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ITERATED MONODROMY GROUPS OF RATIONAL FUNCTIONS

AND PERIODIC POINTS OVER FINITE FIELDS

ANDREW BRIDY, RAFE JONES, GREGORY KELSEY, AND RUSSELL LODGE

Abstract. Let q be a prime power and φ a rational function with coefficients in a
finite field Fq. For n ≥ 1, each element of P1(Fqn) is either periodic or strictly prepe-
riodic under iteration of φ. Denote by an the proportion of periodic elements. Little
is known about how an changes as n grows, unless φ is a power map or Chebyshev
polynomial. We give the first results on this question for a wider class of rational
functions: an has lim inf 0 when q is odd and φ is quadratic and neither Lattès nor
conjugate to a one-parameter family of exceptional maps. We also show that an has
limit 0 when φ is a non-Chebyshev quadratic polynomial with strictly preperiodic
finite critical point and q is an odd square. Our methods yield additional results on
periodic points for reductions of post-critically finite (PCF) rational functions defined
over number fields.

The difficulty of understanding an in general is that P1(Fqn) is a finite set with no
ambient geometry. In fact, φ can be lifted to a PCF rational map on the Riemann
sphere, where we show that an is given by counting elements of the iterated mon-
odromy group (IMG) that act with fixed points at all levels of the tree of preimages.
Using a martingale convergence theorem, we translate the problem to determining
whether certain IMG elements exist. This in turn can be decisively addressed using
the expansion of PCF rational maps in the orbifold metric.

1. Introduction

Let Fq denote a finite field of characteristic p, with algebraic closure Fq. Every

φ(x) ∈ Fq(x) acts on P1(Fq), and the orbit of every point under this action is defined
over a finite extension of Fq, and hence eventually enters a cycle. This allows us to

make a fundamental distinction between two kinds of points in P1(Fq): those that lie in
a cycle under φ, which we call periodic, and those that do not. For any set S on which
φ is a self-map, denote by Per(φ, S) the set of points of S that are periodic under φ.

Question 1.1. Fix a prime power q and rational function φ ∈ Fq(x) of degree at least
two. How does #Per(φ,P1(Fqn))/(q

n + 1) vary as n→∞?

There has been recent interest in questions about the periodic points of mappings
in finite fields, partially motivated by an attempt to provide a rigorous analysis of
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n x2 x2 − 1 x2 − 2 x2−2
x2

x2−2
x2−1

x2−1
x2

1 0.750 0.750 0.500 0.250 0.500 0.750

2 0.300 0.500 0.400 0.300 0.200 0.500

3 0.536 0.214 0.393 0.250 0.286 0.321

4 0.085 0.061 0.293 0.329 0.073 0.159

5 0.504 0.299 0.377 0.250 0.254 0.176

6 0.127 0.060 0.314 0.325 0.052 0.105

7 0.501 0.085 0.375 0.250 0.250 0.043

8 0.032 0.017 0.266 0.315 0.023 0.046

9 0.500 0.031 0.375 0.250 0.250 0.014

10 0.125 0.011 0.313 0.328 0.003 0.021

Table 1. #Per(φ,P1(F3n))/(3
n + 1) for various quadratic φ ∈ F3(x).

Note that x2 − 2 is a Chebyshev polynomial and x2−2
x2 is a Lattès map.

Pollard’s famous “rho method” for integer factorization [19]. Despite this, almost
nothing is known about a general answer to Question 1.1, even in a qualitative sense,
except for highly constrained mappings such as power maps. Pollard’s analysis of the
rho method uses the heuristic that the dynamics of specific mappings mimic those of
random mappings. A random mapping on a set of size k has O(

√
k) periodic points (see

e.g. [3, Theorem 2]), so by this heuristic, #Per(φ,P1(Fqn))/(q
n + 1) should approach

zero as n grows. However, because φ is a rational function, it must exhibit certain non-
random behavior. Crucially, the actions of φ on P1(Fqn) as n varies are not independent
of one another. Table 1 presents some data on Question 1.1 for q = 3 and deg φ = 2,
and suggests the complexities involved.

The answer to Question 1.1 is well understood in the case that φ is a power map
or Chebyshev polynomial [11]. Recent work of Garton [5] sheds some light on the
complementary problem of finding #Per(φ,P1(Fqn))/(q

n + 1) when n is fixed and φ
varies, while Juul [9] studies the size of the image set φm(P1(Fqn)) for fixed m as n
grows, under certain hypotheses on φ.

Question 1.1 is in some sense a “vertical” question, because one moves up a tower
of finite fields. A “horizontal” question of similar flavor may be posed for a rational
function defined over a number field K. Given φ ∈ K(x), for all but finitely many
primes p in the ring of integers OK of K, one may reduce the coefficients of φ modulo p
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to obtain a morphism φp : P
1(Fp)→ P1(Fp) with deg φ = deg φ̃, where Fp is the residue

field OK/p. Denote by N(p) the norm of p, so that 1 +N(p) is the size of P1(Fp).

Question 1.2. Let K be a number field, and let φ ∈ K(x) have degree at least two.
How does #Per(φp,P

1(Fp))/(1 +N(p)) vary as N(p)→∞?

The known approaches to Questions 1.1 and 1.2 proceed via Galois theory. When
all the critical points of φ have independent, infinite orbits, the Galois groups that
arise (see Definition 1.6) are relatively well-understood, and in fact are iterated wreath
products in general. This has led to significant progress on Question 1.2 in this case
[10]. At the other extreme lie φ for which all critical points have finite orbits, called
post-critically finite (PCF). Here the relevant Galois groups are quite different – they
are finitely generated and so far little understood in arithmetic contexts. By definition
every φ ∈ Fq(x) is PCF, and this in large part accounts for our collective state of
ignorance on Question 1.1.

However, Galois groups related to PCF rational functions have been studied in some
depth in the setting of complex dynamics. In this article we harness ideas from complex
dynamics to give results on Question 1.1 for quadratic maps, and to address Question
1.2 in the PCF case.

Theorem 1.3. Let Fq be a finite field of odd characteristic, and let φ(x) ∈ Fq(x) have

degree 2. Assume that φ is not a Lattès map or Möbius-conjugate over Fq to a map of

the form (x2 + a)/(x2 − (a+ 2)) for a ∈ Fq. Then

(1.1) lim inf
n→∞

#Per(φ,P1(Fqn))

qn + 1
= 0.

Indeed we show something slightly stronger (see Theorem 3.1): for every ǫ > 0 there
exists m ≥ 1 such that

(1.2)
#Per(φ,P1(Fqmk))

qmk + 1
< ǫ

for sufficiently large integers k. See Section 2 for a definition of Lattès maps over Fq

and a classification of the maps to which Theorem 1.3 does not apply. We remark
that being Fq-conjugate to a map of the form (x2 + a)/(x2 − (a + 2)) is equivalent to
having a critical point that maps to a fixed point after two iterations; in particular,
this family includes the degree-2 Chebyshev polynomial. Among quadratic maps up to
Fq-conjugacy, there are eight Lattès maps, unless Fq has characteristic 7 (see Section

2). None of the maps in Table 1 apart from x2 − 2 and x2−1
x2 is F3-conjugate to a map

of the form (x2 + a)/(x2 − (a + 2)).
The equality (1.1) in Theorem 1.3 does not hold for all quadratic φ ∈ Fq(x). For

the degree-two monic Chebyshev polynomial φ(x) = x2−2, it is shown in [11] that the
lim inf in (1.1) is 1/4, and indeed a complete accounting of #Per(φ,P1(Fqn))/(q

n + 1)
is given for this map [11, Theorem 5.6]. We prove in Theorem 2.5 that the lim inf
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in (1.1) is at least 1/8 for a certain class of quadratic Lattès maps. We suspect that
the lim inf is positive for other Lattès maps of degree 2, but that the lim inf is zero
for non-Chebyshev, non-Lattès maps that are Fq-conjugate to (x2 + a)/(x2 − (a+ 2)).
However, our methods do not allow us to prove this at present.

The integer m in (1.2) depends on the constant field extension contained within the
splitting fields of φn(x) − t over Fq(t) (we use φn to denote the nth iterate of φ, and
take φ0(x) = x). When φ is a quadratic polynomial with non-periodic critical point,
results of Pink [17] imply that m ≤ 2 for all ǫ, provided that φ is not conjugate to
a Chebyshev polynomial. In fact, when q is a square, m = 1 regardless of ǫ, and we
obtain:

Theorem 1.4. Let Fq be a finite field of odd characteristic, and let φ ∈ Fq[x] have
degree 2. Suppose that q is a square and the unique finite critical point of φ is strictly
preperiodic. If φ is not Fq-conjugate to a Chebyshev polynomial, then

(1.3) lim
k→∞

#Per(φ,P1(Fqk))

qk + 1
= 0.

We turn now to Question 1.2. The principal known results are those in [10], and
concern the case where φ is “post-critically generic” in the sense that for all m,n ≥ 0
and all critical points γ and γ′ of φ, we have φn(γ) 6= φm(γ′) unless m = n and γ = γ′.
In this case, Theorem 1.3 of [10] gives

(1.4) lim inf
N(p)→∞

#Per(φp,P
1(Fp))

1 +N(p)
= 0.

We establish (1.4) for many PCF rational functions. To state our result we require
two definitions. First, a rational function with coefficients in a field K is dynamically
exceptional1 if there is Γ ⊂ P1(K) with φ−1(Γ) \ Cφ = Γ, where Cφ ⊂ P1(K) is the set
of critical points of φ. Observe that this condition implies that Γ contains no critical
points of φ, and that φ−1(Γ) consists of Γ and a subset of Cφ. Second, let φ ∈ C(x), Pφ

be the post-critical set of φ (see Definition 2.1), and z0 ∈ C \ Pφ. We say φ has doubly
transitive monodromy if the monodromy action of π1((P1(C) \ Pφ), z0) on φ−1(z0) is
doubly transitive. Equivalently, the Galois group of φ(x) − t over C(t) acts doubly

transitively on the roots of φ(x)− t in C(t).

Theorem 1.5. Let K be a number field and let φ ∈ K(x) have degree d ≥ 2. As-
sume that φ is PCF and not dynamically exceptional. Then (1.4) is true if any of the
following holds:

(1) d is prime;
(2) φ has doubly transitive monodromy;
(3) φ is K-conjugate to polynomial.

1In other work, such as [8], the terminology exceptional is used. However, in the arithmetic setting
treated in this article, an exceptional rational function has a pre-existing, and quite distinct, meaning.
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The lim inf in (1.4) is not zero for all φ. In [10, Example 7.2], it is shown that when
φ = Td, the degree-d monic Chebyshev polynomial, the lim inf in (1.4) is 1/4 when d
is a power of 2, 1/2 when d is a power of an odd prime, and 0 otherwise.

Questions 1.1 and 1.2 are linked in more than an intuitive sense. By studying a
single Galois-theoretic object, we prove Theorems 1.3 and 1.5 simultaneously.

Definition 1.6. Let k be a field with algebraic closure k and let φ ∈ k(x) have degree
d ≥ 2. Assume that for all n ≥ 1, φn(x) = t has dn distinct solutions in an algebraic
closure of k(t). The profinite geometric iterated monodromy group of φ over k, written
pgIMG(φ)/k, is the inverse limit as n→∞ of the Galois groups of φn(x)− t over k(t).

The terminology geometric in the definition is because the Galois groups are consid-
ered over the ground field k(t). One can also consider the Galois groups over k(t), and
this object is known as the profinite arithmetic iterated monodromy group of φ. See
Section 3 for precise definitions and [8, Section 2] or [17] for more discussion.

Crucially for the considerations in this article, pgIMG(φ)/k comes equipped with a
natural action on the tree of preimages

Tk(φ) :=
⊔

n≥0

φ−n(t) ⊂ k(t),

where φ−n(t) = {α ∈ k(t) : φn(α) = t} for n ≥ 0 and edges are assigned according
to the action of φ. Let d = deg φ, and assume that the characteristic of k is either 0
or does not divide d. Then φn(x) = t has dn distinct solutions in an algebraic closure
of k(t), and hence Tk(φ) is a complete d-ary rooted tree, with root t. The action of
pgIMG(φ)/k on Tk(φ) comes from the natural action of Galois groups on the roots of
polynomials.

We describe an abstract complete d-ary rooted tree as the set X∗ of all words in
the alphabet X = {0, . . . , d − 1}, with an edge connecting vx to v for each v ∈ X∗

and x ∈ X . The root of X∗ is the empty word. Denote by Xn the set of words
in X of length n, which gives the nth level of X∗. Let Aut(X∗) be the set of tree
automorphisms, and note that any G ≤ Aut(X∗) has quotient groups Gn ≤ Aut(Xn)
for n ≥ 1 that are the image of the natural restriction maps. Define the fixed-point
proportion of Gn to be

(1.5) FPP(Gn) :=
#{g ∈ Gn : g fixes at least one element of Tn}

#Gn
,

and the fixed-point proportion of G to be limn→∞ FPP(Gn). Observe that the sequence
is non-increasing, and hence the limit must exist. Through the action of pgIMG(f)/k
on Tk(φ), we identify the former with a subgroup of Aut(X∗). This subgroup is unique
up to conjugacy in Aut(X∗), and in particular FPP(pgIMG(φ)/k) is well-defined.



6 BRIDY, RAFE JONES, GREGORY KELSEY, AND LODGE

In Section 3 we use the Chebotarev density theorem for function fields to show that
if Fq is a finite field of characteristic p, φ ∈ Fq(x) has degree d, and p > d, then

lim inf
n→∞

#Per(φ,P1(Fqn))

qn + 1
≤ FPP(pgIMG(φ)/Fq).

