
AN IMPROVED UPPER BOUND ON THE NUMBER
OF BILLIARD BALL COLLISIONS

KRZYSZTOF BURDZY

Abstract. We give a new upper bound K+ on the number of totally elastic collisions
of n hard spheres with equal radii and equal masses in Rd. Our bound satisfies
logK+ ≤ c(d)n log n.

1. Introduction

Consider a family of n billiard balls in Rd reflecting from each other in a totally elastic
way. We assume that their masses and radii are identical. Note that the “billiard table”
has no walls—it is the whole space Rd. We will prove the following upper bound for
the number of collisions.

Theorem 1.1. The number of collisions is bounded above by

1600
(

1000 · 325d
)n
n((3/2)5d+9/2)n+3/2.(1.1)

We will review the history of the problem in Section 2. Here we will discuss the
question of optimality of our bound. Let K ′+ denote the best previously known upper
bound for the number of collisions, stated below in (2.1). Let K− denote the best
known lower bound in dimensions d ≥ 3, stated below in (2.3). Let K+ be the new
upper bound given in (1.1). For d ≥ 3, some constants c1, c2 and c3 depending on d,
and large n,

c1n ≤ logK− < logK+ ≤ c2n log n < c3n
2 log n ≤ logK ′+.

This shows that while there still remains a gap between the best lower and upper bounds
K− and K+, the gap is much smaller than between the previously known best upper
bound K ′+ and the best known lower bound K−.

The proof of Theorem 1.1 is based in an essential way on two results—one from
[BFK98c] and another one from [BD20]. The latter one shows that the family of all
balls “quickly” splits into two non-interacting families. An estimate from [BFK98c] can
be used to give an upper bound for the number of collisions on the initial (“short”)
time interval. The proof of Theorem 1.1 is an inductive construction of a branching
collection of ball subfamilies. Subfamilies that are leaves in the branching structure
have “lifetimes” short enough so that the estimate mentioned above can be applied.
Finally, we estimate the number of subfamilies in the branching structure.

There are two sources of the factor of the form ncn in (1.1). One of them is a bound
adopted from [BFK98c]. The other one is a branching construction in the present
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article. Hence, there is little hope for a significant improvement of the upper bound by
fine-tuning the argument given in this paper.

We will review the history of the problem in Section 2. The notation and assumptions
will be presented in Section 3. The proof of Theorem 1.1 will be given in Section 4.

2. Hard ball collisions—historical review

The question of whether a finite system of hard balls can have an infinite number
of elastic collisions was posed by Ya. Sinai. It was answered in negative in [Vas79].
For alternative proofs see [Ill89, Ill90, CI04, BD20]. It was proved in [BFK98c] that a
system of n balls in the Euclidean space undergoing elastic collisions can experience at
most (

32

√
mmax

mmin

rmax

rmin

n3/2

)n2

(2.1)

collisions. Here mmax and mmin denote the maximum and the minimum masses of the
balls. Likewise, rmax and rmin denote the maximum and the minimum radii of the balls.
The following alternative upper bound for the maximum number of collisions appeared
in [BFK98a] (

400
mmax

mmin

n2

)2n4

.(2.2)

The papers [BFK98c, BFK98b, BFK00, BFK02, BFK98a] were the first to present
universal bounds (2.1)-(2.2) on the number of collisions of n hard balls in any dimension.
No improved universal upper bounds were found since then, as far as we know.

It has been proved in [BD19] by example that the number of elastic collisions of
n balls in d-dimensional space is greater than n3/27 for n ≥ 3 and d ≥ 2, for some
initial conditions. The previously known lower bound was of order n2 (that bound was
for balls in dimension 1 and was totally elementary). The lower bound estimate was
improved in [BI18] to

2bn/2c(2.3)

in dimensions d ≥ 3.
In a somewhat different direction, it has been shown in [Ser21] that no more than

O(n2) collisions change the velocities of balls in a significant way.

3. Assumptions and notation

We will consider n ≥ 3 hard balls in Rd, for d ≥ 2, colliding elastically, on the time
interval (−∞,∞). We will assume that the balls have equal masses and their radii are
1.

