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2MTA-BME Quantum Dynamics and Correlations Research Group, Institute of Physics,
Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest, Hungary
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We present a theory of quantum work statistics in generic chaotic, disordered Fermi liquid systems
within a driven random matrix formalism. By extending P. W. Anderson’s orthogonality determi-
nant formula to compute quantum work distribution, we find that work statistics is non-Gaussian
and is characterized by a few dimensionless parameters. At longer times, quantum interference
effects become irrelevant and the quantum work distribution is well-described in terms of a purely
classical ladder model with a symmetric exclusion process in energy space, while bosonization and
mean field methods provide accurate analytical expressions for the work statistics. Our random
matrix and mean field predictions are validated by numerical simulations for a two-dimensional
disordered quantum dot, and can be verified by calorimetric measurements on nanoscale circuits.

Introduction.— The concepts of heat and work lie
at the foundations of thermodynamics and statistical
physics. When considered in the quantum realm, how-
ever, they raise deep questions and pose new challenges
[1]. Even the very definitions of heat and energy trans-
fer become nontrivial as they require the specification of
the measurement protocol [2]. At the same time, the in-
terplay of quantum and thermal fluctuations, coherence,
and dissipation gives birth to novel phenomena which
are in the focus of the rapidly growing field of quantum
thermodynamics connecting quantum physics, thermo-
dynamics, and quantum information theory [4, 5]. With
the recent experimental developments, these issues are
not purely academic but can be studied in the labora-
tory, in systems ranging from individual molecules [6–8]
through mesoscopic grains [9, 10] and nuclear spins [11]
to cold atoms [12] and nitrogen vacancy centers [13].

The definition and measurement of work in quantum
systems requires a two-time measurement protocol: one
first determines the energy Ei

0 of the initial state at time

t = 0, and later, in a second measurement, the energy Ef
t

of the time evolved system at time t. The adiabatic part
being essentially trivial, here we focus on the ‘entropic’
contribution of energy absorption or ‘work’, defined as
W ≡ Ef

t − Ei
t , i.e., the energy absorbed (W > 0) or

emitted (W < 0) by the system due to non-adiabatic
transitions, and investigate the corresponding distribu-
tion function, P t(W ). The full distribution of work has
been studied extensively in many-body systems [14–20],
and its characteristic function of this distribution has
been related to the Loschmidt echo [14, 21] and to quan-
tum information scrambling [21]. However, the effect of
disorder and randomness is much less studied [22–24] de-
spite their relevance in mesoscopic systems.

To fill this gap, here we focus on disordered, chaotic

fermion systems such as 2-dimensional quantum dots,
which we perturb by changing external gate voltages,
fields, and electrodes, as shown in Fig. 1.a. We neglect in-
teractions under the assumptions that a non-interacting
Fermi liquid description is appropriate. Under these con-
ditions, the system can be described in terms of the time
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FIG. 1. a) Disordered 2-dimensional electron gas with a
parabolic potential deformed in time, driving the system away
from equilibrium. b) Motion in the manifold of random matri-
ces. c) Deformation-induced motion of energy levels, giving
rise to particle-hole excitations. d) ‘Ladder’ model: classi-
cal diffusion of hard core particles between uniformly spaced
energy levels.

http://arxiv.org/abs/2107.10245v1


2

dependent Hamiltonian

Ĥ(t) =

N∑

i,j=1

â†i Hij(t) âj , (1)

where the âi’s stand for fermionic annihilation operators,
and the single particle Hamiltonian H(t) incorporates
disorder effects and also accounts for the impact of time
dependent electrodes. The total fermion number is con-
served by Eq. (1),

∑
i â

†
i âi = M . For a concrete physical

system such as a quantum dot defined in a disordered 2
dimensional electron gas, we can and will construct mi-
croscopic models for H(t) and compute work statistics.
The single particle spectrum of most chaotic systems is,
however, known to be captured by random matrix the-
ory [25, 26]. We can therefore also follow the strategy of
Refs. [27] and [28], and consider deformations within the
space of Gaussian random matrix ensembles,

