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We study the nonequilibrium steady states in totally asymmetric exclusion processes (TASEP)
with open boundary conditions having spatially inhomogeneous hopping rates. Considering
smoothly varying hopping rates, we show that the steady states are in general classified by the
steady state currents in direct analogy with open TASEPs having uniform hopping rates. We cal-
culate the steady state bulk density profiles, which are now spatially nonuniform. We also obtain
the phase diagrams in the plane of the control parameters, which though have phase boundaries
that are in general curved lines, have the same topology as their counterparts for conventional open
TASEPs, independent of the form of the hopping rate functions. This reveals a type of universality,
not encountered in critical phenomena. Surprisingly and in contrast to the phase transitions in an
open TASEP with uniform hopping, our studies on the phase transitions in the model reveal that
all the three transitions are first order in nature. We also demonstrate that this model admits
delocalised domain walls (DDWs) on the phase boundaries demarcating the generalised low and
high density phases in this model. However, in contrast to the DDWs observed in an open TASEP
with uniform hopping, the envelopes of the DDWs in the present model are generally curved lines.

I. INTRODUCTION

Many natural systems are driven by some external
fields or are made of self-propelled particles. In the
long time limit, these systems evolve into stationary
states which carry steady currents, which are hallmarks
of nonequilibrium systems. Such states are characterised
by a constant gain or loss of energy, which distinguishes
them from systems in thermal equilibrium. Examples
of such driven systems range from live cell biological
systems like ribosomes moving along mRNA or motor
molecules “walking” along molecular tracks known as mi-
crotubules to ions diffusing along narrow channels, or
even vehicles traveling along roads. In order to elucidate
the nature of such nonequilibrium steady states and in
the absence of a general theoretical framework, it is use-
ful to study purpose-built simple models. To this end, a
variety of driven lattice gas models have been introduced
and studied extensively [1].

In this work, we focus on driven one-dimensional (1D)
models with open boundaries, where particles preferen-
tially move in one direction. In particular, we work on the
totally asymmetric simple exclusion process (TASEP),
that has become one of the paradigms of nonequilibrium
physics in low-dimensional systems (see, e.g., Ref. [2] for
reviews). In this model identical particles hop unidirec-
tionally and with a uniform rate along a 1D lattice [3].
The hopping movement is subject to exclusion, i.e., when
the target site is empty, since a given site can accommo-
date maximum one particle. Particles enter the system
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at one side at a specified rate α, and leave the system
through the other end at a given rate β; α and β are
the two control parameters of TASEP. It is known that
the steady states of TASEPs with open boundaries are
rather sensitive to the boundary conditions: by vary-
ing the boundary conditions, i.e., by varying α, β, the
steady states of open TASEPs can be varied, resulting
into boundary-induced nonequilibrium phase transitions.
These are genuine nonequilibrium effects, since equilib-
rium systems are usually insensitive to precise boundary
conditions.

In the original TASEP model, the hopping rate in the
bulk is assumed to be a constant (of unit value), which is
of course an idealisation. In real life examples it is gen-
erally expected to have nonuniformity along the bulk of
the TASEP channel leading to nonuniform hopping rates.
For instance, mRNA in cells are known to have pause
sites, where the effective hopping rates are lower [4]. This
is a potentially important issue even in urban transport,
where the speeds of vehicles (which is the analogue of
the hopping rates here) depend sensitively on the bottle-
necks along the roads [5]. Such spatially varying hopping
rates can either be smoothly varying along the TASEP
lanes, or be random quenched disorders with given distri-
bution. We focus here on the case with smoothly vary-
ing hopping rates, for which the generic nature of the
steady states in TASEPs are still not known. There have
been some studies on quenched heterogeneous TASEP;
see, e.g., Refs. [6, 7] for previous studies on different as-
pects of heterogeneous TASEP. Recently, how the steady
states of TASEPs with periodic boundary conditions are
affected by smoothly varying hopping rates are stud-
ied [8]; see also Ref. [9] for a study on periodic TASEP
with random quenched disordered hopping rates. A type
of universality has been uncovered, showing the topo-
logical equivalence of the phase diagrams independent of
the precise form of the space dependence of the hopping
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rates. More recently, an inhomogeneous `-TASEP with
open boundaries has been proposed in the context of ri-
bosome movements along messenger RNA strands [10].
Using a hydrodynamic approach [10], this study reveals
complex natures of the steady states and the phase tran-
sitions. In the present work, we revisit the problem of
open TASEPs with spatially non-uniform hopping rates,
which corresponds to the ` = 1 limit of the model studied
in Ref. [10]. Following Ref. [8], we set up the analyti-
cal mean-field theory (MFT) framework to calculate the
steady state density profiles for generic smoothly vary-
ing hopping rates. We illustrate the theoretical predic-
tions by calculating the density profiles for a few repre-
sentative examples of spatially varying hopping rates in
Monte-Carlo simulation (MCS) studies. The MFT that
we develop complements the hydrodynamics-based ap-
proach developed in Ref. [10], and helps to understand
the applicability and limitations of MFT in heteroge-
neous TASEPs, an important theoretical and technical
issue given MFT’s prevalence and general popularity as a
theoretical tool to study exclusion processes. Within this
MFT, by defining an order parameter reminiscent of the
same in open TASEPs but independent of the forms of
the space dependent hopping rates, we are able to clearly
connect the quantitative difference between the phase di-
agrams obtained here with those for open TASEPs with
uniform hopping. We further study the nonequilibrium
phase transitions in the model. Our MCS studies show
that all the phase transitions are first order or discon-
tinuous in nature, a surprising and unexpected outcome
from this work, that is easily explained within the MFT
we develop here. This is in contrast to an open TASEP
with uniform hopping. Our extensive MCS studies on
the domain walls reveal their delocalised nature, qualita-
tively similar to those found in an open uniform TASEP.
Nonetheless, our studies point out how the effects of the
nonuniform hopping get visible in the form of the enve-
lope of the moving domain wall, which is now a nonlinear
function of position along the TASEP channel. The rest
of the article is organised as follows. In Sec. II we de-
fine and construct our model. Next, in Sec. III A we
discuss the algorithm of the MCS study of the model to
numerically calculate the steady state densities. Then
in Sec. III B, we set up the MFT, and solve it to obtain
the steady state densities for smoothly varying hopping
rates, and compare with our MCS results. In Sec. III C,
we present the phase diagrams of the model. Then in
Sec. IV, we discuss the phase transitions in the model.
We summarise our results in Sec. V.