The center and velocity of the k-th ball will be denoted xk(t) and vk(t), for k =
1, 2, . . . , n. We will say that the j-th and k-th balls collide at time t if |xj(t)−xk(t)| = 2
and their velocities change at this time. The velocities are constant between collision
times. We will write x(t) = (x1(t), . . . , xn(t)) ∈ Rdn and v(t) = (v1(t), . . . , vn(t)) ∈ Rdn.
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Note that v(t) is well defined only when t is not a collision time, but both v(t−) and
v(t+) are well defined for all times.

Recall that all balls have the same mass. This implies that the velocities change at
the moment of collision as follows. Suppose that the j-th and k-th balls collide at time
t. This implies that the velocities vj(t−) and vk(t−) (i.e., the velocities just before the
collision) satisfy

(vj(t−)− vk(t−)) · (xj(t)− xk(t)) < 0.(3.1)

Let xjk(t) = (xj(t) − xk(t))/|xj(t) − xk(t)|. Then the velocities just after the collision
are given by

vj(t+) = vj(t−) + (vk(t−) · xjk(t))xjk(t)− (vj(t−) · xjk(t))xjk(t),(3.2)

vk(t+) = vk(t−) + (vj(t−) · xjk(t))xjk(t)− (vk(t−) · xjk(t))xjk(t).(3.3)

In other words, the balls exchange the components of their velocities that are parallel
to the line through their centers at the moment of impact. The orthogonal components
of velocities remain unchanged.

Consider the following assumptions.
(A1) The balls have equal masses and all radii are equal to 1.
(A2) We will assume that there are no simultaneous collisions. It is known that the

set of vectors in the phase space of positions and velocities that lead to simultaneous
collisions has measure zero (see [Ale76]). It has been proved in [CI04, Thm. 4] that
there are no accumulation points for collision times.

(A3) We will assume that the momentum of the system is zero, i.e.,
∑n

j=1 v
j(t) = 0

for all t. We can make this assumption because the number of collisions is the same in
all inertial frames of reference. Since the total momentum is zero, the center of mass
of all balls is constant, so it can be assumed to be at the origin. This, together with
the fact that all masses are equal, implies that

∑n
j=1 x

j(t) = 0.

(A4) We will assume without loss of generality that the total “energy” is equal to
1, i.e., |v(t+)|2 = 1 for all t. If the initial energy is not zero then we can multiply
all velocity vectors by the same scalar constant so that the energy is equal to 1. If all
velocities are changed by the same multiplicative constant then the balls will follow the
same trajectories at a different rate and hence there will be the same total number of
collisions.

Remark 3.1. (i) The problem of the number of collisions is invariant under time shifts.
(ii) We recall [BD20, Rem. 4.3]. Let α(t) = ∠(x(t),v(t+)). There is a unique t0 ∈ R

such that α(t) > π/2 for t < t0, and α(t) < π/2 for t > t0. Right continuity yields
α(t0) ≤ π/2. We have

|x(t)| ≥ |x(t0)|.(3.4)

for all t ∈ R.

Theorem 3.2. ([BD20, Thm. 5.1]) Recall assumptions (A1)-(A4) and time t0 defined
in Remark 3.1. The family of n balls can be partitioned into two non-empty subfamilies
such that no ball from the first family collides with a ball in the second family in the
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time interval [t0 + 100n3|x(t0)|,∞). By symmetry and time reversal, a similar claim
applies to (−∞, t0 − 100n3|x(t0)|].

4. Proof of the main theorem

Proof of Theorem 1.1. Step 1. Consider a family of n balls satisfying assumptions (A1)-
(A4). Recall t0 ∈ R defined in Remark 3.1.

Let [s1, s2] be the smallest interval containing t0 satisfying the following two condi-
tions.

(i) The balls can be partitioned into two non-empty subfamilies such that no ball from
the first family collides with a ball in the second family in the time interval (−∞, s1).

