor 1
µ to eq. 29 and ∇p̃ρ̃

eq
N ·∇r̃

(

∇r̃Ã

)

= 0. Thus U(a) only depends

on a1. This is the case, in particular, if the observable is the position of one
particle or the center of mass position of a set of particles X(Γ). Then we can
simplify eq. 29 to

exp(iLt)P iLX2(Γ0) = − 1

µ
exp(iLt)∂U(x)

∂x

∣

∣

∣

∣

x=X(Γ0)

= − 1

µ

∂U(x)

∂x

∣

∣

∣

∣

x=xt

.
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We conclude that under these (rather specific) conditions the first term in the
equation of motion for A2 is, indeed, proportional to a gradient of a potential
of mean force and the prefactor 1

µ is the inverse of a reduced mass.
Next we consider the integrand in eq. 27

eiL(t−τ)P iLeQiLτQiLA2(Γ0) .

Following the work by Hijon and co-workers [38], we can write this expression
in a form in which the structure becomes slightly more evident if we consider
that

Pj iLetQiLQiLAk(Γ0) =
∑

l

(

−Bkl(a, t)
∂U(a)

∂al
+ kBT

∂Bkl(a, t)

∂al

)

(32)

with the memory matrix

Bkl(a, t) := βP
(

(iLAl)
(

etQiLQiLAk

))

.

(Note that the a-dependence in Bkl(a, t) stems from the application of the
projection operator.)

Again, we needed to demand that A is linear in ~rN and to include the inverse
mass in order to be able to use the potential of mean force. (The work of Hijon
and co-workers is more general than the derivation discussed here. They used a
different projection operator, for which A does not need to be linear in ~rN , and
eq. 32 still holds. However, the conservative force cannot then be interpreted
as a potential of mean force.) Inserting this expression in eq. 27, we obtain the
nonlinear GLE for Ȧt

µ
dȦt

dt
= −kBT

∂U(a)

∂a1

∣

∣

∣

∣

a=At

+ fNL
t

− µ

∫ t

0

dτ

(

[B](At−τ , t) ·
∂U(a)

∂a

∣

∣

∣

∣

a=At−τ

− kBT
∂[B](a, t)

∂a

∣

∣

∣

∣

a=At−τ

)

2

,

(33)

where fNL
t is the second component of fNL

t
= eQiLtQiLA(Γ0), square brackets

indicate matrices, and the notation (. . .)2 indicates the second component of
the vector resulting from the operation in inside the parentheses.

The memory term in this equation remains nonlinear in both components
of At. Hence we do not obtain an expression of the form KNL(t− τ)Ȧτ unless
we make approximations. We conclude that eq. 26 is not exact. Note also that
〈fNL

0 fNL
t 〉 is not proportional to the memory term. For this type of nonlinear

GLE, there is no fluctuation-dissipation relation.
Under the approximation [B](a, t) ≈ [B′](a)δ(t), we obtain a Markovian

Langevin equation

µ
dȦt

dt
= −

(

µ[B′]2(At, Ȧt) + kBT
) ∂U(a)

∂a1

∣

∣

∣

∣

a=At

+µ kBT
∂[B′]2(a)

∂a

∣

∣

∣

∣

a=At

+f ′
t .
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Note however, that this structure is still more complex than eq. 23. Thus even
in the case of time-scale separation, care is needed when using a coarse-grained
model which contains a potential of mean force.

Another common approximation of eq. 33 retains the non-locality in time,
but removes the dependence of [B](a, t) on the value of the observable a. In
particular, if A is the center of mass position X of a set of particles and Ȧ is
the corresponding velocity, it is common to assume that [B](x, ẋ, t) does not
depend on the position, and to average the momentum-contribution to [B](ẋ, t)
over the equilibrium distribution. This approximation is used frequently in the
work of Voth, Karniadakis, Darve and co-workers [39, 53, 54, 55].

We have now seen that the memory term derived with a Zwanzig-type pro-
jection operator does not have the same structure as the one in eq. 24. To
construct a linear memory term, we repeat the procedure with a Mori-type pro-
jection onto A = (A, Ȧ)⊤ (see sec. 2.3) as a cross-check. This provides us with
an equation of the form

dAt

dt
= [ω]At +

∫ t

0

dτ [K](t− τ)Aτ + ft , (34)

where the definitions of ω and K are the same as in sec. 2.3, but for vectorial
quantities. The second component of the observable is the same as iL applied to
the first component, hence the dynamics of the orthogonal degrees of freedom
becomes easy to handle. We define

kij(t) = (QiLAi, e
tQiLQiLAj) =

(

(fi)0, (fj)t
)

such that [K] = −[k](t)(A,A)−1. Then we use the fact that (1 − P)iLA = 0
by construction and that (iLA,A) = 0, because (iLA,B) = −(A, iLB), to show
that

ω11 = ω22 = 0 , ω12 = 1 , ω21 =
(Ȧ, Ȧ)

(A,A)
, k11(t) = k12(t) = k21(t) ≡ 0 and f1 ≡ 0 .

From this follows that the first component of eq. 34 is consistent with the trivial
relation dAt

dt = Ȧt and that the only non-trivial contribution to the memory
kernel of the second component is K22 For the second component of eq. 34 we
thus obtain

dȦt

dt
= ω21At −

∫ t

0

K22(t− τ)Ȧτdτ + (f2)t .

The memory term of this equation is equivalent to the one of eq. 26, but the
drift term is linear by construction.

In summary, we assume that a misunderstanding regarding the exchange-
ability of the derivations from ref. [28, 14] and [15] underlies the frequent use of
eq. 26 in models for complex coarse-grained systems. The conclusions drawn in
ref. [52] regarding the structure of the equation of motion seem to be incorrect.
Another piece of work, which is often cited to justify the use of eq. 26, is the
derivation by Kinjo and Hyodo [56]. We do not discuss this derivation in detail
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here, but we note that it contains a slip similar to the one in ref. [52]. The op-
erator defined in eq. 26 of ref. [56] is not a projection operator (unfortunately,
Kinjo and Hyodo did not write out the time-dependence explicitly in all terms
of eq. 26 of ref. [56]. However, to us it seems that the last term in eq. 26 should
contain a time t, and not t0, while the other terms contain a t0.)

For more details on projection operator formalism and in careful theoretical
approaches to the coarse-graining problem, we recommend e.g. ref. [15, 57, 37,
38, 39].

2.4.3. Phase Field Models

The idea of using functions f(A) as additional observables in order to pro-
duce different forms of nonlinear Langevin equations can be extended [57, 58,
59]. One might, for instance, aim for equations of motion in terms of powers of
the observable and its spatial derivatives

A = {A,A2, . . .An,∇A, . . . (∇A)n,∇2
A, . . . (∇2

A)n, . . .} .

Such equations of motion would be similar in structure to phase-field models.
We briefly recall the basic ideas of phase-field modelling [60, 61]: If we

intend to model a phase transition process such as e.g. the formation of liquid
in a supersaturated vapor or the solidification of a melt after a temperature
quench, it is useful to introduce an order parameter field φt(~r) which quantifies
the amount of stable phase formed at time t. As the driving force of the phase
transition dynamics, phase field models use a Landau-type free energy density,
i.e. a polynomial in the order parameter and its spatial derivatives. The free
energy of the system is then expressed as a functional GPF[φ(~r)] of the form

GPF[φ(~r)] =

∫

d~r′
(

a1|∇φ(~r′)| + a2|∇2φ(~r′)| + . . .+ b1φ(~r′) + b2φ
2(~r′) + . . .

)

.

In order to obtain a model for a specific material, the parameters a1, a2, . . . , b1, b2, . . .
are either fitted to material properties or extracted from computer simulation.
The equation of motion for the order parameter field is assumed to be of the
form

∂φt(~r)

∂t
= −γ δG

PF[φ(~r)]

δφ

∣

∣

∣

∣

φ(~r)=φt(~r)

+ ηt(~r) , (35)

where γ is a friction coefficient and ηt(~r) is a stochastic force-field. The literature
on numerical methods to solve these equations for specific geometries and choices
of GPF is vast. However, to our knowledge, eq. 35 has not yet been derived
rigorously from first principles by means of a projection operator formalism.
We assume that it should be possible to provide such a derivation following
the lines of argument sketched in sec. 2.4.2, possibly in combination with the
arguments given by Español and Löwen in their derivation of dynamic DFT [62],
sec. 3.1.3. This would, in particular, allow to systematically assess the limits of
applicability of phase-field models.
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2.5. Projection Operators and Stochastic Processes

Coarse-graining methods are not restricted to microscopic, deterministic dy-
namics. Often researchers begin with an existing coarse-grained model and in-
tend to coarse-grain it further. A typical example is the simulation of biomolecules
with an implicit solvent. Here the degrees of freedom of the biomolecule are
treated as atomistic, while the solvent is coarse-grained, and the aim is to pro-
duce an effective model for the evolution of structural motifs. Another example
is the simulation of colloidal particles in a suspension, in which again, the de-
grees of freedom of the solvent have already been integrated out to obtain the
Brownian dynamics of the (“atomistic”) colloids, and the aim is to obtain an
effective description of e.g. a phase transition process. Projection operator tech-
niques can be used to derive the corresponding equations of motion for these
additional steps of coarse-graining, too.

Español and Vázquez considered the dynamics of m coarse-grained degrees
of freedom z = {z1, . . . zm}, governed by the Liouville equation

∂tρ
CG(z, t) = iLCGρCG(z, t)

with a Liouvillian of the form

iLCG◦ := −
∑

i

∂

∂zi
vi(z) ◦ +

∑

i,j

1

2
kB

∂

∂zi

∂

∂zj
dij(z)◦ ,

where dij = dji, i.e. the distribution of the coarse-grained variables ρCG evolves
according to a Fokker-Planck equation with a drift vector v and a diffusion
tensor [d]. Español and Vázquez applied a projection operator of the Zwanzig-
type to the Fokker-Planck equation to project the dynamics onto a set of “more
coarse-grained” variables a(z) = {a1(z), . . . , ak(z)}. They obtained an equation
of motion, which is similar in structure to eq. 11. Under the assumption of
time-scale separation, this equation of motion can again be approximated by a
Fokker-Planck equation, i.e. the structure of the equation of motion is invariant
under consecutive steps of coarse-graining if there is time-scale separation at
each step [63].

Kranz and co-workers started out from a stochastic description of a gran-
ular system in terms of a Langevin equation for the velocities of the granular
particles. Via the BBGKY hierarchy, eq. 5, they derived mode coupling equa-
tions to describe the glass transition [64]. In this work, first the average over
the stochastic contributions was taken and then the coarse-grained equations of
motion for the averaged quantities 〈A〉ξ(t) was obtained.

Recently, Glatzel and co-workers showed that the projection operator for-
malism by Mori can be applied in a straightforward manner to a wide range
of stochastic processes on the trajectory level, i.e. without taking the average
over the distribution of the stochastic process first [65]. The conditions on the
process, for which the arguments given in ref. [65] hold, are rather weak: The
values of the stochastic variables need to be bounded and the stochastic process
needs to be either time-discrete or, if it is time-continuous, it must be possible
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to approximate each realization by an analytic function. The resulting equa-
tion of motion for the coarse-grained variables is of the form eq. 19, as in the
deterministic case. Therefore, in particular, the dynamics generated by molec-
ular dynamics simulations using a thermostat or barostat can be described on a
coarse-grained level by means of the GLE and all numerical methods developed
to analyze eq. 19 (see sec. 2.6.5) can be applied to data from molecular dynamics
simulations.

2.6. Numerical Methods

2.6.1. Blobs, United Atoms and Interaction Sites

Arguably the most direct way to compute the static values of ensemble av-
eraged observables is to sample the configurational part of the equilibrium dis-
tribution, ρEQ

N (~rN ), by means of Monte Carlo (MC) techniques [66, 67]. These
techniques are widely used to compute structure factors, order parameters, ther-
modynamic coefficients, interfacial tensions, etc. If, in addition, we are inter-
ested in the dynamics of observables we need to perform Molecular Dynamics
(MD) simulations to numerically estimate transport coefficients, effective inter-
actions between groups of particles, and memory functions. In the following
we will briefly describe classes of coarse-graining methods that are used in MD
simulation.

In soft matter physics and, in particular, in the field of polymer simulation
it is a common strategy to group atoms into larger units (which are called blobs,
united atoms or interaction sites in the literature), to determine the effective
forces between these units, and to propagate an approximative Langevin Equa-
tion on the coarse-grained level. In the notation introduced above, the set of
observables A (Γ) then consists of the positions

R(Γ) :=
(

~R1 (Γ) , . . . , ~RM (Γ)
)

and momenta
P(Γ) :=

(

~P1 (Γ) , . . . , ~PM (Γ)
)

of M coarse-grained units, preferably for M ≪ N . If the system is in thermal
equilibrium it is clear, in principle, which equation of motion one would need to
solve in order to predict the motion of the units; it is eq. 11 for the dynamics

of the set of observables A =
(

~RM , ~PM
)

. However, this equation is very com-

plex even for simple interaction potentials, because it contains memory and the
effective interactions are not just pairwise.

In practical applications it would be convenient if the equation of motion
were similar in structure to the Newtonian equation of motion of the microscopic
system, i.e. if it were of the form

Mi
d2 ~Ri

dt2
=

d~Pi

dt
=

M
∑

i

~F
(∣

∣

∣

~Ri − ~Rj

∣

∣

∣

)
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or at least of the form

Mi
d2 ~Ri

dt2
=

d~Pi

dt
= ~F

(

~R1, . . . ~RM

)

+ ~F ST
i , (36)

whereMi is the mass associated to unit i, ~Ri = Ri(Γt), ~Pi = Pi(Γt), ~F
(

~R1, . . . , ~RM

)

is a many-body force and ~F ST
i is a stochastic force. The central questions in

the field of coarse-grained soft matter simulation are therefore:

• Under which conditions can we use coarse-grained forces that contain only
two-body (or at most three- or four-body) interactions?

• Under which conditions can the dynamics of the coarse-grained units be
considered Markovian?

• If we numerically propagate the coarse-grained equation of motion, errors
accumulate. How are these errors related to the microscopic evolution of
the system?

• If we wish to switch forward and backward dynamically between the micro-
scopic and the coarse-grained scales, how should we proceed when breaking
the coarse-grained units into their constituents?

These questions cannot be addressed in general. They need to be answered
in the context of the class of systems and the materials properties that one
would like to model. In particular, the practitioner needs to decide which of the
thermodynamic properties, the symmetries and the transport coefficients of a
system shall be reproduced to which level of accuracy. Good overviews of coarse-
grained soft matter simulation methods can be found e.g. in ref. [68, 69, 70, 71]
as well as in the introductions of ref. [54, 72, 73, 74]. Here we briefly summarize
the key concepts:

In an equilibrium ensemble, the interaction between coarse-grained units is
given by the potential of mean force

UMF
(

~R1, . . . , ~RM

)

= −kBT ln

(∫

dΓ δ
[

R (Γ) −
(

~R1, . . . , ~RM

)]

ρEQ
N (Γ)

)

.