II. MODEL

The model consists of a 1D lattice of size L. The par-
ticles enter through the left end at rate α, hop unidirec-
tionally from the left to the right, all subject to exclusion,
i.e., a single site can accommodate maximum one parti-
cle at a time, and finally leave the system at a rate β.

Labelling each site by an index i that runs from 1 to L,
the hopping rate at site i is given by qi ≤ 1; see Fig. 1
for a schematic model diagram.

FIG. 1: Schematic model diagram. Broken line represents
the TASEP lattice. Particles enter and exit at rates α and β,
respectively, and hop from left to right, subject to exclusion.

A microscopic configuration of the model is charac-
terised by a distribution of identical particles on the lat-
tice, i.e., by configurations C = {ni=1,...,L}, where each
of the occupation numbers ni is equal to either zero (va-
cancy) or one (particle), as it should be in a model with
exclusion. Physically, a hard core repulsion between the
particles is imposed, resulting into prohibition of a dou-
ble or higher occupancy of sites in the model. The full
state space then consists of 2L configurations. The fol-
lowing elementary processes fully define the microscopic
dynamical update rules of this model:
(a) At any site i = 1, ..., L− 1 a particle can jump to site
i+ 1 if unoccupied with a rate qi ≤ 1.
(b) At the site i = 1 a particle can enter the lattice with
rate αq(1) only if it is unoccupied; and
(c) At the site i = N a particle can leave the lattice with
rate βq(L) when it is occupied.

In general, qi 6= qj for i 6= j. Processes (a)-(c) formally
define a TASEP with open boundary conditions. If all
of qi = 1 for all i identically, then this model reduces
to the conventional TASEP with open boundary condi-
tions [2]. We consider some specified choices of qi that
depends explicitly on i, and study their effects on the
nonequilibrium steady states of the model. Recall that
the steady states of an open TASEP with α and β as
the entry and exit rates, and a uniform hopping rate are
characterised by the mean bulk density ρT : For α < β
and α < 1/2, one has ρT = α giving the low density (LD)
phase, for β < α and β < 1/2, one has ρT = 1−β giving
the high density (HD) phase, and for α, β > 1/2, one
has ρT = 1/2 giving the maximal current (MC) phase.
This immediately gives the phase boundary in the α− β
plane [2]. The principal aim of the present study is to
find the phases, phase boundaries and the nature of the
associated phase transitions, and the principles behind
obtaining them when the hopping rate is not constant,
but spatially smoothly varying.

III. STEADY-STATE DENSITIES

We are interested to calculate the density profiles in
the steady states. To this end, we set up MFT which can
be solved analytically. We supplement the MFT results
by extensive Monte-Carlo simulations (MCS).
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A. Monte-Carlo simulations

We consider a lattice of L sites, labelled by an index
i with i ∈ [1, L]. Let ni(t), which is either 0 or 1, be
the occupation at site i at time t. We perform MCS
studies of the model subject to the update rules (a)-(c)
described above in Sec. II by using a random sequen-
tial updating scheme. The particles enter the system
through the left most site (i = 1) at a fixed rate α, sub-
ject to exclusion, i.e., if n1 = 0. After hopping through
the system from i = 1 to L, subject to exclusion, the par-
ticles exit the system from i = L at a fixed rate β. Here,
α and β are the two simulation parameters, which are
varied to produce different steady states. After reach-
ing the steady states, the density profiles are calculated
and temporal averages are performed. This produces
time-averaged, space-dependent density profiles, given by
〈ni〉,which are parametrised by α and β; here 〈...〉 implies
temporal averages over steady states. The simulations
have been performed with L = 10000 up to 107 Monte-
Carlo steps. Lastly, all the measurements are made in
the steady states, which are reached by the system after
spending certain transient times. In an open TASEP, a
steady state is easily ascertained by observing the spatio-
temporal constancy of the average density 〈ni(t)〉 (ex-
cluding the domain walls) in the bulk of the system. In
the present problem, such a way to confirm the steady
state fails due to the (expected) spatially varying steady
state density in the bulk. Instead, we use the constancy
of the current J in the steady state, a condition that
holds both in the present study and also for a uniform
open TASEP. In our MCS studies, all our measurements
are done only after this condition is satisfied.

B. Mean-field theory

The dynamics of TASEP is formally given by rate
equations for every site which are not closed. In MFT
approximation, we neglect correlation effects and replace
the average of product of densities by the product of av-
erage of densities [11]. While this is an approximation,
this has worked with high degree of accuracy in the orig-
inal TASEP problem and its many variants (see, e.g.,
Refs. [12–14] as representative examples); we use MFT
here as a guideline in our analysis below. The dynamical
equation for ni(t) is given by

∂ni
∂t

= qini−1(1− ni)− qi+1ni(1− ni+1), (III.1)

for a site i in the bulk. Clearly, Eq. (III.1) is invariant
under the transformation ni(t) → 1 − nL−i(t) together
with qi → qL−i and α → β, which is the particle-hole
symmetry of this model [12].

