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Using Renewal Theory and HJB-Based Impulse Control

SooJean Han∗ Soon-Jo Chung†

Abstract

We are motivated by the lack of discussion surrounding methodological control design procedures for
nonlinear shot and Lévy noise stochastic systems to propose a hierarchical controller synthesis method
with two parts. The first part is a primitive pattern-learning component which recognizes specific state
sequences and stores in memory the corresponding control action that needs to be taken when the se-
quence has occurred. The second part is a modulation control component which computes the optimal
control action for a pattern when it has occurred for the first time. Throughout our presentation of both
components, we provide a self-contained discussion of theoretical concepts from Poisson processes theory,
renewal theory, and impulse control, all of which are necessary as background. We demonstrate appli-
cation of this controller to the simplified, concrete case studies of fault-tolerance and vehicle congestion
control.

1 Introduction

The study of dynamical systems in the field of control theory utilizes mathematical models to describe the
evolution of a certain set of system quantities over time. In its most abstract form, a dynamical system is
traditionally written as the following ODE:

dx(t) = f(t,x)dt (1)

where f : R+×Rn → Rn is a deterministic function in C(1,2), i.e., f is continuously-differentiable in time and
twice continuously-differentiable in state, and the state dimension is n ∈ Z+. Core theoretical foundations
for dynamical system models have been studied for decades and gathered in numerous comprehensive
references such as [25, 43, 45, 52] over time.

While much of basic control theory is studied under the condition that f in (1) is a deterministic function
of t and x, many dynamical systems in practice are also affected by some amount of randomness, which
prevents future states of the system from being able to be predicted precisely. These stochastic (dynamical)
systems come in many different types and arise in a wide number of disciplines; some examples include
voltage fluctuations in metallic conductors [5] in fields of physics, photon-counting in the field of optics [8],
and the regulation of control circuits in biomolecular systems [34]. Motivated by the existence of these
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systems, there has been a vast literature of references, such as [32, 36, 23, 24], dedicated to the rigorous
study of stochastic systems and random processes.

When considering the problem of control or state-estimation for stochastic systems, many designs for
controllers or observers, especially model-based designs, typically aim for robustness against specifically
additive Gaussian white noise (AWGN). The model of such a stochastic system is expressed as the following
SDE:

dx(t) = f(t,x)dt+ σ(t,x)dW (t) (2)

where

• W : R+ → Rd is a d-dimensional standard Brownian motion process.

• σ : R+ × Rn → Rn×d, σ ∈ C(1,2) is the variation of the Gaussian white noise.

There are many applications such as vision-based localization/mapping [51], spacecraft navigation [7], and
motion-planning [21] where using Gaussian white noise processes in the model is justifiable in practice. From
a theoretical perspective, Gaussian white noise processes are appealing to study because their convenient
properties (e.g., continuity of sample paths, normality of the distribution, the Central Limit Theorem)
make the stochastic system easier to analyze than non-Gaussian stochastic systems. Consequently, there
is a wealth of literature that has been devoted towards analyzing the stability of systems with AWGN
perturbations, and designing controllers and observers for them. Some classical model-based methods are
the Linear Quadratic Gaussian (LQG) model [6, 15], as well as Kalman filtering [22] and its extensions [39,
48]. More recent methods of model-based controller and observer designs for Gaussian white noise include
the path integral approach [46], convex optimization-based approaches [38, 31], as well as a number of
reinforcement learning based approaches [30, 14].

However, there is a major lack of generality with the assumption of Gaussian white noise. Because it is
small in magnitude and continuous in the sense that changes occur gradually over a measurable duration
of time, it is unable to account for sudden impulsive perturbations. One particular class of non-Gaussian
noise which is suitable for modeling impulsive perturbations is Poisson shot noise [3]. The dynamics of a
stochastic system where shot noise is injected additively is written as the following SDE:

dx(t) = f(t,x)dt+

∫
R`

ξ(t,x, z)N(dt, dz) (3)

where

• N(dt, dz) is a r-dimensional standard Poisson process with some intensity λ ∈ Rr.