The Boltzmann inversion or inverse Monte Carlo approach [75, 76, 77] is a
method to approximate the full potential of mean force UMF by a two-body po-
tential U(|~Ri − ~Rj |). The effective potential U(|~Ri − ~Rj |) is parameterized and
then optimized by matching the two particle densities, i.e. one carries out a nu-
merical search for those values of the parameters which minimize the difference

between the two-particle density of the coarse-grained model, ρCG
2

(

~Ri, ~Rj

)

, and

the corresponding “two-observable density” of the microscopic model

ρMIC
2

(

~Ri, ~Rj

)

:=

∫

dΓρEQ
N (Γ)δ

(

Ri (Γ) − ~Ri

)

δ
(

Rj (Γ) − ~Rj

)

∫

dΓρEQ
N (Γ)

.
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As the potential of mean force is a static quantity, both MD and MC can be used
to sample it. The method of iterative Boltzmann inversion is a refined version
of Boltzmann inversion, in which the steps of matching the pair distribution
functions and sampling the potential are iterated to improve the quality of the
approximation [78, 79].

Instead of working with the potential of mean force, one can parameterize
the effective forces ~FCG(~Ri − ~Rj) between two coarse-grained units and then
minimize

∣

∣

∣

~FMIC
(

~Ri − ~Rj

)

− ~FCG
(

~Ri − ~Rj

)∣

∣

∣ ,

where

~FMIC
(

~Ri − ~Rj

)

=

−
∫

dΓ
∑

~ri∈ui

∑

~rj∈uj

∂Vint(~ri − ~rj)

∂~ri
δ
(

Ri (Γ) − ~Ri

)

δ
(

Rj (Γ) − ~Rj

)

ρEQ
N (Γ)

(37)

is the sum of the forces that act between the constituents of the two units
in the microscopic model averaged over a canonical ensemble [75, 80]. When
models for polymers are designed, additional three-body and four-body forces
are usually included to take into account the bond angles and the torsion angles
of the polymer backbone. Also other mesoscopic degrees of freedom as e.g. the
size of units in a responsive material can be incorporated in the effective model
[81], but the methods to optimize the parameters, which we discuss here, remain
the same.

Methods in which the forces or the potential of mean force are approximated,
such that the coarse-grained two-particle density is reproduced, are called struc-
ture optimization methods. Next to the idea of structure optimization, there is
also an approach via the optimization of thermodynamic properties. In this case
experimental thermodynamic reference data such as the bulk density or the
bulk compressibility, the surface tension, the persistence length (in the case of
polymers), the free energy of vaporizaton and hydration (in the case of lipids)
and similar thermodynamic properties are used to determine the parameters of
the force field [82, 83, 84, 85, 86, 87].

In this review, we have opted to show derivations which start out from
classical microscopic models. However, the derivations presented in sec. 2.2 and
sec. 2.3 can be applied equally well to quantum mechanical systems [12, 13, 14]
and the resulting equations of motion have the same mathematical structure.
Thus, if chemical details need to be taken into account in a coarse-grained model,
forces can be fitted to results from ab-initio electronic structure calculations or
quantum chemical simulations [88, 89, 90, 91, 92].

An interesting variant of structure optimization is to minimize the relative
entropy SREL between the microscopic model and the coarse-grained model.
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Shell suggested to use the following definition for the relative entropy [93, 72]

SREL :=

∫

dΓ ρEQ
N (Γ) ln

(

ρEQ
N (Γ)

ρCG
M (Γ;U,R−1)

)

+

∫

d~RM ρEQ
N (R−1(~RM ))

(

ln
{

a
∫

dΓ δ
(

R(Γ) − ~RM
)})

∫

dΓρEQ
N (Γ)

=

〈

ln

(

ρEQ
N (Γ)

ρCG
M (Γ;U,R−1)

)〉

+ 〈SMAP〉 . (38)

Here we used the short notation ~RM := { ~R1, . . . , ~RM} for the positions of the
coarse-grained units. ρCG

M (Γ;U,R−1) is the probability of finding a microscopic
state Γ if one samples the coarse-grained model according to the equilibrium
distribution for a given parameterization of the potential U(~R1 . . . ~RM ), and

one uses a map Γ = R−1(~R1 . . . ~RM ) to break the coarse-grained units into
their microscopic components. Further, we introduced a normalization factor a,
to render the expression in the curly parentheses dimensionless. (This constant
seems to be missing in ref. [72].)

The first term of eq. 38 is the Kullback–Leibler divergence between the equi-
librium distribution of the microscopic model and ρCG

M (Γ;U,R−1). The second
integral in the first line runs over the volume accessible to the coarse-grained
positions. This term is the ensemble average with respect to the equilibrium
distribution of the micropscopic states, ρEQ

N (Γ), over the entropy associated to

the mapping between the models, SMAP := ln
{

a
∫

dΓ δ
(

R(Γ) − ~RM
)}

, which

is caused by the degeneracy of R(Γ). As Rudzinzki and Noid pointed out, it
is inconvenient that eq. 38 requires a map R−1 to break up the coarse-grained
units [94]. Given the degeneracy of R(Γ), the choice of such a map is inevitably
ambiguous. Therefore a definition of the relative entropy on the level of the
coarse-grained variables is preferable

SREL[U,R] := kB

∫

d~RM ρR(~RM ) ln

(

ρR(~RM )

ρCG
M (~RM )

)

,

with the relevant density

ρR(~RM ) :=

∫

dΓρEQ
N (Γ)δ

(

R (Γ) − ~RM
)

∫

dΓδ
(

R (Γ) − ~RM
) .

Compared to the structure optimization approach on the two-particle level, this
approach, which is based in probability theory rather than liquid state theory,
has the advantage that it is quite general and applicable to a large range of
different observables.

The research field of designing suitable effective forces for coarse-grained MD
simulations is large and we have obviously not given an exhaustive overview here.
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The intention of this brief summary was rather to show which assumptions and
approximations enter the basic equations of motion which are solved by this
type of coarse-grained simulation. Most importantly, these equations of motion
are derived under the assumption of time-scale separation and equilibrium con-
ditions (or non-equilibrium steady-state conditions). It is not straightforward
to generalize any of the methods listed above to systems out of equilibrium.

2.6.2. Dissipative Particle Dynamics

For simulations of polymer mixtures, polyelectrolytes, oil-water-surfactant
mixtures as well as lipid-membranes, Dissipative Particle Dynamics (DPD) is
a popular method [95, 96, 97]. DPD works on the level of coarse-grained units

(eq. 36) and uses a specific functional form of the forces ~F
(

~Ri, . . . ~RM

)

+ ~F ST
i

between the units such that the resulting equation of motion has the form

Mi
d2 ~Ri

dt2
= −∂U(~RM)

∂ ~R

∣

∣

∣

∣

∣

~R=~Ri

−
M
∑

j 6=i,j=1

γωD(Rij)(~vij · ~eij)~eij +

M
∑

j 6=i,j=1

σνR(Rij)~eijξij , (39)

where the sums run over all other other coarse-grained units in the system,
U(~RM ) is the potential energy of the coarse-grained model, Rij := |~Ri − ~Rj | is

the distance between two coarse-grained units, ~vij := d~Ri

dt − d~Rj

dt is their relative

velocity, ~eij :=
~Ri−~Rj

|~Ri−~Rj |
, and ξij is white Gaussian noise, which is independent for

different pairs of units. This choice implies that the dynamics of the positions ~Ri

is derived from a potential energy, while the dynamics of the corresponding ve-
locities is dissipative. The functions ωD(Rij) and νR(Rij) have a finite support
in order to restrict the model to local dissipative interactions. To ensure ther-
modynamic consistency, the friction coefficient γ is related to σ by σ2 = 2γkBT

and the weight functions are related by ωD(Rij) =
(

νR(Rij)
)2

.
Interestingly eq. 39 has been used for two rather distinct purposes: the

coarse-grained simulation of macromolecules and colloidal systems by means
of DPD on the one hand [98] and the numerical solution of the Navier-Stokes
equation on the other hand [99, 100, 101]. In the latter context, the idea is
to exploit the fact that eq. 39 conserves momentum and therefore correctly
models hydrodynamic transport through the coarse-grained fluid. In particular,
if we choose the weight function ωD(Rij) such that it restricts the dissipative
interaction to particles within a cuboid cell, and if we replace the dissipative
term by a rotation of the relative velocity, we obtain the method called Multi-
Particle Collision Dynamics (MPCD) or Stokesian Rotation Dynamics (SRD).
The numerical integration of eq. 39 is then split into two parts, a “streaming
step” and a “collision step”. In the streaming step the positions of all units are
propagated according to

~Ri(t+ ∆t) = ~Ri(t) + ~Vi(t)∆t ,
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where ~Vi is the velocity of unit i. In the collision step the velocities are updated
according to

~Vi(t+ ∆t) = ~u(t) + [R] ·
(

~Vi − ~u
)

,

where ~u is the average velocity of the units in the cell that contains unit i, and [R]
is a rotation matrix. The rotation angle, the duration ∆, the number density of
units in the collision cell and the mass of the units are free parameters which can
be used to fix the transport coefficients of the fluid such as the shear viscosity and
the thermal conductivity [100, 102]. If other particles are embedded in the fluid,
e.g. colloidal particles or polymers, the interactions between the coarse-grained
units of the solvent and these particles can be used to tune their diffusivity.

The Lattice Boltzmann (LB) method is a closely related approach to model
the mesoscopic properties of a fluid. Just as MPCD and SRD, it consists in a
ballistic streaming step and a diffusive collision step. However, as the method
is based on lattice automata, the continuum fluid is discretized into effective
particles which move on a grid rather than in continuous space. The body
of literature on the manifold variants of the LB method is quite large. We
will therefore not discuss it here, but refer the reader to two very useful review
articles, ref. [103, 104], and note that the LB method has been combined with an
integral equation solver to take memory effects in the coarse-grained dynamics
into account, thus allowing to simulate glass-forming fluids [105, 106].

The specific form of the coarse-grained interaction in the DPD method,
eq. 39, has been suggested by means of an educated guess rather than a deriva-
tion from first principles [107]. MPCD and LB are based on a more controlled
approximation as they have been constructed to solve the Boltzmann equation,
eq. 47, but generally, all methods listed in this section are subject to the same
limitations as the ones discussed in sec. 2.4.2. Therefore the users of DPD,
MPCD, SRD, LB and related simulation methods need to make sure that the
Markovian approximation as well as the assumption of pairwise contributions
ωD(Rij) to the dissipative force (resp. of contributions of the form [R]·(~Vi(t)−~u))
are reasonable for each system that they simulate.

2.6.3. Backmapping

Often coarse-grained models are used to speed up simulations of certain
processes, such as self-assembly, structure formation or conformational changes
of large molecules, but once the process has occurred, the microscopic degrees of
freedom are of interest again. Then the coarse-grained units need to be broken
up in such a way that a realistic microscopic configuration is produced. This
procedure is called backmapping. It can be carried out with different intentions:
to compare information from the atomistic model with experimental data such
as e.g. a structure factor from neutron scattering, to seed a new set of atomistic
simulation trajectories or to use atomistic positions as part of an adaptive multi-
resolution scheme. Accordingly the requirements for a “good” backmapping
scheme differ between applications.

In 1998, Tschöp and co-workers introduced a backmapping procedure to
generate atomistic simulation configurations of a polymer melt for a comparison
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with neutron scattering data after the melt had been equilibrated in a coarse-
grained simulation [108]. The procedure consisted in constructing templates for
the groups of atoms, which had been coarse-grained into single units, placing
them such that the contour of the atomistic chain matched the one of the coarse-
grained chain and then letting the restraints on the atoms go such that the atoms
could relax into the nearest local energy minima. A similar strategy had also
been employed for a lattice model by Kotelyanskii and co-workers in 1996 [109],
who generated self-avoiding random walks on a cubic lattice as templates for
polymer backbones and then decorated them with atoms, which they let relax
into local minima by MD simulation. With improved methods of placing the
atoms, this type of backmapping strategy is still widely used. Atoms can either
be placed according to tabulated fragments of molecules [110, 111, 6], using
geometrical interpolation [112, 113] or simply randomly [114]. These methods
are not restricted to equilibrium configurations. They can also be applied to
systems under shear [115].

Recently, Bayesian Inference [116] as well as machine learning methods
[117, 118] have been used to determine optimized atomistic positions. In the
machine learning approach a network is trained on a set of atomistic simula-
tion snapshots together with the corresponding coarse-grained configurations.
When the trained network is then given unknown coarse-grained configurations
it produces atomistic snapshots which contain correlations caused by the coarse-
grained structure, such as e.g. orientational correlations between different groups
of atoms in a polymer which are imposed by the global structure of the back-
bone. On the one hand, this is an advantage over the methods listed above, in
which such correlations either had to be included by hand or they had to form
as a result of the relaxation procedure. On the other hand, so far the quality of
machine learned backmapping procedures still seems to depend strongly on the
system under study [117, 118].

Bayesian Inference makes use of Bayes’ theorem [119], i.e. the probability of
a microscopic configuration Γ stemming from a coarse-grained configuration R

can be expressed as

P (Γ|~RM ) =
P (~RM |Γ)

P (~RM )
P (Γ) =

P (~RM |Γ)

ρR(~RM )
ρEQ
N (Γ) ,

where P (~RM |Γ) is determined by the map ~RM = R(Γ). Obviously, if we could

compute ρR(R) and ρEQ
N (Γ) analytically, we would not need the simulation in

the first place. Thus the method relies on using suitable approximate expressions
for these probabilities.

Adaptive resolution models couple microscopic and coarse-graind degrees
of freedom within one simulation, and they coarse-grain and map back on the
fly. Such models have been proposed for soft materials [120, 121, 74, 122] as
well as solids [123, 124, 125]. They are used, in particular to study interfaces
between phases or crack propagation, as the bulk of a material can often be
modelled on a rather coarse scale, while interfaces need a more detailed model.
The conditions which the protocol of changing scales should fulfill depend on
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the system under study. In solids, mostly forces or energies are matched, while
schemes for soft materials match potentials of mean force or thermodynamic
transport coeffcients. In general, however, care needs to be taken when applying
coarse-graining and backmapping methods to phase transformation processes,
crack propagation and other types of non-equilibrium processes. After all, the
derivations of most commonly used coarse-grained models require either the
assumption of equilibrium or of Markovianity.

2.6.4. Markov State Models

In the field of biomolecular modelling the systems of interest usually con-
tain components that relax on a large range of different time-scales. If one is
interested e.g. in the dynamics of a protein in aequous solution, the time-scale
needed for conformational changes is many orders of magnitude larger than the
time-scale needed for the relaxation of the water molecules or the oscillations
of the bonds between individual atoms in the protein. For many biomolecules
it make sense to assume that most degrees of freedom are equilibrated almost
instantenously compared to the motion of the structural motifs, and that this
motion can therefore be understood as a stochastic process in a free energy
landscape. In addition, in many cases this landscape consists of local minima
which are separated by high free energy barriers. Then Kramers theory can be
used to simplify the dynamics even further, i.e. the Langevin equation for the
motion of the coarse-grained variables in the free energy landscape is replaced
by a set of rate equations which describe the transitions between the minima
[126].