To proceed further in the MFT approximation, we la-
bel the sites by x = i/L and take L → ∞, which makes
x a continuous variable between 0 and 1: x ∈ [0, 1]. In
this parametrisation, the hopping rate function is given

by 0 < q(x) ≤ 1, that is assumed to vary slowly in x.
We define a lattice constant ε ≡ L0/L, where L0 is the
geometric length of the system. To simplify notation, we
fix the total length L0 to unity without any loss of gen-
erality. In the thermodynamic limit L → ∞, ε → 0 is a
small parameter. Further, we define ρ(x) = 〈ni〉 as the
steady state density at x. In the steady state, we expand
the different terms on rhs of (III.1) in a Taylor series in
powers of ε. We get

ρ(x± ε) = ρ(x)± ε∂xρ(x)

+
ε2

2
∂2xρ(x) +O(ε3), (III.2)

q(x± ε) = q(x)± ε∂xq(x)

+
ε2

2
∂2xq(x) +O(ε3). (III.3)

Substituting the above and retaining up to O(ε), we get

∂ρ

∂t
= −ε ∂

∂x
[q(x)ρ(x)(1− ρ(x))] +O(ε2), (III.4)

neglecting terms higher order in ε. Equation (III.4) al-
lows us to extract a bulk current J given by

J = q(x)ρ(x)[1− ρ(x)]+O(ε), (III.5)

which must be a constant independent of x in a given
steady state. That Eq. (III.4) has the form of an equation
of continuity is no surprise - this is because away from
the boundaries in the bulk of the TASEP, particles only
hop from left to right, subject to exclusion, which keeps
the particle number locally conserved. In the continuum
limit, ε→ 0+ and hence the average current is

J = q(x)ρ(x)[1− ρ(x)], (III.6)

valid when ρ(x) and q(x) are sufficiently smooth. It is ev-
ident that the MFT equations (III.4)-(III.6) are invariant
under the particle-hole symmetry discussed above. Due
to this property it is enough to restrict the analysis to
the LD and MC phase density profiles; the HD phase
density can be constructed from the LD phase density
by using the particle-hole symmetry. Notice that this
MFT does not capture any time-dependent or dynamical
information, unlike hydrodynamic approaches. Nonethe-
less, considering the inherent simplicity of our MFT and
the general popularity of MFT as a theoretical tool to
study TASEPs, it is useful to study the steady states of
this model by MFT, which serves as a good benchmark
of the success, applicability and limitations of the mean
field approaches vis-á-vis other approaches like hydrody-
namic methods.

a. General solutions of the density in MFT:- We
now derive the generic steady state density profiles and
delineate the phases by using the MFT equation (III.6).
In this study, we closely follow the method outlined
in Ref. [8], that was subsequently extended to and re-
fined for interacting systems [15, 16]. As argued be-
low, these solutions holds for any smoothly varying q(x).
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Equation (III.6) is a quadratic equation in ρ(x). In
Eq. (III.6) since J is a constant and q(x) has an explicit
x-dependence, ρ(x) must be x-dependent, such that the
product of the various factors on the rhs of (III.6), all
of which are individually x-dependent, produces an x-
independent result J . Equation (III.6) has two spatially
nonuniform solutions ρ+(x) and ρ−(x) for a given J :

ρ+(x) =
1

2

[
1 +

√
1− 4J

q(x)

]
>

1

2
, (III.7)

ρ−(x) =
1

2

[
1−

√
1− 4J

q(x)

]
<

1

2
, (III.8)

for any x. Evidently, both ρ+(x) and ρ−(x) are continu-
ous functions of x, as long as q(x) itself is a continuous
function of x. Further, ρ+(x) > 1/2 everywhere, whereas
ρ−(x) < 1/2 everywhere. Clearly, if q(x) is a constant
then ρ(x) is also a constant, independent of x (ordinary
TASEP with uniform hopping). At this stage J is still
unknown. Since ρ(x) is real (in fact positive definite) ev-
erywhere, we must have 1−4J/q(x) ≥ 0 giving an upper
bound on J :

J ≤ q(x)/4. (III.9)

Inequality (III.9) must hold for all x. Clearly, J has a
maximum given by

Jmax =
qmin

4
, (III.10)

for a given q(x); see also Ref. [17] for an analogous result
in a disordered exclusion process. Note that Jmax is the
maximum possible current that can be sustained by the
system for all possible choices of the control parameters
α, β. However, J may not reach Jmax for any α, β; see
below. In the limit of uniform hopping with q(x) = 1
everywhere, Jmax = 1/4, corresponding to the MC phase
current in the conventional TASEP. We thus note that in
the present model steady states with current J = Jmax

for a given q(x) should generalise the standard MC phase
in open TASEPs with uniform hopping.

We now systematically derive the conditions for the
different phases. To do this, we must calculate J to spec-
ify the solutions ρ+(x) and ρ−(x) completely.

Recall that in the LD phase of conventional open
TASEPs with uniform hopping, the steady state is de-
scribed by the incoming current, which in the bulk is
given by JT

LD = α(1 − α) < JT
HD = β(1 − β), the out-

going current. This corresponds to ρ = α as the bulk
density in the LD phase. In contrast, in the HD phase,

JT
HD < JT

LD, giving 1 − β as the HD phase bulk density;
a superscript T refers to an open TASEP with uniform
hopping. The MC phase is associated with the current
JT
MC = 1/4 in the bulk. The LD-HD phase boundary

is given by the condition JT
LD = JT

HD giving α = β; the
LD-MC and HD-MC phase boundaries likewise are given
by JT

LD = JT
MC and JT

HD = JT
MC, giving, respectively,

α = 1/2 and β = 1/2 as the phase boundaries. We now
generalise this picture by finding out the forms of J in
the present problem.

b. LD phase:- We start by noting that the current in
the bulk of the TASEP channel is J = q(x)ρ(x)[1−ρ(x)],
where ρ(x) is ρ+(x) or ρ−(x). Since ρ(0) = α, we obtain

JLD = q(0)α(1− α). (III.11)

Since, the steady state bulk density in the LD phase is
less than 1/2 everywhere, the density profile ρLD(x) in
the LD phase is given by

ρLD(x) =
1

2

[
1−

√
1− 4q(0)

q(x)
α(1− α)

]
<

1

2
. (III.12)

Then we must have α < 1/2 as in an open TASEP with a
uniform hopping rate. Equation (III.12) gives the steady
state density in the LD phase for a given q(x) and de-
pends on the entry rate α, but not on the exit rate β, as
expected in the LD phase. With q(x) = q(0) = const.
everywhere, ρLD(x) = α, neglecting the other solution
1 − α > 1/2 for α < 1/2 for an open TASEP with a
uniform hopping rate.