H(t) = H1 cosλ(t) +H2 sinλ(t) ,

with H1,2 some independent N × N Gaussian matrices
from the orthogonal (GOE), unitary (GUE) or symplec-
tic (GSE) ensembles, and λ̇ = v setting the speed of
deformations. In this latter case, the parameter λ gener-
ates a motion along an ’arc’ or ’circle’ within the random
matrix ensemble, as depicted in Fig. 1.b.
Our goal is to understand universal aspects of the

structure and time evolution of the distribution Pt(W ).
For simplicity, here we focus on quantum quench proto-
cols, i.e., we start from the ground state of Ĥ(0), but our
results can be readily generalized to finite temperature
mixed states [29]. We follow the quantum evolution of
the disordered many-body systems, and use a determi-
nant formula presented in Ref. [28] to compute Pt(W ).
We find that the statistics of Pt(W ) is almost indepen-
dent of microscopic details as well as the symmetry of
the Hamiltonian, once the absorbed energy exceeds suf-
ficiently the one-body energy separation δǫ ≡ 1/N(ǫF ),
characterizing the total density of levels at the Fermi en-
ergy ǫF , and the time is long enough, t > ~/δǫ. To
capture work in this long time limit, we construct a clas-
sical ‘ladder’ model which incorporates quantum statis-
tics as well as level repulsion, but ignores interference
effects between consecutive level collisions and Landau-
Zener transitions. Our ‘ladder’ model gives a surprisingly
accurate description of Pt(W ), and allows us to derive
accurate analytical approximations for Pt(W ) by means
of bosonization and a particle number conserving mean
field method. We also validate the RMT description and
the ‘ladder’ model in a 2D quantum dot system.
Quantummechanical analysis.— Since the Hamilto-

nian H is non-interacting, all information is contained in
the time evolution of the single particle wave functions,
ϕ

m(t). These can be obtained by expanding ϕ
m(t) in

terms of the instantaneous eigenfunctions η
k
t of H, as

ϕ
m(t) =

∑
k α

m
k (t)ηk

t , and then solving the single parti-
cle Schrödinger equation for αm

k (t). The generating func-
tionGt(u) of the work distribution Pt(W ) can then be ex-
pressed by a simple determinant formula (~ = 1) [28, 30]

Gt(u) =
〈〈
Ψ(t)| eiu(Ĥ(t)−EGS(t)) |Ψ(t)

〉〉
RM

=
〈
e−i u

∑M
m=1

εm(t) det gt(u)
〉
RM

, (2)

where the matrix gt(u) contains information on over-
laps and the instantaneous single particle energies εk(t)

at time t, [gt(u)]
mm′

≡ ∑
k[α

m
k (t)]∗ ei u εk(t) αm′

k (t). We
compute gt(u) numerically, average over disorder or the
random matrix ensemble, 〈. . . 〉RM, and determine the fi-
nal distribution by performing a Fourier transformation.

The spacing δǫ and its inverse provide natural energy
and time scales, and allow us to introduce the dimension-
less work and time, w ≡ W/δǫ and t̃ ≡ t δǫ, respectively.
As shown in Fig. 1.c, deformations of the Hamiltonian
lead to a continuous motion of single particle levels, and
thereby induce collisions and transitions between them.
These collisions and Landau–Zener transitions give rise
to a diffusive broadening of the Fermi surface at longer
times, where – after a short time perturbative ∼ t2 scal-
ing – the average work is found to increase as 〈w〉 = D̃ t̃

with D̃ the dimensionless energy diffusion constant (see
Refs. [31] and [28]).