(ii) The balls can be partitioned into two non-empty subfamilies such that no ball
from the first family collides with a ball in the second family in the time interval (s2,∞).

The division into subfamilies in (i) and (ii) is not unique. The subfamilies in (i) need
not be the same as those in (ii).

By (3.4) and Theorem 3.2, for any t ∈ R,

s2 − t0 ≤ 100n3|x(t0)| ≤ 100n3|x(t)|,
t0 − s1 ≤ 100n3|x(t0)| ≤ 100n3|x(t)|,

so, for any t ∈ R,

s2 − s1 ≤ 200n3|x(t)|.(4.1)

Step 2. Fix a time interval [u, u + 1]. Since |v(t+)| = 1 for all t, we have |vi(t)| ≤ 1
for all i and t. Hence, a ball can travel at most distance 1 in the time interval [u, u+ 1].
Suppose the center of a ball B1 is at y at time u and B1 collides with another ball B2

at a time u1 ∈ [u, u + 1]. The distance from the center of B1 to y is at most 1 at time
u1 so the distance from the center of B2 to y is at most 3 at the same time. It follows
that distance from the center of B2 to y is at most 4 at time u. This implies that B2

is a subset of the ball B (not a billiard ball) centered at y with radius 5 at time u.
The volume of B is 5d times the volume of a ball with radius 1. Hence, B1 might have
collided with at most 5d balls during the time interval [u, u + 1]. It follows that the
number of pairs of balls that could have collided in [u, u+ 1] is bounded by 5dn/2 (the
factor 1/2 is present so as not to count pairs twice). Note that 5dn/2 is the number of
pairs of balls that could have collided in [u, u+ 1], not the number of collisions, which
could be much higher. We need an estimate of the number of pairs of balls because we
want to use the results of [BFK98c]. In that paper, counting of collisions is based on
the number of “walls Bi” (in the notation of that paper), which is equal to the number
of pairs of balls that could collide.

We will now apply an upper bound on the number of collisions given in [BFK98c].
In the notation of [BFK98c], rmax = 1 and mmax = 1 because (i) we have assumed
that the balls have radii 1, and (ii) we have assumed that the masses of all balls are
equal, so we can make them all equal to 1 without losing generality. In view of these
remarks, the bound given on the left hand side of the last displayed formula on page
707 of [BFK98c] is (8(2n

√
n))n(n−1)−2. There seems to be a mistake here, in view of

Remark 5.3 in [BFK98c]. The correct version should be (8(2n
√
n + 2))n(n−1)−2. Here
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n(n−1) is twice the number of pairs of balls. Since only 5dn/2 pairs of balls can collide
in [u, u+ 1], we replace n(n− 1) with 5dn to see that the number of collisions of n balls
during an interval [u, u+ 1] is bounded by

(8(2n
√
n+ 2))5

dn−2 < (32n3/2)5
dn−2.(4.2)

This bound agrees with Corollary 1.1 in [BFK98a] but our bound is more explicit.
We now offer a more formal justification of the bound in (4.2). Let A be the family

of all pairs of balls that collide in [u, u + 1]. Consider a billiards evolution in which
(i) pairs of balls in A move along the same trajectories as in the original evolution in
[u, u+ 1], (ii) the trajectories of pairs of balls in A are extended outside [u, u+ 1] in the
usual way, i.e., with elastic collisions, and (iii) pairs of balls that do not belong to A

do not collide, i.e., they pass through each other like ghosts. The results of [BFK98c]
apply to this model with the number of “walls Bi” (in the notation of that paper) equal
to the number of pairs in A.

Step 3. By (4.1) and (4.2), the number of collisions on the interval [s1, s2] is bounded
by

200n3|x(t)|
(
32n3/2

)5dn−2
,(4.3)

for any t ∈ R. This bound is based on Theorem 3.2 proved under the assumptions
(A1)-(A4). We will argue that (4.3) holds even if (A3) and (A4) are not satisfied.