We have plotted ρLD(x) versus x in Fig. 2 for two dif-
ferent and simple choices of the hopping rate function
q(x):

Choice I: q(x) =
1

1 + 2x
, 0 ≤ x ≤ 1/2,

=
1

3− 2x
, 1/2 ≤ x ≤ 1, (III.13)

Choice II: q(x) =
1

2

[
2− x2

0.49

]
, 0 ≤ x ≤ 0.7,

=
1

2

[
2− (x− 1.4)2

0.49

]
, 0.7 ≤ x ≤ 1.

(III.14)

Clearly, q(x) in Choice I is symmetric about x = 1/2,
whereas q(x) in Choice II has no particular symmetry.
Results on the steady state densities from MFT and MCS
studies are plotted together in Fig. 2, which show good
agreements between MFT and MCS results.

c. HD phase:- The logic we have developed above to
obtain ρLD(x) can be used to obtain ρHD(x), the steady
state density in the HD phase. Noting that ρ(1) = 1−β,

we obtain the HD phase current

JHD = q(1)β(1− β). (III.15)
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FIG. 2: Plots of the steady state density ρ(x) versus x in the LD phase for different choices of the hopping rate functions. (top)
q(x) as given in Choice I above for two different sets of values of α and β, (bottom) q(x) Choice II above for two different sets
of α and β. In each plot, the green line represents the MFT prediction, the red points are from the corresponding MCS study;
the blue line represents q(x). Good agreement between the MFT and MCS predictions can be seen (see text).

Since, the steady state bulk density everywhere is more
than 1/2, the density profile ρHD(x) in the HD phase is
given by

ρHD(x) =
1

2

[
1 +

√
1− 4q(1)

q(x)
β(1− β)

]
>

1

2
. (III.16)

Therefore, we must have β < 1/2 as for an open TASEP
with uniform hopping. In contrast to ρLD(x), given by
(III.12) above, ρHD(x) in (III.16) depends on q(x) and the
exit rate β, but not on α, as expected in the HD phase.
With q(x) = q(1) = const. everywhere, ρHD(x) = 1 − β,
neglecting the other solution ρHD = β < 1/2 for an open
TASEP with a uniform hopping rate.

In an open TASEP with uniform hopping, α < 1/2
and α < β specify the LD phase, whereas β < α and
β < 1/2 specify the HD phase. What are the analogous
conditions here? These conditions in the present case
may be obtained by considering the steady state currents.

We recall that the above conditions for the LD and HD
phases in an open TASEP with uniform hopping can be
recast in terms of the steady state currents as JT

LD <
1/4 and JT

LD < JT
HD for the LD phase, and JT

HD < 1/4
and JT

HD < JT
LD for the HD phase. These conditions

may be generalised to the present case with non-uniform
hopping. The LD phase now exists for

JLD ≡ q(0)α(1− α) < JHD ≡ q(1)β(1− β), JLD <
qmin

4
.

(III.17)
Similarly, for the HD phase to exist we must have

JHD < JLD, JHD <
qmin

4
. (III.18)

We have plotted ρHD(x) versus x in Fig. 3 for q(x)
as defined in Choice I above. The HD phase density
plots for q(x) as given in Choice II above, likewise, can
be obtained from corresponding plots in the LD phase
by using the particle-hole symmetry. Results from MFT
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and MCS studies are plotted together in Fig. 3, which
again reveal good agreements between MFT and MCS
results.
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FIG. 3: Plots of the steady state density ρ(x) versus x in
the HD phase for the hopping rate function q(x) as given
in Choice I above for two different sets of values of α and
β. These are connected to the corresponding ρLD(x) via the
particle-hole symmetry discussed above. In each plot, the
green line represents the MFT prediction, the red points are
from the corresponding MCS study; the blue line represents
q(x). Good agreement between the MFT and MCS predic-
tions can be seen (see text).

At this stage, we note that the MFT density expres-
sions agree with the predictions from the hydrodynamic
theory [10].

d. MC phase:- The steady density in the MC phase,
ρMC(x) is somewhat tricky to calculate. We already know
that the steady state current in the MC phase

JMC = qmin/4, (III.19)

which can be used either in ρ+(x) or ρ−(x), with these
two solutions become identical (=1/2) at x = x0, at

which point q(x0) = qmin. MCS studies reveal that a
part of ρMC(x) is bigger than 1/2, whereas elsewhere it
is smaller than 1/2. Thus in order to construct ρMC(x),
we must use both ρ+(x) and ρ−(x), i.e., ρMC(x) is a
combination of ρ+(x) and ρ−(x), with the two segments
meeting at x0. Whether ρ+(x) or ρ−(x) is to be used
to construct the left or right segments (with respect to
x0) remains undetermined in MFT, revealing a limita-
tion of MFT vis-á-vis hydrodynamic approaches. One
can of course use the MCS result as an input at this
stage. However, we can instead use heuristic arguments
to settle this. To proceed, we note that the model can be
imagined to be composed of two inhomogeneous TASEPs
LT and RT respectively on the left and right of x0, which
are joined at x0. We can now determine the densities and
phases of LT and RT separately, combining which the
density profile along the full TASEP channel in its MC
phase can be obtained. To proceed further, we note that
at x0, the hopping rate from LT to RT is qmin. Further-
more, the densities at the “exit” and “entry” points (both
of which are nothing but x0) of LT and RT are 1/2, since
ρ+(x0) = ρ−(x0) = 1/2 (see above). In addition, LT and
RT have no boundary layers at x0, i.e., no boundary lay-
ers at their exit and entry points, respectively. Since in
the MC phase there is one boundary layer at each of
x = 0 and x = 1, LT and RT have boundary layers at
their “entry” (i.e., x = 0) and “exit” (i.e., x = 1), re-
spectively. Let us now focus specifically on LT . Consider
first that the density profile of a uniform open TASEP
at its HD-MC phase boundary is given by ρ = 1/2 (cor-
responding to a steady state current of value 1/4) with a
boundary layer at the entry end (i.e., x = 0 for LT ) and
no boundary layer at the exit end (i.e., x = x0 for LT ).
In analogy then the density profile of the segment LT