To construct a Markov State Model (MSM), we partition the configuration
space of the system into cells which contain one minimum and its basin of
attraction each (as in the case of liquid structure theory, sec. 2.1, we restrict
the partitioning to configurations, because the distribution of the momenta can
be factored out). If Pi(t) is the probability of finding the system in a cell i at
time t and kji is the rate of going from cell j to cell i, the probability evolves
according to

Pi(t+ dt) = Pi(t)



1 −
∑

j 6=i

kijdt



+
∑

j 6=i

Pj(t)kjidt .

Here we assumed that the time-scale on which we model the system is sufficiently
coarse-grained for the process of barrier crossing to be Markovian. For the entire
system we then have a master equation of the form

dP(t)

dt
= P(t) · [K] ,

where Kii = −
∑

j 6=i kij and Ki6=j = kji. This type of equation can be analyzed
by well-established means of the theory of continuous-time Markov processes
[127, 128].

Thus in Markov State Modelling the task of coarse-graining is split into the
following steps: discretization of phase space in terms of suitable basins in the
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free energy landscape, computation of the transition rates between these basins,
and solving the resulting master equations [129, 130, 131, 132, 133, 134, 135,
136]. For a biomolecule in water, the microscopic configurational space has a
very high dimension. Hence the identification of a set of coarse-grained coor-
dinates, which describe the system well and in terms of which the free energy
landscape can be partitioned, is the most difficult step. To start out with, it is
usually (but not always) reasonable to exclude the degrees of freedom of the wa-
ter from the analysis. However, the remaining state-space of a peptide then still
contains dozens to hundreds of degrees of freedom, that of a protein a factor ten
to a thousand times more. To a certain extent, researchers can rely on empirical
knowledge to make educated guesses on structural motifs that might guide the
partitioning. More systematically, linear reduction techniques such as princi-
pal component analysis can be used to find structure in the simulation data,
as well as nonlinear reduction techniques and machine learning (for a review
see e.g. [136].) The quality of the partitioning can be improved additionally by
including information on the dynamics of the molecule [137, 138, 139].

Once clusters in configuration space have been identified, the transition rates
can be determined. In some cases this is possible by means of “brute-force sim-
ulation”, i.e. by running long molecular dynamics trajectories and counting the
transitions between pairs of basins. However, often enhanced sampling methods
are needed such as e.g. Umbrella Sampling [140], Wang Landau Sampling [141]
or transition path sampling [142].

The approach we sketched here, which is practical and guided by empirical
knowledge, is used by many researchers in the biomolecular modelling com-
munity. However, Markov State Modelling can also be put on a mathematical
basis. We briefly summarize the very instructive and readable overview given by
Koltai and co-workers in ref. [143]. We assume that certain degrees of freedom of
the system have already been integrated out, e.g. the degrees of freedom of the
water molecules, and that we start out from a stochastic model for the remain-
ing degrees of freedom, e.g. the positions of the atoms in the biomolecule. We
consider a continuous-time homogeneous stochastic process {~xt}t≥0 defined on

the space of the configurations of N atoms, X ⊂ R3N . The process is described
by a probability density p : X × X → R≥0, where p(~x, ~y; t) is the conditional
probability density of the particles being at positions ~y at time t given that they
were initialized at ~x at time 0, and we normalized p(~x, ~y; t) such that

P (~xt ∈ X |~x0 = ~x) =

∫

X

p(~x, ~y; t) d~y .

In the following, we only consider ergodic processes for which there is a unique
stationary density µ(~x) and for which p(~x, ~y; t) is continuous in both arguments.
If the process is reversible, µ fulfills the detailed balance condition

µ(~x) p(~x, ~y; t) = µ(~y) p(~y, ~x; t) ∀ ~x, ~y ∈ X, t ≥ 0 .

Now we would like to study the dynamics of an observable A(~x). The observable
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is propagated by the Koopman operator K(t) for a lag time t

K(t)A(~x) :=

∫

X

p(~x, ~y; t) A(~y) d~y .

This equation is the equivalent of eq. 14 for a system with stochastic dynam-
ics. As we imposed detailed balance, the Koopman operator is identical to the
Perron-Frobenius transfer operator T (t), which propagates a probability density
u(~x) with respect to the stationary density as

T (t)u(~x) :=
1

µ(~x)

∫

X

u(~y) µ(~y) p(~y, ~x; t) d~y .

Hence we can move easily between the “Heisenberg picture” and the “Schrödinger
picture” and use properties of Tt when we analyze the dynamics of observables.
If we consider a system under time-dependent external driving, there is no such
simple relation between the Koopman operator and the Perron-Frobenius opera-
tor anymore (see sec. 3.2.2 for the deterministic case and 3.3.2 for the stochastic
case). In essence, this is why non-equilibrium Markov State Modelling is diffi-
cult.

K(t) is self-adjoint, i.e.

(K(t)f, g)µ = (f,K(t)g)µ ,

where f and g are elements of L2
µ, the L2-Hilbert space of functions which are

integrable with respect to µ, and similar to eq. 18 we defined an inner product

(f, g)µ :=

∫

X

f(~x)g(~x) µ(~x) d~x .

Thus the eigenvalues λti of K(t) are real-valued, and the eigenfunctions form an
orthogonal basis of L2

µ. We call the normalized eigenfunctions of K(t) φi and
expand functions f ∈ L2

µ as

f =

∞
∑

i=0

(f, φi)µ φi .

With this we obtain an equation for the dynamics of the observable A(~x) in
terms of the modes (A(~x), φi)

K(t)A(~x) =

∞
∑

i=0

λti (A(~x), φi)µ φi . (40)

As we imposed the condition of ergodicity, the largest eigenvalue of K(t) is 1.
We sort the eigenvalues in descending order 1 = λt1 > λt2 ≥ λt3 ≥ . . .. If there is
a spectral gap, i.e. if there is a k for which

1 − λtk ≪ λtk − λtk+1 ,
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we consider {λt1 . . . λtk} the dominant spectrum of K(t) and truncate the series
eq. 40 at order k.

The eigenvalues λti are associated with decay times τi := −t/ ln(λti). As
K(t) and T (t) are identical, the existence of a spectral gap in T (t) implies that
the dynamics of any observable, eq. 40, is dominated by the k longest decay
times τ1, . . . , τk. The eigenfunctions of T (t), φ1 . . . φk, define a set of reaction
coordinates which allow us to partition the state space and to build a model.
Expressed in these terms, the task of Markov State Modelling is to estimate
the spectrum of the Perron-Frobenius operator, to identify the spectral gap and
to suggest a k × k-matrix [K], the spectrum of which approximates the true
spectrum as closely as possible.

Numerically, the optimal matrix [K] can be found by means of a variational
principle [144, 145, 146], as e.g. in the VAMP algorithm introduced by Noé
and co-workers [147]. Even data obtained from systems out of equilibrium
(e.g. from non-equilibrium molecular dynamics simulation trajectories) can be
used to estimate the transition rates of an equilibrium MSM [148, 149].

Most of the work on practical applications of Markov State Modelling that
we found in the literature used thermostats when generating the molecular dy-
namics trajectories, based on which the configuration space was partitioned and
the transition rates were determined. Thus an equilibrium assumption already
entered the choice of simulation method. In addition, the metastable states
were usually interpreted as being located in the minima of a free energy land-
scape, i.e. the implicit assumption was made that the dynamics is governed by
an equation form of eq. 23. Or, at least interchangeability of the Koopman op-
erator and the propagator of the density of states was implicitly assumed when
the relevant time-scales were analyzed. However, Markov State Modelling is not
neccessarily an equilibrium method, as the coarse-grained states can, in prin-
ciple, be defined on a purely dynamical basis. We will discuss non-equilibrium
extensions to Markov State Modelling in sec. 3.3.2.

2.6.5. Steady States with Memory

The methods discussed in the previous subsections require time-scale sepa-
ration between the microscopic and the coarse-grained model for the Markovian
resp. the time-local approximation to hold.6 If this separation is not given, first
the memory kernel K(t−τ) of the effective equation of motion needs to be deter-
mined in the simulation of the microscopic system. Then an integro-differential
equation rather than a differential equation needs to be solved.

Before we discuss numerical methods to solve these two tasks, we consider

6In the literature one frequently encounters the term Markovian used in the context of
deterministic, time-local equations of motion on the coarse-grained scale such as eq. 19 with
K(t− τ) ∝ δ(t − τ). Here we follow this convention and imply that both types of dynamics,
stochastic and deterministc, are considered, unless specified otherwise.
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the autocorrelation function of a coarse-grained observable

C(t) := 〈A(t)A(0)〉 =

∫

dΓ ρEQ
N (Γ)

(

eiLt
A(Γ)

)

A(Γ) =
(

eiLt
A,A

)

. (41)

Inserting this definition into eq. 19 we obtain an equation of motion for C(t)

dC(t)

dt
= ωC(t) +

∫ t

0

K(t− τ) C(τ)dτ . (42)

Conveniently, the fluctuating force term is averaged to zero. Thus the form of
eq. 42 is independent of whether we use the deterministic version of the GLE,
eq. 19, or the stochastic version, eq. 22, to derive it. In eq. 42 the drift ω is the
same constant as in eq. 19 and the memory kernel K(t) is the same function.
Hence we have the choice of determining K(t) either from correlation data or
from individual trajectories.

Note that the relationship between the correlation function C(t) and the
kernel K(t) is a simple convolution. In principle, it is therefore clear that the
memory kernel can be obtained by means of a Laplace transform or a Fourier
transform of the observed autocorrelation function of the variable of interest.
In practice, however, the number of sampled trajectories, the time-resolution
with which C(t) is sampled and the physics of the specific problem (which
determines the functional form of the memory kernel) pose conditions on the
type of numerical method that can be used. As this is a typical linear inverse
problem, the body of mathematical literature on suitable numerical methods is
large and cannot be reviewed here.

Instead we give an overview over the physics literature. There is a wide
range of work on specific systems in which memory kernels are extracted either
from simulation data or from experimental data. Some authors determine the
kernel directly in the time domain from discretized measurements of the au-
tocorrelation function [150, 151, 52, 152, 153, 154, 155, 156], or of its Fourier
transform [157, 158] or of its Laplace/z-transform [159, 160]. Other authors use
parameterizations and then perform fits; again this is done in the time domain
[47], on the Fourier transform [161] or on the Laplace transform [46]. Recently
also machine learning has been used to carry out these fits [49]. Other authors
expand the kernel [162, 163, 164, 165, 166] or its Laplace transform [167, 51]
and numerically determine the coefficients of the expansion. Often, these pro-
cedures are guided by additional information on the functional form of K(t),
e.g. the limiting behavior at t = 0 and t→ ∞, which is known from theoretical
considerations for specific systems and observables [168, 169, 158, 170]. Similar
to the iterative Boltzmann inversion method for fitting effective forces, the fit of
the memory kernel can also be improved by an iterative procedure [171, 49]. A
recent review on the application of these approaches in the context of polymer
modelling can be found in ref. [172].

Once the kernel is known, the corresponding equation of motion needs to
be solved. Compared to the fit of the kernel, this is a more difficult problem
[36]. In ref. [173], Parish and Duraisamy give a very instructive overview of
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numerical methods used to approximate memory kernels and to propagate the
GLE in the context of hydrodynamic simulations. One widely used method, the
t-model method [57, 174], consists in approximating the dynamics orthogonal
to the variable of interest, eQiLt◦, such that a time-local equation of motion
results.7 To motivate the t-model, we first note that the last term in eq. 41 is
an inner product of the form that enters the definition of the projection operator
PM. We recall eq. 16

∂

∂t
eiLt

A(Γ0) = eiLtP iLA(Γ0)+eQiLtQiLA(Γ0)+

∫ t

0

eiL(t−τ)P iLeQiLτQiLA(Γ0)dτ

and see that eq. 42 can be obtained from eq. 16 by application of PM. Under
the approximation of the t-model

P
∫ t

0

eiL(t−τ)P iLeQiLτQiLAj(Γ0)dτ ≈ tetiLP iLQiLAj(Γ0) (43)

the memory term in eq. 42 is simplified to a term linear in time t, i.e. the
problem is made Markovian and standard solvers for partial differential equa-
tions can be applied. Improvements of the t-model consist e.g. in estimating
the temporal support and magnitude of the memory kernel in order to produce
time-dependent correction factors for the LHS of eq. 43 [176, 173].

Another common approach is not to propagate eq. 42 directly, but to use
a GLE of the form of eq. 22 on the level of individual trajectories instead and
to enforce that in the ensemble average eq. 42 is fullfilled. To this end, the
memory kernel is expanded in a suitable series. By means of an additional set
of stochastic processes a fluctuating force is then generated which fulfills the
fluctuation dissipation relation for each term in the series [177]. If, for instance,
the kernel can be approximated by a series of the form

K(t) =

N
∑

k=1

ck
τk

exp

(

− t

τk

)

, (44)

the corresponding noise Xt can simply be generated by a sum over processes ξkt
governed by an autoregressive model (AR) of order 1

Xt =

N
∑

k=1

ξkt dt ,

which are correlated such that K(t) ∝ 〈X0Xt〉 is fulfilled. The time-discretized
version of the GLE for the observable, eq. 22, can then be integrated in a
straightforward manner. We define memory modes

κi,kt :=

∫ t

0

ck
τk

exp

(

− t− t′

τk

)

At′dt
′

7Ref. [175] contains a similar idea, but seems to have been developed independently.
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evaluate these modes at each time-step and integrate the equation of motion

dAt = ωAtdt+

N
∑

k=1

κi,kt dt+Xt . (45)

Eq. 45 can easily be integrated numerically, e.g. by a Runge-Kutta method
[178, 179, 180, 181, 182, 183, 184, 185, 186]. Bockius and co-workers recently
pointed out that the same kind of approach can also be applied directly to a
series expansion of the autocorrelation function rather than the kernel [187].
For a detailed discussion on how to determine the parameters of the AR process
such that the memory is optimally reproduced, see e.g. ref. [159, 162].

Similar in spirit is an approach that has been introduced in the context
of solid state physics [188]. Kantorovich and co-workers considered a system
that is coupled to a harmonic bath, where in addition to the case discussed
by Zwanzig (see sec. 2.4) the bath degrees of freedom are also coupled to each
other by means of harmonic potentials. The kernel then contains cross-terms
between all bath degrees of freedom, but the general structure of the kernel, a
series of cosine-functions, remains the same. In order to solve the GLE for the
system numerically, Kantorovich and co-workers suggested extending the state
space by a small number of auxiliary degrees of freedom (small compared to the
number of bath degrees of freedom), which are coupled linearly to the degrees
of freedom of the system. The auxiliary degrees of freedom evolve according to
Langevin equations. The idea of the method is to choose the parameters that
enter these Langevin equations such that the effect of the auxiliary degrees of
freedom on the dynamics of the system approximates the effect of the original
bath as closely as possible. The total system (system and auxiliary degrees of
freedom) by construction then obeys a set of Markovian Langevin equations,
which can be propagated by standard methods. In principle, the justification
via the physics of the harmonic bath is not required. If one replaces eq. 44 by
a Fourier series (as done e.g. in ref. [161]), the two methods are identical.