• ξ : R+×Rn×R` → Rn×r, ξ ∈ C(1,2,1) is a function which assigns weights to the individual components
of N , since the standard Poisson process itself has unit weights. Essentially, ξ is a function that
describes the impulsive jumps that occurs in the system.

Poisson shot noise arises in a wide diversity of real-world applications almost just as frequently as Gaus-
sian white noise does. Some examples include the high fluctuations in stock prices within the field of
finance [9], as well as the neuronal spikes that come from monitoring brain activity within the field of
neuroscience [35] are better modeled as impulsive perturbations than as Gaussian noise. In applications
of robotics, shot noise may arise in the the form of massive proprioceptive measurement errors, large dis-
turbances due to obstacle collisions, or natural external factors in the environment such as a large gust of
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wind. Despite this prevalence, there are little to no analytical controller or observer synthesis procedures
dedicated towards robustness against shot noise perturbations. In fact, for any non-Gaussian noise pro-
cesses, machine-learning-based methods [17, 44, 47] are often the go-to methods used to learn the model
from scratch, but a downside of these approaches are the massive amounts of time and training data they
consume.

On the other hand, in the field of applied mathematics, there is an abundance of literature [1, 33] which
provides many theoretical results on Poisson random measures and jump-diffusion systems, which are
relevant to addressing the controller and observer design procedures for shot-noise stochastic systems (3).
A particularly useful theoretical result known as the Lévy-Khintchine Decomposition Theorem, stated
formally in Theorem 1.6 of [50], Theorem 2.7 of [4], or Theorem 1.2.14 of [2], leads to a direct extension
of (3) by uniting it with the Gaussian white noise case, yielding stochastic systems of the form:

dx(t) = f(t,x)dt+ σ(t,x)dW (t) +

∫
R`

ξ(t,x, z)N(dt, dz) (4)

This affine decomposition of bounded-measure Lévy noise processes allows us to combine the controller and
observer design procedures of (2) and (3) to obtain a design procedure for (4).

In this paper, we are motivated by two factors:

1. the lack of discussion surrounding methodological control synthesis procedures for stochastic systems
involving shot and Lévy noise processes

2. the often inefficient way in which learning-based approaches are applied to any stochastic system
perturbed by general non-Gaussian noise

We take a step towards addressing both issues by proposing a hierarchical controller synthesis method
composed of the following two parts:

1. a primitive pattern-learning component which recognizes specific state sequences and stores in
memory the corresponding control action applied to the system when a sequence has occurred

2. a modulation control component which computes the control action to be taken when a specific
state sequence is first encountered

We note that in applications such as fault-tolerance, an independent lower-level controller can be used for
the majority of the time, and the two-part controller is only applied when the system is destabilized. This
requires some form of general stability analysis to determine a bound on when this two-part controller
should be applied; in particular, we demonstrate how to determine this bound using the incremental
stability analysis approach described in our previous paper [19]. Moreover, most traditional methodological
control design approaches do not include the first part, and we motivate our choice of its inclusion in our
proposed method as follows. In applications where the magnitude of the jumps in the impulsive part of the
noise process can be grouped into discrete values, there is potential for the system to observe re-occurring
sequences. Hence, there is no need to devote time and computational energy to redundantly compute a
control action for a scenario that has been observed before. We leverage results from the well-known theory
of renewal processes [40, 41, 10, 11] and the problem of “pattern occurrence” to obtain criteria, such as
the expected time that elapses between two consecutive instances of the same pattern, to aid in designing
the learning component. We illustrate the proposed scheme using two particular case studies:
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1. fault-tolerance control: we are inspired by fault-tolerance control applications such as spacecraft
control [16, 49, 27] to investigate a simple system which uses the two-part controller as a means of
fault-tolerance to steer the system back to some predetermined, certified safety bound; when the
trajectory is already within the safety bound in the absence of the random jump disturbances, an
independent lower-level controller is used for stabilization.

2. congestion control: the proposed two-part controller is used to optimally drive the state of the
system towards increasingly lower energy states under a certain set of constraints. We consider the
specific case study of controlling vehicle traffic at an intersection.