should actually resemble the density profile of a nonuni-
form open TASEP at its HD-MC phase boundary. This
implies that ρ(x) in LT , i.e., for 0 ≤ x ≤ x0, should be
given by ρ+(x) with J = qmin/4. To find out the density
profile in the remaining part, i.e., the density profile for
x0 ≤ x ≤ 1, we now apply similar arguments on RT .
This gives that the density in the segment RT should ac-
tually correspond to the density in an open nonuniform
TASEP at the boundary between its LD and MC phases.
Hence, its density profile should be given by ρ−(x) with
J = qmin/4, which holds for x0 ≤ x ≤ 1. Now com-
bining the densities in LT and RT , on the whole, there-
fore ρMC(x), the density profile in the MC phase of the
present model, is given by ρ+(x) between 0 and x0, and
ρ−(x) between x0 and 1. Alternatively, we can directly
appeal to the fact that in an open TASEP with uniform
hopping in its MC phase, ρ(0) > 1/2 and ρ(1) < 1/2 [11].
Since the general solution for ρ(x) in the MC phase with
an arbitrary q(x) must reduce to the well-known solu-
tion of the density in an open uniform TASEP in its MC
phase when the space-dependence of q(x) gets progres-
sively weaker as q(x) approaches a constant, in order to
construct ρMC(x) in our case, we should use ρ+(x) to the
left of x0 and ρ−(x) to its right. Both the above heuris-



7

tic arguments agree well with our MCS results; see Fig. 4
for plots of ρMC(x) versus x for two choices of q(x), each
of which agrees with the MFT results. Hydrodynamic
approaches such as the one developed in Ref. [10] should
provide a more formal basis to our above heuristic argu-
ments. Our analysis here further implies that if x0, the
location of qmin is not in the bulk, but at the extreme

ends (i.e., x = 0, 1), ρMC(x) will consist of only ρ−(x)
or ρ+(x). Interestingly, this means in general the aver-
age density in the MC phase (averaged over the whole
TASEP) can be more or less than 1/2! This is clearly
in contrast to TASEP with uniform hopping, where the
average density in the MC phase is 1/2.
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FIG. 4: Plots of the steady state density ρ(x) versus x in the MC phase for different choices of the hopping rate functions and
for different sets of values of α and β. (top) q(x) as given in Choice I, (bottom) q(x) as given in Choice II. In each plot, the
green line represents the MFT prediction, the red points are from the corresponding MCS study; the blue line represents q(x).
Good agreement between the MFT and MCS predictions can be seen (see text).

C. Phase diagram

We now discuss the conditions to obtain the phase di-
agram and the phase boundaries in the α, β-plane. First
consider the boundary between the LD and HD phases.
In the LD phase, the bulk current is given by JLD in
(III.11), whereas the bulk current in the HD phase is

given by JHD in (III.15). The two phases meet when
JLD = JHD, which gives the phase boundary between
the LD and HD phases that has the form

q(0)α(1− α) = q(1)β(1− β). (III.20)
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This is a quadratic equation in β in terms of α with two
solutions β±:

β± =
1

2

[
1±

√
1− 4µα(1− α)

]
, (III.21)

where µ ≡ q(0)/q(1), which can be bigger or smaller than
unity. Since β < 1/2 for the HD phase, β = β− gives
the LD-HD phase boundary. Phase boundary (III.21)
automatically reduces to α = β, the well-known result
for the phase boundary or the coexistence line between
the LD and HD phases in an open TASEP with a uniform
q(x). In fact, even with nonuniform q(x), α = β is the
phase boundary, so long as q(0) = q(1) is maintained,
independent of the actual profile of q(x).

The steady state density profile at the LD-HD coex-
istence line has a special structure. In an open TASEP
with uniform hopping rate, it occurs on the line α = β <
1/2 in the α − β plane, and is actually a delocalised do-
main wall (DDW), which is a domain wall or a density
“shock” whose position is not fixed but fluctuates along
the whole length of the TASEP length. Moreover, the
position of the domain wall is equally likely to be any-
where in the TASEP. This means the long time average
of the density profile, that essentially captures the enve-
lope of the DDW, is an inclined straight line connecting
ρLD = α at the entry end and ρHD = 1 − β at the exit
end. Since the MFT neglects all fluctuations, it cannot
capture this DDW. We numerically investigate the ana-
logue of a DDW in a uniform open TASEP in the present
problem for q(x) in Choice I, which is symmetric about
the mid-point x = 1/2, and in Choice II, which is not
symmetric about the mid-point, as given above (III.13)
and (III.14), respectively. For Choice I the coexistence
line in the α− β plane is still given by α = β due to the
symmetry of the function q(x) chosen. In contrast, for
Choice II there is no such symmetry, and hence the LD-
HD phase boundary in the α−β plane is given by β = β−;
see Eq. (III.21) above. Evidently, this is not a straight
line in the α − β plane. In the absence of any localising
mechanism like particle non-conservation in the bulk [12],
or global particle number conservation [8, 13], we expect
to observe a DDW. However, space-dependent hopping
rates imply that the domain wall should spend statisti-
cally unequal time at different positions in the bulk of the
TASEP channel, which suggests a generic curvilinear en-
velope of the DDW under long-time averaging. Going be-
yond MFT by taking into account of fluctuations should
allow us write down a Fokker-Planck equation for the in-
stantaneous position of the density shock [18]. Solving
this equation one can in principle determine the mathe-
matical form of the envelope, which is outside the scope
of the present study. Instead, we investigate the shape
of the DDW envelope by extensive MCS studies. Due
to the diffusive nature of the DDW fluctuations, good
statistics for the DDW envelope requires averaging over
∼ L2 MCS steps. Because of this, we have restricted this
particular study to L = 1000 with q(x) in Choice I and
Choice II. To ascertain the shape of the long-time av-

eraged envelope of the DDW, we average over 109 MCS
steps. Furthermore, in order to resolve the instantaneous
(i.e., time-dependent) structures of the DDWs, we also
calculate ρ(x) by averaging over short time windows of
104 MCS steps. The corresponding kymographs are also
obtained. To generate sufficiently smooth plots, the ky-
mographs are indeed coarse-grained over a mesoscopic
lengh r. This mesoscopic length r used to draw a kymo-
graph, i.e. the length over which the spatial averaging is
done, should necessarily be much smaller than the system
size L. We have used r = 7 in our simulations.