In the context of modelling soft matter, the method of extending the state
space by auxiliary variables in order to obtain Markovian dynamics is also fre-
quently used [52, 189, 190, 53, 171, 46, 54, 191]. In particular, for coarse-grained
polymer models, as described in sec. 2.6.1, non-Markovian contributions to the
equations of motion for the positions of the units are often taken into account
by a memory kernel of the form

K(t) =
∑

j

κj exp

(

− 1

τj

)

cos (ωjt− φj)

i.e. a sum of exponentially damped oscillators. Again, the equations of motion
for the auxiliary variables are Langevin equations and the parameters are fit to
approximate the memory kernel.

Many of these approaches seem to have been developed independently in
different parts of the physics community. In essence, however, they can all
be deduced from the work of Berkowitz and co-workers [179], which we briefly
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summarize here. We aim at constructing a stochastic process Xt, which fulfills
the condition K(t) ∝ 〈X0Xt〉, to replace the fluctuating force ft in the GLE,
eq. 19. The spectral density S(ω) of Xt can be expressed in terms of the Fourier
transform of the memory kernel as

S(ω) :=

∫ ∞

−∞

dt 〈X0Xt〉e−iωt = 2kBT

∫ ∞

−∞

dt K(t)e−iωt .

The Wiener-Khinchin theorem states that S(ω) is related to the power spectrum
of Xt, X̃ω :=

∫∞

−∞ dt Xte
−iωt, by

∫ ∞

−∞

dt 〈X0Xt〉e−iωt =

∣

∣

∣

∣

∫ ∞

−∞

dt Xte
−iωt

∣

∣

∣

∣

2

= |X̃ω|2 ,

Hence K(t) determines the amplitude of the Fourier transform of Xt. If we
generate stochastic processes zω according to a zero-mean normal distribution
with unit variance and superpose them as

Xt =
2π√
2kBT

∫ ∞

−∞

dω
√

S(ω)zωe
iωt

we obtain the “auxiliary degrees of freedom” that generate the the correct mem-
ory kernel.

If we had to take into account infinitely many processes zω in practice, this
approach would not be useful. This class of methods generally relies on the
assumption that the expansion of the kernel can be truncated after a few terms.
In other words, they rely on the existence of a Markovian embedding for the
coarse-grained dynamics, which has a dimension much smaller than the dimen-
sion of the original microscopic system. In the case of a system coupled linearly
to a harmonic bath, the effect of the relaxation times of the bath modes on the
memory kernel can be assessed rather easily. This allows us to approximate
the “orthogonal dynamics” eiL(t−τ)P iLeiQLτQiLA(Γ0) in a well-controlled way
by a small number of additional equations of motion. However, in the case
where the degrees of freedom that we integrate out are those of a large set of
interacting particles rather than a bath with simple interactions, we cannot, of
course, expect to find such an embedding in general. Then the treatment of the
additional degrees of freedom will become too complex for this class of method
to be useful in practice.

3. Non-Equilibrium

The methods we have discussed in sec. 2 require the microscopic density
ρN (Γ, t) either to be stationary or to relax into equilibrium. Stationarity is a
precondition for the arguments presented in sec. 2.1, sec. 2.3 and sec. 2.6, while
the arguments presented in the first part of sec. 2.2 as well as the derivation
of eq. 33 in sec. 2.4 still hold in the case of relaxation to equilibrium. This
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restriction is not always mentioned explicitly in the references we cited. Of-
ten the numerical methods presented in sec. 2.6 are applied to systems out of
equilibrium and even to systems under time-dependent external driving or to
systems containing active particles. The author has the impression that many
users of simulation software are not aware of the restricted applicability of the
coarse-grained models they employ. This is unfortunate, because there exist
exact methods to coarse-grain systems out of equilibrium as well as methods to
construct systematic and well-controlled approximations. In the following we
will first discuss methods to coarse-grain systems which relax into equilibrium,
then methods to coarse-grain systems with explicitly time-dependent Liouvil-
lians, and then numerical methods to construct coarse-grained non-equilibrium
dynamics based on simulation data.

3.1. Relaxation to Equilibrium

3.1.1. The Kinetics of Gases

We return to the BBGKY-hierarchy introduced in sec. 2.1, which provides us
with a strategy to systematically coarse-grain from the microscopic N -particle
density ρN (~rN , ~pN , t) to the n-particle density

ρn(~pn, ~rn, t) =
N !

(N − n)!

∫

d~rN−n d~pN−n ρN (~pN , ~rN , t) .

DFT constructs approximate solutions for the stationary, configurational densi-
ties ρn(~rn). Let us now look for approximations, which might allow us to tackle
the time-dependent problem. We recall eq. 5





∂

∂t
+

n
∑

i=1

~pi
m

· ∂

∂~ri
−

n
∑

i=1





∂Vext(~ri)

∂~ri
+

n
∑

j=1

∂Vint(~ri, ~rj)

∂~ri



 · ∂

∂~pi



 ρn

=

n
∑

i=1

∫

∂Vint(~ri, ~rn+1)

∂~ri
· ∂ρn+1

∂~pi
d~rn+1 d~pn+1 . (46)

In the 1870s, when Boltzmann studied the kinetics of gases, he considered an
equation similar to eq. 46 for n = 1 and approximated the two-body interaction
term by interactions due to uncorrelated collisions between pairs of particles

∫

∂Vint(~r1, ~r2)

∂~r1
· ∂ρ2(~r1, ~p1, ~r2, ~p2, t)

∂~p1
d~r2 d~p2 ≈

(

∂ρ1(~r1, ~p1, t)

∂t

)

coll

.

In this way he obtained an equation of motion for the single particle density
[192]

(

∂

∂t
+
~p1
m

· ∂
∂~r

− ∂Vext(~r)

∂~r
· ∂

∂~p1

)

ρ1(~r, ~p1, t)

=
1

m

∫

d~p2dΩ σ(Ω, |~p2−~p1|) (ρ1(~r, ~p ′
1 , t)ρ1(~r, ~p ′

2 , t) − ρ1(~r, ~p1, t)ρ1(~r, ~p2, t)) ,

(47)
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where ~p1 and ~p2 are the momenta of two particles before they collide at position
~r, ~p ′

1 and ~p ′
2 are the momenta after the collision, and σ(Ω, |~p2 − ~p1|) is the cross

section for scattering into the solid angle Ω. Despite this strong simplification
of the interactions, eq. 47 is still a nonlinear integro-differential equation and
hence difficult to solve analytically. For a very readable review and discussion of
the existence of solutions, although not up to date, see ref. [193]. Numerically,
the Boltzmann equation can be solved by the Lattice Boltzmann technique
[103, 104], finite element methods [194] or semi-Lagrangian schemes [195].

Eq. 47 is not particularly accurate for systems which are dominated by
long-ranged electrostatic forces such as plasmas. Vlasov therefore suggested
modelling plasmas by a collision-free interaction that takes into account the
electromagnetic field generated by the single particle density instead [196]

(

∂

∂t
+

~p

m
· ∂
∂~r

− ∂Vext(~r)

∂~r
· ∂
∂~p

)

ρ1(~r, ~p, t) =

−
(∫

d~r′d~p′ ~Fem(~r ′, ~r, t)ρ1(~r ′, ~p ′, t)

)

· ∂
∂~p
ρ1(~r, ~p, t) . (48)

Here we replaced the derivative of the potential Vint by the effective electromag-
netic force ~Fem. Using Lorentz’s force law for a particle of charge q in an electric
field ~E and a magnetic field ~B, ~F = q( ~E + ~v × ~B), the electric part of ~Fem can
be expressed in terms of the single particle density ρ1(~r, ~p, t) via Gauss’s law
[197]

∇ · ~E(~r, t) ≈ 1

ǫ0
q

∫

d~p ρ1(~r, ~p, t) ,

where ǫ0 is the vacuum permittivity and we approximated the N -particle struc-
ture of the gas by ρ1(~r, ~p, t). The magnetic part of ~Fem is related to ρ1(~r, ~p, t)
via the current density and

∇× ~B(~r, t) ≈ µ0

∫

d~p
~p

m
ρ1(~r, ~p, t) + µ0ǫ0

∂ ~E(~r, t)

∂t
,

where µ0 is the vacuum permeability.
Eq. 48 follows from eq. 46 if we approximate ρ2(~p1, ~p2, ~r1, ~r2, t) by

ρ1(~p1, ~r1, t)ρ1(~p2, ~r2, t). Despite these approximations the Vlasov equation, eq. 48,
is not easy to solve. The search for exact solutions as well as the design of nu-
merical methods are topics of active research. Analytical solutions are known for
certain classes of problems in plasma physics (see ref. [198, 199] for an overview)
as well as for relativistic and quantized versions in the context of nuclear physics
and particle physics [200, 201]. If the reader’s interest is drawn to the kinetics
of gases, we recommend the instructive series of articles by Chavanis on the
kinetics of systems with long-ranged interactions [202, 198, 203, 204, 205].

In the 1960s and 70s, the BBGKY hierarchy has been used to derive trans-
port coefficients and time-dependent correlation functions for systems which are
close to equilibrium [206, 207, 208, 209]. In the context of coarse-graining, the
question is whether these approaches can be taken further to construct more
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complex non-equilibrium models. Eq. 47 and eq. 48 constitute only the first
order in the hierarchy and they contain severe approximations. Given that they
are nevertheless challenging nonlinear integro-differential equations, the author
doubts that much progress can be made on the direct route through eq. 46.
Instead, the derivation of variational principles such as the one introduced by
Gross [209], the one recently proposed by Sereda and Ortoleva [210], or the
extensions of DFT, which we will discuss in sec. 3.1.3 and sec. 3.2.1, are promis-
ing routes to non-equilibrium. However, before we discuss these variational
approaches, we consider a different route via a projection operator formalism.

3.1.2. Time-dependent projection operators I: Grabert’s extension of Zwanzig’s
method

Projection operator formalisms can be extended to systems out of ther-
mal equilibrium if one allows for an explicit time-dependence of the projector
[59, 211, 16]. In the 1970s Grabert generalized Zwanzig’s projection operator
formalism (sec. 2.2) by using a time-dependent density of microstates to define
the relevant density. We recall the basic steps of his derivation. In sec. 2.4 we
introduced the relevant density corresponding to a set of observables A(Γ) as

ρA(a) =

∫

dΓ ρeqN (Γ) δ(A(Γ) − a) ,

i.e. the relevant density is the average of the equilibrium distribution ρeqN (Γ) over
all points Γ in phase space at which the observables A(Γ) = {A1(Γ), . . . ,Am(Γ)}
have the values a = {a1, . . . , am}. Thus ρA(a) defines the relation between the
observables and their “macroscopic equilibrium values” a. This concept can
be generalized to the case in which ρN (Γ, t) evolves in time as it relaxes to
equilibrium. (The case of a time-dependent Liouvillian is more difficult and will
be discussed in sec. 3.2.2.) We define a relevant density

ρA(t) :=
1

Z(t)
e−

∑
i
λi(t)Ai(Γ) , (49)

where λi is the thermodynamic conjugate to Ai and Z(t) is a normalization
factor. Note that ρ is a function of a phase space point Γ via A(Γ). We follow
the notation of Grabert here and do not write this dependence explicitly to
avoid cluttering up the equations. Z(t) and λi are set such that

∫

dΓ ρA(t) = 1 ,

∫

dΓ Ai(Γ) ρN (Γ, t) =

∫

dΓ Ai(Γ) ρA(t) = ai(t) ∀t ,

i.e. the parameters λi fix the “macroscopic values” a, which we will observe
when we measure A at time t. Then we define a projection operator

P(t)X(Γ) :=

∫

dΓ′ ρA(t) X(Γ′) +
∑

i

(Ai(Γ) − ai(t))

∫

dΓ′ ∂ρA(t)

∂ai(t)
X(Γ′) .

(50)

40



(We use the definition from ref. [211], which is similar, but not identical to
Robertson’s projection operator [212]. The interesting aspect of eq. 50 is that
this projection operator allows us to derive separate equations of motion for
the averages of the observables and for the fluctuations around the averages,
δAt := At − a(t).)

The Dyson-Duhamel identity, which we used to obtain eq. 16, can be gen-
eralized to time-dependent projection operators provided we apply iL and P(t)
in the correct order

eiLt◦ = eiLtP(t)◦+

∫ t

0

dτ eiLτ
(

P(τ)iLQ(τ) − Ṗ
)

G+(τ, t)◦+Q(0)G+(0, t)◦ ,

(51)
where Q(t)◦ = (1−P(t))◦ and G+(τ, t) is the positively time order exponential
operator

G+(τ, t)◦ := exp+

(∫ t

τ

dt′ iL Q(t′)◦
)

.

We recall that the equation of motion for the components of A,

d (Ai)t
dt

=
dAi(Γt)

dt
= iLAi(Γt) ,

is formally solved by (Ai)t = eiLtAi(Γ, 0). Applying eq. 51 to Ai(Γ, 0) and in-
serting the definition of the projection operator, eq. 50, we obtain a Generalized
Langevin Equation of the form

d(Ai)t
dt

= vi(t) + Ωij(t)(δAj)t +

∫ t

0

dτ (Ki(t, τ) + φij(t, τ)(δAj)τ ) + (fi)t,0 .

(52)
In analogy to the transport coefficients of eq. 11, we defined the organized drift

vi(t) :=

∫

dΓ ρA(t) iLAi(Γ) ,

the effective frequencies

Ωij(t) :=

∫

dΓ
∂ρA(t)

∂aj(t)
iLAi(Γ) ,

the after-effect functions

K(t, τ) :=

∫

dΓ ρA(τ)iLQ(τ)G+(τ, t)iLAi(Γ) ,

the memory functions

φij(t, τ) :=

∫

dΓ
∂ρA(τ)

∂aj(τ)
iLQ(τ)G+(τ, t)iLAi(Γ) ,

and the fluctuating force

(fi)t,0 := Q(0)G+(0, t)iLAi(Γ0) .
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Interestingly, the specific structure of Grabert’s projection operator leads to
a nonlinear equation of motion for the averages a(t) and a linear equation of
motion for the fluctuations δAt = At − a(t).

In a series of articles in the 1990s, Shea and Oppenheimer applied this type
of projection operator formalism to a system consisting of a small number of
“heavy” particles and a large number of “light” particles [213, 214, 215]. They
expressed the resulting equations of motion in terms of the ratio of particle
masses, which served as a small parameter for a series expansion. This allowed
them to analyze deviations from a system of ideal Brownian particles system-
atically and to derive a nonlinear theory of hydrodynamic interaction between
Brownian particles immersed in a fluid. We presume that this approach might be
a useful starting point, if one intends to construct a generalized, non-equilibrium
version of the DPD method.