The distribution P t̃ (w) can be disentangled into an
adiabatic and a regular part,

P t̃ (w) = Pad( t̃ ) δ(w) + Preg(w; t̃ ) . (3)

Random matrix theory implies that – apart from the
symmetry of the Hamiltonian – the statistics of the evo-
lution of the eigenvalues, sketched in Fig. 1.c, is com-
pletely characterized by the velocity with which levels
deform, i.e., the frequency of avoided level crossings. In-
deed, the average distance of level crossings, 〈∆λ〉 and
the time scale 1/δǫ define a natural ‘velocity’ in parame-
ter space, vc ≡ 〈∆λ〉δǫ, which we can use to introduce the
dimensionless velocity, ṽ ≡ λ̇/(〈∆λ〉δǫ) [32]. The dimen-
sionless velocity characterizes microscopic processes. For
ṽ ≪ 1 the motion is almost adiabatic, and small proba-
bility Landau–Zener transitions dominate. For ṽ ≫ 1, on
the other hand, transitions between remote levels gener-
ate energy absorbtion.

From our random matrix considerations it follows that
the distribution P t̃(w) can only depend on t̃, ṽ, and, in
case of finite temperature initial states, on the dimension-
less initial temperature, T̃ ≡ T/δǫ. Similarly, the diffu-

sion constant D̃ is a universal function of ṽ, which scales
as D̃ ∼ ṽ2 for large velocities, while for ṽ < 1 nearest
neighbor transitions dominate and yield D̃ ∼ ṽ(β/2+1),
with β = 1, 2 and 4 characterizing the orthogonal, uni-
tary, and symplectic ensembles, resepectively (see the
Supplementary Material [31]).
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FIG. 2. Work statistics for GOE, GUE, GSE, for dimension-
less average work 〈w〉 = 5 (a), and 〈w〉 = 20 (b). For smaller
〈w〉, Preg(w; t̃ ) displays features associated with level repul-
sion and specific to the symmetry of the underlying Hamil-
tonian, while for large 〈w〉, the distributions Preg(w; t̃ ) fall
onto a single curve for all universality classes. Mean field
(dashed line) and bosonization (continuous line) approaches
give accurate description in the diffusive regime.

For small work, 〈w〉 <∼ 10, the statistics depends on β
as well as on ṽ and Preg(w; t̃ ) displays peaks and min-
ima associated with level repulsion, clearly reflecting the
symmetry of the underlying Hamiltonian (see Fig. 2.a).
For larger works, 〈w〉 >∼ max {ṽ2, 1}, however, one enters
a diffusion dominated regime, where symmetry related
and microscopic features become less important, and a
universal distribution displayed in Fig. 2.b emerges. The
observed distribution is clearly non-Gaussian, and char-
acterizes work statistics in generic fermion systems.
Ladder model.— The agreement between the three

universality classes is suggestive that quantum inter-
ference effects do not play an important role in this
diffusion-dominated regime. We can therefore attempt
and construct a classical ‘ladder’ model, consisting of
uniformly placed classical energy levels at a distance δǫ
from each other,

ǫk = k δǫ , k = 1, 2, . . . , (4)

occupied by hard core particles in line with Fermi statis-
tics. The energy of a many-body state is then given by
E =

∑
k nk ǫk with nk ∈ {0, 1} the occupation num-

bers, and
∑

k nk = M the total number of particles.
The evenly placed levels (4) mimic level repulsion and
level rigidity in chaotic systems. As a final component,
perturbation-induced random Landau–Zener transitions
are modeled by nearest neighbor hopping transitions and
a symmetrical exclusion process (SEP) in energy space.
This simple model captures the diffusive broadening of
the Fermi surface (see Ref. [31]) and, in addition to level

repulsion, it also incorporates Fermi statistics and parti-
cle number conservation. As can be seen in Figs. 2 and
3, this classical stochastic model gives a surprisingly ac-
curate description of the work statistics for large enough
average work, independently of the velocity. Moreover,
with certain assumptions, the ‘ladder’ model can be used
to compute P ad( t̃ ) and Preg(w; t̃ ) analytically for a
T = 0 temperature initial state, without performing the
actual Monte Carlo simulations, using either bosoniza-
tion or a more accurate mean field approach. It is, how-
ever, crucial to treat particle number conservation with
care.
Bosonization.— Bosonization offers a simple method

to treat particle number conservation in the ‘ladder’
model. Introducing fermion operators for each level, we
can express the total energy as H =