See Corollary 3.5. Building on results in [10], we show in Theorem 3.11 that if K is a
number field and φ ∈ K(x), then

(1.6) lim inf
N(p)→∞

#Per(φp,Fp)

1 +N(p)
≤ FPP(pgIMG(φ)/C).

We appeal to work of Pink [16] to show that when q is odd and φ ∈ Fq(x) is

quadratic, there is a map φ̃ ∈ C(x) with the same ramification portrait2 as φ, such

that pgIMG(φ)/Fq and pgIMG(φ̃)/C have conjugate actions on their respective trees
(Theorem 3.9), and in particular

(1.7) FPP(pgIMG(φ)/Fq) = FPP(pgIMG(φ̃)/C).

In light of (1.6) and (1.7), we study pgIMG(f)/C for arbitrary PCF f ∈ C(x). Let
Pf be the post-critical set of f , and z0 ∈ C \ Pf . The iterated monodromy group of
f , denoted IMG(f), is the quotient of the fundamental group π1((P

1(C) \ Pf , z0) by
the subgroup acting trivially by monodromy on the tree of preimages Tf,z0 ⊂ C of z0
under f (Definition 4.6). Through its action on Tf,z0 , one can identify IMG(f) with a
subgroup of Aut(X∗) (even in an explicit way; see Definition 4.7 or [15, Section 5.2]),
which is unique up to conjugacy in Aut(X∗). After conjugating if necessary, we may
assume

IMG(f) ⊂ pgIMG(f)/C ⊆ Aut(X∗).

Moreover, pgIMG(f)/C is the closure in Aut(X∗) of IMG(f) [15, Proposition 6.4.2],
and thus both have the same quotients Gn ≤ Aut(Xn). In particular,

FPP(pgIMG(f)/C) = FPP(IMG(f)).

See Section 4.2 for details. In light of this, we study FPP of iterated monodromy
groups. The following is our main result in this direction.

Theorem 1.7. Let f be a PCF rational function of degree d ≥ 2 with coefficients in
C, and assume that f is not dynamically exceptional. If either d is prime or f has
doubly transitive monodromy, then FPP(IMG(f)) = 0.

Crucially for our proof of Theorem 5.1, IMG(f) is a self-similar, level-transitive,
recurrent subgroup of Aut(X∗) (see Section 4.1 for definitions). In the case where f is a
PCF polynomial, Theorem 1.1 of [8] proves that FPP(IMG(f)) = 0. To prove Theorem
1.7, we must generalize the group-theoretic tools of [8], which presents considerable
technical obstacles.

2This is the natural graph encoding the dynamics and local degrees of the critical orbits of φ. See
Section 2 for a precise definition.
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First, one loses the special element of IMG(f) that arises from monodromy at infinity.
For polynomial f , this gives a spherically transitive element in IMG(f), which is used
in [8] to prove the crucial assertion that the fixed-point process associated to IMG(f)
is a martingale. See Section 5 for definitions. To draw the same conclusion for non-
polynomial f , we show that if f has prime degree or doubly transitive monodromy,
then the fixed-point process attached to IMG(f) is a martingale (Corollaries 5.11 and
5.13). Indeed, when d is prime Corollary 5.11 gives the same conclusion for the fixed
point process attached to any self-similar, level-transitive subgroup of Aut(X∗).

Second, once one knows that the fixed-point process of IMG(f) is a martingale, one
can prove FPP(IMG(f)) = 0 provided that every element of the set

(1.8) N1 := {g ∈ IMG(f) : g(w) = w and g|w = g for some w ∈ X∗}
fixes infinitely many ends of X∗, i.e. infinite paths through X∗ beginning in X0. (See
Section 4 for definitions and see Theorem 5.1 for the result.) When f is a polynomial,
this last assertion is proved in [8] using a result of Nekrashevych [15, Corollary 6.10.7]
showing that the actions on Aut(X∗) of a set of generators for IMG(f) may be given
by the states of a finite automaton satisfying certain strong properties. No equivalent
result exists for general rational functions, and indeed until recently very few IMGs
have even been computed for non-polynomial rational functions.

Using tools from complex dynamics, we show:

Theorem 1.8. Let f be a PCF rational function of degree d ≥ 2 with coefficients in
C. Then every element of N1 fixes infinitely many ends of X∗ if and only if f is not
dynamically exceptional.

See Section 6. The main ingredient in the proof of Theorem 1.8 is the fact that a
PCF f ∈ C(x) is subhyperbolic, i.e., expanding (in some orbifold metric) away from
post-critical periodic points. This expansion forces lifts of loops under iterates of f to
contract, which imposes strong conditions on elements of N1. In particular, an element

of N1 that fixes only finitely many ends of X∗ must be a loop encircling (in Ĉ \ Pf) a
single repelling periodic point in Pf , and moreover every backward orbit of this point
must either remain in Pf or contain a critical point. This forces f to be dynamically
exceptional.

2. Dynamically exceptional rational functions over finite fields

In this section we study the exceptions to Theorem 1.3. In particular, we discuss
Lattès maps over finite fields and give a characterization of dynamically exceptional
quadratic rational functions over an arbitrary field of characteristic 6= 2.

Recall from Section 1 that a rational function with coefficients in a field K is dynam-
ically exceptional if there is Γ ⊂ P1(K) with φ−1(Γ) \ Cφ = Γ, where Cφ ⊂ P1(K) is
the set of critical points of φ. In this section we study dynamically exceptional rational
functions of degree 2 over an arbitrary field of characteristic different from 2.
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Let K be a field with fixed algebraic closure K, and let φ ∈ K(x). For α ∈ P1(K)
with α 6=∞ and φ(α) 6=∞, the ramification index eφ(α) of φ at α is the multiplicity
of α as a root of the numerator of φ(x) − φ(α). If α = ∞ or φ(α) = ∞, then
eφ(α) = eµ◦φ◦µ−1(µ(α)), where µ is a Mobius transformation mapping both α and φ(α)
away from infinity. We call α a critical point for φ if eφ(α) > 1.

Define the ramification portrait of φ to be the edge-labeled directed graph whose
vertex set is the union of the orbits of all critical points of φ ∈ P1(K), and where
each vertex α has an arrow to φ(α) with label eφ(α). Note that the graph is not
vertex-labeled, so we do not record the specific points involved.

For instance, if K has characteristic not equal to 2, then φ(x) = (x2 − 2)/x2 has
critical points 0 and ∞, with 0 → ∞ → 1 → −1 → −1. This gives ramification

portrait • 2−→ • 2−→ • → • 	. Because we deal here with quadratic maps, and so every
critical point α has eφ(α) = 2, we rewrite this as

(2.1) • → • → ◦ → ⊚,

where • denotes a critical point, ◦ a non-critical point, and ⊚ a non-critical fixed point.
Denote a critical fixed point by ⊙. As another example, if φ is the degree-2 Chebyshev
polynomial x2 − 2, then φ has ramification portrait

(2.2) ⊙ • → ◦ → ⊚,

We note that the ramification portraits in (2.1) and (2.2) uniquely determine φ up to
Mobius conjugation.

The next definition is used throughout the remainder of the paper.

Definition 2.1. Let K be a field and φ ∈ K(x). Let γ1, . . . , γj be the critical points
of φ, which lie in P1(K). The post-critical set of φ is

Pφ :=

j⋃

i=1

⋃

k≥1

φk(γi) ⊂ P1(K).

For the purposes of this article, we define φ ∈ K[x] to be a Lattès map if there exists
a function r : P1(K)→ Z such that

(2.3) r(φ(α)) = eφ(α)r(α) and r(α) = 1 outside of Pφ.

When K is a finite field, these are precisely the liftable maps that lift to Lattès maps
defined over C (see Section 3 for a definition of lifting). This is because over C, the
existence of the function r is equivalent to the usual definition of Lattès maps as given
by a finite quotient of a self-map of an elliptic curve; see [14, Theorem 4.1].

Proposition 2.2. Let K be a field of characteristic not equal to 2, and let φ ∈ K(x)
have degree 2. Then φ is a Lattès map if and only if the ramification portrait of φ is
the one in (2.1) or one of the following:

(2.4) • → ◦ → ⊚ • → ◦ → ⊚, • → ◦ → ◦⇄ ◦ ← ◦ ← •
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(2.5)
• ◦ ◦ ◦ •

⊚

Proof. Let ∆ = {α ∈ P1(K) : r(α) > 1}. By definition of r, we have ∆ = Pφ and
φ−1(∆) = ∆ ∪ Cφ. Thus

(2.6) 2#∆ =
∑

α∈φ−1(∆)

eφ(α) ≤ #∆+ 2#Cφ,

with equality if and only if ∆ and Cφ are disjoint. Because K has characteristic not
equal to 2, #Cφ = 2, and we conclude from (2.6) that #∆ ≤ 4, with equality if and
only if ∆ ∩ Cφ = ∅.

Suppose that #∆ < 4, and let γ ∈ ∆∩Cφ. Observe that φ−1(γ) ⊂ Cφ∪Pφ and thus
if φ−1(γ) contains no critical points, then φ−1(γ) consists of two post-critical points.
But there is only one critical point of φ besides γ, so it is impossible for both points in
φ−1(γ) to be post-critical. Hence φ−1(γ) consists of a critical point. Now γ cannot be
periodic, for otherwise r(γ) is not well-defined. Hence if φ(γ) is periodic, then it is a
fixed point. But then φ−1(φ(γ)) contains both γ and φ(γ), which is impossible. Hence
φ(γ) cannot be periodic. Because #∆ ≤ 3, it must be the case that φ2(γ) is a fixed
point, and we have ramification portrait (2.1).

Suppose now that #∆ = 4, and thus Pφ∩Cφ = ∅. Because φ cannot have a periodic
critical point, Pφ must contain a cycle, and for each α in this cycle, φ−1(α) cannot
contain a critical point, as otherwise φ−1(α) consists only of a critical point, which
must then be periodic. It follows that the length of this cycle can be at most 2. If Pφ

contains a 2-cycle, one easily checks that the only possible ramification portrait is the
second one in (2.4).

Now a fixed point in Pφ cannot have a pre-image that is a critical point, and hence
Pφ can contain at most two fixed points. If there are exactly two, then we must have
the first ramification portrait in (2.4). If there is only one, then we must have the
ramification portrait in (2.5). �

We now describe quadratic Lattès maps over a field of characteristic not equal to
2. We use the normal form φ(x) = (x2 + a)/(x2 + b), a 6= b, which exists for every
degree-2 rational function except those conjugate over K to x±2, and can be obtained
by conjugating a map’s two critical points to 0 and ∞, and then conjugating again so
φ(∞) = 1. We observe that this conjugation is defined over K if and only if the map’s
critical points lie in K; otherwise the conjugation is over a quadratic extension of K.
The normal form is unique except that if ab 6= 0, then conjugation by x 7→ a/(bx) takes
(x2+a)/(x2+ b) to (x2+(a2/b3))/(x2+(a/b2)). This is the normal form found in [16],
and is related to the normal form for critically marked quadratic rational functions
given in [12, Section 6].
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Proposition 2.3. If K is a field of characteristic not equal to 2, then every degree-2
Lattès map is conjugate (over K) to one of the following:

(2.7)
x2 − 2

x2
,

x2 + α1

x2 − α1

,
x2 + α2

x2 − α2

,
x2 + α3

x2 − (α3 + 2)
,

x2 + 1
α3

x2 − 1
α3+2

,

where α1 is a root of y2 + 1 (in K), α2 is a root of y2 − 2y − 1, and α3 is a root of
y2 + 5y + 8.

Remark. The two maps x2+α2

x2−α2
, where α2 is either root of y

2−2y−1, are in fact conjugate

to each other by x 7→ −1/x. Otherwise, no two maps in (2.7) are conjugate. Hence
there are 8 conjugacy classes of Lattès maps (over K) if K has characteristic not equal
to 7. If K has characteristic 7, then y2 + 5y + 8 has only one root in K, and hence
there are only 6 conjugacy classes of Lattès maps.

Proof. Let φ ∈ K(x) be a degree-2 Lattès map. It follows from Proposition 2.2 that
φ is not conjugate to x±2, and hence we may write φ(x) = (x2 + a)/(x2 + b) for some
a, b ∈ K with a 6= b. Each of the ramification portraits described in Proposition 2.2
then gives rise to two polynomial conditions on a and b. For instance, the portrait
in (2.5) forces φ2(0) = φ2(∞), which implies b = −a. The same portrait implies
φ4(∞) = φ3(∞), which gives (a2 +1)(a2− 2a− 1) = 0. The ramification portrait (2.1)
leads to the first map in (2.7), and the portraits in (2.4) lead to the fourth and fifth
maps in (2.7), respectively. �

We now give our characterization of dynamically exceptional quadratic rational func-
tions.

Proposition 2.4. Let K be a field of characteristic 6= 2, and let φ ∈ K(x) have degree
2. Then φ is dynamically exceptional if and only if φ is a Lattès map or conjugate over
K to (x2 + a)/(x2 − (a+ 2)) for some a ∈ K.

Remark. Maps conjugate to the degree-2 Chebyshev polynomial, as well as Lattès maps
with ramification portrait (2.4), are conjugate to (x2+a)/(x2− (a+2)) for appropriate
a ∈ K.