3.1.3. Dynamic Density Functional Theory (DDFT)

Another interesting field of application for the type of time-dependent pro-
jection operator formalism we discussed in sec. 3.1.2 is density functional the-
ory. The classical version of DFT, which we introduced briefly in sec. 2.1, is a
well-established tool to predict the structure and thermodynamic equilibrium
properties of liquids. (We use the term “classical” here to distinguish this type
of DFT from the one which is used in electronic structure calculation.) Clearly,
it would be desirable to use density functionals, which have been developed for
the equilibrium case and thoroughly tested, to predict also dynamical proper-
ties. There are several routes to a time-dependent version of DFT [216, 217, 62].
Here we will summarize an elegant route via a time-dependent projection op-
erator formalism, which Español and Löwen introduced about ten years ago
[62].

We start out by noting that the definition of the relevant density given in
sec. 3.1.2 can be used to construct a route to DFT (the static version) which is
slightly different from the route via the BBGKY hierarchy sketched in sec. 2.1.
We take an equilibrium, grand canonical version of eq. 49

ρA(Γ) :=
1

Z(λ)
ρEQ(Γ)e−β

∑
i λiAi(Γ) , (53)

where ρEQ is the grand canonical distribution of microstates. Next, we replace
the set of observables Ai by the microscopic density operator

n~r(Γ) :=

N
∑

i=1

δ(~ri − ~r) .

In contrast to the observables of the previous chapters, n~r is not a countable
set, as we replaced the discrete index i by ~r ∈ R3 and turned the coarse-
grained model into a field theory. However, most steps in the projection operator
formalism can be applied analogously. The corresponding relevant density is

ρn(Γ) =
1

Ξ[λ]
ρEQ(Γ) exp

{

−β
∫

d~rλ(~r)n~r(Γ)

}
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with

Ξ[λ] :=

∞
∑

N=0

exp (βµN)

N !h3N

∫

d~r1d~p1 . . . d~rNd~pN exp

(

−βHN − β

N
∑

i=1

λ(~ri)

)

and the N -particle Hamiltonian HN . For λ = 0, Ξ[λ] is the grand partition
function.

In analogy to the effective free energy (or potential of mean force), we can
define an effective grand potential as a functional of λ(~r)

Ω[λ] := −kBT ln Ξ[λ] .

The one-particle density from sec. 2.1 is given by the grand canonical average
over the microscopic density operator, ρ1(~r) = 〈n~r〉λ. Hence we can obtain
ρ1(~r) by means of variation of the effective grand potential with respect to λ(~r)

δΩ[λ]

δλ(~r)
= 〈n~r〉λ = ρ1(~r) ,

where the subscript λ indicates the average over ρn for a specific choice of λ(~r).
Finally, to relate these expressions to an equation of the form of eq. 6, we take
the Legendre transform of Ω[λ] to define the density functional

Ω̄[ρ1] := Ω[λ[ρ1]] −
∫

d~r ρ1(~r)λ(~r)[ρ1] (54)

such that
δΩ̄[ρ1]

δρ1(~r)
= −λ(r) .

Recall that λ = 0 at equilibrium, thus we have recovered the condition for the
equilibrium one-particle density, which DFT imposes.

These notions can now be generalized to describe the dynamics of relaxation
of the one-particle density towards its equilibrium value. We allow for time-
dependent fields λ(~r, t) and define a relevant density

ρn(Γ, t) :=
1

Ξ[λ(t)]
ρEQ(Γ) exp

{

−β
∫

d~rλ(~r, t)n~r(Γ)

}

,

such that

ρ1(~r, t) =

∫

dΓρn(Γ, t)n~r(Γ)

With this choice of ρn(Γ, t) we could now, in principle, define a time-dependent
projection operator as in sec. 3.1.2, and insert it in eq. 51 to derive an equa-
tion of motion of the form of eq. 52 for the density field. However, this turns
out to be rather involved. Therefore Español and Löwen assumed that there
was time-scale separation between the observable and all other variables and
neglected terms of order O((iLn)3) and higher. This approximation removes
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the memory term from eq. 52. If the observables were a countable set A =
{A1(Γ), . . . ,Am(Γ)}, we would obtain an approximate equation of motion of
the form

d(Ai)t
dt

= vi(t) +
∑

j

Dij(t)λj(t) , (55)

with

Dij(t) :=

∫ τ

0

dt′
∫

dΓ ρA(t)QiLAj(Γ)eiLt′QiLAi(Γ) .

The time τ needs to be intermediate between the time scale on which the inte-
grand decays to zero and the time scale on which the observables evolve.

If we now use the density field n~r as the observable instead, eq. 55 is replaced
by a partial differential equation

∂ρ1(~r, t)

∂t
=

∫

d~r′ ∇r∇r′ [D](~r, ~r′, t)λ(~r′, t) ,

where the organized drift vi(~r, t) has vanished because of time-reversal symmetry
and, taking into account the continuity equation for the density field

iLn~r(Γ) = −∇r

∑

i

~viδ(Ri(Γ) − ~r) =: −∇r
~J~r(Γ) ,

we have replaced the dissipative matrix [D] by the diffusion tensor

[D](~r, ~r′, t) =

∫ τ

0

dt′
∫

dΓρn(t) ~J~r(Γ) ⊗ eiLt′ ~J~r(Γ) .

Using the definition of Ω̄, eq. 54, and integrating by parts, we obtain an evolution
equation for the density field. The driving force for the dynamics is the effective
grand potential,

∂ρ1(~r, t)

∂t
=

∫

d~r′[D](~r, ~r′, t)∇r′
δΩ̄[ρ1]

δρ1(~r′, t)
. (56)

This equation is the starting point for DDFT. From here, approximations of the
diffusion tensor [D] or the density functional Ω̄[ρ1] can be introduced to obtain
models for specific systems.

3.1.4. Time-dependent projection operators II: Mori

Coarse-graining over a time-dependent density of microstates ρN (Γ, t) can
also be achieved by means of a linear projection operator [218, 43, 219]. Again,
we start out from the equation of motion of the observable eq. 14, but we
combine it with a version of the Dyson-Duhamel identity, which differs from
eq. 51 in the time-ordering

eiLt◦ = eiLtP(t)◦+

∫ t

0

dτ eiLτP(τ)
(

iL− Ṗ(τ)
)

QτG
−(τ, t)◦+Q(0)G−(0, t)◦ .
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Here G−(τ, t) is the negatively time-ordered exponential operator

G−(τ, t)◦ := exp−

(∫ t

τ

dt′ iL Q(t′)◦
)

.

We obtain the equation of motion

dAt

dt
= eiLtP(t)iLA(Γ, 0) +

∫ t

0

dτ eiLτP(τ)(iL− Ṗ(τ))Q(τ)G−(τ, t)iLA(Γ, 0)

+ Q(0)G−(0, t)iLA(Γ, 0) . (57)

Here we have again restricted the derivation to a single observable to avoid
cluttering the equations, but all statements hold for sets of observables as well.
We define a time-dependent version of Mori’s projection operator

P(t)X(Γ) :=
(X,A)t
(A,A)t

A(Γ) (58)

with the inner product

(X,Y)t :=

∫

dΓ
(

eiLt
X(Γ)

) (

eiLt
Y(Γ)

)

ρN (Γ, 0) . (59)

We have used parentheses to indicate which objects the operators act on. In
the following we will drop the parentheses and assume that operators act only
on the phase space fields right next to them unless stated otherwise.

The definition of the projection operator, eq. 58, is rather natural in the
sense that it reflects the way simulation data or experimental data is usually
analyzed – we initialize a set of systems with a certain distribution of microstates
ρN (Γ, 0), let them evolve to a time t and measure either ensemble averages of
observables

〈Xt〉NEQ :=

∫

dΓ eiLt
X(Γ)ρN (Γ, 0)

or of correlation functions

〈XtYt〉NEQ :=

∫

dΓ eiLt
X(Γ) eiLt

Y(Γ) ρN(Γ, 0) = (X,Y)t .

The angle brackets indicate the average taken over the so-called “bundle” or
“swarm” of non-equilibrium trajectories which have evolved from the initial
distribution ρN (Γ, 0). In analogy to Mori’s work, sec. 2.3, we define the gener-
alized drift

ω(t) :=
(A, iLA)t
(A,A)t

,

the memory kernel

K(τ, t) :=

(

A, (iL − Ṗ(τ))Q(τ)G−(τ, t)iLA
)

τ

(A,A)τ
(60)
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and the fluctuating force

ft,t′ := eiLt′Q(t′)G−(t′, t)iLA(Γ, 0) . (61)

Inserting these definitions into eq. 57, we obtain the non-stationary, linear,
Generalized Langevin Equation (nsGLE)

dAt

dt
= ω(t)At +

∫ t

0

K(τ, t)Aτ dτ + f0,t . (62)

This equation resembles the GLE, eq. 19, but similarly to the organized drift
~v(t) of eq. 52, the generalized drift ω(t) depends explicity on time. Also similar
to the after effect function of eq. 52, the memory kernel K(τ, t) depends on two
times (and not just on the difference t− τ), and the fluctuating force depends
on the initial conditions as well as on time. These time-dependences reflect the
fact that the distribution of microstates is not stationary.

If the dynamics of At is much slower than the dynamics of the other degrees
of freedom, K(τ, t) → γ(t)δ(t− τ), i.e. we obtain the time-local (“Markovian”)
limit of eq. 62 with a time-dependent friction coefficient γ(t) (in contrast to
e.g. the time-local limit of eq. 32, where the friction coefficient depends on the
value of the observable rather than on time due to the choice of a nonlinear
projection operator).

In sec. 2.6.5 we remarked that it can be useful to consider the autocorrelation
function of the observable if one intends to reconstruct the memory kernel from
measured data. We define the non-stationary equivalent to eq. 41

C(t′, t) := 〈At′At〉NEQ =

∫

dΓ eiLt′
A(Γ) eiLt

A(Γ) ρN (Γ, 0) , (63)

and insert C(t′, t) in eq. 62. Due to the linearity of the projection operator, the
fluctuating force term is averaged to zero at all times. We obtain an equation
of motion for the autocorrelation function

dC(t′, t)

dt
= ω(t)C(t′, t) +

∫ t

t′
C(t′, τ) K(τ, t) dτ . (64)

In contrast to eq. 42, the integral in eq. 64 is not a convolution. Hence we cannot
determine K(τ, t) from measured data by means of a numerical inverse Laplace
or Fourier transform (as done for the stationary case in the references listed in
sec. 2.6.5). In sec. 3.3.1 we will discuss methods to analyze eq. 64 numerically.

Next we check whether K(τ, t) and f0,t are related by a fluctuation-dissipation
relation. If we rearrange the memory kernel, eq. 60, as

K(τ, t) =
(A, iLQ(τ)G−(τ, t)iLA)τ

(A,A)τ
−

(

A, Ṗ(τ)Q(τ)G−(τ, t)iLA
)

τ

(A,A)τ

= − (iLA,Q(τ)G−(τ, t)iLA)τ
(A,A)τ

,
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insert a P ◦ +Q◦ in the last term and use the fact that the spaces P and Q
project onto are orthogonal to each other

K(τ, t) = − (P(τ)iLA,Q(τ)G−(τ, t)iLA)τ
(A,A)τ

− (Q(τ)iLA,Q(τ)G−(τ, t)iLA)τ
(A,A)τ

= − (Q(τ)iLA,Q(τ)G−(τ, t)iLA)τ
(A,A)τ

,

we see that K can be expressed in terms of the fluctuating force, eq. 61, as

K(τ, t) = −〈fτ,τfτ,t〉
〈|Aτ |2〉

.

This expression is already similar to a fluctuation-dissipation relation. With a
few additional transformations, which are listed in detail in ref. [31], it can be
brought into the more familar form

K(τ, t) = −〈f0,τf0,t〉
〈|Aτ |2〉

. (65)

Thus, as a consequence of the linear projection operator, the memory kernel and
the fluctuating force of the linear nsGLE, eq. 62, are related by a generalized
version of the second fluctuation-dissipation theorem. However, this statement
only refers to the mathematical structure of eq. 65. There is no direct interpre-
tation of K(τ, t) as a friction, i.e.

∫

dτK(τ, t) is not proportional to the work
transferred from A to the other degrees of freedom (the “bath”) during the
relaxation process.

3.1.5. The Generalized Fokker-Planck Equation

In the previous sections we mostly discussed equations of motion which have
structures similar to the Langevin Equation. Eq. 11 is different in that it is
an equation of motion for the probability distribution g(a, t) rather than the
value of the observable At, i.e. it is an equation for the probability that the
observable A(Γt) has the value a at time t.8 As the derivation of eq. 11 does not
require equilibrium assumptions and also holds for relaxation into equilibrium,
let us briefly consider it more closely than in the introductory sec. 2.2. If the
dynamics of the coarse-grained variable is Markovian, g(a, t) is governed by the
Fokker-Planck equation

∂g(a, t)

∂t
=

∂

∂a
[a1(a)g(a, t)] +

∂2

∂a2
[a2(a)g(a, t)] , (66)

where a1 and a2 are called drift and diffusion coefficient [220]. Similar to the
Langevin equation, this equation is also often interpreted in terms of a free

8Again, in this subsection we consider one observable instead of a set A to simplify the
discussion, but all statements hold equally for sets of observables.
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energy landscape or potential of mean force

∂g(a, t)

∂t
=

∂

∂a

[

D(a)

(

∂

∂a
+ β

∂∆G(a)

∂a

)

g(a, t)

]

, (67)

where the diffusion coefficient D can in general depend on a and ∆G(a) =
UMF(a) is defined as in sec. 2.4 via eq. 25 and the equilibrium distribution

ρEQ
N (Γ). In the case of ergodic dynamics without external driving, g(a, t) reaches

the equilibrium distribution gEQ(a) =
∫

dΓ δ(A(Γ)− a)ρEQ
N (Γ) in the long-time

limit.
As for the case of the Langevin equation, also here the full equation of

motion, eq. 11, is considerably more complex than eq. 67. If we intend to
compare the two equations, the restriction to the microcanoncial ensemble which
was used in the derivation of eq. 11 is unfavourable. In order to allow for a more
general setting, we again follow a derivation by Grabert [16] and use a projection
operator slightly different from eq. 8

PX(Γ) :=

∫

da δ(A(Γ) − a)
1

ρA(a)

∫

dΓ′ ρEQ
N (Γ′)δ(A(Γ′) − a)X(Γ′)

with the reduced density

ρA(a) :=

∫

dΓ ρEQ
N (Γ) δ(A(Γ) − a) .

We insert this projection operator into eq. 16 and obtain

∂g(a, t)

∂t
= − ∂

∂a
(ω(a)g(a, t))

+

∫ t

0

dτ

{

∂

∂a

∫

da′
[

D(a, a′, t− τ)ρA(a′)
∂

∂a′

(

g(a′, τ)

ρA(a′)

)]}

, (68)

where

ω(a) :=
1

ρA(a)

∫

dΓ ρEQ
N (Γ) δ(A(Γ) − a) iLA(Γ) ,

D(a, a′, t) :=
1

ρA(a)

∫

dΓ ρEQ
N (Γ) Ra(Γ, t)Ra′(Γ, 0) (69)

and
Ra(Γ, t) := QeiLQtδ(A(Γ) − a)iLA(Γ) .