1.1 Paper Outline

We begin in Section 2 by laying out the renewal theory background relevant to the first part of the
controller synthesis problem for shot noise stochstic systems (3) and Lévy noise stochastic systems (4).
The subsection 2.2 then formally establishes the so-called pattern occurrence problem, which derives a way
to compute the expected time between two consecutive occurrences of a specific pattern sequence in a string
of renewals. Section 2.1 then provides an important unifying limiting theorem, called Blackwell’s theorem,
that is satisfied by all renewal processes and their corresponding extensions. Then Section 3 introduces the
impulse control method to be employed in designing the actual action for the second part of the stochastic
controller synthesis problem. We begin in Section 3.1 with a brief review of stochastic processes theory, the
variations of Itô’s formula, and the Poisson random measure in order to concretely establish the meaning
and notation of the math we will be using for shot noise stochstic systems (3) and Lévy noise stochastic
systems (4), since these concepts may be unfamiliar to the reader. We then introduce the specific type of
control known as impulse control in Section 3.2, which will be used for the case studies of Section 4. Finally,
in Section 4, we illustrate the control process on two sample case studies, the simple 1D linear stochastic
process perturbed by Lévy noise, and the vehicle traffic at an intersection used to intuitively motivate our
paper throughout the Introduction.

2 The Pattern-Learning Component

In this section, we discuss the first part of the controller synthesis procedure: the primitive learning com-
ponent to recognize previously-occurred states so that the corresponding optimal control action can be
recycled. To achieve this, we borrow elements from renewal theory, and in particular, the pattern occur-
rence problem to compute the expected time between consecutive patterns of renewals. Before we introduce
the pattern occurrence problem in Section 2.2, we lay out some definitions and theoretical foundations at
the core of renewal theory relevant for our discussion of stochastic control design in Section 2.1. Most of
these definitions have been presented in standard random processes references such as [40] and [41], but we
discuss them here to ensure that the material is self-contained. More importantly, the form of the theorems
expressed in [40] or [41] are written for a general context, but we adapt the discussion for what is pertinent
for the paper’s proposed controller synthesis approach. For a more comprehensive treatment of our adapted
discussion, we refer to our textbook preprint [18].

2.1 Basic Definitions and Results from Renewal Theory

Definition 1 (Counting Process). Suppose that we have a stochastic process {N(t), t ≥ 0} which satisfies
the following conditions:
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• the process takes nonnegative, integer values: N(t) ≥ 0 and N(t) ∈ Z

• the process is non-decreasing with respect to time: if s ≤ t then N(s) ≤ N(t)

Then N(t) is referred to as a counting process. �

Definition 2 (Renewal Process). Let {N(t), t ≥ 0} be a counting process and let An := Tn − Tn−1 be the
interarrival times, where Tn denotes the time of the nth arrival time. If {Ai}∞i=1 is iid, then N(t) is a called
a renewal process. �

Note that

P(N(t) = n) = P(N(t) ≥ n)− P(N(t) ≥ n+ 1) = P(Tn ≤ t)− P(Tn+1 ≤ t) (5)

There are numerous extensions to renewal processes which can be made in order to model a broader class
of real-world phenomena. To model aspects of our controller synthesis procedure, we look at three specific
extensions: 1) renewal reward processes, 2) delayed renewal processes, and 3) regenerative reward processes.
Analysis of these three types of renewal processes requires using the following well-known result.

Lemma 1 (Wald’s Equation). Let {Ai}∞i=1 be iid sequence such that E[Ai] := E[A] <∞ for all i, and let
N be a stopping time such that E[N ] <∞. Then the following equality holds:

E

[
N∑
n=1

An

]
= E[N ]E[A] (6)

The proof of this elementary result is straightforward and has been deferred to [18] to keep the content
of the paper focused. Instead, we present and prove a more crucial result which examines an important
limiting property for renewal processes, namely its time-average renewal rate. We will see later in Blackwell’s
theorem the three corresponding extensions of the time-average renewal rate for each of the three types of
renewal processes mentioned above.

Theorem 1. Let N(t) be a renewal process with {Ai}∞i=1 be iid sequence of interarrival times such that
E[Ai] := E[A] = µ <∞ for all i. Then the time-average renewal rate has the following limiting relationship:

m(t)

t
→ 1

µ
as t→∞ (7)

where m(t) := E[N(t)] is referred to as the mean process.