Proof. By definition, there is Γ ⊂ P1(K) with φ−1(Γ) \ Cφ = Γ. This implies that
Γ ⊆ φ−1(Γ) and Γ ∩ Cφ = ∅. Hence
(2.8) 2#Γ =

∑

α∈φ−1(Γ)

eφ(α) = #Γ + 2#(φ−1(Γ) ∩ Cφ),

and it follows that #Γ ∈ {2, 4}, according to whether #(φ−1(Γ) ∩ Cφ) is 1 or 2.
First suppose that #Γ = 2 and φ−1(Γ) contains a single critical point c. Because

φ(Γ) ⊆ Γ, c cannot be periodic, for then c ∈ Γ. Similarly, φ(c) cannot be periodic,
for then its unique preimage c must be periodic as well. Thus φ2(c) is a fixed point
for φ, and after conjugation we may assume c = ∞, φ(c) = 1, and φ2(c) = −1,
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giving the map (x2 + a)/(x2 − (a + 2)) for some a ∈ K. We remark that any map
with ramification portrait (2.4) or (2.2), and hence any map conjugate to the degree-2
Chebyshev polynomial, is a special case.

Now suppose that #Γ = 4, and φ−1(Γ) contains both critical points of φ, i.e.,
φ−1(Γ) = Γ ∪ Cφ. Then we may define a function r : P1(K) → Z satisfying (2.3) by
taking r(α) = 2 for α ∈ Γ and r(α) = 1 for α 6∈ Γ. Hence φ is a Lattès map. �

In general we expect a Lattès map φ defined over a finite field Fq to satisfy

lim inf
n→∞

#Per(φ,P1(Fqn))

qn + 1
> 0,

much as happens with Chebyshev polynomials [11]. Using work of Ugolini [21], we
prove this happens in a certain case:

Theorem 2.5. Let K = Fp with p ≡ 1 mod 4, and suppose that φ is conjugate over K

to the Lattès map x2+a
x2−a

, where a ∈ K and a2 + 1 = 0. Then

(2.9) lim inf
n→∞

#Per(φ,P1(Fpn))

pn + 1
≥ 1

8

Remark. There are φ that are K-conjugate to x2+a
x2−a

, where a ∈ K with a2 + 1 = 0, but

not K-conjugate to any such map. Indeed, if φ is K-conjugate to a map of this kind,
then it is K-conjugate to such a map if and only if its critical points lie in K.

Proof. Because φ is conjugate over K to a map whose critical points are defined over K,
the critical points of φ must be defined over K. Applying a conjugacy that moves these
critical points to ±1, we see that φ is conjugate over K to ψ(x) = k(x+x−1), where k2+
1
4
= 0. As detailed in [21, Section 3], the map ψ descends from a degree-2 endomorphism

on the elliptic curve y2 = x3 + x defined over Fp, which has endomorphism ring R :=
Z[i]. Moreover, because p ≡ 1 mod 4, the two degree-2 maps in R, namely [1 ± i], are
both defined over Fp, and indeed have the form (x, y) 7→ (ψ(x), yτ(x)) with τ(x) =
c(x2 − 1)/x2 ∈ Fp(x).

Our analysis of the action of ψ on P1(Fpn) begins by partitioning P1(Fpn) into two
ψ-invariant sets which, by the Hasse bound, have approximately equal size when pn is
large. Let S be the three roots of x3 + x, which lie in Fp since p ≡ 1 mod 4. Set

An =

{
{x ∈ Fpn : there is y ∈ Fpn with (x, y) ∈ E(Fpn)} ∪ {∞} if

√
2 ∈ Fpn

{x ∈ Fpn : there is y ∈ Fpn with (x, y) ∈ E(Fpn)} \ S if
√
2 6∈ Fpn

and take Bn = P1(Fpn) \ An.
Because endomorphisms of E preserve E(Fpn), we immediately have ψ(An) ⊆ An

if
√
2 ∈ Fpn. If

√
2 6∈ Fpn and α ∈ An, then ψ(α) ∈ An unless ψ(α) ∈ S. But

ψ−1(S) = S ∪ {±1}, and ±1 6∈ An since
√
2 6∈ Fpn. Thus ψ−1(S) ∩ An = ∅. Suppose

now that α ∈ Bn, and let β satisfy (α, β) ∈ E(Fp). The y-coordinate of [1±i](α, β) has
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the form βτ(α). But τ(α) ∈ Fpn, so βτ(α) ∈ Fpn if and only if β ∈ Fpn or τ(α) = 0 (i.e.

α = ±1). If
√
2 ∈ Fpn, then {±1} ∩ Bn = ∅, whence ψ(Bn) ⊆ Bn. If

√
2 6∈ Fpn, then

the entire orbits of ±1 under ψ are contained in Bn, and so again we have ψ(Bn) ⊆ Bn.
If we put f(n) = (#An)/(p

n+1) and g(n) = (#Bn)/(p
n+1), then the Hasse bound

implies that both f(n) and g(n) are 1/2 +O(p−n/2). In particular,

(2.10) lim
n→∞

#An

pn + 1
= lim

n→∞

#Bn

pn + 1
=

1

2
.

Let πp ∈ R denote the Frobenius endomorphism of E (which is given explicitly by

(r +
√
r2 − 4p)/2 where r = p + 1 − #E(Fp)), and let p be the ideal (1 + i) of R.

Theorem 3.5 of [21] implies that each periodic point in An (resp. Bn) is the root of
a complete binary rooted tree whose depth is given by vp(π

n
p − 1) (resp. vp(π

n
p + 1)),

where vp denotes the p-adic valuation. The only exception is the fixed point at ∞,
whose tree includes the critical points ±1 but otherwise is a complete binary tree with
depth given as in the previous sentence. We have

2 = vp(2) = vp((πp + 1)− (πp − 1)) ≥ min{vp(πp + 1), vp(πp − 1)},
and it follows that either An or Bn is composed of periodic points for ψ, each one
mapped to by a binary tree of non-periodic points of depth at most 2. Without loss of
generality, say that An satifies this condition. Then

(2.11) lim inf
n→∞

#Per(ψ,An)

#An
≥ 1/4.

Combining (2.10) and (2.11) gives

lim inf
n→∞

#Per(ψ,P1(Fpn))

pn + 1
≥ lim inf

n→∞

#Per(ψ,An)

pn + 1

= lim inf
n→∞

(
#Per(ψ,An)

#An
· #An

pn + 1

)

≥ 1

4
· 1
2
=

1

8
.

�

To illustrate the results of this section, we give some further discussion of the maps in
Table 1, which gives data for K = F3 and all quadratic maps φ(x) = (x2 − a)/(x2 − b)
with a, b ∈ K. The cases (a, b) = (1, 2) and (a, b) = (2, 1) produce maps that are
conjugate over F3 and thus have the same dynamics on Fn

3 , while all other choices
of (a, b) with a 6= b yield maps that are not conjugate over F3. Taking (a, b) =
(0, 2) gives a map with ramification portrait (2.2), which is thus F3-conjugate to the
degree-2 Chebyshev polynomial x2 − 2. Taking (a, b) = (2, 0) gives a Lattès map with
ramification portrait (2.4). Taking (a, b) ∈ {(0, 1), (1, 2), (1, 0)} gives a map that is not
dynamically exceptional. We note that (a, b) = (0, 2) gives a map conjugate to x2 − 1.
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Table 1 shows #Per(φ,P1(F3n))/3
n for n ≤ 10, and also includes the map x2, whose

periodic points in P1(F3n) are the same as 1/x2.

3. Reducing Theorems 1.3 and 1.5 to statements about IMGs

In this section we show that to prove Theorems 1.3 and 1.5, it is enough to prove
Theorem 1.7.

For each n ≥ 1, let Karith
n be the extension of Fq(t) obtained by adjoining the roots of

φn(x)− t, and Kgeom
n the extension of Fq(t) obtained by adjoining the roots of φn(x)− t

(recall our standing assumption that φn(x) − t has dn distinct roots in Fq(t)). We

note that Kgeom
n is equal to the compositum Karith

n Q, which in turn is equal to the
compositum Karith

n Q(t).
Denote by Gn the Galois group of Kgeom

n over Fq(t), and note that Gn is the natural
quotient of pgIMG(φ)/Fq (= lim

←
Gn) obtained by restricting its action on T (φ) to the

set Tn(φ) of vertices having distance n from the root of T (φ). The first main result of
this section relates FPP(Gn) to certain counts of periodic points.

Theorem 3.1. Let Fq be a finite field of characteristic p and φ ∈ Fq(x) have degree

d with 2 ≤ d < p. Let n ≥ 1 and let Karith

n ∩ Fq = Fqm, so that Fqm is the maximal
constant field subextension of Karith

n . Then for every δ > 0 there is a constant k0 such
that

(3.1)
#Per(φ,P1(Fqmk))

qmk + 1
< FPP(Gn) + δ

for all k > k0.

To prove Theorem 3.1, we begin with two elementary lemmas, the first of which is
Lemma 5.2 of [10].

Lemma 3.2 ([10]). If f is a function acting on a finite set U , then Per(f,U) =⋂
n≥0 f

n(U). In particular #Per(f,U) ≤ #fn(U) for every n ≥ 0.

We say that the degree of β ∈ Fq, written deg β, is the degree of the minimal
polynomial of β over Fq.

Lemma 3.3. Let Fq be a finite field with q elements, and let k > 1 be an integer. Then

(3.2) #{β ∈ Fqk : deg β < k} ≤ 2qk/2.

Proof. The subfields of Fqk are precisely Fqr for r | k, and Fq(β) = Fqdeg β . Thus
#{β ∈ Fqk : deg β < k} is bounded above by

∑
r|k,r 6=k q

r, and

∑

r|k,r 6=k

qr ≤ qk/2 + q(k/2)−1 + q(k/2)−2 + · · · = qk/2
(
1 +

1

q
+

1

q2
+ · · ·

)
≤ 2qk/2.

�
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Proof of Theorem 3.1. Begin by observing that #φn(P1(Fqmk)) ≤ φn(Fqmk) + 1, and so

(3.3)
#φn(P1(Fqmk))

qmk + 1
≤ #φn(Fqmk)

qmk
+

1

qmk + 1
.

We will bound
#φn(F

qmk )

qmk for sufficiently large k. To do so, we study the extension

Karith
n /Fqm(t). Because Fqm is the maximal constant field subextension of Karith

n , we
have Gal (Karith

n /Fqm(t)) = Gn.
Each place P of Fqm(t) (resp. p of Karith

n ), has a corresponding discrete valuation vP
(resp. vp), and we denote by OP (resp. Op) the ring of integers {z ∈ Fqm(t)

∗ : vP (z) ≥
0} (resp. {z ∈ Karith∗

n : vp(z) ≥ 0}) and we denote by mP (resp. mp) the maximal
ideal {z ∈ OP : vP (z) > 0} (resp. {z ∈ Op : vp(z) > 0}). We denote the residue fields
OP/mP and Op/mp by FP and Fp, respectively, and we denote the canonical maps
OP → FP and Op to Fp by πP and πp, respectively.

Let α1, . . . , αdn be the roots of φn(x) − t in Fqm(t), and observe that these are all
distinct. Let T be the set of places P of Fqm(t) satisfying all of the following:

(1) P is not ramified in Karith
n ;

(2) every extension p of P to Karith
n satisfies vp(αi − αj) = 0 for all i 6= j;

(3) every extension p of P to Karith
n satisfies vp(αi) ≥ 0 for all i;

(4) P is not the place at infinity.

(We remark that condition (2) implies condition (1), though we do not need that for
the proof.) Let P ∈ T , and let p be an extension of P to Karith

n . Condition (4) ensures
there is an irreducible polynomial p(t) ∈ Fqm [t] of some degree k ≥ 1 such that vP
is given by ordp(·). In particular, FP = Fqm[t]/(p(t)), which is a finite field of qmk

elements. Moreover, condition (3) ensures αi ∈ Op for all i = 1, . . . , dn, and condition
(2) ensures

(3.4) πp : {α1, . . . , αdn} → {πp(α1), . . . , πp(αdn)} is a bijection.

Let D(p/P ) ⊂ Gn be the decomposition group of p, i.e.

{g ∈ Gn : vp(g(z)) = vp(z) for all z ∈ Karith
n \ {0}}.

Observe that any g ∈ D(p/P ) gives a map Op → Op that descends to g ∈ Gal (Fp/FP )
given by g(z + p) = g(z) + p. For any αi, we have

πp(g(αi)) = g(αi) + p = g(αi + p) = g(πp(αi)),

and it follows from (3.4) that g permutes {α1, . . . , αdn} in the same way that g permutes
{πp(α1), . . . , πp(αdn)}.

Because φ is defined over Fqm , it commutes with πp, so we have

(3.5) πp(t) = πp(φ
n(αi)) = φn(πp(αi)),

whence {πp(α1), . . . , πp(αdn)} are the preimages of πp(t) under φ
n. Now πp(t) is a root

of p(t) in Fp, and hence lies in FP , since the latter is OP/(p(t)). Let β = πp(t), and
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let β ′ be any other root of p(t) in FP . Then there is σ ∈ Gal (Fp/FP ) with σ(β) = β ′.
Now σ commutes with φ, and so applying σ to (3.5) shows that the preimages of
β ′ under φn are {σ(πp(α1)), . . . , σ(πp(αdn))}. Moreover, Gal (Fp/FP ) is abelian, and
so g and σ commute for any g ∈ D(p/P ). It follows that g has a fixed point in
{πp(α1), . . . , πp(αdn)} if and only if it has a fixed point in {σ(πp(α1)), . . . , σ(πp(αdn))}.