First, we will argue that (4.3) holds even if (A4) does not hold. Suppose that x
and v do not satisfy (A4). Let c1 = 1/|v(0+)| and ṽ(t+) = c1v(t+) for all t. Then
|ṽ(t+)| = 1 for all t. We keep the same position at time t0, i.e., x̃(t0) = x(t0). The
balls will follow the same trajectories but at a different speed. Hence, inft∈R |x(t)| =
inft∈R |x̃(t)| = |x̃(t0|. Let [s̃1, s̃2] be defined as in Step 1 relative to x̃. Then the number
of collisions in [s1, s2] in the system characterized by x and v is the same as the number
of collisions in [s̃1, s̃2] in the system characterized by x̃ and ṽ. Since (4.3) holds for the
latter evolution, it also holds for the former.

Next we will argue that we do not need to assume (A3) and (A4) for (4.3) to hold.
Suppose that x and v do not necessarily satisfy (A3) and (A4), and recall x̃ and ṽ
defined in the previous paragraph. For some z ∈ Rd, we have

∑n
j=1 x̃

j(t) =
∑n

j=1 x̃
j(0)+

tz for all t. Let z1(t) = 1
n

∑n
j=1 x̃

j(0) + tz/n, x̂j(t) = x̃j(t) − z1(t) and v̂j(t) = ṽj(t) −
z/n for all j = 1, . . . , n and t ∈ R. The pair x̂ and v̂ is a representation of the
dynamical system defined by x̃ and ṽ in a different inertial frame of reference. We have∑n

j=1 x̂
j(t) = 0 for all t, so the functions x̂ and v̂ characterize an evolution satisfying

(A3). This and the previous paragraph show that (4.3) holds with x̂ in place of x. A
standard calculation shows that the function a →

∑n
j=1 |x̂j(t) − az1(t)|2 achieves the

maximum at a = 0 because
∑n

j=1 x̂
j(t) = 0. This implies that |x̃(t)| ≥ |x̂(t)| for every

t, and, therefore, inft∈R |x(t)| = inft∈R |x̃(t)| ≥ inft∈R |x̂(t)|. This completes the proof
that (4.3) holds even if (A3) and (A4) are not satisfied.

Step 4. Consider any subfamily F of the balls. Suppose that T1(F) < T2(F) are
given and balls in F do not collide with any balls outside of F on the time interval
(T1(F), T2(F)). We will define r(F), t∗(F), U1(F) and U2(F). These numbers depend
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not only on F, as indicated by the notation, but also on T1(F) and T2(F). Hopefully,
our notation, chosen for typographical convenience, will not cause confusion.

Let nF be the number of balls in F and suppose that the indices of balls in F are
i1, . . . , inF

. Choose an inertial coordinate system CSF such that if x̃ik(t) is the position
of the ik-th ball CSF then

∑nF

k=1 x̃
ik(t) = 0 for all t ∈ [T1(F), T2(F)]. Let

xF(t) = (x̃i1(t), . . . , x̃inF (t)),

r(F, t) = max
1≤j,k≤nF

|x̃ij(t)− x̃ik(t)|,(4.4)

r(F) = inf
t∈[T1(F),T2(F)]

r(F, t),(4.5)

t∗(F) = arg min
t∈[T1(F),T2(F)]

r(F, t),

|vF| =

(
nF∑
k=1

(
vik(t)

)2)1/2

, t ∈ [T1(F), T2(F)].

Since
∑nF

k=1 x̃
ik(t) = 0, the norm of the vector xF(t∗(F)) is smaller in CSF than in

any other coordinate system, for example, in a coordinate system with the origin at
x̃i1(t∗(F)). Hence,

|xF(t∗(F))|2 ≤
nF∑
k=2

|x̃ik(t∗(F))− x̃i1(t∗(F))|2 ≤ (nF − 1)r(F)2,

and, therefore,

|xF(t∗(F))| ≤ n
1/2
F r(F).(4.6)

Consider the following modified evolution of balls in F. Let the evolution of balls in
F remain as in the original system in the time interval [T1(F), T2(F)]. Let the evolution
continue before T1(F) and after T2(F), with balls in F colliding according to the usual
laws of elastic collisions, but with no collisions between balls in F with balls outside F.
According to Remark 3.1 and (3.4) there exists a unique T0(F) ∈ R such that for all
t ∈ R,

|xF(t)| ≥ |xF(T0(F))|.(4.7)

Let [S1(F), S2(F)] be the smallest interval containing T0(F) satisfying the following
two conditions.