Proof of Theorem 1. We carry out this proof through two parts, we show that limt→∞
m(t)
t ≥

1
µ , then show

that limt→∞
m(t)
t ≤

1
µ .

Note that TN(t)+1 denotes the time of the first renewal after time t, which can alternatively be represented
as

TN(t)+1 = t+ ∆TN(t) (8)

where we refer to ∆TN(t) as the “excess” time from t until the next renewal.
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By Wald’s equation, note that

E[TN(t)+1] = E

N(t)+1∑
n=1

An

 = E[A]E[N(t) + 1] = µ(m(t) + 1)

which, in combination with (8), yields

µ(m(t) + 1) = t+ E[∆TN(t)] =⇒ m(t)

t
+

1

t
=

1

µ
+

E[∆TN(t)]

tµ
(9)

where the second equality follows from dividing through by tµ. Since ∆TN(t) ≥ 0, it follows that

m(t)

t
≥ 1

µ
− 1

t
=⇒ lim

t→∞

m(t)

t
≥ 1

µ
(10)

To prove the other half, suppose there exists a value C < ∞ such that P(Ai < C) = 1. This implies that
∆TN(t) < C, and so (9) implies

m(t)

t
≤ 1

µ
+
C

tµ
− 1

t
=⇒ lim

t→∞

m(t)

t
≤ 1

µ
(11)

Thus, when the interarrival times are bounded, Theorem 1 holds. In the case where they are unbounded,
again fix C > 0, and define {NC(t), t ≥ 0} to be the renewal process with interarrival times min(An, C), n ≥
1. Since min(An, C) ≤ An for all n ≥ 0, NC(t) ≥ N(t) for all t ≥ 0 since the interarrival times are shorter.
Consequently:

lim
t→∞

E[N(t)]

t
≤ lim

t→∞

E[NC(t)]

t
=

1

E[min(An, C)]
(12)

where the second equality follows from the first case, where the interarrival times are bounded. Since
limC→∞ E[min(An, C)] = E[An] = µ, (12) becomes

lim
t→∞

m(t)

t
≤ 1

µ

The two cases together, in combination with (10) yields the desired result (7). �

Three natural extensions of renewal processes are described in the definition below.

Definition 3. Let {N(t), t ≥ 0} be a renewal process with state space Z+ and interarrival times {Ai}∞i=1.

1. Let {Rn}∞n=1 be an iid sequences of random variables such that the nth renewal of N(t) obtains a
reward of Rn. Then N(t) is said to be a renewal reward process.

2. N(t) is said to be a delayed renewal process if the first interarrival time of the process is distributed
differently from all future interarrival times.

3. N(t) is said to be a regenerative renewal process if there exist times {T (0)
i }∞i=1 at which the process

restarts itself with probability 1, i.e., P(N(T
(0)
i )) = 1.

�
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Renewal processes and their extensions from Definition 3 can be used to model elements of the case studies
we investigate in Section 4. For instance, within the context of the congestion control problem, the cost that
the system incurs by being at a certain level of congestion can be assigned a value using an appropriately-
chosen reward function. In the vehicle traffic control problem, the reward of a vehicle could denote the
inverse of the time spent waiting at the intersection before being allowed to pass. Regenerative renewal
processes can be used to model the fault-tolerance control problem since the system effectively “restarts”
from within the certified safety bound after the modulation control component corrects for the destabilizing
pattern. Moreover, practical reasons for modeling systems using delayed renewal processes may be due to
the system needing some additional time to warm up at the start.

Now, we introduce an important unifying limiting theorem for the mean process of a renewal process
over time, known as Blackwell’s theorem, for different types of renewal processes. We can view Blackwell’s
theorem as a further development to the basic result described in Theorem 1. Several versions of Blackwell’s
theorem have been described in [40], [41], as well as in [42]. Section 4.4 of [10] and Chapter 9 of [11] further
generalizes Blackwell’s theorem and discusses some properties of renewal processes by invoking Laplace
transforms. However, we emphasize that the version of Blackwell’s theorem in this paper is specialized to
make it easier to apply to the proposed controller synthesis framework, and also to the case studies that
are addressed in Section 4. For an extensive treatment of Blackwell’s theorem and the properties of renewal
processes with the additional random processes background needed to facilitate their discussion, we refer
to our textbook preprint [18].