We present our results on ρ(x) in Fig. 5 and Fig. 6,
respectively, for q(x) in Choice I and Choice II. The cor-
responding kymographs are shown in Fig. 7 and Fig. 8,
respectively.

We make the following conclusions from our MCS re-
sults. First of all, both the kymographs qualitatively
reveal that the domain walls are delocalised for both the
choices of q(x). In order to make quantitative under-
standing of the DDWs, we now consider the density pro-
file plots as shown in Fig. 5 and Fig. 6. Unsurprisingly,
the short-time averages in both Fig. 5 and Fig. 6 re-
veal sharp, discontinuous structures of ρ(x), which are
reminiscent of a localised domain wall (LDW) in het-
erogeneous TASEPs in ring geometries [8, 13], for both
choices of q(x). The corresponding long-time averages as
expected are nonlinear functions of position x. Nonethe-
less, these long time averages reveal important distinc-
tions between these two choices of q(x). For instance
with Choice I, the DDW envelope shows weak departure
from an inclined straight line. In addition, careful ob-
servation reveals that the envelope takes a distinct shape
close to x = 1/2, which is the location of qmin, than away
from it. In contrast for Choice II, ρ(x) shows a strong
nonlinear behaviour with x, and again shows a partic-
ular structure at x ≈ 0.7, the location of qmin, distinct
from elsewhere. Lastly, the alert reader may notice that
a general consequence of the nonlinear x-dependence of
the DDW envelopes is that the short-time averages of
the densities, though display sharp discontinuities, do not
have constant densities on either side of the discontinu-
ities; see Fig. 5 and Fig. 6. Naturally, these short-time
averaged density profiles are intrinsically different from
the standard heaviside step functions. At a qualitative
level, we can make the following conclusion. Given that
the domain wall should execute random walk along the
TASEP lane, the form of the domain wall envelope for an
asymmetric q(x) strongly suggests that the domain wall
spends different amount of time in different regions of the
nonuniform TASEP lane, mimicking a random walk in a
potential with a complex shape. This may be quanti-
tatively analysed further by calculating the general pro-
file of the DDW envelope including its shape near the
minimum of q(x) analytically by going beyond MFT ap-
proaches for a given q(x) [8, 18]. This will be discussed
elsewhere.

Similar considerations allow us to obtain the LD-MC
and HD-MC phase boundaries. For example, the LD-MC
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FIG. 5: Density profile ρ(x) on the coexistence line with
α = β = 0.07 with q(x) as given in Choice I above. Short-time
averages of ρ(x) are LDWs with sharp density jumps, whose
positions shift with time; the long-time average is the enve-
lope of the moving LDWs, or a DDW, given by the inclined
curved (red) line, whose precise mathematical form cannot be
calculated within MFT (see text).
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FIG. 6: Density profile ρ(x) on the coexistence line with
α = 0.06, β = 0.07 with q(x) as given in Choice II above.
Short-time averages of ρ(x) are LDWs with sharp density
jumps, whose positions shift with time; the long-time aver-
age is the envelope of the moving LDWs, or a DDW, given
by the inclined curved (red) line, whose precise mathematical
form cannot be calculated within MFT (see text).

phase boundary is given by the condition JLD = JMC,
which gives

α =
1

2

[
1−

√
1− qmin

q(0)

]
, (III.22)

since α < 1/2 for the LD phase. Assuming q(i) = qmin

for some i in the bulk, the effect of a nonuniform q(x)
is to shift the boundary line (III.22) towards the β-axis.
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FIG. 7: Kymograph for the density profile ρ(x) on the coex-
istence line with α = β = 0.07 with q(x) as given in Choice
I above. This qualitatively reveals the delocalised nature of
the domain wall.
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FIG. 8: Kymograph for the density profile ρ(x) on the co-
existence line with α = 0.06, β = 0.07 with q(x) as given in
Choice II above. Again this qualitatively reveals the delo-
calised nature of the domain wall.

Likewise, the HD-MC phase boundary is given by the
condition JHD = JMC, giving

β =
1

2

[
1−

√
1− qmin

q(1)

]
. (III.23)

since β < 1/2 for the HD phase. Again with q(i) =
qmin for some i in the bulk, the effect of a nonuni-
form q(x) is to shift the boundary line (III.23) to-
wards the α-axis. The three phase boundaries meet

at
([

1−
√

1− qmin/q(0)
]
/2,
[
1−

√
1− qmin/q(1)

]
/2
)

.

Since q(0), q(1) ≥ qmin, the general effect of a nonuni-
form hopping rate appears to be to enlarge the MC phase
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region and shrink the LD and HD phase regions in the
α − β-plane. Furthermore, since q(0) 6= q(1) in gen-
eral, the phase diagram could be asymmetric under in-
terchange of α and β. Phase diagrams for q(x) in Choice
I and q(x) in Choice II are shown in Fig. 9 (top) and
Fig. 9 (bottom), respectively. Phase boundaries (III.21),
(III.22) and (III.23) calculated from MFT, and the cor-
responding results from MCS studies are superposed.
Good agreement between the two are found.

FIG. 9: Phase diagram in the α−β plane with q(x) in Choice
I above (top), and q(x) in Choice II above (bottom). Contin-
uous lines represent the MFT predictions; discrete points are
from the corresponding MCS studies, which agree well with
the MFT results. LD, HD and MC phases are marked. The
two phase diagrams clearly have the same topology (see text).

Let us now make some general observations on the
phase diagrams in Fig. 9. Clearly, the phase diagrams
in Fig. 9 are quantitatively different from the well-known
phase diagram of an open TASEP with uniform hopping.