Thus ω(a) and D(a, a′, t) are equivalent to the transport coefficients v(a) and
W (a)K(a, a′, t) in eq. 11, but we have allowed for a more general choice of

stationary distribution ρEQ
N (Γ).

Now we focus our discussion on the case in which the observable depends only
on the positions A(~rN ) and not on the momenta, such that ω(a) vanishes due to

symmetry. Further, we restrict the analysis to the canonical ensemble, ρEQ
N (Γ) ∝

exp(−βH(Γ)) and ∆G(a) := −kBT ln(ρA(a)), noting that other ensembles can
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be analyzed using a similar line of arguments. The dependence on a and a′ in
the transport coefficients D(a, a′, t) is inconvenient. It can be removed by means
of a Kramers-Moyal expansion, which is carried out in detail in ref. [221]. Here
we just note that the functions Ra can be combined into functions dk(a, a′, t)
such that

D(a, a′, t) =

∞
∑

k=0

∂k

∂ak
(dk(a, a′, t)δ(a− a′)) .

We define functions d̃k(a, t) := dk(a, a, t) and note that

ρA(a)
∂

∂a

(

g(a, t)

ρA(a)

)

=

(

∂

∂a
+ β

∂∆G(a)

∂a

)

g(a, t) .

Thus we can write the equation of motion of the probability distribution, eq. 68,
as

∂g(a, t)

∂t
=

∫ t

0

dτ

∞
∑

k=0

∂k+1

∂ak+1

[

d̃k(a, t− τ)

(

∂

∂a
+ β

∂∆G(a)

∂a

)

p(a, τ)

]

. (70)

There are two major differences between eq. 70, which is exact, and the Fokker-
Planck equation, eq. 67:

• The functions d̃k(a, t) act as memory kernels, which implies that the evo-
lution of g(a, t) is in general non-Markovian.

• Terms with k ≥ 1 are in general not equal to zero, which implies that the
evolution of g(a, t) is not diffusive.

As in the case of the nonlinear Langevin equation, one needs to keep these
differences in mind when using a Fokker-Planck equation with a potential of
mean force resp. a free energy landscape to model coarse-grained dynamics. In
particular, theories for phase transition processes which are based on eq. 67,
such as e.g. classical nucleation theory, are by construction approximative.

3.2. Time-dependent Liouvillians

3.2.1. Power Functionals

Eq. 56 provides us with an approximate method to compute the evolution
of the one-particle density by means of a variation of an equilibrium thermody-
namic potential, the density functional Ω̄[ρ1(~r, t)]. In this sense DDFT extends
the principle of DFT to systems out of equilibrium. However, the strategy of
exploiting a minimization principle in order to obtain an evolution equation for
ρ1(~r, t) can also be pursued in a different way, which is perhaps even closer
to the original spirit of DFT and, most importantly, which is in principle ex-
act. Schmidt and Brader suggested replacing the thermodynamic potential by
its non-equilibrium analogue, the power functional [222, 223, 224]. They first
introduced the concept for Brownian dynamics [222], i.e. for a type of dynam-
ics, which is already coarse-grained. Recently they formulated a version which
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is based on microscopic Hamiltonian dynamics [224]. As we are interested in
coarse-graining from deterministic mircoscopic dynamics, we will review the
latter version here.

The idea of power functional theory is to construct a functional Gt[ρ1, ~J, ~̇J ]

such that the time derivative of the non-equilibrium current ~̇J0(~r, t) is deter-
mined by the condition9

δGt[ρ1, ~J, ~̇J ]

δ ~̇J(~r, t)

∣

∣

∣

∣

∣

~̇J= ~̇J0

= 0 . (71)

The functional is non-local in space and it depends on the value of its arguments
up to the time at which the variation is performed.

We consider a system of N identical particles of mass m subject to the
Hamiltonian

H =
∑

i

~pi · ~pi
2m

+ Vint(~r
N ) +

∑

i

Vext(~ri, t) .

We will use the same definitions for the one-particle operators as in the previous
section,

n~r(Γ) :=
∑

i

δ(~r − ~ri) and ~J~r(Γ) :=
∑

i

δ(~r − ~ri)
~pi
m

,

as well as for the averages

ρ1(~r, t) := 〈n~r(Γ, t)〉 and ~J(~r, t) := 〈 ~J~r(Γ, t)〉 .

The angle brackets indicate the ensemble average with respect to ρN (Γ, t),
i.e. 〈X〉 =

∫

dΓρN (Γ, t)X(Γ) is a time-dependent quantity.

Similar to the grand potential, Gt[ρ1, ~J, ~̇J ] can be split into an intrinsic part
and a term that accounts for interactions with an external field

Gt[ρ1, ~J, ~̇J ] =: Gint
t [ρ1, ~J, ~̇J ] −

∫

d~r ~̇J · ∇Vext ,

such that we obtain from eq. 71 an Euler-Lagrange equation of the form

−δG
int
t

δ ~̇J
−∇Vext = 0 .

The internal contribution can in turn be split into an ideal gas part and an
excess part, Gint

t = Gid
t +Gexc

t . The ideal gas part is known

Gid
t [ρ1, ~J, ~̇J ] =

∫

d~r
~̇J

ρ1
·
(

m ~̇J

2
−∇ · [τ ]id

)

,

9Note that the subscript 0 in ~̇J0 does not refer to an initial condition here but to the solution

of the stationarity condition eq. 71. ~̇J0 is the non-equilibrium analogue to the equilibrium
density distribution ρEQ.
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where [τ ]id := −m ~J⊗~J
ρ1

is the factorized contribution to the kinematic stress
tensor of the ideal gas. The difficulty is to account for transport effects beyond
the factorization and, as in the case of DFT, to construct the excess functional
Gexc

t .
In ref. [223], Schmidt shows how to obtain the correct functional by means of

a constrained minimization. We define the microscopic accelerations ~ai, which
will act as trial variational fields, and the microscopic power rate functional

Gt[ρ1, ~J, ~̇J ] :=

∫

dΓ
∑

i

(

~fi −m~ai

)2

2m
ρN (Γ, t)−

∫

d~r
m

2ρ1(~r, t)

〈

d ~J~r
dt

〉2

, (72)

where the force that acts on particle i is ~fi = −∇~riVint(~r
N )−∇~riVext(~ri, t). Note

that memory is introduced here as the one-body fields need to be known at all
times prior to t in order to reconstruct the many-body distribution ρN (Γ, t).

The true dynamics of the system is the one for which ~fi = m~ai, and hence

δGt

δ~ai(t)
= 0 .

We introduce the microscopic kinematic stress operator

[τ ]~r(Γ, t) := −~pi ⊗ ~pi
m

δ(~r − ~ri)

and note that due to Newton’s second law

m
d ~J~r
dt

=
∑

i

δ(~r − ~ri)~fi + ∇ ·
∑

i

[τ ]~r .

To make the transition from the microscopic description on the level of the
accelerations to the coarse-grained description on the level of the one-particle

acceleration density ~̇J , we now impose the condition

~̇J(~r, t) =

〈

∑

i

~aiδ(~r − ~ri) +
∇ · [τ ]~r(~r, t)

m

〉

.

The functional Gt[ρ1, ~J, ~̇J ] then follows from a constrained search for the mini-
mum of Gt

Gt[ρ1, ~J, ~̇J ] = min
~ai→ρ1, ~J, ~̇J

Gt .

Finally, to identify Gexc
t , we note that on the level of the one-body current ~̇J(~r, t),

Newton’s second law can be written in terms of the internal force density ~fint
and the kinematic stress tensor [τ ] as

m ~̇J(~r, t) = ~fint(~r, t) + ∇ · [τ ](~r, t) −∇Vextρ(~r, t) ,
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where

~fint(~r, t) = −
〈

∑

i

δ(~r − ~ri)∇~riVint(~r
N )

〉

and [τ ](~r, t) :=

〈

∑

i

[τ ]~r(Γ, t)

〉

.

Hence the non-equilibrium current is determined by the condition

δGexc
t [ρ, ~J, ~̇J ]

δ ~̇J(~r, t)

∣

∣

∣

∣

∣

~̇J= ~̇J0

=
~fint(~r, t) + ∇ · ([τ ](~r, t) − [τ ]id(~r, t))

ρ1(~r, t)

3.2.2. Mori’s projection operator for full non-equilibrium

It is rather difficult to extend the approach via Zwanzig’s (resp. Robert-
son’s) projection operator sketched in sec. 3.1.2 to explicitly time-dependent
microscopic dynamics. In contrast, the linear projection operator introduced by
Mori (sec. 2.3) turns out to be well-suited to this task. In the next paragraphs
we summarize our own work on this extension [219, 31], noting that some of the
ideas have already been sketched by Nordholm in his PhD thesis [58], that a
similar approach has been used by McPhie and co-workers for the case of relax-
ation into a non-equilibrium steady state [225], that te Vrugt and Wittkowski
have developped a similar approach to driven quantum mechanical systems in-
dependently and at the same time as we published our work [17], and most
notably, that Kawai and Komatsuzaki had already developed a nearly identical
approach eight years before us [226]. Regrettably, we only discovered their work
after ref. [31] had been published.

In sec. 3.1.4 we generalized Mori’s projection operator to the case of relax-
ation into equilibrium starting out from the equation of motion of the observable
in the “Heisenberg picture”. The ideas presented there can be applied to sys-
tems under time-dependent external driving as well as to active systems and
to explicitly time-dependent observables, if we consider that the equation of
motion for the observable needs to be modified accordingly.

The following line of reasoning might be unfamiliar if the reader is used to
handling Hamiltonian systems. If so, it might help to visualize the dynamics
in terms of trajectories in phase space, Γt. The dynamics of an individual
trajectory is given by an evolution equation, which assigns a time derivative Γ̇
to each state Γ. Thus we can visualize the dynamics by “stream lines”, Γ̇(Γ),
in analogy to the stream lines of a flowing liquid. If the system contains active
particles or is subject to time-dependent driving, the time at which the system
reaches a certain state Γ matters explicitly, i.e. the stream lines themselves
depend on time, Γ̇(Γ, t).

We begin with the equation of motion for the microscopic density, a gener-
alization of the Liouville equation, eq. 4, and take the time-dependence Γ̇(Γ, t)
into account

∂

∂t
ρN (Γ, t) = − ∂

∂Γ
· [Γ̇(Γ, t)ρN (Γ, t)] =: −i L(t)ρN (Γ, t) . (73)
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We introduced the symbol i L(t) to indicate the fact that ∂
∂Γ · [Γ̇(Γ)◦] is not the

same as the operator

Γ̇(Γ, t) · ∂
∂Γ

◦ := iL(t)◦ ,

which will enter the equation of motion of the observable below. Eq. 73 is
formally solved by

ρN (Γ, t) = exp+

(

−
∫ t

0

dt′ i L(t′)
)

ρN (Γ, 0) .

With this expression we obtain the equation of motion for an ensemble averaged
observable A(Γ) in the Schrödinger picture

〈A(t)〉 =

∫

dΓ A(Γ) exp+

(

−
∫ t

0

dt′ i L(t′)
)

ρN (Γ, 0) . (74)

As i L(t) 6= iL(t), the equation of motion in the Heisenberg picture does not
follow from eq. 73 as directly as in the Hamiltonian (conservative) case. We
denote by γ(Γ, 0; t) the point in phase-space reached at time t given that system
was in state Γ at time 0, i.e.

dγ(Γ, 0; t)

dt
= Γ̇(γ(Γ, 0; t), τ)

∣

∣

∣

τ=t
,

and we define the corresponding time-evolution operator

γ(Γ, 0; t) =: U(t, t′)γ(Γ, 0; t′) .

U acts on an observable A(Γ) through Γ, i.e.

A(γ(Γ, 0; t)) = U0,tA(Γ) . (75)

We take the time derivative

d

dt
U(0, t)A(Γ) = U(0, t)

[

˙Γ(Γ, t) · ∂

∂Γ
A(Γ)

]

and see that
d

dt
U(0, t)◦ = U(0, t)iL(t) ◦ .

Note that here the operator we are interested in, U(0, t), stands left of iL(t) –
in contrast to the density ρN (Γ, t) which stands right of i L(t) in eq. 73. This
equation is formally solved by

U(0, t)◦ = exp−

(∫ t

0

dt′ iL(t′)◦
)

,

where exp−(◦) is the negatively time-ordered exponential operator (also called
left-time ordered exponential operator [37] or left-hand side time exponential
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[227]). In the Heisenberg picture, we would like to express the evolution of the
ensemble averaged observable 〈A(t)〉 as

〈A(t)〉 =

∫

dΓ ρN (Γ, 0) exp−

(∫ t

s

iL(t′)dt′
)

A(Γ). (76)

Using eq. 75, we obtain

〈A(t)〉 =

∞
∑

n=0

∫ t

0

dt1 . . .

∫ tn−1

0

dtn

∫

dΓ ρN (Γ, 0) iL(tn) . . . iL(t1)A(Γ)

=

∞
∑

n=0

−
∫ t

0

dt1 . . .

∫ tn−1

0

dtn

∫

dΓ i L(tn) ρN (Γ, 0)iL(tn−1) . . . iL(t1)A(Γ)

= . . . =

∫

dΓ A(Γ) exp+

(

−
∫ t

0

dt′ i L(t′)
)

ρN (Γ, 0) , (77)

where the ellipsis indicates repeated integration by parts, such that the operators
iL(ti) are shuffled to the left of ρN (Γ, 0) and replaced by i L(ti). This is one of
various pathways found in the literature to show that

[

exp−

(∫ t

s

dt′ iL(t′)◦
)]†

= exp+

(

−
∫ t

s

dt′ i L(t′)◦
)

,

i.e. eq. 76 is valid also in the case of explicitly time-dependent microscopic
dynamics [227, 31, 17, 37].

We use eq. 75 and eq. 76 as a starting point for the projection operator
formalism

dAt

dt
= U(0, t)iL(t)A(Γ, 0) = U(0, t) [P(t)iL(t)A(Γ, 0) + Q(t)iL(t)A(Γ, 0)] .

(78)
Again, we need a generalized version of the Dyson-Duhamel identity to handle
the dynamics in the space orthogonal to the projected dynamics. We define an
operator Z(t)◦ := U(0, t)Q(t)◦ and express its time-evolution as

Ż(t)◦ = Z(t)iL(t)Q(t) ◦ +U(0, t)P(t)
(

iL(t) − Ṗ(t)
)

Q(t)◦ ,

i.e.

Z(t)◦ = Z(t′)G−(t′, t) ◦ +

∫ t

t′
dτ U(0, τ)P(τ)

(

iL(τ) − Ṗ(τ)
)

Q(τ)G−(τ, t)◦

with

G−(t′, t)◦ := exp−

(∫ t

t′
dτ iL(τ)Q(τ)◦

)

.