Definition 4 (Lattice). A nonnegative random variable S with cdf F is lattice if there exists a c ≥ 0 such
that S only takes on values which are integer multiples of c.

∞∑
n=0

P(S = nc) = 1

The largest such c in which this property holds is referred to as the period of S. �

We overload the terminology of “lattice” to describe both the random variable S and its distribution
function F .

Definition 5 (Ladder Variables). An ascending variable of ladder height Sn occurs at time n if Sn >
max{0, S1, · · · , Sn−1}. Similarly, a descending variable of ladder height Sn occurs at time n if Sn <
max{0, S1, · · · , Sn−1}. �

Theorem 2 (Blackwell’s Theorem). Let {Ai}∞i=1 be iid sequence such that E[Ai] := E[A] = µ < ∞ for
all i, and let F be the distribution function of Ai. Let N(t) be the corresponding renewal process, with
m(t) := E[N(t)].

1. If F is not lattice, then

m(t+ a)−m(t)→ a

µ
as t→∞ (13)

for all a ≥ 0.

2. If F is lattice with period c ≥ 0, then

E[N(nc)]→ c

µ
as n→∞ (14)

Note that N(nc) denotes the number of renewals which have occurred by time nc.
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Proof of Theorem 2. We will only prove the nonlattice case of Blackwell’s theorem statement, since the
lattice case follows from a similar argument. For easier notation, let us denote g(a) := limt→∞(m(t+ a)−
m(t)). Then note that

g(a+ b) = lim
t→∞

(m(t+ a+ b)−m(t+ a)) + lim
t→∞

(m(t+ a)−m(t)) = g(b) + g(a)

The form of g which satisfies this equation is given by g(a) = c · a, for some constant c. Now we want to
show that c = 1/µ. Consider the following successive increments of a = 1:

∆m1 := m(1)−m(0)

∆m2 := m(2)−m(1)

...

∆mn := m(n)−m(n− 1)

Note that limn→∞∆m(n) = c.

On one hand, by the law of large numbers:

lim
n→∞

1

n

n∑
k=1

∆m(k) = c (15)

On the other hand, by Theorem 1:

1

n

n∑
k=1

∆m(k) =
m(n)

n
→ 1

µ
as n→∞ (16)

Combining (15) together with (16), we have that c = 1/µ. This concludes the proof of the first part of the
theorem. �

Corollary 1 (Extensions to Blackwell’s Theorem). There are also two straightforward extensions to
Blackwell’s theorem. The first is in the context of renewal reward processes. Suppose the renewal pro-
cess {N(t), t ≥ 0} has iid rewards {Ri}∞i=1. Assuming the distribution of the cycle of a renewal reward
process is not lattice, then

E[R(t, t+ a)]→ aE[R]

E[T ]
(17)

where T is the length of a cycle of the renewal reward process.

The second extension is with respect to random walks, which are set up as follows. Let X1, X2, · · · be
iid with mean µ := E[X] < ∞, and let Sn :=

∑∞
i=1Xi. Typically, the random walk Sn is started at

X0 = S0 = 0, and we assume this implicitly throughout unless stated otherwise. Denote

U(t) :=

∞∑
n=1

In where In =

{
1 if Sn ≤ t
0 else

If µ > 0 and Xi are nonlattice, then

u(t+ a)− u(t)

t
→ a

µ
as t→∞ ∀a > 0 (18)
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Figure 1: The ascending ladder height renewal process with the excess at height c = 3. The excess Y (t) is the length of the
thick red line.

Proof of Corollary 1. Next, for the extension of Blackwell’s theorem pertaining to renewal reward pro-
cesses, note that

E[R(t, t+ a)] := E

N(t+a)∑
n=0

Rn −
N(t)∑
n=0

Rn


= (E[N(t+ a)]− E[N(t)])E[R] by Wald’s equation

= (m(t+ a)−m(t))E[R] by m(t) definition

→ a

E[T ]
· E[R] as t→∞

where the limit follows from (13).