First of all, the MC region of the phase diagrams is now
distinctly bigger with space-dependent q(x) than in the
corresponding phase diagram with a constant hopping
rate. Secondly, between the two phase diagrams pre-
sented in Fig. 9, the one with q(x) as given in Choice I
above with q(0) = q(1) [Fig. 9 (top)] remains unchanged
under the interchange of α and β, same as for the phase
diagram for an open TASEP with uniform hopping rate.
In contrast, the phase diagram with q(x) as given in
Choice II, such that q(0) 6= q(1), [Fig. 9 (bottom)] has no
such symmetry under the interchange of α and β. These
properties are consistent with our discussions above; see
Eqs. (III.21), (III.22) and (III.23). This firmly estab-
lishes the connections between the quantitative forms of
the phase diagrams with the different choices of the hop-
ping rate functions, a key quantitative outcome from the
present study. Nonetheless, the phase diagrams above
have the same topology as that for an open TASEP with
uniform hopping: all of them have three phases, which
meet at a common point, establishing a degree of univer-
sality in the phase diagrams that complements the results
of Ref. [8].

IV. PHASE TRANSITIONS

The original TASEP model with open boundaries and
uniform hopping, the transition between the LD and HD
phases are first order transitions, whereas those between
the MC and LD or HD phases are second order transi-
tions. The difference in the average bulk densities of the
two phases serves as the order parameter in each of these
transitions. In order to study the phase transitions in
the present model, we first need to define the order pa-
rameter appropriately. To start with, we define the mean
density

ρa ≡
1

L

∫ 1

0

ρa(x) dx, (IV.1)

for the phase a, where a = LD, HD or MC phase. Since
ρLD(x) < 1/2 in the bulk of the system, ρLD < 1/2 nec-
essarily. Similarly, ρHD > 1/2 necessarily. Interestingly,
ρMC need not be 1/2, in contrast to conventional open
TASEPs with uniform hopping. In fact, in the present
study, with q(x) in Choice I above, ρMC ≈ 1/2 [19] due to
the symmetry of q(x) and hence ρMC about x = 1/2. In
contrast, for q(x) in Choice II above, ρMC > 1/2. Order
parameter (IV.1) clearly generalises the order parameter
in a uniform TASEP, which is just the bulk density. With
this, considering the mean density as the order parame-
ter, the transition between the LD and HD phases is a
first order transition with

OHD-LD ≡ ρHD − ρLD (IV.2)

showing a jump across the LD-HD phase boundary. This
jump, given by the magnitude of OHD-LD is to be calcu-
lated on the phase boundary between the LD and HD
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phases, and clearly depends on α (or equivalently β).
The finite jump of OHD-LD tells us that the phase transi-
tion in question is a first order transition. To study the
phase transitions between the MC and LD or HD phases,
we similarly consider

OLD-MC ≡ ρLD − ρMC, (IV.3)

OHD-MC ≡ ρHD − ρMC. (IV.4)

It is easy to see that these order parameters (IV.2)-(IV.4)
reduce to the respective bulk density differences in an
open TASEP with uniform hopping rates. The transi-
tions would be second order if the respective order pa-
rameters defined above would vanish at the correspond-
ing phase boundaries. Else, if instead they show dis-
continuities, the transitions are first order in nature. In
this Section, we focus on the phase transitions in the re-
stricted case with symmetric q(x) with a single minimum
(as above). The more general cases including asymmetric
q(x) will be discussed elsewhere in future. We use both
MFT and MCS to analyse the phase transitions. We first
study the LD-HD transition. To that end, we consider
Eq. (III.7) or Eq. (III.16) for ρHD(x), and correspond-
ingly Eq. (III.8) or Eq. (III.12) for ρLD(x). Since both
JLD, JHD < Jmax = JMC = qmin/4, we conclude that
the discriminant in each of Eq. (III.7) or Eq. (III.16)
and Eq. (III.8) or Eq. (III.12), giving ρHD(x) > 1/2 and
ρLD(x) < 1/2 at all x. This in turn implies ρHD > 1/2
and ρLD < 1/2 necessarily. This holds even at the tran-
sition point making ρHD 6= ρLD, which in turn means
OHD-LD is finite at the transition. Thus the LD-HD tran-
sition in the MFT is first order, as in an open TASEP
with constant hopping rates. We now turn to the LD-MC
transition, which is a second order transition in an open
TASEP with constant hopping. To analyse this for sym-
metric q(x), we use the fact that ρMC = 1/2 (see above),
and again consider Eq. (III.8) or Eq. (III.12) for ρLD(x).
At the LD-MC transition JLD = JMC = qmin/4. Since
q(x) ≥ qmin at any x, the discriminant in Eq. (III.8) or
Eq. (III.12) is generally positive except at discrete points
where q(x) = qmin, which holds even at the LD-MC tran-
sition. Thus ρLD(x) and hence ρLD < 1/2 = ρMC at the
transition point. Surprisingly, this means OLD-MC does
not vanish at the transition, giving a first order transi-
tion here, in contrast to a second order LD-MC transition
in an open TASEP with uniform hopping. Similar argu-
ments can be used to show that in MFT, the HD-MC
transition is also a first order transition, again in con-
trast to an open TASEP with uniform hopping. Thus,
rather unexpectedly MFT predicts that all the three tran-
sitions are first order with a symmetric q(x) having one
minimum. To verify these MFT predictions for our model

numerically, we have studied the nature of the phase tran-
sitions numerically across the LD-HD, LD-MC and HD-
MC phase boundaries. More specifically, we calculate:

(i) ρ as a function of α for a fixed β = 0.07, as α
approaches the LD-HD phase boundary; see Fig. 10(left)
for a plot of the average density as a function of α. On
one side of the transition, ρ is the mean LD phase density
ρLD that rises with α; on the other side of it, ρ is ρHD that
remains independent of α for a fixed β. This plot clearly
shows a jump in ρ across the transition, meaning a first
order transition, akin to an open TASEP with uniform
hopping.

(ii) ρ as a function of α for a fixed β = 0.6, as α ap-
proaches the LD-MC phase boundary; see Fig. 10(mid-
dle) for a plot of the average density as a function of α.
On one side of the transition, ρ is the mean LD phase
density ρLD that rises with α; on the other side of it, ρ
is ρMC that remains independent of α as well as β. Sur-
prisingly, this plot clearly shows a jump in ρ across the
transition, meaning a first order transition, in contrast
to an open TASEP with uniform hopping.