∑
k(ǫk − ǫF ) : c

†
kck :

with ǫF = δǫ (M + 1/2) the Fermi energy and : ... :
referring to normal ordering with respect to the Fermi
sea. Following Ref. [33], we introduce bosonic opera-

tors, b†q>0 ≡ (1/
√
q)

∑
k c

†
k+qck, which satisfy the usual

commutation relations, [bq, b
†
q′ ] = δq,q′ , and rewrite the

Hamiltonian in terms of these as

H =
∑

q∈Z+

δǫ q b†qbq +
δǫ

2
N̂2 (5)

with N̂ =
∑

k c
†
kck − M the normal ordered fermion

number. Clearly, the fermion number does not change
for the closed system studied here so the second term in
Eq. (5) does not give a contribution. We can obtain an
approximate expression for P t̃(w) by assuming that the
final state is thermal with an effective boson temperature
T̃eff =

√
6〈w〉/π, chosen to yield the appropriate average

energy, 〈∑q>0 q b†qbq〉 ≡ 〈w〉. In the large 〈w〉 limit, we
then obtain (see [31]),

P Bose
t̃ (w) ≈ e−

π2T̃eff
6

[ π√
6w

e−w/T̃eff I1
(
π
√

2
3w

)
+ δ (w)

]
,

(6)
where I1 is the modified Bessel function of the first kind.

Since Teff ∼
√
D̃t̃, the prefactor decays as ∼ e−C

√
D̃t̃,

corresponding to a stretched exponential decay of adia-
batic processes, as confirmed by our quantum mechanical
simulations [28].
Mean field theory.— The bosonization approach

yields a good account of the overall structure of Pt̃(w),
but with certain limitations (see Fig. 2b). In particu-
lar, the assumption of a thermal final state is not quite
correct. The occupation of the single particle levels after
the time evolution is not described by the Fermi func-
tion but has a diffusive structure, as stated earlier. A
more accurate expression can be obtained for P t̃(w) in a
simple, particle number conserving mean field approach,
where instead of assuming thermalization, we rely on
the diffusive nature of energy absorption, and assume
that each fermion level k is occupied with probability
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FIG. 3. Work statistics for dimensionless average work
〈w〉 = 10. Microscopic quantum dot (QD) model simula-
tions (green circles), random matrix (GOE) results (orange
diamonds), and the ‘ladder’ model statistics (black crosses)
fall on top of each other with good accuracy. QD calculations
were performed for M = 427 electrons for a lattice of size
38 × 38, disorder D = 1.75J , potential strength α = 75J ,
and a dimensionless velocity, ṽ = 0.4. For the GOE compu-
tations we used N = 40 with M = 20 electrons and a velocity
ṽ = 4. For the ‘ladder’ model simulations we used, ṽ = 0.5
and N = 120 levels with M = 60 electrons. Quantum work
distribution depends only on the average work 〈w〉 and is well
captured by the classical ‘ladder’ model.

fk = (1 − erf[(ǫ̃k − ǫ̃F )/
√
4D̃t̃ ])/2, corresponding to a

diffusive broadening of the Fermi surface. To enforce the
constraint,

∑
k nk = M , we use an integral representa-

tion over an auxiliary variable. A saddle point procedure
in this latter then yields accurate expressions for P ad( t̃ )
as well as for Preg(w; t̃ ).
The mean field probability distribution, PMF

t̃
(w), is

similar in structure to Eq. (6), but contains additional
correction terms (see Ref. [31] for details),

P MF
t̃ (w) ≈ P MF

ad δ(w)+

cw√
w

e
−cw

w+〈w〉√
〈w〉

[
I1(2cw

√
w)−

√
2 I1

(
2cw

√
w/2

)]
(7)

with cw ≈ 1.35 and

P MF
ad = (8π〈w〉)1/4 e−cw

√
〈w〉 . (8)

As shown in Fig. 2.b, the mean field expressions above
yield an accurate description of work in the diffusive
regime. Similar to the bosonization result, Eq. (6),
PMF

t̃
(w) is non-Gaussian and, by construction, depends

parametrically only on 〈w〉. The probability of adiabatic
processes also falls off as a stretched exponential, but the
prefactor cw is more accurate than the one obtained by
the simple bosonization theory (π/

√
6 ≈ 1.28) [28, 31].