Then, in analogy to eq. 59 we define

(X,Y)t :=

∫

dΓ (U(0, t)X) (U(0, t)Y) ρN (Γ, 0) (79)
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and with this definition apply eq. 58

P(t)X(Γ) :=
(X,A)t
(A,A)t

A(Γ)

to eq. 78. The resulting equation of motion has exactly the same structure as
eq. 62

dAt

dt
= ω(t)At +

∫ t

0

K(τ, t)Aτ dτ + f0,t ,

but At equals U(0, t)A(Γ, 0) rather than eiLtA(Γ, 0), and the definitions of the
drift, the memory kernel and the fluctuating force need to be adapted

ω(t) :=
(A, iL(t)A)t

(A,A)t
,

K(τ, t) :=

(

A, (iL(τ) − Ṗ(τ))Q(τ)G−(τ, t)iLA
)

τ

(A,A)τ
= − (iLA,Q(τ)G−(τ, t)iL(t)A)τ

(A,A)τ
(80)

ft′,t := U(0, t′)Q(t′)G−(t′, t)iL(t)A(Γ, 0) . (81)

Even the generalized fluctuation-dissipation relation, eq. 65, is still valid.
The fact that the structure of the nsGLE remains intact even for explic-

itly time-dependent dynamics implies that the numerical methods designed to
extract the memory kernel and to propagate the coarse-grained dynamics of
eq. 62 can be applied to active matter and systems under time-dependent ex-
ternal driving [163, 164].

3.2.3. Zwanzig’s projection operator for full non-equilibrium

As remarked above, the projection operator of the Zwanzig type is not well
suited to be applied to a time-dependent Liouvillian. However, we can take a
detour via a Mori-type projector. In two resourceful pieces of work, Kawai and
Komatsuzaki [226] as well as Izvekov [228] delineate how one can formally relate
eq. 62 to a nonlinear equation based on a relevant density by means of a suitable
expansion. To illustrate the construction of the expansion, we first consider the
equilibrium case. We recall the projection operator formalisms introduced in
sec. 2.2 and sec. 2.3. Using the inner product,

(X,Y) =

∫

dΓ ρEQ(Γ) X(Γ)Y(Γ) , (82)

we write Zwanzig’s projection operator as

PZ
X(Γ) =

∫

dΓ′ ρEQ(Γ′)δ(A(Γ′) − A(Γ))X(Γ′)
∫

dΓ′ ρEQ(Γ′)δ(A(Γ′) − A(Γ))
=

(δ(A(Γ) − a),X(Γ))

(δ(A(Γ) − a), 1)

∣

∣

∣

∣

a=A(Γ)

.

Zwanzig’s intention was to split the dynamics into a part that depends on
Γ solely through the observable and a remaining part. Therefore we focus
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now on functions of the form g(A(Γ)). Note that eq. 82 defines an inner
product on the space of these functions, too. We take an orthonormal basis
{φ1(A(Γ)), φ2(A(Γ)), . . .} of this space, which we could construct e.g. by the
Gram-Schmidt procedure. Due to completeness, we have

∑

i

φi(A(Γ))φi(A(Γ′)) =
δ(A(Γ) − A(Γ′))

(δ(A(Γ) − a), 1)

∣

∣

∣

∣

a=A(Γ)

,

thus we can express Zwanzig’s projection operator as

PZ
X(Γ) =

∑

i

(X(Γ), φi(A(Γ))) φi(A(Γ)) .

However, this is nothing but a Mori projection, eq. 17, on the set of observables
F := {φ1(A(Γ)), φ2(A(Γ)), . . .} . (Note that the normalization (F,F)

−1
which

appears in the Mori projector is unity, because (φi(A(Γ)), φj(A(Γ))) = δi,j .) We
carry out the linear projection in each component and obtain a set of equations
of the form of eq. 19

dFt

dt
= [ω]Ft +

∫ t

0

dτ [K](t− τ)Fτ + ft , (83)

where the drift and the memory kernel are square matrices of infinite dimension.
So far we have derived an equation for F rather than A. To obtain a nonlinear
GLE for A, we use a set of polynomials as basis functions φi and set φ1 ∝ A.
Then the first component of eq. 83 is the equation of motion we have been
looking for – we have used a “Mori-type” linear projection operator formalism
to derive a “Zwanzig-type” nonlinear equation of motion!

As the projection is linear, there is still a fluctuation-dissipation relation
between the kernel and the fluctuating force

〈ft ⊗ f0〉 = −[K](t) (F,F) .

However, this relation does not hold separately for each individual term in the
series and thus, in particular, not for the part that is linear in the observable
A. (This is, in essence, why we could not construct a fluctuation-dissipation
relation for the nonlinear GLE discussed in sec. 2.4.2.)

Now we extend this approach to non-equilibrium. First we get rid of the
explicit time dependence in the Liouvillian and “augment” phase space by one
additional dimension, time, i.e. Γa = (Γ, t), where the superscript a stands for
“augmented phase space”. We denote observable fields on the augmented phase
space by Aa(Γa). The equivalent to the Liouville operator is

iLa◦ := Γ̇a(Γa) · ∂

∂Γa
◦

and observables evolve according to the equation

At(Γ
a) = eiL

at
A

a(Γa) . (84)
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Next we introduce an inner product on the augmented phase space

(Xa,Ya)at :=

∫

dΓa
X

a(Γa)Ya(Γa) ρaN (Γa, t)

=

∫

dΓa ρaN (Γa, 0)
(

eiL
at
X

a(Γa)
)

eiL
at
Y

a(Γa) ,

where the notation ρaN (Γa, t) indicates that we have synchronized the phase
space distribution such that ρaN (Γa, t) = ρN (Γ, t)δ(τ − t). As above, we define
an orthonormal basis {φai (Aa, τ)} such that

(

φai (Aa, τ), φaj (Aa, τ)
)

t
= δi,j ∀t .

Note that we will, in general, need a different set of basis functions for each
time t. As a generalized version of PZ we define

PZ(t)X(Γ) :=

∫

dΓ′ ρN (Γ′, t)δ(A(Γ′) − A(Γ))X(Γ′)
∫

dΓ′ ρN (Γ′, t)δ(A(Γ′) − A(Γ))
.

Using the basis set and the augmented phase space, this projector can be brought
into the form

PZ(t)Xa(Γa) =
∑

i

(∫

dΓa′ ρaN (Γa′, t)φai (Aa(Γa′), τ)Xa(Γa′)

)

φai (Aa(Γa), t)

=
∑

i

(∫

dΓa′ ρaN (Γa′, 0)eiL
atφai (Aa(Γa′), t)Xa(Γa′)

)

φai (Aa(Γa), t) . (85)

Note that this expression is not of the form

(Xa, φa(Aa))t
(φa(Aa), φa(Aa))t

φa(A) ,

i.e. it is not a Mori projection operator on the augmented space. However, as
it is very similar in structure, it can still be inserted straightforwardly into the
Dyson-Duhamel identity. We obtain the equation of motion for A

dAt

dt
=
∑

i

(

ωi(t)φ
a
i (At, t) +

∫ t

s

dτ Ki(t, τ)φai (Aτ , τ)

)

+ fs,t , (86)

with

ωi(t) =

∫

dΓa′ ρaN (Γa′, 0)eiL
at
(

φai (Aa(Γa′), t)iLa
A

a(Γa′)
)

,

Ki(t, τ) =

∫

dΓa′ ρaN (Γa′, 0)eiL
aτ
(

φai (Aa(Γa′), t)(iLa − ṖZ(τ))QZ(τ)G−(τ, t)iLa
A

a(Γa′)
)

and
fs,t = eiL

asQZ(s)G−(s, t)iLa
A

a(Γa′) .
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We used the same definitions for Q and G− as in sec. 3.1.4 but such that the
operators act on the augmented phase space.

If we again impose the condition, that φa1(Aa) ∝ Aa, we could, in principle,
truncate the sum in eq. 86 at i = 1 in order to obtain a memory term linear
in A. However, this sum is not an expansion in a small parameter. We do, in
general, not know how large the contributions of the infinitely many other terms
are. Thus this kind of truncation does not produce a controlled approximation
to the true dynamics.

In ref. [226], Kawai and Komatsuzaki show a derivation which is similar in
spirit to the one discussed here. Surprisingly, in the summary of their results,
they write that the “extended fluctuation dissipation theorem holds generally
for any irreversible system”, although this is not the case for eq. (64) of ref. [226],
resp. for eq. 86. We presume that this statement refers to the approximation
which they present in the last part of ref. [226]. There, Kawai and Komatsuzaki
prove that the irreversible GLE, which had been introduced by Hernandez and
Somer based on phenomenological arguments [229, 44, 230, 231, 232], is ob-
tained if one truncates the expansion in φi(A

a, t) at the first order. For this
approximation, there is indeed a version of the fluctuation-dissipation relation,
but as in the case of the truncation discussed above, the resulting equation of
motion does not produce a controlled approximation to the exact dynamics.

In summary, nonlinear versions of the nsGLE can be derived by means of a
suitable series expansion. However the relation of the “drift” term

∑

i ωi(t)φ
a
i (At, t)

to a time-dependent potential of mean force is not obvious, and the memory
term

∑

i

∫ t

s
dτ Ki(t, τ)φai (Aτ , τ) contains polynomials of all orders in the ob-

servable.

3.3. Numerical Methods

3.3.1. Non-Equilibrium Memory Kernels

The formalism of sec. 3.2.2 can be used to show that the structure of the
equation of motion for the autocorrelation function of an observable, C(t′, t) =
〈At′At〉NEQ, remains invariant even in the case of explicitly time-dependent
dynamics

dC(t′, t)

dt
= ω(t)C(t′, t) +

∫ t

t′
C(t′, τ) K(τ, t) dτ . (87)

Unfortunately, most of the numerical methods presented in sec. 2.6.5 rely on
numerical deconvolution schemes thus they require the integral term to be a
convolution product of the form

∫ t

0
dτK(t− τ)C(τ).

However, it is still possible to extract K(τ, t) numerically from experimental
data or simulation data of C(t′, t) efficiently. We begin by constructing the
memory kernel through a Picard iteration [27]. To this end we define functions
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j0(t′, t), Sn(t′, t) and J(t′, t) as

j0(t′, t) :=
1

C(t′, t′)

∂

∂t′
[C(t′, t′) − C(t′, t)]

S0(t′, t) :=
1

C(t′, t′)

∂C(t′, t)

∂t′

Sn+1(t′, t) :=

∫ t

t′
dτSn(t′, τ)S0(τ, t) (88)

J(t′, t) := j0(t′, t) +

∞
∑

n=0

∫ t

t′
dτSn(t′, τ)j0(τ, t) (89)

The memory kernel K(t′, t) in eq. 87 is the time derivative of J(t′, t)

K(t′, t) =
∂J(t′, t)

∂t
.

Now we split the recursion relation for Sn in eq. 88 into a “forward part” (t′ > t)
and a “backward part” (t′ < t)

Sn+1(t′, t) =

{

∫ T

0
dτ Θ(τ − t′)Sn(t′, τ)Θ(t− τ)S0(τ, t) if t′ > t

−
∫ T

0
dτ Θ(t′ − τ)Sn(t′, τ)Θ(τ − t)S0(τ, t) if t′ < t

(90)

where Θ is the Heaviside function, and T is the total duration for which we have
measured the correlation function. We define the functions Sn and Sn (the
symbols indicate functions that will later be replaced by upper triangular and
lower triangluar matrices)

Sn (t′, t) :=Sn(t′, t)Θ(t− t′)

Sn (t′, t) :=Sn(t′, t)Θ(t′ − t) .

With these definitions, we write eq. 90 as

Sn+1(t′, t) =

{

∫ T

0 dτ Sn (t′, τ)S0 (τ, t) if t′ > t

−
∫ T

0 dτ Sn (t′, τ)S0 (τ, t) if t′ < t
(91)

When we use data from computer simulations or experiments, it has usually
been measured at discrete times. For simplicity, we assume that the measure-
ments were timed evenly with an increment ∆t. Hence all two-time functions
introduced above can be interpreted as matrices, e.g. Sn(t′, t) = Sn(i∆t, j∆t) =
[S]ni,j

. Then eq. 91 can be written as

[S]n+1 =[S]n [S]0 ∆t −→ [S]n = [S]0
n+1

(∆t)n

[S]n+1 = − [S]n [S]0 ∆t −→ [S]n = (−1)n [S]0
n+1

(∆t)n

59



If we exclude the diagonal elements from either the lower or the upper triagonal
matrices, then [S]n = [S]n + [S]n . In summary, we can write eq. 89 as

[J ] =

∞
∑

n=0

(

[S]0 ∆t
)n

[j]0

=
(

I− [S]0 ∆t
)−1

[j]0 resp. [J ] =
(

I + [S]0 ∆t
)−1

[j]0 ,

where I is the identity matrix. This provides us with a simple recipe to compute
the memory kernel:

• Take a numerical time derivative of C(t′, t).

• Compute [S]0 , [S]0 , [j]0 and [j]0 .

• Invert
(

I + [S]0 ∆t
)−1

resp.
(

I− [S]0 ∆t
)−1

.

• Construct [J ] and take the time derivative numerically to obtain [K].

Hence, by means of a numerical derivative, a matrix inversion and another
numerical derivative, K(t, τ) can be constructed easily from experimental data.
Further details regarding this method can be found in ref. [163, 164].

Due to the existence of a fluctuation-dissipation relation, eq. 65, it is straight-
forward to interpret the linear nsGLE, eq. 62, as a stochastic equation of motion,
i.e. we replace the fluctuating force f0,t by a stochastic process ξ0,t which fulfills

K(t, t′) = −〈ξ0,tξ0,t′〉
〈|At|2〉

.

(For the nonlinear version, eq. 33, the construction of a stochastic alternative to
the fluctuating force is not as obvious, because there is no fluctuation-dissipation
relation.) Then we can generate coarse-grained stochastic dynamics by means
of the method of additional stochastic variables introduced by Berkowitz [179]
(sec. 2.6.5) in combination with the method to reconstruct non-stationary ker-
nels, which we just described. I.e. we interpret K(t, t′) as a family of functions
Kt(t− t′) and fit each of them by a series

Kt(t− t′) =
∑

j

κtj exp

(

− 1

τ tj

)

cos
(

(t− t′)ωt
j − φt,j

)

.

(Note that the superscript t is the label of the fit function and coefficients here.
It does not indicate a power of t.) Then we generate Markovian stochastic
processes which fullfill eq. 65 for each Kt and use those to construct the coarse-
grained dynamics. The trajectories produced in this way are correct on the
level of the ensemble average as well as the fluctuations. Note that they will, in
general, be different from the ones generated by eq. 26, as eq. 62 is exact, while
eq. 26 contains approximations.
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3.3.2. Markov State Models

In this section we focus on the construction of coarse-grained Markovian
models for non-equilibrium processes. As in sec. 2.6.4 we follow ref. [143] and
consider a time-continuous stochastic process {~xt}t≥0 on the space of particle

positionX ⊂ R3N with a probability density p : X×X → R≥0, where p(~y, ~x; s, t)
is the conditional probability density of N particles being at positions ~x at time
t given that they were at ~y at time s. Now we need to distinguish between the
propagator of a density of states f(~x)

Ps,tf(~x) :=

∫

X

f(~x) p(~y, ~x; s, t) d~y ,

the corresponding transfer operator Ts,t : L2
µs

→ L2
µt

with respect to an initial
density µs and a final density µt = Ps,tµs

Ts,tu(~x) :=
1

µt(~x)

∫

X

u(~x)µs(~x) p(~y, ~x; s, t) d~y =
1

µt(~x)
Ps,t(uµs) (92)

and the Koopman operator which propagates an observable A(~x)

Ks,tA(~x) :=

∫

X

p(~x, ~y; s, t)A(~y) d~y .