(iii) ρ as a function of β for a fixed α = 0.7, as β ap-
proaches the HD-MC phase boundary; see Fig. 10(right)
for a plot of the average density as a function of β. On
one side of the transition, ρ is the mean HD phase density
ρHD that decreases as β increases; on the other side of it,
ρ is ρMC that remains independent of α as well as β. Sur-
prisingly, this plot clearly shows a jump in ρ across the
transition, again implying a first order transition, again
in contrast to an open TASEP with uniform hopping.

Our MCS studies show that in all these cases there is a
jump in the density at the respective phase boundary, im-
plying a discontinuous or a first order transition, in agree-
ment with the MFT prediction for the same. This is a
truly novel result, that shows how quenched disorder can
alter the order of phase transitions. To benchmark our
numerical codes, in Fig. 11 in Appendix A we have shown
the analogous plots for the LD-HD, LD-MC and HD-MC
transitions for an open TASEP with uniform hopping.
Unsurprisingly. the plots in Fig. 11 show a first order
LD-HD transition and second order LD-MC and HD-MC
transitions, both in the MCS and MFT studies. That
quenched disorder can change the order of transitions in
pure models is well-known. For instance, Ref. [20] shows
that sufficiently strong quenched disorder can make the
magnetic transition in ferromagnetic manganites first or-
der. Similarly, quenched disorder can introduce a first
order transition in the well-known Kuramoto model of
oscillator synchronization [21]. The current study forms
yet another such example, and possibly the first of its
kind in TASEP-like driven models with open boundary
conditions.

V. SUMMARY AND OUTLOOK

We have thus studied the totally asymmetric exclusion
process with open boundaries having spatially smoothly

varying hopping rates. Our study reveals the universal
form of the phase diagrams for generic smooth hopping
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FIG. 10: Plots showing phase transitions with q(x) in Choice I given in (III.13) from MFT (continuous lines) and MCS (points)
studies: (left) ρ versus α for a fixed β = 0.07. The horizontal line in the top gives ρHD ≈ 0.9 that is independent of α, and the
inclined line near the origin gives ρLD which grows with α. (middle) ρ versus α for a fixed β = 0.6. The top horizontal line
gives ρMC ≈ 0.5 that is independent of α and β, and the inclined line near the origin gives ρLD which grows with α. (right) ρ
versus β for a fixed α = 0.7. The horizontal line at the bottom gives ρMC ≈ 0.5 that is independent of both α and β, and the
inclined line at the top gives ρHD that is independent of α. All the transitions appear to be discontinuous.

rates. Our results are sufficiently general and applies to
any smoothly varying hopping rate functions. We con-
struct the mean-field theory, and use that to outline a
scheme to calculate steady state density profiles. Our
method directly gives the steady state densities in terms
of the current J almost immediately by using the spatial
constancy of the latter in the steady states. The different
phases are then analysed by varying the boundary con-
ditions in a straightforward manner. Unsurprisingly, the
bulk steady state densities are generically space varying,
unlike those in the conventional TASEP with uniform
hopping (except along the special line α = β < 1/2).
These match well with those obtained from the MCS
studies, lending credence to our mean-field analysis. Be-
cause of the spatially varying densities, the conventional
way to characterise the phases via the densities, i.e.,
ρLD < 1/2, ρHD > 1/2 and ρMC = 1/2 in the bulk of
the TASEP no longer holds. Rather one needs to resort
to the equivalent conditions to decide the phases, since
the current J is a constant. This together with the condi-
tion that ρLD(x) < 1/2 and ρHD(x) > 1/2 everywhere in
the bulk, allows us to distinguish the LD and HD phases.
Further, the maximum steady state current that the sys-
tem can sustain is no longer 1/4, but is qmin/4, where
qmin is the minimum hopping rate. Surprisingly, our the-
ory shows that the average bulk density in the MC phase
can be more or less than 1/2, in direct contrast with
conventional open TASEPs with uniform hopping. We
show that the general effect of spatially varying hopping
rates is to enlarge the MC region of the phase space,
while shrinking the LD and HD regions. Furthermore,
our work elucidates the universal phase diagram for vari-
ous choices of the hopping rate function, highlighting the
robustness of asymmetric exclusion process in an open
system. Lastly but not the least, our MFT and MCS
studies clearly show that both the LD-MC and HD-MC
transitions in the model are first order for any symmet-
ric hopping rate function q(x) having one minimum. This
forms a truly novel outcome from this study. How this

generalises to other forms of q(x) is an interesting ques-
tion to be investigated in the future.

Our MFT scheme is sufficiently general. It applies for
any q(x) that is smoothly and slowly varying. It would be
interesting to extend our scheme to situations where q(x)
is smooth and slowly varying in general, but can have a
few finite discontinuities. This will be discussed in the
future. It will also be important to study the effects of
interactions in the systems [15]. In addition, there are
in vivo situations, where q(x) is rapidly fluctuating in
space [22], which breaks down the assumption of slowly
varying q(x). How an equivalent analysis may be carried
out for such a system, and to what degree the present
results may be valid there are interesting questions to
study. Hydrodynamic approaches should be promising
in this regards, which already provides initial clues to
this problem [10]; see also Ref. [9] for a comprehensive
hydrodynamics-based field theory approach to this prob-
lem in a closed geometry. It would also be interesting to
apply the boundary layer theory developed in Ref. [23]
on our model, and determine the stationary densities and
phases. We hope our work here will provide impetus to
studies along these lines in future. Our results may be
verified in model experiments on the collective motion of
driven particles with light-induced activity [24] passing
through a narrow channel. Spatial modulations of the
hopping rate can be created by applying patterned or
spatially varying illumination.
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Appendix A: Phase transitions in an open TASEP
with uniform hopping

We numerically study the LD-HD, LD-MC and HD-
MC transitions. As expected, our studies show that the

LD-HD transition is a first order transition, whereas the
LD-MC and HD-MC transitions are second order in na-
ture.
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FIG. 11: Plots of the densities showing phase transitions from MFT and MCS studies in an open TASEP with a constant
hopping rate: (a) LD-HD phase transition, (b) LD-MC transition, and (c) HD-MC transition. Both MFT and MCS show that
(a) is a first order, and (b) and (c) are second order transitions, as is well-known for open TASEPs with uniform hopping.
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