Validation by microscopic models and experimental

setup.— To confirm the predictions above and to vali-
date the results of our random matrix approach, we pro-
pose to study a 2-dimensional quantum dot (QD), and
squeeze the electron gas confined there by applying time

dependent external gate voltages (see Fig. 1.a). This sys-
tem can be realized experimentally [34, 35].

We model the QD by a disordered tight binding Hamil-
tonian,

H = −J
∑

r,δ

c†
r+δ

cr +
∑

r

(V (r, t) + ǫr)c
†
r
cr , (9)

where the first term accounts for the kinetic energy of the
electrons, while the potential V (r, t) = 1

2 (αr
2+λ(t)(x2−

y2)) describes the parabolic confinement, generated by
external gate electrodes. The second term in V (r, t) de-
scribes a compression (decompression) of the electron gas
in the x direction with a simultaneous decompression
(compression) along the y direction. We vary λ to in-
duce deformations and generate dissipation. Finally, the
random onsite energies ǫr are drawn from a Gaussian
distribution of variance, and are responsible for electron
scattering and disorder.

A numerical investigation of the single particle spec-
trum of Eq. (9) reveals that, although some deviations
are clearly present, the spectrum of Eq. (9) is reason-
ably described in terms of GOE for each value of λ (see
Ref. [31]). We generate work then by varying λ uni-
formly in time, and use the determinant formula in Eq.
(2) to compute Pt̃(w). The disorder-averaged results for
Preg(w; t̃ ) are presented for 〈w〉 = 10 in Fig. 3. They
show striking agreement with random matrix theory as
well as with the ‘ladder’ model, and thereby validate the
latter.

An altenative experimental platform to study quantum
work statistics is offered by ultracold atoms [12]. For a
forward-backward protocol Pad is essentially the ground
state fidelity, which has been measured in Ref. [36] by
preparing two identical copies of a quantum system, and
measuring their overlap. This method could be used to
verify the predicted stretched exponential behavior of Pad

in disordered fermion systems.

Conclusions.— We studied the full distribution of
quantum work in disordered non-interacting fermion sys-
tems both within the framework of random matrix the-
ory and in concrete microscopic model. Surprisingly, we
found that for large enough average work, the distribu-
tion is independent of the random matrix ensemble and
is very well captured by a classical stochastic model de-
scribing diffusion in energy space. This allowed us to
make various simplifications (e.g. ‘ladder’ model) and
derive approximate analytic expressions via bosoniza-
tion and mean field theory. Interestingly, the bosoniza-
tion result in Eq. (6) also emerged in the context of
work statistics in Luttinger liquids after an interaction
quench [16]. Let us stress that the final state is not
thermal but has a diffusive occupation profile, which is
the reason why the bosonization approach performs more
poorly in comparison with the mean field treatment (cf.
Fig. 2b). For an experimental realization, we propose
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to study squeezed disordered quantum dots where our
results could be tested experimentally.
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SUPPLEMENTARY MATERIAL

BOSONIZATION APPROACH

In this approach, we consider an equilibrium fermionic system with uniformly spaced one-particle energy levels. In
the framework of bosonization, the fermionic particle-hole excitations with respect to the ground state are represented
as bosonic states. We assign thermal Boltzmann weights e−βeff qδε to these states, where βeff is an effective inverse
temperature while q δε with q = 1, 2, . . . measures the energy of the particle-hole excitation. Since these excitations
are bosonic, for each q we can have nq = 0, 1, 2, . . . arbitrarily many bosonic excitations with energy qnqδε. In the
characteristic function each of them carries a contribution of eiũqnq , so we have

GBose
t̃ (u) = N−1

∑

n1,n2,...

e−(βeffδε−iũ)n1e−(βeffδε−iũ)2n2e−(βeffδε−iũ)3n3 · · · = N−1
∞∏

q=1

∞∑

nq=0

e−qnq(βeffδε−iũ)