(i) The family F can be partitioned into two non-empty subfamilies F1 and F2 such
that no ball in F1 collides with a ball in F2 in the time interval (−∞, S1(F)).

(ii) The family F can be partitioned into two non-empty subfamilies F3 and F4 such
that no ball in F3 collides with a ball in F4 in the time interval (S2(F),∞).

The division into subfamilies in (i) and (ii) is not unique. By Theorem 3.2, S1(F) >
−∞ and S2(F) <∞. Let

U1(F) = max(S1(F), T1(F)), U2(F) = min(S2(F), T2(F)).(4.8)

It is possible that U1(F) = U2(F).
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We have [U1(F), U2(F)] ⊂ [S1(F), S2(F)] so by (4.1) and rescaling by the speed |vF|,

U2(F)− U1(F) ≤ 200n3
F|xF(t∗(F))|/|vF|.(4.9)

By (4.3), the number of collisions between balls in F in the time interval [U1(F), U2(F)]
is bounded by

200n3
F|xF(t∗(F))|

(
32n

3/2
F

)5dnF−2
.(4.10)

Step 5. We will construct a branching family W with elements of the form

Λ(F) := (F, r(F), T1(F), T2(F), U1(F), U2(F)),

where F is a subfamily of the balls.
Let G1 be the set of all n balls. We initiate the construction of W by declaring

(G1, r(G1),−∞,∞, U1(G1), U2(G1)) to be the only “individual” in the first generation of
the branching structure W. In other words, T1(G1) = −∞, T2(G1) = ∞, and U1(G1)
and U2(G1) are defined as in (4.8) with G1 in place of F.

We will now describe the branching mechanism. Suppose that

(F, r(F), T1(F), T2(F), U1(F), U2(F)) ∈W.(4.11)

We always have [U1(F), U2(F)] ⊂ [T1(F), T2(F)]. If [U1(F), U2(F)] = [T1(F), T2(F)]
then we declare the sextuplet in (4.11) to be a leaf of the branching tree, i.e., this
sextuplet has no offspring. We also declare the sextuplet in (4.11) to be a leaf if nF ≤ 2.

Suppose that [U1(F), U2(F)] 6= [T1(F), T2(F)] and nF ≥ 3. Recall families F1,F2,F3

and F4 defined in conditions (i) and (ii) below (4.7). Let

T1(F1) = T1(F2) = T1(F), T2(F1) = T2(F2) = U1(F),

T1(F3) = T1(F4) = U2(F), T2(F3) = T2(F4) = T2(F).

We declare the following four sextuplets to be (some of the) offspring of the sextuplet
in (4.11),

(Fk, r(Fk), T1(Fk), T2(Fk), U1(Fk), U2(Fk)), k = 1, 2, 3, 4.(4.12)

Here U1(Fk) and U2(Fk) are defined as in (4.8) with Fk in place of F.
It is easy to check that if F5 = F, T1(F5) = U1(F) and T2(F5) = U2(F) then r(F5) ≤

r(F), U1(F5) = U1(F) and U2(F5) = U2(F).
If r(F) ≤ 4nF then we declare that the sextuplet in (4.11) has five offspring—the four

offspring listed in (4.12) and

(F5, r(F5), U1(F), U2(F), U1(F), U2(F)).(4.13)

This case is illustrated in Fig. 1.
Next we will discuss the case when r(F) > 4nF. In this case, all sextuplets listed in

(4.12) will be declared to be offspring of the sextuplet in (4.11) but there will be more
offspring constructed as follows.