Still assuming that P ∈ T , condition (1) implies that the map g → g gives an
isomorphism D(p/P ) → Gal (Fp/FP ) [20, Theorem 9.6]. The inverse image of the

Frobenius map x 7→ xq
mk

is denoted Frob(p/P ), and the set {Frob(p/P ) : p extends P}
is a conjugacy class of Gn [20, Proposition 9.7], which we denote Frob(P ). Observe
that if Frob(p/P ) fixes one of the αi for some extension p of P , then so does every
element of Frob(P ).

Now Frob(p/P )(αi) = αi is equivalent to (πp(αi))
qmk

= πp(αi), which is equivalent
to αi ∈ Fqmk . Thus if β1, . . . , βk are the roots in Fqmk of p(t), we have

(3.6) Frob(P ) acts on {α1, . . . , αdn} with at least one fixed point

⇐⇒ for every j ∈ {1, . . . , k}, there is y ∈ Fqmk with φn(y) = βj

Observe that the latter condition in (3.6) is equivalent to {β1, . . . , βk} ⊂ φn(Fqmk).
Let U = {places P of Fqm(t) that are unramified in Karith

n }. The Chebotarev Den-
sity Theorem for function fields (see e.g. [20, Theorem 9.13B]) states that for any
conjugacy class C ⊂ Gn, there is a constant ∆ such that

(3.7) #{P ∈ U : degP = k and Frob(P ) = C} ≤ #C

#Gn
· q

mk

k
+∆

qmk/2

k
.

Both U and T contain all but finitely many places of Fqm(t), and so there exists k1
such that for any k ≥ k1, all places of degree k lie in both U and T . The set of g ∈ Gn

acting on {α1, . . . , αdn} with at least one fixed point is a union of conjugacy classes of
Gn, and it follows from (3.6) and (3.7) that for k ≥ k1,

#{P : degP = k and {β1, . . . , βk} ⊂ φn(Fqmk)} ≤ FPP(Gn) ·
qmk

k
+∆

qmk/2

k
.

Thus for k ≥ k1 we have

(3.8)
#{β ∈ φn(Fqmk) : deg β = k}

k
≤ FPP(Gn) ·

qmk

k
+∆

qmk/2

k
.

From Lemma 3.3, we have #{β ∈ φn(Fqmk) : deg β < k} ≤ 2qmk/2, and (3.8) then gives

(3.9) #φn(Fqmk) ≤ FPP(Gn) · qmk + (∆ + 2)qmk/2
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for k ≥ k1. Finally, combining (3.9) with Lemma 3.2 and equation (3.3), we obtain for
k ≥ k1,

#Per(φ,P1(Fqmk))

qmk + 1
≤ #φn(P1(Fqmk))

qmk + 1
≤ #φn(Fqmk)

qmk
+ (qmk + 1)−1

≤ FPP(Gn) + (qmk + 1)−1 + (∆ + 2)q−mk/2

Let δ > 0. Taking k0 large enough so that k0 ≥ k1 and (qmk0+1)−1+(∆+2)q−mk0/2 < δ
completes the proof. �

We obtain the following Corollary of Theorem 3.1:

Corollary 3.4. Let Fq be a finite field of characteristic p and φ ∈ Fq(x) have degree d
with 2 ≤ d < p. Then for every ǫ > 0 there are positive integers M and k0 such that

#Per(φ,P1(FqMk))

qMk + 1
< FPP(pgIMG(φ)/Fq) + ǫ

for all k > k0. Moreover, M ≤ lim supn→∞mn, where mn = [(Karith

n ∩ Fq) : Fq].

Proof. Let ǫ > 0 be given. By definition FPP(pgIMG(φ)/Fq) = limi→∞ FPP(Gi), and
so there is an infinite set I such that FPP(Gi) ≤ FPP(pgIMG(φ)/Fq) + ǫ/2 for any
i ∈ I. For each i ∈ I, we may take δ = ǫ/2 in Theorem 3.1 to obtain mi and k0 such
that

#Per(φ,P1(Fqmik))

qmik + 1
≤ FPP(pgIMG(φ)/Fq) + ǫ/2 + ǫ/2

for all k ≥ k0. If lim supn→∞mn = ∞, then any choice of i ∈ I proves the Corollary.
If lim supn→∞mn = L <∞, then we may take i ∈ I large enough so that mi ≤ L. �

Recall that a finite extension E of Fq(t) is geometric (over Fq(t)) if E ∩ Fq = Fq.
Hence Karith

n is geometric if and only if mn = 1 for all n ≥ 1.

Corollary 3.5. Let Fq be a finite field of characteristic p and φ ∈ Fq(x) have degree d
with 2 ≤ d < p. Then

lim inf
k→∞

#Per(φ,P1(Fqk))

qk + 1
≤ FPP(pgIMG(φ)/Fq).

If in addition Karith

n is geometric over Fq(t) for all n ≥ 1, then

lim sup
k→∞

#Per(φ,P1(Fqk))

qk + 1
≤ FPP(pgIMG(φ)/Fq).

Proof. The first statement follows from Corollary 3.4 and the second from Theorem
3.1. �
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In particular, ifKarith
n is geometric over Fq(t) for all n ≥ 1 and FPP(pgIMG(φ)/Fq) =

0, then the second statement of Corollary 3.5 gives

lim
k→∞

#Per(φ,P1(Fqk))

qk + 1
= 0.

At present the constant field sub-extensions Fqmn (which we recall is Karith
n ∩Fq) are

in general poorly understood. The main result is in the case of quadratic polynomials,
and due to Pink:

Theorem 3.6 (Pink [17]). Let Fq be a finite field of odd characteristic, and let φ ∈ Fq[x]
have degree 2. Suppose that the unique finite critical point of φ is strictly preperiodic
and that φ is not conjugate to a Chebyshev polynomial. Then

Karith

n ∩ Fq ⊆ Fq(ζ8),

where ζ8 is a primitive 8th root of unity. In particular, if q is a square then Karith

n is
geometric over Fq(t) for all n ≥ 1.

Together with Corollary 3.5, this gives:

Corollary 3.7. Let Fq be a finite field of odd characteristic, and let φ ∈ Fq[x] have de-
gree 2. Suppose that q is a square, the unique finite critical point of φ is strictly preperi-
odic, and φ is not conjugate over Fq to a Chebyshev polynomial. If FPP(pgIMG(φ)/Fq) =
0, then

lim
k→∞

#Per(φ,P1(Fqk))

qk + 1
= 0.

We now wish to show that FPP(pgIMG(φ)/Fq) = FPP(pgIMG(φ̃)/C), thereby re-

ducing the proofs of both Theorems 1.3 and 1.4 to the computation of FPP(pgIMG(φ̃)/C).
To do so, we take advantage of theorems about lifting Galois groups from characteristic
p to characteristic 0. Let T and T ′ be two complete d-ary rooted trees. If ι : T → T ′ is
an isomorphism of rooted trees, then any G ≤ Aut(T ) embeds as a subgroup ι◦G◦ ι−1
of Aut(T ′). A different choice of ι alters the image of this embedding by a conjugacy
in Aut(T ′). In particular, FPP(G) = FPP(ι ◦G ◦ ι−1) independent of choice of ι, since
FPP is invariant under conjugacy.

Definition 3.8. Let Fq be a finite field of characteristic p and let φ ∈ Fq(x) have
degree d ≥ 2 with pgIMG(φ)/Fq = G∞ acting on the tree TFq

(φ) of preimages of t

in Fq(t). We call φ liftable if there exists a map φ̃ ∈ C(x) with pgIMG(φ̃)/C = G̃∞
acting on the tree TC(φ̃) of preimages of t in C(t) such that

(1) φ and φ̃ have the same ramification portrait, and

(2) there is a tree isomorphism ι : TFq
(φ)→ TC(φ̃) such that ι ◦G∞ ◦ ι−1 = G̃∞.

Not all φ ∈ Fq(x) are liftable; for instance if φ(x) = xp−x then∞ is the only critical

point in P1(Fq), and no lift φ̃ ∈ C(x) can have the same ramification portrait.
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Note that condition (2) of Definition 3.8 ensures that if φ is liftable, then

(3.10) FPP(pgIMG(φ)/Fq) = FPP(pgIMG(φ̃)/C).

In Section 4 we show that the latter is equal to FPP(IMG(φ̃)) (see p. 22).

We remark that the action of pgIMG(φ̃)/C on TC(φ̃) is given by the action of the
topological fundamental group π1(P

1
C \Pφ̃, z0), where z0 is any point outside of Pφ̃ The

latter may be computed by pulling back loops in P1
C \ Pφ̃, which allows for the use of

topological and geometric tools.
In order to harness these new tools, we need to know that the maps we study are

liftable. For this we appeal to a result of R. Pink.

Theorem 3.9 (Pink [16], Corollary 4.4). Let Fq be a finite field of odd characteristic,
and let φ ∈ Fq(x) have degree 2. Then φ is liftable.

To prove Theorem 3.9, Pink constructs a fine moduli scheme MΓ for Γ-marked
quadratic morphisms, i.e. quadratic morphisms with specified ramification portrait Γ.
The construction is explicit, and MΓ has several desirable properties, the most crucial
being that it is quasi-finite over SpecZ[1

2
] [16, Theorem 3.3]. These properties lead to a

proof that any Γ-marked quadratic morphism over a finite field of odd characteristic p
lifts to characteristic zero: it is isomorphic to the special fiber of a Γ-marked quadratic
morphism over SpecR, where R is a discrete valuation ring that is finitely generated
over Z(p) [16, Corollary 3.6]. Liftability in the sense of Definition 3.8 then follows as
a direct consequence of Grothendieck’s Specialization Theorem for tame fundamental
groups; see [18, Section 4].

The key step in Pink’s argument is the quasi-finiteness of MΓ, which is equivalent to
the statement that that any quadratic morphism over a function field of characteristic
6= 2 is isotrivial, i.e. defined over a finite extension of the constant field after a change
of variables. Using p-adic methods that are completely different from those of [16], this
statement was proven in [2, Corollary 6.3].

Finally, note that because of condition (1) in Definition 3.8, a liftable map φ ∈ Fq(x)
is dynamically exceptional if and only if its lift is. From Theorem 3.9, Corollary 3.5,
and Corollary 3.7, we then obtain:

Corollary 3.10. Theorem 1.7 implies Theorem 1.3 and Theorem 1.4.

We now turn to Question 1.2, the “horizontal” question involving finite fields of
different characteristics. Recall that if K is a number field and φ ∈ K(x), then for
all but finitely many primes p in the ring of integers OK of K, one may reduce the
coefficients of φ modulo p to obtain a morphism φp : P1(Fp) → P1(Fp) with deg φ =

deg φ̃, where Fp is the residue field OK/p. Denote by N(p) the degree of Fp over its
prime field, so that 1 +N(p) is the size of P1(Fp).
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Theorem 3.11. Let K be a number field and φ ∈ K(x). Then

(3.11) lim inf
N(p)→∞

#Per(φp,Fp)

1 +N(p)
≤ FPP(pgIMG(φ)/C),

where the lim inf is over primes p of K.

Proof. LetKgeom
n be the splitting field of φn(x)−t overQ(t), andGn = Gal (Kgeom

n /Q(t)),
so that limn→∞ FPP(Gn) = FPP(pgIMG(φ)/Q). Because Kgeom

n is an algebraic exten-
sion of Q(t), for any extension field F of Q we have that the field of constants of
Kgeom

n ∩ F (t) is an algebraic extension of Q. Hence Kgeom
n ∩ F (t) = Q(t). By the

theorem on natural irrationalities, it follows that the Galois group of the compositum
FKgeom

n over F (t) is isomorphic to Gn. Choosing an embedding Q →֒ C, we may take

F = C. This embedding can be extended to an embedding Q(t) →֒ C(t), which carries
TQ(φ) onto TC(φ). It follows that pgIMG(φ)/Q ∼= pgIMG(φ)/C, and the action of the
former on TQ(φ) is conjugate to the action of the latter on TC(φ) (where the conjugacy
depends on the choice of embeddings).

Let Ln = Karith
n ∩Q, and recall that Karith

n Q(t) = Karith
n Q = Kgeom

n . Then Karith
n Q(t)

is a geometric extension of Ln(t) with Galois group Gn, by the theorem on natural
irrationalities. From [10, Proposition 5.3] we have that for primes P of Ln and for any
δ > 0,

(3.12)
#Per(φP,FP)

1 +N(P)
≤ FPP(Gn) + δ

for N(P) sufficiently large, where N(P) is the norm of P. From [10, Lemma 6.3] and
(3.12) we obtain

(3.13) lim inf
N(p)→∞

#Per(φp,Fp)

1 +N(p)
≤ FPP(Gn) + δ,

where p varies over primes of K. To prove (1.6), let ǫ > 0. Let n be such that
FPP(Gn) ≤ FPP(pgIMG(φ)/Q) + ǫ/2. Applying (3.13) with δ = ǫ/2 gives

lim inf
N(p)→∞

#Per(φp,Fp)

1 +N(p)
≤ FPP(pgIMG(φ)/Q) + ǫ,

from which (3.11) follows, because FPP(pgIMG(φ)/Q) = FPP(pgIMG(φ)/C) by the
first paragraph of the proof. �

Theorem 3.11 shows that the only obstacle to proving Theorem 1.5 is establishing
that FPP(pgIMG(φ)/C) = 0. When φ is conjugate over K to a polynomial, this is
Theorem 1.1 of [8]. If φ has prime degree or doubly transitive monodromy, this is
Theorem 1.7. We thus have:

Corollary 3.12. Theorem 1.7 implies Theorem 1.5.
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4. Background and definitions on IMGs and wreath recursion

The proof of Theorem 1.7, which requires a proof of Theorem 1.8, occupies the
remainder of the article. From this section on, we work in a more topological context,

and so use the notation Ĉ in place of P1
C. We now use f to denote a rational function

with complex coefficients, and we use z as the variable. Given f ∈ C(z), we wish
to understand the action of pgIMG(f)/C on TC(f). In Section 4.1 we discuss tools
for studying the action of an arbitrary group on a complete d-ary infinite rooted tree
X∗. In Section 4.2 we define the iterated monodromy group and describe its standard
action on X∗. In Section 4.3 we give some basic properties of the monodromy action
on roots of a polynomial that will be used in Section 6.