= N−1
∏

q>0

1

1− e−q(βeffδε−iũ)
,

(10)

where N =
∏

q>0

[
1− e−q(βeffδε)

]−1
so that Geff(0, Teff) = 1. Exponentiating Eq. (10) and taking the continuum

limit
∑

q>0 →
∫∞
0 dx we get:

GBose
t̃ (u) ≈ N−1e

−
∫ ∞
0

dx ln
[
1−e−(βeff−iu)x

]

= e
π2/6

βeff−iũ−π2/6
βeff . (11)

The Fourier transform can be computed analogously to the the mean field treatment above with the result

PBose
t̃ (w) ≈ e

− π2

6βeff




π√
6
e−βeffw

I1

(
π
√

2
3w

)

√
w

+ δ (w)


 . (12)

MEAN FIELD APPROACH

In this section we provide some details about the mean field theory calculations and the resulting analytic expres-
sions.

Probability of adiabaticity

Within the mean field approach, the probability of each many-body configuration takes the form of the product of
independent Bernoulli weights of M occupied and N −M empty sites. In order to simplify calculations and without
any loss of generality we consider the case of M = N/2:

P ({nk}) =
1

Nt

N∏

k=1

pk,t(nk) δN/2=
∑

k nk

=
1

Nt

∫ π

−π

dλ

2π
eiλ

∑N
k=1(nk−1/2)

N∏

k=1

pk,t(nk) ,

(13)

where the particle number conservation is taken into account by the Kronecker-delta for which we used a standard
integral representation. The Bernoulli weights are

pk,t(nk) = nkfk(t) + (1 − nk)(1 − fk(t)) , (14)
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where fk (t) = (1− tk (t)) /2 with tk(t) = erf
(
∆k/

√
4D̃t̃

)
and ∆k = k −M − 1/2 is measured from the Fermi-level.

Finally, the time-dependent normalization factor is the sum of all possible many-body probabilities:

Nt ≡
∑

{nk}
P ({nk}) =

∫ π

−π

dλ

2π

N∏

k=1

[
eiλ/2fk(t) + e−iλ/2(1− fk(t))

]
=

∫ π

−π

dλ

2π

N∏

k=1

[cos(λ/2)− i sin(λ/2)tk(t)]

=

∫ π

−π

dλ

2π

∏

∆k>0

[
cos2(λ/2) + sin2(λ/2)tk(t)

]
.

(15)

Writing the above expression as the exponential of its logarithm, approximating the resulting sum by an integral and
performing a saddle point approximation around λ = 0, we obtain for large enough values of 〈w〉 = D̃t̃ ≫ 1:

Nt ≈
∫ π

−π

dλ

2π
exp

[∫ ∞

0

dx log
(
cos2 λ/2 + tx(t) sin

2 λ/2
)]

≈
∫ π

−π

dλ

2π
exp

[
−
∫ ∞

0

dxλ2/4(1− tx(t))

]
= (8π〈w〉)−1/4

.

(16)

The probability of adiabaticity then reads

Pad(t̃) =
1

Nt

∏

∆k<0

fk(t)
∏

∆k>0

(
1− fk(t)

)

≈ 1

Nt
e2
√

4〈w〉
∫∞
0

dx log[(1+erf(x))/2] = (8πD̃t̃)1/4 e−C
√

D̃t̃ = (8π〈w〉)1/4 e−C
√

〈w〉

with C ≈ 1.35.