Let t1 = U1(F) and

β = (r(F)− 2nF)/(nF − 1).(4.14)
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U (F)=S (F)1 1 U (F)=S (F)2 2T (F)1 T (F)2

Figure 1. Schematic drawing of a branching event with five offspring.
The parent family F is represented by all trajectories on the interval
(T1(F), T2(F)). In this generic case, (U1(F), U2(F)) lies strictly inside
(T1(F), T2(F)). All trajectories are close to each other (at least at one
time) in (U1(F), U2(F)). The five offspring consist of two non-interacting
families to the left of U1(F) = S1(F), two non-interacting families to the
right of U2(F) = S2(F), and the original family F restricted to the interval
(U1(F), U2(F)). The latter offspring will not have any descendants—it is
a leaf in the branching structure.

We will argue that F can be partitioned into nonempty disjoint families H1
1 and H1

2

such that the distance between any ball in H1
1 and any ball in H1

2 is greater than β
at time t1. If this is not the case then every two balls in F are connected by a chain
of balls with distances between consecutive balls less than or equal to β. Hence, the
distance between the centers of endpoint balls in the chain is bounded by

(nF − 1)(β + 2) = r(F)− 2nF + 2(nF − 1) = r(F)− 2.

This contradicts the definitions (4.4)-(4.5) of r(F, t) and r(F) because according to these
definitions, there must exist balls whose centers are at a distance equal to or greater
than r(F) for every t ∈ [T1(F), T2(F)]. We conclude that families H1

1 and H1
2 exist.

The velocities of balls in F are bounded by |vF| so no ball in H1
1 can collide with any

ball in H1
2 in the time interval [t1, t1 + β/|vF|].

Let

k∗ = d(U2(F)− U1(F))|vF|/βe,(4.15)

tk = t1 + (k − 1)β/|vF|, k = 2, . . . , k∗,

tk∗+1 = U2(F).
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U (F)=S (F)1 1 U (F)=S (F)2 2T (F)1 T (F)2
32 tt

Figure 2. Schematic drawing of a branching event with more than five
offspring. The parent family F is represented by all trajectories on the
interval (T1(F), T2(F)). In this generic case, (U1(F), U2(F)) lies strictly
inside (T1(F), T2(F)). There is no time in (U1(F), U2(F)) such that all
trajectories are close to each other. There are ten offspring. Four of
these consist of two non-interacting families to the left of U1(F) = S1(F)
and two non-interacting families to the right of U2(F) = S2(F). On each
of the intervals (U1(F), t2), (t2, t3) and (t3, U2(F)) there are at least two
non-interacting families of trajectories. On each of these intervals, two
non-interacting families are chosen and declared to be offspring of F.

For every k = 2, . . . , k∗, we can find nonempty disjoint families Hk
1 and Hk

2 such that
the distance between any ball in Hk

1 and any ball in Hk
2 is greater than β at time tk.

No ball in Hk
1 can collide with any ball in Hk

2 in the time interval [tk, tk+1].
We declare the following sextuplets to be offspring of the sextuplet in (4.11),

(Hk
i , r(H

k
i ), tk, tk+1, U1(H

k
i ), U2(H

k
i )),(4.16)

for k = 1, . . . , k∗ and i = 1, 2. Hence, in the case when r(F) > 4nF, sextuplets listed
in (4.12) and (4.16) are offspring of the sextuplet in (4.11). This case is illustrated in
Fig. 2.

Step 6. We will estimate some quantities characterizing W. We will write Λ(G) ≺
Λ(F) to indicate that Λ(G) is an offspring of Λ(F). If Λ(G),Λ(F) ∈W and Λ(G) ≺ Λ(F)
then either Λ(G) is a leaf or nG < nF. It follows that the number of generations in W

is bounded by n.
An individual in W has five offspring in the case r(F) ≤ 4nF.
For the next calculation, recall that nF ≥ 3. If r(F) > 4nF then, in view of (4.6),

(4.9), (4.14) and (4.15), the number of offspring is bounded above by

4 + 2k∗ = 4 + 2d(U2(F)− U1(F))|vF|/βe ≤ 6 + 2(U2(F)− U1(F))|vF|/β
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= 6 + 2
(U2(F)− U1(F))|vF|