Ts,t is still the adjoint of Ks,t, but in contrast to the equilibrium case, they are
not identical.

To construct a non-equilibrium Markov State Model (neMSM), we first need
to specify what constitutes a good model. The spectrum of Ts,t will not provide
us with a useful set of relaxation times, as the dynamics is not stationary,
i.e. the eigenvalues depend on the initial time s as well as the lag time t − s.
Hence, in contrast to the equilibrium case, the quality of a neMSM cannot
simply be determined by how well it approximates the eigenfunctions to the
largest eigenvalues of the propagator. Instead, as we would like to predict the
evolution of a system, the minimization of the propagation error is a reasonable
objective. In other words, a good neMSM is a rank-k projection of Ts,t (with
k preferably small), for which the difference between the evolution of a density
according to eq. 92 and the corresponding evolution in the neMSM is minimized.

As in the equilibrium case, we obtain the optimal reduced transfer operator
T k
s,t by means of a variation of the projection operator. However, here we need

to take into account that L2
µt

is not identical to L2
µs

, hence we will need two
projection operators Q(s) : L2

µs
→ Vs ⊂ L2

µs
and Q(t) : L2

µt
→ Vt ⊂ L2

µt
such

that10

T k
s,t = Q(t)Ts,tQ(s) .

Expressed as a variational problem, the optimal model is the one for which

T k
s,t = argmin

T ′=Q′(t)Ts,tQ
′(s)

∣

∣

∣

∣Ts,t − T k
s,t

∣

∣

∣

∣ , (93)

10Note that the symbol Q does not imply orthogonality here. In this section, the symbol P
is already in use for the propagator. Therefore we needed another symbol for the projector.
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where the rank of Q′(t) and Q′(s) is k and || ◦ || indicates the induced operator
norm of operators mapping L2

µs
to L2

µt
. Eq. 93 is solved by a singular value

decomposition, i.e. we pick the k largest singular values σ1 ≥ . . . ≥ σk of Ts,t
and their corresponding right and left singular vectors φi and ψi (Ts,tφi = σiψi)
and set

Q′(s)◦ =

k
∑

i=1

(φi, ◦)µs
φi , Q′(t)◦ =

k
∑

i=1

(ψi, ◦)µt
ψi .

Note that we did not write out the dependence of ψi, φi and σi on the times s
and t to avoid cluttering the equations. Similarly to the equilibrium case, this
optimization problem can be tackled numerically [146].

The question is, how to interpret the eigenfunctions of the projectors once we
have found them. In ref. [233, 143] Koltai and co-workers argue, if there are sets
on which the eigenfunctions are almost constant, then these sets define meta-
stable states. As we need to consider two different types of eigenfunctions, ψi

and φi, in the non-equilibrium case, the initial metastable states will in general
be different from the final ones. T k

s,t then provides us with the transition rates
between these states. However, for a general non-equilibrium problem such sets
do not necessarily exist.

An interesting special case of non-equilibrium Markov State Modelling con-
siders systems under periodic external driving [234, 235, 236, 237]. As such
systems eventually enter a non-equilibrium steady state (NESS), the interpre-
tation and analysis of the coarse-grained dynamics is less involved than in the
general case. We briefly review a method to tackle this problem, which Knoch
and Speck introduced in a series of articles [235, 236, 237]. Instead of the contin-
uous state space X we consider a discrete and finite space (note that this is the
space of the “microscopic” degrees of freedom which we intend to coarse-grain,
not the state space of the coarse-grained model). Again, we assume that some
degrees of freedom have already been integrated out such that the dynamics is
stochastic and governed by a Master equation (see sec. 2.6.4)

Pj(t+ dt) = Pj(t)



1 −
∑

j 6=i

kji(t)dt



+
∑

j 6=i

Pi(t)kij(t)dt ,

where Pi(t) is the probability of finding the system in a state i at time t and kij(t)
is the rate of going from state i to cell j, for which we have now allowed a time-
dependence. We define the rate matrix [K](t) such that Kii(t) = −

∑

j 6=i kij(t)
and Ki6=j(t) = kji(t) to obtain

dP(t)

dt
= P(t) · [K](t) . (94)

Note that [K](t) is the equivalent of the conditional probability density p(~y, ~x; s, t)
used above, and not to K. For a general rate matrix [K](t), eq. 94 cannot be
solved in closed form. However, if [K](t) is periodic, i.e. [K](t + T ) = [K](t),
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one can construct a time-independent rate matrix, which produces the same
steady-state dynamics. We define averaged occupation probabilities and fluxes

P̄i :=
1

T

∫ t+T

t

dτ Pi(τ)

and

Φ̄ij :=
1

T

∫ t+T

t

dτ Pi(τ) Kij(τ) .

Before we coarse-grain the dynamics, we search for a time-independent matrix
[K̃] which produces the same P̄i and currents J̄ij := Φ̄ij−Φ̄ji. To solve this task,
we make use of the fact that, due to Floquet’s theorem [238], the periodicity of
the rate matrix is reflected in the solution of eq. 94

P(t+ nT ) = P(t) · (P(T ))n , n ∈ N .

The time-independent part P(T ) can be interpreted as the stationary solution
of a Markov process with a time-independent rate [W̃ ], P(T ) = exp(W̃T ). As
P(T ) is identical to the stationary solution for P̄, the first part of the task is
easily solved, and [W̃ ] could be coarse-grained with the methods we described in
sec. 2.6.4. However, the coarse-graining scheme also needs produce the correct
fluxes.

To address the condition on the fluxes, we note that due to the periodicity of
the driving field the system will reach a NESS. However, in the NESS it will not
obey detailed balance but rather contain cycles of states (i→ j → . . .→ i) along
which currents will flow. These currents are associated to entropy production.
On average in a transition from a state i to a state j entropy is produced with
a rate

dS

dt
=

1

2

∑

ij

Jij ln

(

Φij

Φji

)

,

where Φij = P̄iW̃ij and Jij := Φij − Φji. The algorithm proposed by Knoch
and Speck constructs a coarse-grained model by grouping cycles into clusters.
The original system is replaced by a set of representatives for these clusters
and the transition rates between the representative cycles are determined un-
der the condition that the entropy production rate dS

dt is preserved. Thus the
coarse-grained model is consistent, on average, in the sense of non-equilibrium
thermodynamics and it can be used to study e.g. work relations.

4. Summary

To obtain a model of a physical process that can be understood and used by
humans, the equations of motion of a large number of microscopic particles need
to be reduced to effective equations for a small set of relevant observables. This
is the task of coarse-graining. In this review, we discussed systematic coarse-
graining methods, both analytical and numerical, for systems in equilibrium and
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in non-equilibrium steady-states, systems relaxing into equilibrium and systems
fully out of equilibrium, e.g. due to time-dependent external driving.

In the section on systems in equilibrium we recalled the approach via the
BBGKY-hierarchy and the projection operator formalisms of Zwanzig and Mori.
We devoted a larger part of this section to a detailed analysis of the nonlinear
generalized Langevin equation with a potential of mean force, as this equation is
used frequently to analyze simulation data in the context of biomolecular mod-
elling and modelling of soft materials. We showed that, in general, a nonlinear
potential of mean force is accompanied by a nonlinear memory term and that
there is no fluctuation-dissipation theorem that would relate the memory kernel
of the nonlinear GLE to the corresponding fluctuating force. Arguments sup-
porting the contrary, which have been brought forward in the literature, seem
to be based on a misunderstanding regarding the exchangeability of various
projection operators.

After the discussion of analytical equilibrium methods, we presented an
overview of numerical methods used in the simulation of soft materials and
biological systems such as united-atom models, Dissipative Particle Dynamics,
Markov State Models and methods to construct memory kernels. In the case
of equilibrium dynamics, many of these methods can be derived systematically
from the underlying microscopic dynamics under certain assumptions, such as
e.g. time-scale separation or purely pairwise interactions on the coarse-grained
level. In principle, the user of such simulation methods should test whether
these assumptions hold before choosing a specific method.

We then moved to coarse-graining methods for systems that relax into equi-
librium. The approach via the BBGKY hierarchy can, in principle, be applied
straightforwardly in this context, however the equations get so involved that
one hardly makes progress beyond the level of the Boltzmann equation and
the Vlasov equation. Projection operators seem to be better suited to non-
equilibrium dynamics. We briefly reviewed some of the work by Grabert on
time-dependent projection operators and recalled how this formalism can be
used to derive Dynamic Density Functional Theory, the non-stationary Gen-
eralized Langevin Equation and the non-stationary Generalized Fokker-Planck
Equation. These equations are already considerably more difficult to handle
than their equilibrium counterparts. Therefore care is needed if one intends to
use the standard methods described in the equilibrium section to simulate re-
laxing systems, such as e.g. materials undergoing phase transitions or molecules
undergoing conformational changes.

Finally we reviewed several approaches that have recently been introduced
to coarse-grain systems which are fully out of equilibrium, such as active systems
or systems under time-dependent external driving. We recalled the concept of
power functionals by Schmidt and Brader, which allows the non-equilibrium
current density to be derived by means of a variational principle. Then we
showed how a time-dependent projection operator of the Mori-type can be used
to derive a linear, non-stationary Generalized Langevin equation. Due to the
linear projection operator, the memory kernel and the fluctuating force of this
equation fullfill a fluctuation-dissipation relation even for systems under external
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driving. In the last section on analytical methods, we presented a pathway to a
nonlinear, non-stationary Generalized Langevin equation via a series expansion
of a nonlinear projection operator.

We note that the equations discussed in sec. 3.2 are exact. If one wishes to
describe a non-equilibrium system by means of a simpler form of the Langevin
equation, this constitutes an approximation which needs to be justified. This
observation is relevant to several fields of physics that are currently subject to
intensive research activity. In the field of stochastic thermodynamics a Marko-
vian version of the Langevin equation is widely used to describe non-equilibrium
systems which are in contact with a heat bath [239, 240]. Fluctuation theorems
which are derived in this context, such as e.g. Jarzynski’s equality [241], are
powerful statements regarding non-equilibrium entropy production, but they
need to be taken with a grain of salt given that the underlying equation of mo-
tion is that of an already simplified, coarse-grained model. In the field of active
matter there has recently been a large number of publications, in which the
non-equilibrium nature of active systems is discussed, but at the same time the
Langevin equation (or the nonlinear Generalized Langevin equation with a linear
memory kernel) is used under the assumption that the fluctuation-dissipation
theorem holds. Similar observations can be made in the field of biomolecular
simulation. It would certainly be interesting to use the equations discussed in
sec. 3.2 in these research contexts in order to have a more controlled approach
to coarse-grained non-equilibrium dynamics.

In the final section of this review, we addressed numerical methods to handle
coarse-grained models out of equilibrium. There are not many. The author is
convinced that it is a worthwhile endeavour to develop such methods and to
apply them in soft matter physics, biomolecular modelling and fluid dynamics.
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Journal of Integral Equations (1980) 187–245.
URL https://www.jstor.org/stable/26164035

[36] A. J. Chorin, O. H. Hald, R. Kupferman, Optimal prediction with
memory, Physica D: Nonlinear Phenomena 166 (3-4) (2002) 239–257.
doi:10.1016/S0167-2789(02)00446-3.

[37] M. te Vrugt, R. Wittkowski, Projection operators in statistical mechan-
ics: a pedagogical approach, European Journal of Physics 41 (4) (2020)
045101. doi:10.1088/1361-6404/ab8e28.

[38] C. Hijon, P. Espanol, E. Vanden-Eijnden, R. Delgado-Buscalioni, Mori-
Zwanzig formalism as a practical computational tool, Faraday Discuss.
144 (2010) 301–322. doi:10.1039/B902479B.

[39] S. Izvekov, Microscopic derivation of particle-based coarse-grained dy-
namics: Exact expression for memory function, The Journal of Chemical
Physics 146 (12) (2017) 124109. doi:10.1063/1.4978572.

[40] R. Zwanzig, Nonlinear generalized Langevin equations, J. Stat. Phys. 9
(1973) 215 – 220. doi:10.1007/BF01008729.

[41] E. Cortes, B. J. West, K. Lindenberg, On the generalized Langevin
equation: Classical and quantum mechanical), The Journal of Chemical
Physics 82 (6) (1985) 2708–2717. doi:10.1063/1.448268.

[42] B. Cui, A. Zaccone, Generalized Langevin equation and fluctuation-
dissipation theorem for particle-bath systems in external oscillating fields,
Physical Review E 97 (2018) 060102. doi:10.1103/PhysRevE.97.060102.

[43] I. Snook, The Langevin and generalised Langevin approach to the dynam-
ics of atomic, polymeric and colloidal systems, Elsevier, 2006.

[44] R. Hernandez, F. Somer, Stochastic dynamics in irreversible nonequi-
librium environments. 2. a model for thermosetting polymerization,
J. Phys. Chem. B 103 (7) (1999) 1070–1077. doi:10.1021/jp9836269.

68

http://dx.doi.org/10.1137/0123054
https://www.jstor.org/stable/26164035
https://www.jstor.org/stable/26164035
http://dx.doi.org/10.1016/S0167-2789(02)00446-3
http://dx.doi.org/10.1088/1361-6404/ab8e28
http://dx.doi.org/10.1039/B902479B
http://dx.doi.org/10.1063/1.4978572
http://dx.doi.org/10.1007/BF01008729
http://dx.doi.org/10.1063/1.448268
http://dx.doi.org/10.1103/PhysRevE.97.060102
http://dx.doi.org/10.1021/jp9836269


[45] R. Bhadauria, T. Sanghi, N. R. Aluru, Interfacial friction based
quasi-continuum hydrodynamical model for nanofluidic transport of
water, The Journal of Chemical Physics 143 (17) (2015) 174702.
doi:10.1063/1.4934678.

[46] H. Lei, N. A. Baker, X. Li, Data-driven parameterization of the generalized
Langevin equation, Proc. Natl. Acad. Sci. 113 (50) (2016) 14183–14188.
doi:10.1073/pnas.1609587113.

[47] J. O. Daldrop, B. G. Kowalik, R. R. Netz, External potential modifies
friction of molecular solutes in water, Physical Review X 7 (2017) 041065.
doi:10.1103/PhysRevX.7.041065.
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Tieleman, Going backward: a flexible geometric approach to reverse trans-
formation from coarse grained to atomistic models, Journal of chemical
theory and computation 10 (2) (2014) 676–690.
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