4.1. Wreath recursion and definitions. Let d ≥ 2, put X = {0, . . . , d − 1}, and
let Sd denote the symmetric group on d letters. Denote by X∗ the set of all words in
X , arranged as a tree in the natural way: there is an edge connecting vx to v for each
v ∈ X∗ and x ∈ X . Denote by Xn the set of words in X of length n, which gives the
nth level of X∗. By X0 we mean the set consisting only of the empty word. An end of
X∗ is an infinite, non-retracing path beginning at the empty word. Thus the set of all
ends of X∗ is the inverse limit of the Xn under the natural maps Xn → Xn−1.

Define Aut(X∗) to be the set of tree automorphisms. A salient feature of X∗ is its
self-similarity, and we use this to describe elements of Aut(X∗) recursively.

Let g ∈ Aut(X∗), and for a vertex v ∈ X∗ consider the subtrees vX∗ and g(v)X∗

with root v and g(v), respectively. Both are naturally isomorphic toX∗, and identifying
them gives an automorphism g|v ∈ Aut(X∗), called the restriction of g at v.

There is a natural isomorphism

ψ : Aut(X∗)→ Sd ≀Aut(X∗),
where ≀ denotes the wreath product, that takes g to (σ, (g|0, . . . , g|d−1)), where σ ∈ Sd

is the action of g on X (i.e., on the first level of X∗). In other words, we may describe
g by specifying its action on X and its restriction at each element of X . We call this
the wreath recursion describing g. We generally drop the outer parentheses and equate
g with its image under ψ, writing

g = σ(g|0, . . . , g|d−1).
We write the identity element as 1, and when the permutation σ is the identity, we omit
it. Hence the identity element of Aut(X∗) is given in wreath recursion by (1, 1, . . . , 1).
Note that the element a = (a, 1, 1, . . . , 1) is also the identity, since by induction it acts
trivially on Xn for all n, and thus acts trivially on X∗. Given g = σ(g|0, . . . , g|d−1),
we can make explicit its action on any Xn thanks to the following formulas, which are
straightforward to prove:

(4.1) g|vw = g|v|w g(vw) = g(v)g|v(w),
for any v, w ∈ X∗.
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One can multiply elements in wreath recursion form using the usual multiplication
in a semi-direct product:

(4.2) σ(g0 . . . , gd−1) · τ(h0 . . . , hd−1) = στ(gτ(0)h0 . . . , gτ(d−1)hd−1).

If we take v ∈ X∗ of length n, we may consider (4.2) as giving the wreath recursion of
g, h ∈ Aut(X∗) acting on Xn. This gives

(4.3) (gh)(v) = g(h(v)) and (gh)|v = g|h(v) · h|v
Definition 4.1. A subgroup G of Aut(X∗) is level-transitive if for all n ≥ 1, G acts
transitively on Xn.

Definition 4.2. A subgroup G of Aut(X∗) is self-similar if for all g ∈ G we have
g|v ∈ G for every v ∈ X∗.
Definition 4.3. A subgroup G of Aut(X∗) is recurrent if G is self-similar, G acts
transitively on X , and for each x ∈ X , the map

(4.4) {g ∈ G : g(x) = x} → G given by g 7→ g|x
is surjective.

We note that the map in (4.4) is known as the virtual endomorphism associated to
g and x.

Definition 4.4. A subgroup G of Aut(X∗) is contracting if G is self-similar and there
is a finite set N ⊂ G with the following property: for each g ∈ G, there is M > 0 such
that g|v ∈ N for every word v ∈ X∗ of length at least M .

We record here a consequence of [15, Corollary 2.8.5]:

Proposition 4.5. A recurrent subgroup G ≤ Aut(X∗) is level-transitive, and hence is
infinite.

Proof. The first assertion follows immediately from [15, Corollary 2.8.5]. A level-
transitive subgroup of Aut(X∗) must be infinite, because it acts transitively on ar-
bitrarily large sets. �

4.2. Basic properties of IMGs. Throughout this section, let f : Ĉ → Ĉ be a PCF
rational function of degree d ≥ 2 with post-critical set Pf (the same construction works
any expanding PCF branched cover f : S2 → S2 as in [1], but we will not use the extra

generality here). Fix a choice of z0 ∈ Ĉ\Pf . Given γ ∈ π1(Ĉ \Pf , z0) and z ∈ f−n(z0),
there is a unique lift of γ beginning at z, whose endpoint we denote zγ ∈ f−n(z0). The
map z 7→ zγ defines a permutation of f−n(z0), and the resulting homomorphism

π1(Ĉ \ Pf , z0)→ Perm(f−n(z0))

is called the monodromy action of π1(Ĉ \ Pf , z0) on f
−n(z0). Denote its kernel by Kn.

The monodromy action extends to an action on the tree Tf,z0 ⊂ Ĉ of preimages of f ,
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rooted at z0. (We use this notation rather than the previous Tk(φ) because this tree

is a subset of Ĉ rather than of k(t).) Its kernel is K =
⋂∞

n=1Kn, which we call the
faithful kernel of the monodromy action.

Definition 4.6. With notation as above, the iterated monodromy group of f , written

IMG(f), is the quotient of π1(Ĉ \ Pf , z0) by the faithful kernel K of the monodromy
action on the tree Tf,z0.

Select a labeling bijection Λ : X → f−1(z0), and for i ∈ {0, . . . , d − 1} select a

path ℓi from z0 to Λ(i) in Ĉ \ Pf . Then Λ extends inductively to an isomorphism
Λ∗ : X∗ → Tf,z0 of rooted trees via the rule

(4.5) Λ∗(xv) = end of the path f−n(ℓx) starting at Λ∗(v)

for v ∈ Xn [15, Proposition 5.2.1].

Definition 4.7. Fix choices of basepoint z0, labeling map Λ : X → f−1(z0), and paths

{ℓi}. The corresponding standard action of π1(Ĉ \Pf , z0) (resp. IMG(f)) on X∗ is the

conjugation by Λ∗ of the monodromy action of π1(Ĉ \ Pf , z0) (resp. IMG(f)) on Tf,z0.

A standard action gives a homomorphism π1(Ĉ\Pf , z0)→ Aut(X∗), which descends
to an injective homomorphism IMG(f) →֒ Aut(X∗) with identical image. Thus we
may identify IMG(f) with a subgroup of Aut(X∗). A different choice of z0,Λ, or {ℓi}
only changes this group by a conjugacy in Aut(X∗). From now on we fix a standard

action of π1(Ĉ \ Pf , z0), and hence of IMG(f), on Aut(X∗).
For given n ≥ 1, it is a well-known result in the theory of Riemann surfaces that

the permutation group of f−n(z0) induced by the monodromy action of π1(Ĉ \ Pf , z0)
is identical (after possibly a conjugation in the symmetric group) to that given by the

action of the Galois group Gal (C(f−n(t))/C(t)) on the set f−n(t) ⊂ C(t). Thus after
possibly conjugating in Aut(X∗), we have that the action of pgIMG(f)/C on f−n(t) is
the same as that of IMG(f) on Xn (see e.g. [4, Theorem 8.12]. Since pgIMG(f)/C is a
closed subgroup of Aut(X∗) and it has the same image as IMG(f) under the restriction
maps Aut(X∗) → Aut(Xn), it follows that pgIMG(f)/C is the closure of IMG(f) in
Aut(X∗). This is [15, Proposition 6.4.2]. In particular, we have

IMG(f) ⊂ pgIMG(f)/C ⊆ Aut(X∗)

and FPP(pgIMG(f)/C) = FPP(IMG(f)).
We now describe a standard action in terms of wreath recursion. Equation (4.6) in

the following proposition is found in Proposition 5.2.2 of [15], and equation (4.7) is an
immediate consequence of Definition 4.7 and equation (4.1)

Proposition 4.8. Given a standard action of π1(Ĉ \ Pf , z0) (resp. IMG(f)) on X∗,

γ ∈ π1(Ĉ\Pf , z0) (resp. ∈ IMG(f)), and x ∈ X, let γ̃x be the lift of γ starting at Λ(x).
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Then the action of γ on X∗ is given by

(4.6) γ(xv) = γ(x)(ℓ−1γ(x)γ̃xℓx)(v)

where γ(x) is the element of X such that γ̃x ends in Λ(γ(x)). Moreover, for v ∈ X∗,

(4.7) γ|xv = [(ℓγ(x))
−1γ̃xℓx]|v.

A remark is in order about the statements in Proposition 4.8 regarding IMG(f).

Because IMG(f) is a quotient of π1(Ĉ \ Pf , z0), the quantities γ, γ̃x, and γ|x are only
defined up to elements of the faithful kernel. However, the elements of the faithful
kernel act trivially on Tf,z0, and hence do not affect the corresponding elements of
Aut(X∗).

Proposition 4.9. A standard action of π1(Ĉ \ Pf , z0) or IMG(f) on Aut(X∗) is re-
current.

Proof. Let G stand for either π1(Ĉ \ Pf , z0) or IMG(f). Observe that Proposition 4.8
(with v the empty word) implies that G is self-similar. We now show that G acts

transitively on X . Let i, j ∈ X and let p be a path from Λ(i) to Λ(j) in Ĉ \ f−1(Pf).
The path f(p) has endpoints f(Λ(i)) = f(Λ(j)) = z0, and thus f(p) gives an element

of G. Observe that the lift f̃(p) of f(p) beginning at Λ(i) is precisely p. By Proposition
4.8 we then have (f(p))(i) = j, showing that the action of G on X is transitive.

Finally, we show that given i ∈ X the virtual endomorphism g 7→ g|i is a surjective
map from {g ∈ G : g(i) = i} to G. Let h ∈ G and take a representative curve for h
(which we will also refer to as h in an abuse of notation) that avoids f−1(Pf). Let the

path h̄ be the composition ℓihℓ
−1
i . Notice that h̄ is a loop in Ĉ\f−1(Pf) based at Λ(i).

So (the homotopy class of) f(h̄) is a loop based at z0, and thus gives an element of G.
The lift of f(h̄) beginning at Λ(i) is h̄, and thus (f(h̄))(i) = i by Proposition 4.8. The
same proposition then yields

f(h̄)|i = ℓ−1i h̄ℓi = ℓ−1i ℓihℓ
−1
i ℓi,

which is homotopic to h, and thus equals h in G. Therefore, the map g 7→ g|i is
onto. �

Proposition 4.5 immediately gives:

Corollary 4.10. A standard action of IMG(f) on Aut(X∗) is level-transitive, and
hence IMG(f) is infinite.

To this point, the results of this section hold more generally for PCF branched self-
covers of the sphere. However, if f is specifically a post-critically-finite rational map,
the expansion properties of f have further implications for the iterated monodromy
group. Let P per

f ⊂ Pf denote the union of all periodic orbits containing a critical
point. By [13, Theorem 19.6], f is subhyperbolic because every critical orbit is finite.



24 BRIDY, RAFE JONES, GREGORY KELSEY, AND LODGE

That theorem is proved by constructing an orbifold metric on Ĉ \ P per
f so that for all

p ∈ Ĉ \ f−1(Pf), the derivative satisfies

(4.8) ||Df(p)|| > 1.

For p ∈ P per
f denote by U(p) an open Böttcher disk containing p (as in [13, Theorem

9.1]). There is a choice of the neighborhood U(p) for each p ∈ P per
f so that the collection

Uper :=
⋃

p∈P per

f

Up

has complement K = Ĉ \ Uper with the property that K ′ := f−1(K) is compactly
contained in K. By compactness there is a constant 0 < ρ < 1 so that

(4.9) ||Df(p)|| ≥ 1

ρ
> 1

for all p ∈ K ′.
In the presence of this metric expansion, certain finiteness properties hold. For

example, it was used by Nekrashevych to prove the following statement on contraction
(recall Definition 4.4) of self-similar groups [15, Theorem 5.5.3].

Theorem 4.11. If f : Ĉ→ Ĉ is PCF, then IMG(f) is contracting.

4.3. Peripheral loops. Let f : Ĉ → Ĉ be a PCF rational function, and recall that

we have fixed a standard action of π1(Ĉ \ Pf , z0) (and hence of IMG(f)) on X∗. In
Section 6 we study this action by analyzing loops, and here we record some elementary
properties of loops that will prove useful.

We say that a homotopy class of paths based at a point z is a loop if it can be
represented by a loop, or equivalently if every representative is a loop. The following
lemma is an immediate consequence of Proposition 4.8:

Lemma 4.12. The lift of g ∈ π1(Ĉ \ Pf , z0) to z ∈ Tf,z0 is a loop if and only if
g(Λ∗(z)) = Λ∗(z).