(r(F)− 2nF)/(nF − 1)
≤ 6 + 2

(U2(F)− U1(F))|vF|
(r(F)/2)/(nF − 1)

≤ 6 + 2
200n3

F|xF(t∗(F))|
(r(F)/2)/(nF − 1)

≤ 6 + 2
200n3

Fn
1/2
F r(F)

(r(F)/2)/(nF − 1)

≤ 6 + 800n
9/2
F ≤ 1000n

9/2
F ≤ 1000n9/2.(4.17)

This upper bound holds also in the case r(F) ≤ 4nF. Thus (4.17) implies that the
number of individuals in the k-th generation is bounded by (1300n3)k−1. Since the
number of generations is bounded by n, the total number of individuals in W is bounded
by

n(1000n9/2)n−1 ≤ 1000nn9n/2.(4.18)

Step 7. We will now bound the number of collisions. It follows from Step 5 that if
two balls collide then there must exist a leaf

Λ(F) = (F, r(F), T1(F), T2(F), U1(F), U2(F)) ∈W

such that the two balls belong to F and the collision takes place in the interval
[T1(F), T2(F)].

First we will count collisions in open intervals of the form (T1(F), T2(F)).
If nF ≤ 2 then the number of collisions in (T1(F), T2(F)) is bounded by 1.
The argument in Step 5 (see (4.13)) shows that if nF ≥ 3 and Λ(F) is a leaf then

(T1(F), T2(F)) = (U1(F), U2(F)) and r(F) ≤ 4nF ≤ 4n. Hence, we can use (4.10) as an
upper bound for the number of collisions in (T1(F), T2(F)). We combine (4.6), (4.10)
and the estimate r(F) ≤ 4n to obtain the following bound on the number of collisions
in (T1(F), T2(F)) associated with Λ(F),

200n3
F|xF(t∗(F))|

(
32n

3/2
F

)5dnF−2
≤ 200n3

Fn
1/2
F r(F)

(
32n

3/2
F

)5dnF−2
(4.19)

≤ 200n3n1/2 · 4n
(
32n3/2

)5dn−2
= 800n9/2

(
32n3/2

)5dn−2
.

This upper bound applies also to leaves Λ(F) with nF ≤ 2.
The number of leaves in W is bounded by the quantity in (4.18) so, in view of (4.19),

the total number of collisions in open intervals of the form (T1(F), T2(F)) is bounded
by

1000nn9n/2800n9/2
(
32n3/2

)5dn−2
= 800 · 1000nn(9/2)(n+1)

(
32n3/2

)5dn−2
= 800

(
1000 · 325d

)n
n((3/2)5d+9/2)n+3/2.(4.20)

The number of collisions at times T1(F) or T2(F) is bounded by the product of (i)
the number of individuals in W, (ii) number of endpoints of an interval, and (iii) one
half of the number of balls, so, in view of (4.18), it is bounded by

1000nn9n/2 · 2 · n/2 = 1000nn9n/2+1.
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We combine this bound with (4.20) to conclude that the number of collisions is bounded
by

800
(

1000 · 325d
)n
n((3/2)5d+9/2)n+3/2 + 1000nn9n/2+1

≤ 1600
(

1000 · 325d
)n
n((3/2)5d+9/2)n+3/2.

�

Remark 4.1. (i) The estimates in Step 6 are crude and can be easily improved but
we do not see a way to reduce the quantity in (4.18) so that its logarithm is o(n log n).
Even if we could, the logarithm of the quantity in (4.3) is not o(n log n) so the bound
in (1.1) would not change in a significant way.

(ii) Let τd denote the kissing number of a d-dimensional ball, i.e., the maximum
number of mutually nonoverlapping translates of the ball that can be arranged so that
they all touch the ball. According to [Bez10, Thm. 1.1.3],

20.2075d(1+o(1)) ≤ τd ≤ 20.401d(1+o(1)).

In Step 2, we derived the bound 5d for the number of balls that could collide with a
given ball on a time interval of length one. The lower bound for the kissing number
shows that the bound 5d cannot be improved to be less than exponential in d.
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