Finally, to prove Blackwell’s result pertaining to random walks, we define a renewal process using successive
ascending ladder heights as the renewals, and denote Y (t) to be the excess height of the renewal process
past height t > 0. Then Sn = Y (t) + t is the first value of the random walk that exceeds t. See Figure 1
for visualization. Hence, the primary difference between Blackwell’s Theorem for Random Walks and the
original Blackwell’s Theorem or Theorem 1 is that the renewal process has renewals which are dependent
upon the previous renewals.

The proof of this theorem adheres very closely to the technique of the proof for the original Blackwell’s
theorem (13). Define

h(a) := lim
t→∞

(u(t+ a)− u(a))

Then we can show that h(a + b) = h(a) + h(b) using the same logic as in the proof of (13). The solution
to such an equation is then given by h(a) = θa for some constant θ to be determined.

Let τ(t) := min{n|Sn > t}. We look at two cases of Xi, just as in the proof of (13).
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First, if there exists M > 0 such that Xi ≤M for all i, then

t <

τ(t)∑
i=1

Xi < t+M =⇒ 1

µ
<

E[τ(t)]

t
<

1

µ

(
1 +

M

t

)
which implies that

lim
t→∞

E[τ(t)]

t
=

1

µ
(19)

On the other hand, if Xi are unbounded, denote

N∗(t) := |{n > τ(t)|Sn ∈ (−∞, t]}|

to be the number of times after exceeding c once Sn lands in (−∞, t].

Then note that

U(t) = |{n|Sn ≤ t}| = (τ(t)− 1) +N∗(t) (20)

where the −1 comes from excluding the time Sn exceeded t.

Note that given the value of Y (t) = y, the distribution of U(t + a) − U(t) is independent of t. If the first
point of the random walk past c occurs at y + t, then the number of points in (t, t + a) has the same
distribution as the number of points in (0, a) given the first positive value of the random walk occurs at y.

Thus,

E[N∗(t)] ≤ E [|{n > τ(0)|Sn < 0}|]

Since µ > 0, E[τ(0)] < ∞. At time τ(0), there is probability 1 − p− > 0 such that Sn > Sτ(0) for all
n > τ(0). Otherwise, if there is such an n where Sn < Sτ(0), then the expected additional time m > 0 such
that Sn+m > 0 is finite since µ > 0. From time n+m, there is again a probability of 1− p− Sn+k > Sτ(0)
for all k > m. Thus:

(1− p−)E [|{n > τ(0)|Sn < 0}|] ≤ E[τ(0)|X1 < 0]

=⇒ E [|{n > τ(0)|Sn < 0}|] ≤ E[τ(0)|X1 < 0]

1− p−
<∞

This shows that E[N∗(t)] <∞, and combined with (20), yields

lim
t→∞

E[τ(t)]

t
= lim

t→∞

u(t)

t
(21)

Finally, to conclude the result from both (19) and (21), note that u(1 + a) − u(a) → θ as a → ∞. This
implies

u(n+ 1)− u(1)

n
=

1

n

n∑
a=1

u(1 + a)− u(a)→ θ as n→∞

Indeed, θ = 1/µ and this concludes the proof. �
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Now that we have discussed Theorem 1 and Blackwell’s theorem, we are ready to consider some other
important properties of reward, delayed, and regenerative renewal processes, i.e. the arrival time of the last
renewal before a certain time, or the mean number of renewals that have arrived by a certain time. This
requires a result related to taking the integral with respect to the mean process of the renewal process.
Before we present the result, we define Riemann-integrable functions within the context of renewal theory.