Variance of work

For 〈w〉 ≫ 1, we approximate the variance of the work by neglecting the fluctuations of the energy levels [1],
εk(t) → ∆k δε, but incorporating the fluctuations of the occupation numbers. For a given realization of H(t), this
leads to the estimate

δw2(t) ≈
〈( N∑

k=1

∆k n̂k,t

)2〉−
〈 N∑

k=1

∆k n̂k,t

〉2

,

where 〈. . . 〉 denotes quantum average. Separating the diagonal terms, the RM average 〈δw2(t)〉RM can be written as

〈δw2(t)〉RM ≈
∑

k

∆k2
〈〈
δn̂2

k,t

〉〉
RM

+
∑

k 6=k′

∆k∆k′
〈〈
δn̂k,tδn̂k′,t

〉〉
RM

, (17)

where δn̂k,t ≡ n̂k,t − 〈n̂k,t〉 is the deviation of the occupation number from the mean value. As the n̂k,t behave as
binary random variables, the averages in the first term are given by 〈〈δn̂2

k,t〉〉RM = fk(t)
(
1 − fk(t)

)
. The correlators

in this equation can be expressed in terms of the amplitudes αm
k (t) as 〈δn̂k,tδn̂k′,t〉 = −

∣∣∑N/2
m=1 α

m
k (t)

∗
αm
k′(t)

∣∣2. The
negativity of this correction implies that the level occupations are anticorrelated, as follows from particle number
conservation.
Neglecting this correction for the moment and replacing sums by integrals, we arrive at the estimate

〈δw2(t)〉RM ≈
∫ ∞

−∞
dxx2 1− erf2(x/

√
4D̃t̃)

4
∼ t̃3/2 ,

yielding 〈δw2(t)〉 ∼ 〈w〉3/2. We thus recovered the observed behavior, however, the prefactor turns out to be incorrect.
A more careful mean field calculation shows that the occupation number correlations (related to fermion number
conservation) cannot be neglected but they also turn out to give a (smaller) ∼ t̃3/2 contribution, thus altering the
prefactor but keeping the overall scaling the same.
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Distribution of work

The characteristic function of the distribution of work can be expressed as

GMF
t̃ (u) =

〈
eiu

∑
k ∆k δε nk

〉

MF
e−iuEGS =

∑

{nk}
P{nk}e

iũ
∑

k ∆k(nk−1/2)

=
1

Nt

∫ π

−π

dλ

2π

∏

∆k

[
ei(λ+ũ∆k)/2fk (t) + e−i(λ+ũ∆k)/2f−k (t)

]

=
1

Nt

∫ π

−π

dλ

2π

∏

∆k<0

[
fk(t) + e−i(λ+ũ∆k)f−k (t)

] ∏

∆k>0

[
f−k(t) + ei(λ+ũ∆k)fk (t)

]

≈ 1

Ñt

∫ π

−π

dλ

2π
exp

[∫ ∞

0

dx ln
(
1 + h2

x (u, t) + 2hx (u, t) cos (λ)
)]

,

(18)

where we introduced the scaled variable ũ = u δε and the notation hk(u, t) = fk(t)
f−k(t)

eiũ∆k. Here 〈. . . 〉MF denotes

averaging over the mean field many-body probabilities and Ñt a modified normalization constant. As numerics
revealed, for large enough injected works 〈w〉 ≫ 1 neglecting particle number conservation does not introduce big
errors provided we subtract the pure particle-hole excitations with respect to the ground state:

GMF
t̃ (u) ≈ 1

Ñt

{
e2

∫
∞
0

dx ln(1+hx(t,u)) − 2
[
e
∫

∞
0

dx ln(1+hx(t,u)) − 1
]}

, (19)

where the first term is the λ = 0 saddle-point solution of the integral expression, while the second part substracts the
contributions coming from the pure particle-hole excitations. Here the integrals can be approximated as

2

∫ ∞

0

dx ln [1 + hx (u, t)] ≈
c2w

cw√
〈w〉

− iu
(20)

yielding

GMF
t̃ (u) ≈ 1

Ñt



e

c2w
cw√
〈w〉

−iu − 2



e
c2w/2

cw√
〈w〉

−iu − 1







 (21)

with cw = 3
√
2π
5 chosen such that the characteristic function correctly reproduces the first two cumulants of work in

the saddle point solution. Now this expression can be Fourier transformed exactly as

∫ ∞

−∞

du

2π
e−iuwe

c2w
cw√
〈w〉

−iu

=

∞∑

n=0

c2nw
n!