Definition 4.13. A nontrivial element g ∈ π1(Ĉ \ Pf , z0) is peripheral about p ∈ Pf

if for any disk neighborhood N(p) of p there exists a representative of g that is freely

homotopic (i.e. homotopic with continuously moving basepoint) in Ĉ \ Pf to a loop
that is contained in N(p). We call g peripheral if there exists a p ∈ Pf so that g is
peripheral about p.

Definition 4.14. A nontrivial element g ∈ π1(Ĉ \ Pf , z0) is called primitive if g = hm

for h ∈ π1(Ĉ \ Pf , z0) implies that m = 1 or m = −1.
Fix a disk neighborhood N(p) of p so that each component of f−1(N(p)) contains

at most one element of f−1(p). Let g ∈ π1(Ĉ \ Pf , z0) be peripheral about p, which by
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definition means that there is a loop gp that is freely homotopic to g and contained in
N(p). A lift g̃ of g is said to be associated to a point q ∈ f−1(p) if the free homotopy

g ≃ gp lifts to a free homotopy g̃ ≃ g̃q (in Ĉ \ f−1(Pf )) where g̃q is contained in the
component of f−1(Np) that contains q. We note that given z ∈ f−1(z0) and g peripheral
about p ∈ Pf , the lift of g beginning at z is associated to precisely one q ∈ f−1(p).

Lemma 4.15. Let g ∈ π1(Ĉ \Pf , z0) be primitive and peripheral about p ∈ Pf , and let
g̃ be a lift of g beginning at z ∈ f−1(z0). Suppose that g̃ is associated to q ∈ f−1(p).
Then q is non-critical if and only if g(Λ(z)) = Λ(z).

Proof. Let g̃ be a lift of g associated to q, and let U(q) be the component of f−1(N(p))
that contains q. By Lemma 4.12 we have g(Λ(z)) = Λ(z) if and only if g̃ is a loop. By
definition g̃ is freely homotopic to g̃q ⊂ U(q) that is a lift of a loop gp ⊂ N(p) freely
homotopic to g. It follows from the homotopy lifting property that g̃ is a loop if and
only if g̃q is a loop.

Because f is a branched cover, the restriction f : U(q) → N(p) is modeled on the
unit disk map z 7→ zd where d ≥ 1 is the local degree of f at q. A primitive nontrivial
loop in D \ {0} lifts to a loop under z 7→ zd if and only if d = 1, i.e. if and only if q is
non-critical. �

Lemma 4.16. Let g ∈ π1(Ĉ \ Pf , z0) be primitive and peripheral about p ∈ Pf , and
let g̃ be a lift of g beginning at z ∈ f−1(z0). If g̃ is a loop, then it is either trivial in

π1(Ĉ \ Pf , z0) or it is peripheral about a non-critical point in Pf .

Proof. Let q ∈ f−1(p) be such that g̃ is associated to q, let N(q) be a disk neighborhood
of q, and assume that g̃ is a loop. Because g is peripheral about p, we can select a loop
gp that is freely homotopic to g and contained in a neighborhood N(p) of p such that
f−1(N(p)) has a component contained in N(q). Then g̃q is freely homotopic to a loop
contained in N(q), and hence is peripheral about q. Note that if q 6∈ Pf , then g̃ is trivial

in π1(Ĉ \ Pf , z0). Because g̃ is a loop we have from Lemma 4.12 that g(Λ(z)) = Λ(z).
Hence by Lemma 4.15 we have that q is non-critical. �

The following lemma connects the dynamical properties of the post-critical set to to
the action of a loop on the tree of preimages.

Lemma 4.17. Let g ∈ π1(Ĉ \ Pf , z0) be primitive and peripheral about p ∈ Pf . Then

(1) g fixes an end of X∗ if and only if there is a backward orbit of p that does not
contain a critical point, and

(2) g fixes infinitely-many ends of X∗ if there is a backward orbit of p that contains
no critical point and is not a subset of Pf .

Proof. The first statement follows from Lemma 4.15. The second statement follows
from the fact that the trivial action on a subtree fixes all ends of that subtree. �
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5. The fixed-point process for self-similar groups

Throughout this section, we assume X = {0, . . . , d − 1} for d ≥ 2, and let Xn be
the collection of words in X of length n. In particular, X = X1. Recall that we have

fixed a standard action of π1(Ĉ \ Pf , z0) (and hence of IMG(f)) on X∗. As in (1.8) in
the introduction, we put

N1 = {g ∈ IMG(f) : g|v = g and g(v) = v for some non-empty v ∈ X∗}.
We denote by N1(G) the analogous set for an arbitrary G ≤ Aut(X∗)

In this section, we prove the following result, which is a key step in the proof of
Theorem 1.7:

Theorem 5.1. Let f ∈ C(z) be a PCF rational function of degree d ≥ 2. Assume that
d is prime or that f has doubly transitive monodromy. If every g ∈ N1 fixes infinitely
many ends of X∗, then FPP(IMG(f)) = 0.

For each n ≥ 1, let Gn denote the quotient of G by the kernel of the restriction
map G → Aut(Xn). Recall that the profinite completion G∞ of G with respect to
the Gn (equivalently, the inverse limit of Gn under the restriction maps Gn → Gn−1)
is a compact group, and its normalized Haar measure is a probability measure µ that
projects to the discrete uniform measure on each Gn. Moreover, G∞ carries a natural
action on the set of ends Xω. The key step in the proof of Theorem 5.1 is the following
result.

Theorem 5.2. Suppose that G ≤ Aut(X∗) is self-similar and level-transitive. If either

(1) d is prime, or
(2) G is recurrent and acts doubly transitively on X,

then
µ({g ∈ G∞ : g fixes infinitely many elements of Xω}) = 0.

Recall that G acts doubly transitively on X if for all i, j, k, ℓ ∈ X with i 6= j and
k 6= ℓ, there exists g ∈ G with g(i) = k and g(j) = ℓ/

Theorem 5.2 is proven in Corollaries 5.6, 5.11, and 5.13. The same conclusion as in
Theorem 5.2 is reached in Theorem 1.4 of [8] under the assumption that G contains
a spherically transitive element, which implies that G is level-transitive, though not
necessarily self-similar. We remark too that in the special case d = 2, Theorem 1.2
of [7] implies the conclusion of Theorem 5.2 under the assumptions that G is level-
transitive and for each n the sign homomorphism sgnn : Gn → {±1} is surjective. In
this paper we must handle groups with d = 2 that do not have a spherically transitive
element, and for which sgnn has trivial image for all n sufficiently large.

Here is a sketch of the proof of Theorem 5.1. We define a stochastic process – that
is, an infinite collection of random variables defined on a common probability space –
that encodes information about the number of fixed points in Xn of elements of Gn.
We then generalize the techniques of [7] and [8] and to show that this process is a
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martingale provided only that G is self-similar and level-transitive. An application of
a martingale convergence theorem and a result of Nekrashevych on contracting actions
of iterated monodromy groups yield the final steps in the proof of Theorem 5.1.

We now give the precise construction and proofs.
Let a group G act on a set S, and for g ∈ G put Fix(g) = {s ∈ S : g(s) = s}. Define

a stochastic process Y1, Y2, . . . on G∞ by taking

Yi(g) = #Fix(πi(g)),

where πi is the restriction map G∞ → Gi, and Gi acts on X i. We call this the fixed
point process of G. Because µ(π−1i (T )) = #T/#Gi for any T ⊆ Gi, we have that
µ(Y1 = t1, . . . , Yn = tn) is given by

(5.1)
1

#Gn
# {g ∈ Gn : g fixes ti elements of X i for i = 1, 2, . . . , n} .

We denote by E(Y ) the expected value of the random variable Y .

Definition 5.3. A stochastic process with probability measure µ and random variables
Y1, Y2, . . . taking values in R is a martingale if for all n ≥ 2 and any ti ∈ R,

E(Yn | Y1 = t1, Y2 = t2, . . . , Yn−1 = tn−1) = tn−1,

provided µ(Y1 = t1, Y2 = t2, . . . , Yn−1 = tn−1) > 0.

Martingales are useful tools because they often converge in the following sense:

Definition 5.4. Let Y1, Y2, . . . be a stochastic process defined on the probability space
Ω with probability measure µ. The process converges if

µ
(
ω ∈ Ω : lim

n→∞
Yn(ω) exists

)
= 1.

We give one standard martingale convergence theorem (see e.g. [6, Section 12.3] for
a proof).

Theorem 5.5. Let M = (Y1, Y2, . . .) be a martingale whose random variables take
nonnegative real values. Then M converges.

Since the random variables in the fixed-point process take nonnegative integer values,
we immediately have the following:

Corollary 5.6. Let G ≤ Aut(X∗) and suppose that the fixed-point process for G is a
martingale. Then

µ({g ∈ G∞ : Y1(g), Y2(g), . . . is eventually constant}) = 1.

In particular,

µ({g ∈ G∞ : g fixes infinitely many elements of Xω}) = 0.
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Thus to prove Theorem 5.2, it suffices to show that the fixed-point process for G is
a martingale. We therefore characterize when this happens. Let Hn be the kernel of
the restriction map Gn → Gn−1.

Theorem 5.7. Let G ≤ Aut(X∗). Then the fixed-point process for G is a martingale
if and only if for all n ≥ 1 and v ∈ Xn−1, Hn acts transitively on the set v∗ = {vx :
x ∈ X}.
Proof. Assume that Hn acts transitively on v∗. We must show

(5.2) E(Yn | Y1 = t1, . . . , Yn−1 = tn−1) = tn−1,

where t1, . . . , tn−1 satisfy µ(Y1 = t1, . . . , Yn−1 = tn−1) > 0. Because the Yi take integer
values, each ti must be an integer. By definition, the left-hand side of (5.2) is

(5.3)
∑

k

k · µ(Y1 = t1, . . . , Yn−1 = tn−1, Yn = k)

µ(Y1 = t1, . . . , Yn−1 = tn−1)
.

Put

S = {g ∈ Gn : g fixes ti elements of X i for 1 ≤ i ≤ n− 1}
Sk = {g ∈ S : g fixes k elements of Xn}

By (5.1), the expression in (5.3) is equal to
∑

k k · (#Sk/#S). This in turn may be
rewritten

(5.4)
1

#S

∑

g∈S

#Fix(g).

Each Hn acts trivially on Xn−1, so S is invariant under multiplication by elements
of Hn, whence S is a union of cosets of Hn. Take gHn ⊆ S, and let

R = {vx : v ∈ Xn−1, g(v) = v, x ∈ X}.
Note that because g ∈ S, we have #R = dtn−1. If vx ∈ R, then g(vy) = vx for some
unique y ∈ X . Because Hn acts transitively on v∗, the set

Q := {h ∈ Hn : h(vx) = vy}
is non-empty, and is thus a coset of StabHn

(vx). By standard group theory, we then
have #Q = #Hn/#OHn

(vx) = #Hn/d, where the last equality follows from the tran-
sitivity of the action of Hn on v∗.

Now let I(g, s) be the function that takes the value 1 when g(s) = s and 0 otherwise.
Then we have

∑
h∈Hn

I(gh, vx) = #Q and hence
∑

vx∈R

∑

h∈Hn

I(gh, vx) = #Q · dtn−1 = #Hntn−1.
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Inverting the order of summation and using that g(w) 6= w for w 6∈ R, we have
∑

h∈Hn

#Fix(gh) = #Hntn−1.

But S is a disjoint union of cosets of Hn, and hence the expression in (5.4) equals tn−1.
Assume now that Hn does not act transitively on v∗ for some v ∈ Xn−1. Then the

action of Hn on Xn has k orbits for some k > dn−1, and so by Burnside’s lemma we
have

1

#Hn

∑

h∈Hn

#Fix(h) = k > dn−1.

Because Hn is the full set of elements of Gn that fix all di elements of X i for each
i = 1, . . . , d− 1, we have

E(Yn | Y1 = d, . . . , Yn−1 = dn−1) = k > dn−1,

and hence the fixed-point process for G is not a martingale. �

Remark. When G has a spherically transitive element, it is straightforward to see that
Hn acts transitively on each set v∗; indeed, a suitable power of the spherically transitive
element will give such a transitive action. This together with Theorem 5.7 gives a proof
of [8, Theorem 4.2].

In light of Theorem 5.7, we examine the action of Hn on Xn.

Lemma 5.8. Let G ≤ Aut(X∗) act transitively on Xn. Let Hn be the kernel of the
restriction Gn → Gn−1. Then the action of Hn on Xn consists of orbits of equal length
r for some r | d.
Proof. Let u, w ∈ Xn. By the transitivity of the action of G onXn, there is g ∈ Gn with
g(u) = w. If h(u) = u′ for h ∈ Hn, then h

g(w) = g(u′), where hg := ghg−1 ∈ Hn. Thus
g furnishes a map OHn

(u)→ OHn
(w), which is invertible since g is a permutation ofXn.

Hence #OHn
(u) = #OHn

(w). Now for any v ∈ Xn−1, Hn preserves v∗ = {vx : x ∈ X}.
Thus v∗ is a set of d elements that is a disjoint union of Hn-orbits. It follows that each
orbit of Hn has r elements for r | d. �

Corollary 5.9. Let d be prime and G ≤ Aut(X∗). Suppose that G is level-transitive
and Hn is non-trivial for all n ≥ 1. Then for all n ≥ 1 and all v ∈ Xn−1, Hn acts
transitively on the set v∗.
Proof. We may apply Lemma 5.8 thanks to the level-transitivity of G, and the non-
triviality of Hn gives r > 1. But d is prime, and so r = d. Now each orbit of
Hn is contained in v∗ for some v ∈ Xn−1, and thus each orbit equals v∗ for some
v ∈ Xn−1. �

Remark. When d = 2, there is in fact a single element of Hn that acts transitively on
v∗ for all v ∈ Xn−1. Indeed, in this case Gn is a 2-group, and so by the class equation
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every non-trivial normal subgroup of Gn has non-trivial intersection with the center
Z(Gn) of Gn. Hence there is non-trivial h ∈ Hn∩Z(Gn). If h(w) = w for some w ∈ Xn

then hg(g(w)) = g(w) for any g ∈ Xn, and thus h(g(w)) = g(w). The transitivity of
Gn then gives h = e, a contradiction. Thus h acts without fixed points on Xn, and
since d = 2 this is equivalent to h acting transitively on each v∗.