∫ ∞

−∞

du

2π

e−iuw

(
cw√
〈w〉

− iu

)n = e
− cw√

〈w〉
w

∞∑

n=1

c2nw wn−1

n! (n− 1)!
+ δ (w)

= e
− cw√

〈w〉
w
cw

I1 (2cw
√
w)√

w
+ δ (w)

(22)

which leads to the approximate analytic expression

PMF
t̃ (w) ≈ e−cw

√
〈w〉


e

− cw√
〈w〉

w
cw


I1 (2cw

√
w)√

w
−

I1

(
2cw

√
w/2

)

√
w/2


+ δ (w)


 . (23)

ENERGY SPACE DIFFUSION

In this section we demonstrate that the energy level occupations exhibit a diffusive profile, meaning that particle-

hole excitations happen dominantly in a window growing as ∼ 〈w〉1/2, for all the random matrix ensembles as well as
for the “ladder model” and the disordered quantum dot. The left panel of Fig. 4 shows that for large enough average
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FIG. 4. Energy space diffusion. Left: Average occupations of instantaneous single particle eigenstates for the three RMT
ensembles (GOE, GUE, GSE) and the quantum dot model compared to the classically obtained results within the ladder model.

All the five curves collapse onto a single universal, diffusively broadening profile given by
[
1 − erf

(
∆k/

√
4〈w〉

)]
/2. Right:

Velocity dependence of the diffusion constant. For slow quenches it has an anomalous power-law behavior, D̃(ṽ <∼ 1) ∼ ṽβ/2+1,
while for fast quenches it grows quadratically and with the same prefactor for the RMT ensembles. The quantum dot displays
a similar behavior as the GOE ensemble in the two limiting cases, with a slightly different prefactor.

work the mean level occupation for of all three RMT ensembles (GOE, GUE, GSE) follows a single universal curve
identical to those of the quantum dot model up to high precision and it is also perfectly described by the ladder model.
Numerical calculations were made for ∼ 5× 103 disorder realizations both for RMT and the disordered quantum dot,
for N = 40, 28, 40 for the three ensembles, respectively and for parameters L = 38, σ = 1.75J, α = 75J and with 427
particles in the case of the quantum dot.
The right panel of Fig. 4 shows the velocity dependence of the diffusion constant, D̃β(ṽ) for the three ensembles

and the quantum dot model. We averaged over ∼ 5 × 103 simulations, yielding smooth enough time-evolutions of
average work to extract the diffusion constants. Parameters were chosen such that we avoid finite size effects and be
in the diffusion regime. The rate of energy absorbed by the system exhibits an anomalous frequency dependence for
slow quenches, D̃β(ṽ <∼ 1) ∼ ṽβ/2+1, while for fast processes becomes independent of the underlying symmetry class

and grows quadratically, as it should in the case of a metal, D̃β(ṽ ≫ 1) ∼ ṽ2. The diffusion constant for the quantum
dot shows the same power-law behavior as the GOE ensemble, albeit with a slightly smaller prefactor.
Finally, we compare the level spacing distribution of the GOE ensemble and the disordered quantum dot. As shown

in Fig. 5, the distribution of the distance of neighboring levels are well described by the analytical RMT result given
by the Wigner surmise. Similar observations hold for the statistics of the the Landau–Zener parameters at the avoided
level crossings in comparison with the RMT results of Ref. [2].
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FIG. 5. Distribution of the distance between neighboring levels in the middle of the spectrum, ∆ε ≡ εL2/2+1−εL2/2, normalized
to unit mean, for the quantum dot at three different set of parameters, L = 30, σ = 1.25J , L = 25, σ = 1.5J , L = 25, σ = 1.75J
for the orange circles, green squares and blue diamonds, respectively. The potential strength is kept fixed, α = 70J for all the

three curves. The dashed line indicates the well-known Wigner–Dyson result, ρ(s) ≈ π
2
s e−

π
4
s2 , obtained by Wigner’s surmise

describing the GOE case. For the numerical calculations we averaged over ∼ 5×104 disorder realizations which proved to yield
smooth enough curves.