In light of Corollary 5.9, in some sense the crucial question is to determine when Hn

is nontrivial for all n ≥ 1. When d = 2, it is shown in [7, Corollary 4.9] that when sgnn

is surjective for all n ≥ 1, then Hn is non-trivial for all n ≥ 1, but the proof is quite
involved. Here, in contrast to [7, Corollary 4.9], we assume that G is self-similar, and
this allows for a much simpler proof of a much more general result.

To streamline our argument, we define a function v : G→ Z≥0 ∪ {∞} by v(e) =∞
for the identity e ∈ Aut(X∗) and

v(g) = max{n ≥ 0 : g acts trivially on Xn}
for e 6= g ∈ Aut(X∗). Note that each g ∈ Aut(X∗) fixes the lone element of X0, and
hence v(g) ≥ 0. Moreover, for n ≥ 1, Hn is non-trivial if and only if n ∈ v(G). Finally,
we remark that v(g) = n ≥ 1 if and only if g acts trivially on X1 and

(5.5) min{v(g|x) : x ∈ X} = n− 1

Proposition 5.10. Let G ≤ Aut(X∗) be infinite and self-similar. Then v is surjective.

Proof. Suppose first that there is N ≥ 0 with v(g) ≤ N for all g ∈ G \ {e}. We claim
that the natural quotient map πN : G ։ GN is an isomorphism, and thus G is finite.
Indeed, if πN(g) = πN(h), then gh−1 acts trivially on XN , and hence v(gh−1) > N .
Thus gh−1 = e, proving the claim.

Therefore the infinitude of G implies that v(G) is infinite. Suppose now that n ∈
v(G) for some n ≥ 1, and let g ∈ G with v(g) = n. From (5.5) there is x ∈ X
with v(g|x) = n − 1. By the self-similarity of G, we have g|x ∈ G, and thus n − 1 ∈
v(G). By induction {0, 1, . . . n} ⊆ v(G). The infinitude of v(G) then implies that v is
surjective. �

We remark that Proposition 5.10 is not true in general if G fails to be self-similar.
For example, let d = 2 and consider the group J = {e, (00 11)(01 10)} ≤ Aut(X2).
Then the iterated wreath product of J gives a closed subgroup G ≤ Aut(X∗) with
the property that 2n 6∈ v(G) for all n ≥ 1. Note that in this case G is a self-similar
subgroup of Aut(Y ∗), where Y = X2.

Corollary 5.11. Let d be prime and G ≤ Aut(X∗). Suppose that G is self-similar and
level-transitive. Then the fixed-point process associated to G is a martingale.

Proof. The level-transitivity of G implies that G is infinite, and the Corollary then
follows from Theorem 5.7, Corollary 5.9, and Proposition 5.10. �
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Theorem 5.12. Let G ≤ Aut(X∗) be a recurrent group whose action on X is doubly
transitive. Then for all w ∈ Xn and i, j ∈ X with i 6= j, there exists g ∈ Hn such that
g|w takes i to j.

Proof. First note that by Proposition 4.5, G is infinite. By Proposition 5.10, the
function v : G→ Z ∪ {∞} defined by

v(g) = max{n ≥ 0 | g acts trivially on Xn}
is surjective, so there exists g ∈ G with v(g) = n, i.e. g ∈ Hn and g is non-trivial.

By Proposition 4.5, G is level-transitive. Thus by passing to a conjugate we may
assume that g acts non-trivially on w∗ = {wx | x ∈ X}. Let h = g|w. Since h acts
non-trivially on X , there exist k, ℓ ∈ X with k 6= ℓ such that h(k) = ℓ.

By double-transitivity, we can choose t ∈ G such that t(i) = k and t(j) = ℓ. Since
the action of G is recurrent, we can choose s ∈ G such that s(w) = w and s|w = t.
Now s−1gs fixes w and is also in Hn, because Hn is a normal subgroup of Aut(X∗).
From (4.3) we then have

(s−1gs)|w = s−1|wg|ws|w = t−1ht.

But (t−1ht)(i) = j, as desired. �

Theorems 5.7 and 5.12 immediately give:

Corollary 5.13. Let G ≤ Aut(X∗) be a recurrent group whose action on X is doubly
transitive. Then the fixed-point process for G is a martingale.

Proof. By Theorem 5.12, for all n ≥ 1, and all v ∈ Xn−1, the action of the elements of
G that act trivially on Xn−1 is transitive on the set v∗ = {vx | x ∈ X}. Notice that
the images under the quotient map to Gn of elements of G that act trivially on Xn−1

lie in Hn. Thus, by Theorem 5.7, the fixed-point process for G is a martingale. �

Suppose now that G is contracting, and let N ⊂ G be a finite set as in Definition
4.4. If g ∈ N1(G), then by definition there is v ∈ X∗ with g(v) = v and g|v = g, and
hence taking wn to be the concatenation of v with itself n times, we have g|wn

= g. It
follows that g ∈ N , and hence N1(G) is finite.

We now provide the final step in the proof of Theorem 5.1.

Theorem 5.14. Suppose that G ≤ Aut(X∗) is contracting and its fixed point process is
a martingale. If every g ∈ N1(G) fixes infinitely many ends of X∗, then FPP(G) = 0.

Proof. This is proven in [8, p. 2033], but we give the argument here for completeness.
Let N ⊂ G be a finite set as in Definition 4.4. Suppose that g ∈ G fixes some end
w = x1x2 · · · of X∗. Let vn = x1x2 · · ·xn for each n ≥ 1, and consider the sequence of
restrictions g|v1 , g|v2, . . .. For n large enough, we have g|vn ∈ N , and g|vn fixes the end
xn+1xn+2 · · · since g fixes w. Because N is finite, there must be i < j with g|vi = g|vj .
Let h = g|vi, and note that for w = xi+1xi+2 · · ·xj we have h(w) = w and h|w = h.
Hence h ∈ N1(G), and by hypothesis fixes infinitely many ends of X∗. Inserting vi on
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the beginning of each of these ends, we obtain infinitely many ends of X∗ fixed by g.
Hence by Corollary 5.6, g lies in a set of measure zero, proving the theorem. �

Proof of Theorem 5.1. This is an immediate consequence of Corollary 5.11, Corollary
5.13, Theorem 5.14, and the fact that any standard action of IMG(ψ) onX∗ is recurrent
and contracting by Proposition 4.9 and Corollary 4.11 �

6. Iterated monodromy action of PCF rational functions

In light of Theorem 5.1, the proof of Theorem 1.7 will be complete once we establish
Theorem 1.8, which we restate here for the convenience of the reader. First recall that

we have fixed a standard action of π1(Ĉ \ Pf , z0) (and hence of IMG(f)) on X∗, and
recall the definition of N1 from (1.8) (or the beginning of Section 5).

Theorem 6.1 (Theorem 1.8). Let f ∈ C(z) be a PCF rational function that is not
dynamically exceptional. Then every element of N1 fixes infinitely many ends of X∗.

The key dynamical property underlying the proof of Theorem 6.1 is subhyperbolicity,
i.e. that PCF rational functions are expanding away from periodic post-critical points
in the orbifold metric as described on p. 23. We observe that this expansion fails to hold
in general for PCF branched covers f : S2 → S2, and there exist such covers (necessarily
not rational functions) that are not dynamically exceptional yet have elements of N1

fixing only finitely many ends of X∗.
The converse of Theorem 6.1 holds as well, thus giving a characterization of excep-

tional rational functions. Though it is not necessary for this paper, we give a proof in
Theorem 6.9.

6.1. End behavior of non-exceptional maps: fundamental group. The proof
of Theorem 6.1 relies on lifts of loops representing elements of IMG(f). We thus work
first on the level of the fundamental group and later argue that nothing is lost when
passing to the faithful quotient (Proposition 6.6). We define the fundamental group
version of N1, noting that it depends on the choice of standard action made on p. 22.

(6.1) N π
1 := {g ∈ π1(Ĉ \ Pf) : ∃ non-empty w ∈ X∗ so that g(w) = w and g|w = g}.

The basepoint of the fundamental group in (6.1) is not specified because the definition

is independent of basepoint in the following narrow sense. Let α be a path in Ĉ \ Pf

that connects a new basepoint z1 to the original basepoint z0. The map α∗ : π1(Ĉ \
Pf , z0)→ π1(Ĉ \Pf , z1) defined by α∗(g) = α−1gα := gα is an isomorphism. We define

a standard action of π1(Ĉ \Pf , z1) on X
∗ by taking the paths connecting z1 to f

−1(z1)
to be α̃−1x ℓxα where α̃x is the unique lift of α terminating at Λ(x). The labeling map
Λα : X → f−1(z1) is defined by taking Λα(x) to be the beginning point of α̃x. Having
specified the standard action at the basepoint z1, we see that elements identified by
the isomorphism α∗ have equal actions on X∗.
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Suppose that g(x) = x for g ∈ π1(Ĉ \Pf , z0). Then the lift of gα based at x, denoted
g̃α, satisfies

g̃α = α̃x
−1g̃xα̃x,

where g̃x is the unique lift of g based at Λ(x). A consequence of this definition is that
if g|x = g and g(x) = x, then from Proposition 4.8 we have

gα|x = (α̃−1x ℓxα)
−1g̃α(α̃−1x ℓxα)

≃ α−1ℓ−1x g̃xℓxα

= α−1g|xα
≃ α−1gα

= gα.

Extending to words of higher length using Equations (4.1), we see that membership in
N π

1 is unaffected by a change of basepoint.
Due to subhyperbolicity, the elements of N π

1 are very special. Recall the discussion
of peripheral loops in Section 4.3.

Proposition 6.2. Each nontrivial element of N π
1 is peripheral about a repelling peri-

odic post-critical point.

Proof. Suppose that g ∈ N π
1 is nontrivial. By the remarks immediately preceding this

proposition, we may assume that the basepoint of the fundamental group is in the
compact subset K ′ where the expansion of Equation (4.9) holds. Choose a representa-
tive γ of g so that γ lies in K ′. By hypothesis there exists a non-empty w ∈ X∗ where
g(w) = w and g|w = g. For i ≥ 1, let γi be the lift of γ based at Λ∗(wi) where wi is
the concatenation of i copies of w. Since g(wi) = wi, Lemma 4.12 implies that each γi
is a loop. Equation (4.7) implies that g|wi = [ℓ−1

wi γiℓwi], where there is an evident free

homotopy ℓ−1wi γiℓwi ≃ γi in Ĉ \Pf . Since g|wi = g by hypothesis, it follows that there is

a free homotopy γi ≃ γ in Ĉ\Pf . Each γi is in the compact set K ′ since f−1(K ′) ⊂ K ′,
so Equation (4.9) implies that the length of γi converges to 0 as i → ∞, and hence

the curves γi converge to a point p ∈ Ĉ. Because g is nontrivial, g has non-trivial re-
strictions at arbitrarily long words, and hence p must be a periodic post-critical point.
Each post-critical cycle of a PCF rational function either contains a critical point or is
repelling. The compact set K ′ was produced by deleting neighborhoods of the periodic
critical cycles, and therefore p is repelling. For large enough i, γi is peripheral about
p, and because each γi is freely homotopic to γ ∈ g, we conclude that g is peripheral
about the same point. �

An immediate application of Proposition 6.2 is that N π
1 is closed under passing to

primitives:

Corollary 6.3. If gm ∈ N π
1 for some g ∈ π1(Ĉ \ Pf), then g ∈ N π

1 .
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Proof. Let w ∈ X∗ be such that gm(w) = w and gm|w = gm. Denote the length of w by

|w|. If gm is trivial in π1(Ĉ \ Pf ), then so is g, whence g ∈ N π
1 . Otherwise, by Propo-

sition 6.2, gm is peripheral about a repelling periodic point p. In the nontrivial case of

|Pf | > 2 the universal cover of Ĉ \ Pf is the hyperbolic disk. The deck transformation
corresponding to each peripheral loop is a parabolic element (a Möbius transformation
with exactly one fixed point), and the deck transformation corresponding to each non-
peripheral loop is hyperbolic (a Möbius transformation with exactly two fixed points).
The power of a hyperbolic element is hyperbolic, so if gm is peripheral g is also periph-
eral. Moreover the fixed set of the deck transformation corresponding to g coincides
with that of gm, so g must also be peripheral about p. Since a repelling periodic point
contains no critical point in its forward orbit, each iterate of f is univalent on some
neighborhood of p. Thus the lift of g based at Λ∗(w) is a loop so by Lemma 4.12,
g(w) = w. Thus g|w = gk for some k ∈ Z \ {0}. The fact that f |w| is univalent and
orientation preserving near p implies that k = 1.

�

Remark. Each end of X∗ that is fixed by g is also fixed by gm. Thus if gm fixes only
finitely many ends, so must g.

Recall that a complex rational map is dynamically exceptional if there exists a finite,
nonempty set Σ with

f−1(Σ) \ Cf = Σ,

where Cf ⊂ Ĉ is the set of critical points of f . Let p ∈ Σ and observe that every choice
of a backward orbit of p must intersect the critical set with only one possible exception:
p is contained in a periodic cycle (which necessarily contains no critical points, so will
be a repelling cycle under forward iteration).

Proposition 6.4. Suppose f is a PCF rational map with an element g ∈ N π
1 that fixes

only finitely-many ends of X∗. Then f is dynamically exceptional.

Proof. Since g is clearly not trivial, Proposition 6.2 implies g is peripheral about some
post-critical point p that is contained in a non-critical cycle. We may assume that g
is primitive and fixes only finitely many ends of X∗ by Corollary 6.3 and the ensuing

remark. Let Σ ⊂ Ĉ be the set of points whose forward orbit contains p but does not
intersect Cf . Since p lies in a non-critical cycle, p ∈ Σ and so Σ 6= ∅. Because g is
primitive and peripheral, we may invoke the second part of Lemma 4.17 to conclude
that every backward orbit of p either intersects Cf or is a subset of Pf . Thus Σ ⊂ Pf

and is hence finite.
We now argue that Σ = f−1(Σ)\Cf . Because p is periodic, it follows that f(Σ) ⊂ Σ.

Thus Σ ⊂ f−1(Σ) and since Σ ∩ Cf = ∅, it follows that Σ ⊂ f−1(Σ) \ Cf . To see that
f−1(Σ)\Cf ⊂ Σ, observe that if x ∈ f−1(Σ)\Cf then f(x) ∈ Σ, and hence the forward
orbit of f(x) contains p. Thus the forward orbit of x contains p, and since x is not
critical, x ∈ Σ. This proves that f is dynamically exceptional. �
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6.2. End behavior of non-exceptional maps: IMG. A sequence of elements
(gn)

∞
n=0 in a group is said to be eventually periodic (resp. eventually peripheral) if

there is some integer N so that (gn)
∞
n=N is periodic. (resp. peripheral) Note that

periodic sequences are eventually periodic under this definition.
For any string w ∈ Xn and a positive integer m, recall that we denote by wm the

string in Xmn formed by concatenating m copies of w.

Lemma 6.5. Suppose that there is g ∈ π1(Ĉ \ Pf ) and a nonempty word w so that
g(wm) = wm for all m > 0. Then the sequence of restrictions gm := g|wm is eventually
periodic.

Remark. For a PCF rational map f it is known that IMG(f) is contracting (Theorem
4.11). Since the finite set N ⊂ IMG(f) of Definition 4.4 is closed under restriction,

the lemma clearly holds if “π1(Ĉ\Pf)” is replaced with “IMG(f)”. However, the same
argument cannot be used to prove Lemma 6.5 because there is in general no finite set

N as in Definition 4.4 for G = π1(Ĉ \ Pf). Consider for example the Chebyshev map
f(z) = z2−2, which has a repelling fixed point at 2. Let α be a loop that is peripheral
about 2. Observe that f−1(2) = {±2}, and so there is x ∈ X such that α(x) = x and
α|x = α. Concatenating x with itself n times gives a word w ∈ Xn with α(w) = w
and α|w = α. These same statements hold with α replaced by αm, and because the

αm are pairwise non-homotopic this gives rise to an infinite subset of π1(Ĉ \ Pf) that
can occur as restrictions of arbitrarily long words. In conclusion, Lemma 6.5 is not an
immediate consequence of the existing theory.

Remark. The following proof in fact shows that the sequence gm is eventually constant,
rather than merely eventually periodic. However, eventual periodicity is sufficient for
our purposes.

Proof. Recall the construction of the backward-invariant compact set K ′ where expan-
sion holds. As with the proof of Proposition 6.2, we may assume the basepoint y0 for

the fundamental group π1(Ĉ \ Pf) is in K ′. Let F = f |w|, and fix a representative
γ ⊂ K ′ of the class g. Let γm := γ|wm. If there exists m0 so that the homotopy
class [γm0

] is trivial, then [γm] is trivial for all m > m0, and hence [γm] is eventually
periodic (indeed, eventually constant). For the rest of the proof we assume that [γm]
is non-trivial for all m.

We recall the explicit construction of γm via a standard action, as described in
Definition 4.7. We assume the paths {ℓi} in Definition 4.7 are selected to lie in K ′.
Because g(w) = w it follows from Proposition 4.8 that γ|w = l−11 γ̃wl1, where γ̃w is the
lift of γ starting at Λ∗(w) and l1 is a concatenation of lifts of the paths ℓx, corresponding
to the letters in the word w. Because K ′ is backward invariant and each ℓx ⊂ K ′, we
have l1 ⊂ K ′. Denote by y1 the endpoint of l1, which by Equation (4.5) is the same as
Λ∗(w).
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Now define the sequence ym := Λ∗(wm) ∈ Ĉ. Let li be the unique lift of l1 under F
i−1

based at yi−1, and observe that li connects yi−1 to yi and is contained in K ′. Finally, let
λm be the concatenation of the paths l1, . . . , lm, where evidently λm connects y0 to ym.
Due to the geometric expansion of F on K ′ in the orbifold metric from equation (4.9),
the lengths of the paths lm decrease geometrically. Hence the sequence (yi) is Cauchy

and converges to a point p ∈ Ĉ. Moreover, the length of λm is uniformly bounded and
so λm converges to a path λ∞ of finite length that connects y0 to p.

The continuity of F and the equation F (yi) = yi−1 imply that F (p) = p. Let αm be
the unique lift of γ under Fm based at ym. The hypothesis that g(wm) = wm together
with Lemma 4.12 imply that αm is a loop and so γm = λ−1m αmλm for each m. By
(4.9), the length of αm converges to 0, so αm is arbitrarily small for large m. We have
already dispensed with the case that αm is homotopically trivial, thus it follows that
αm is eventually peripheral about p ∈ Pf .

Since both αm and λ∞ \ λm have length converging to zero, for each disk of radius
ǫ about p (denoted Dǫ(p)) there exists an integer N so that for m > N , the paths γm
and γm+1 coincide on the complement of Dǫ(p) up to reparametrization. Fix ǫ so that
Dǫ(p) ∩ Pf \ {p} = ∅ and αm ⊂ Dǫ(p) for all m > N . Since F maps αm+1 to αm with
degree 1, we have that the loops αm and αm+1 are freely homotopic in Dǫ(p) \ {p}. We
thus have two peripheral loops γm and γm+1 that agree outside of Dǫ(p) and are both
freely homotopic to the same curve in Dǫ(p). Therefore there is a based homotopy
between γm and γm+1, showing that gm = gm+1. �

Proposition 6.6. Let f be a PCF rational function. Then some element of N π
1 fixes

only finitely many ends of X∗ if and only if some element of N1 fixes only finitely many
ends of X∗.

Proof. Recall from Definition 4.6 that IMG(f) is the quotient of π1(Ĉ \ Pf ) by the
faithful kernel K of the monodromy action on X∗. So if g ∈ N π

1 fixes only finitely-
many ends of X∗, then its image under the quotient is an element of N1 that fixes only
finitely-many ends of X∗.

Now assume there is an element ḡ ∈ N1 that fixes only finitely-many ends of X∗. It
follows from the definition of N1 that there is a finite string w ∈ Xn for some n ≥ 1 so

that ḡ(w) = w and ḡ|w = ḡ. Let g ∈ π1(Ĉ \ Pf ) be in the coset of K represented by ḡ.
Then for each m ≥ 1 we have g(wm) = wm, but we only know that g|wm and g lie in
the same coset of K.

Define the sequence gm := g|wm, observing that each gm fixes only finitely many
ends of X∗. It follows from Lemma 6.5 that gm1

= gm2
for some m1 6= m2. Then the

restriction of gm1
to w|m2−m1| is gm2

(indeed, by the second remark before the proof of
Lemma 6.5, we may take m2 −m1 = 1). This proves that gm1

∈ N π
1 . �

Proof of Theorem 6.1 (a.k.a. Theorem 1.8). Let f be a PCF rational map that is not
exceptional. The contrapositive of Proposition 6.4 guarantees that each element of N π

1
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fixes infinitely many ends. Then Proposition 6.6 implies that each element of N1 fixes
infinitely many ends. �

6.3. Characterization of exceptional maps. A characterization of dynamically ex-
ception maps is given in Theorem 6.9, though this result is not used elsewhere in this
paper. The result is easily proved if the set Σ contains a fixed point, but the presence
of higher period cycles requires some minor technicality about passing to iterates.

Recall the construction of the standard tree X∗ from Section 4.2 in terms of the
labeling map

(6.2) Λ : X = {0, . . . d− 1} → f−1(z0).

In principle, one could use the construction of that section to associate a standard
action to fn using a labeling map {0, . . . , dn − 1} → f−n(z0). However, we choose
to use a labeling that is compatible with the standard action induced by Λ in (6.2).
Specifically, our new labeling map

Λn : Xn → f−n(z0)

is defined for a given point w ∈ Xn by Λn(w) = Λ∗(w), where Λ∗ is the extension
of Λ to elements of X∗ described in (4.5). In this way, the point Λn(w) ∈ f−n(z0) is
labeled by a string of n characters in the alphabet X , even though it is a “first-level”
preimage of z0 under f

n. Define the connecting path for z ∈ f−n(z0) to be ℓΛn(z). This
data defines a tree isomorphism from the preimage tree Tfn,z0 to a standard dn-ary tree

which we denote (X, fn)∗, as well as a standard action by π1(Ĉ\Pfn). Since Pfn = Pf ,
we have that

π1(Ĉ \ Pfn) = π1(Ĉ \ Pf).

Using this newly defined standard action, we may now define the iterated analogue
of Equation 6.1:

N π
1 (f

m) := {g ∈ π1(Ĉ\Pf) : ∃ nontrivial w ∈ (X, fm)∗ so that g(w) = w and g|w = g}
Lemma 6.7. Let f be a PCF rational map, and let m ≥ 1. Then N π

1 (f
m) ⊂ N π

1 .

Proof. Let g ∈ N π
1 (f

m). Then there exists nontrivial w ∈ (X, fm)∗ so that g(w) = w
and g|w = g. By construction Λ∗(w) = Λm(w). Since f

m|w| = (fm)|w|, Proposition 4.8
implies that the action of g on w is independent of whether w is a vertex in X∗ or
(X, fm)∗. Likewise, Equation 4.7 of Proposition 4.8 implies that g|w is independent of
whether w is a vertex in X∗ or (X, fm)∗. Thus considering w now as an element of
X∗, we have that the standard action on X∗ satisfies g(w) = w and g|w = g.

�

Proposition 6.8. Let f be a dynamically exceptional map that is PCF. Then for some
n, there exists g ∈ N π

1 (f
◦n) that fixes only finitely-many ends of (X, f ◦n)∗.
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Proof. Recall that for a dynamically exceptional map, the set Σ satisfies f(Σ) ⊂ Σ, so
there must be some point p ∈ Σ that is periodic. By the defining property of Σ, the
point p cannot lie in a critical cycle. Since f is PCF, p must then be repelling. Passing
to an iterate, we assume that p is fixed. Let λ := f ′(p).

Recall that fixed repelling periodic points are linearizable [13, Thm 8.2], namely there
is a univalent holomorphic change of coordinates φ(z) = w on some neighborhood U
of p so that φ(p) = 0 and φ ◦ f ◦ φ−1 = λw. Choose U so that f(U) intersects the
post-critical set only at p (this is possible since f is PCF). Let A be the preimage under
φ of a fundamental annulus in coordinates. Then ∂A consists of two topological circles
C and C ′ with f(C ′) = C.

Fix a basepoint z ∈ C and an orientation on C. Let g be a loop based at z that winds
once around p (i.e. is primitive) and respects the orientation. Let g′ be the unique lift
of g contained in C ′, where evidently the map g′ → g is univalent. Let z′ ∈ C ′ be the
unique preimage of z under this map. Let ℓz′ be some choice of connecting path in
A that joins z to z′. The path ℓ−1z′ g

′ℓz′ is a loop in A based at z. Using the annular

coordinates defined by A ⊂ Ĉ \ Pf , it can be shown that ℓ−1z′ g
′ℓz′ is homotopic to g

relative to the basepoint. Since f is orientation preserving, g and g′ have the same
orientation. Let w be the label of the point z′, i.e. Λ(w) = z′. Then from what was
just argued, g|w = g. By the univalence of g′ → g, it follows that g(w) = w.

Since f is dynamically exceptional and p is fixed, any backward orbit other than the
constant one at the fixed point p will meet a critical point. By Lemma 4.15, the only
end of X∗ that the action of g will fix is w∞. �

Theorem 6.9. A PCF complex rational map f is dynamically exceptional if and only
if there is an element g ∈ N1 that fixes only finitely many ends of X∗.

Proof. Suppose that f is dynamically exceptional and PCF. Then by Proposition 6.8,
there is an element of N π

1 (f
m) that fixes only finitely-many elements of (X, fm)∗.

By Lemma 6.7, this element is also an element of N π
1 . Proposition 6.6 guarantees

existence of an element in N1 that fixes only finitely-many ends of (X, fm)∗, and by
the identification of the ends of (X, fm)∗ with the ends ofX∗, it only fixes finitely-many
ends of X∗ as well.

Suppose now instead that f is a PCF rational map such that there is an element
of N1 that fixes only finitely-many ends. Then by Proposition 6.6 there is an element
of N π

1 that fixes only finitely-many ends. By Proposition 6.4, the map is dynamically
exceptional. �
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