Definition 6 (Riemann-Integrable). Let f : R+ → R such that

f
n
(a) ≤ f(t) ≤ fn(a) for t ∈ [(n− 1)a, na]

where f
n

is the lower Riemann sum and fn is the upper Riemann sum. We say that f is Riemann-integrable
if

•
∞∑
n=1

f
n
(a) and

∞∑
n=1

fn(a) are finite for all a > 0

• lima→0 a
∞∑
n=1

f
n
(a) = lima→0 a

∞∑
n=1

fn(a)

Furthermore, a sufficient condition for f to be Riemann integrable is that 1) f(t) ≥ 0 for all t ≥ 0, 2) f(t)
is nonincreasing, 3)

∫∞
0 f(t)dt <∞. �

Theorem 3. Let {N(t), t ≥ 0} be a renewal process with interarrival times {Ai}∞i=1 being an iid sequence
with distribution function F (i.e., F (t) := P(Ai = t)) such that E[Ai] := E[A] = µ < ∞ for all i. In
addition, let f : R+ → R be a Riemann-integrable function. Then the following equality holds:

lim
t→∞

∫ t

0
f(t− s)dm(s) =

1

µ

∫ ∞
0

f(s)ds

where

m(x) := E[N(t)] =
∞∑
n=1

Fn(x), µ :=

∫ ∞
0

F (t)dt

where Fn is the distribution of arrival time Tn (which is the n-fold convolution of interarrival distribution
F ), and F (t) := P(Ai > t) for all i.

The importance of Theorem 3 arises in computing the limiting value of some probability or expectation-like
function g(t) related to the renewal process. This yields an equation of the form

g(t) = h(t) +

∫ t

0
h(t− s)dm(s)

for some Riemann-integrable function h. One specific function is the distribution of TN(t), the arrival time
of the last renewal before time t.

P(TN(t) ≤ s) =
∞∑
n=0

P(Tn ≤ s,N(t) ≤ n)

= P(T0 ≤ s, T1 > t) +

∞∑
n=1

P(Tn ≤ s, Tn+1 > t) since {N(t) ≤ n} ⇐⇒ {Tn+1 > t}

= P(T1 > t) +

∞∑
n=1

P(Tn ≤ s, Tn+1 > t) since T0 := 0 ≤ s always
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= F (t) +

∞∑
n=1

∫ ∞
0

P(Tn ≤ s, Tn+1 > t|Tn ≤ r)dFn(r)

= F (t) +
∞∑
n=1

∫ s

0
P(Tn+1 − Tn > t− r)dFn(r)

= F (t) +

∫ s

0
F (t− r)d

( ∞∑
n=1

Fn(r)

)

= F (t) +

∫ s

0
F (t− r)dm(r)

Hence:

P(TN(t) ≤ s) = F (t) +

∫ s

0
F (t− r)dm(r) (22)

Now we are ready to describe the properties of reward, delayed, and regenerative renewal processes, re-
spectively.

Lemma 2 (Property of a Renewal Reward Process). Let N(t) be a renewal reward process with interarrival
times {An}∞n=1 and rewards {Rn}∞n=1. Moreover, let R(t) represent the total reward earned by time t:

R(t) :=

N(t)∑
n=1

Rn

and denote ν := E[Rn], µ := E[An] for all n ≥ 1. Further suppose ν, µ <∞. Then the following hold:

lim
t→∞

R(t)

t
=
ν

µ
w.p. 1 (23a)

lim
t→∞

E[R(t)]

t
=
ν

µ
(23b)

Proof of Lemma 2. Since the proof of (23b) follows similarly to the proof of (23a), we will only prove (23a).
Write:

R(t)

t
:=

1

t

N(t)∑
n=1

Rn =

 1

N(t)

N(t)∑
n=1

Rn

(N(t)

t

)

By the strong law of large numbers, (
∑N(t)

n=1 Rn)/N(t) → ν as t → ∞, while N(t)/t → 1/µ as t → ∞
follows from (7). The combination yields (23a). �

Lemma 3 (Properties of a Delayed Renewal Process). Consider a delayed renewal process {ND(t), t ≥ 0},
with first interarrival time distribution A1 ∼ G with finite mean, i.e. G(t) := P(T1 < t), and successive
interarrival time distribution A2, A3, · · · ∼ F , where F is nonlattice with

∫
s2dF (s) <∞. Then the following

properties hold:

• Denoting mD(t) := E[ND(t)] to be the mean number of renewals by time t:

mD(t) = G(t) +

∫ t

0

∞∑
n=1

Fn(t− s)dG(s) (24)
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• Denoting HD(t) := t − TND(t) to be the age of the process by time t, we have tG(t) → 0 as t → ∞
and

E[HD(t)]→
(∫ ∞

0
s2dF (s)

)(
2

∫ ∞
0

sdF (s)

)−1
as t→∞ (25)

Proof. First, by definition of expectation and utilizing the equivalence in (5):

mD(t) := E[ND(t)] =

∞∑
n=0

P(ND(t) > n)

= P(ND(t) > 0) +
∞∑
n=1

P(ND(t) > n)

= G(t) +
∞∑
n=1

∫ t

0
P(ND(t) > n|T1 ≤ s)dG(s)

= G(t) +

∫ t

0

∞∑
n=1

Fn(t− s)dG(s)

This proves (24).

Second, we first have by the dominated convergence theorem

lim
t→∞

tG(t) = lim
t→∞

t

∫ ∞
t

G(s)ds ≤ lim
t→∞

∫ ∞
t

sG(s)ds (26)

Note that because the mean of G is assumed to be finite, the integrand of (26) is finite. Hence, when taking
t → ∞, the value of the overall integral tends to 0 since the upper and lower limits converge to the same
value.

Now we can consider the age of the delayed renewal process. By conditioning on the value of TND(t) and
substituting in (22) (and taking care to ensure that the distribution of the first interarrival time is given
by G, not F ), we get

E[HD(t)] = E[HD(t)|TND(t) = 0]P(TND(t) = 0) +

∫ t

0
E[HD(t)|TND(t) = s]P(TND(t) = s)ds

= E[HD(t)|TND(t) = 0]G(t) +

∫ t

0
E[HD(t)|TND(t) = s]F (t− s)dmD(s)

= E[HD(t)|A1 > t]G(t) +

∫ t

0
E[HD(t)|TND(t) = s]F (t− s)dmD(s), for n ≥ 2

= tG(t) +

∫ t

0
(t− s)F (t− s)dmD(s) (27)

since note that the age is simply the time elapsed since the last renewal. Now, note that under the
assumption that G is finite, we showed above that tG(t)→ 0 as t→∞, which implies that the first term
of (27) tends to 0. We will thus ignore the first term in our analysis and focus primarily on the second
term. Using Theorem 3, we get:∫ t

0
(t− s)F (t− s)dmD(s)→ 1

µ

∫ ∞
0

sF (s)ds (28)
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Note the relationship

F (s) = P(Y > s) =

∫ ∞
0

P(Y = u)du

Substituting, we get:

(28) =
1

µ

∫ ∞
0

s

(∫ ∞
s

dF (u)

)
ds

=
1

µ

∫ ∞
0

(∫ u

0
sds

)
dF (u) via change of variables

=
1

2µ

∫ ∞
0

u2dF (u) =

(∫ ∞
0

s2dF (s)

)(
2

∫ ∞
0

sdF (s)

)−1
This proves (25). �

Lemma 4 (Property of a Regenerative Process). Denote A(0) to be the time length of a cycle for regen-
erative process {N(t), t ≥ 0}, i.e. the duration of time between two consecutive time points at which the

state of the renewal process is 0. Denote A
(0)
i to be the total amount of time spent in state i in between

two consecutive times at which the renewal process is in state 0. Further suppose the distribution F of a

cycle has a density over some interval of time and E[A
(0)
i ] <∞ for all i. Then the following property holds:

Pi := lim
t→∞

P (t) := lim
t→∞

P(N(t) = i) =
E[A

(0)
i ]

E[A(0)]
(29)

Proof. Conditioning on the time of the last cycle before time t, and using (22) yields:

P (t) = P(N(t) = i|TN(t) = 0)F (t) +

∫ t

0
P(N(t) = i|TN(t) = s)F (t− s)dm(s) (30)

where m(t) := E[N(t)]. We’ve seen before that

P(N(t) = i|TN(t) = 0) = P(N(t) = i|A(0)
1 > t)

P(N(t) = i|TN(t) = s) = P(N(t) = i|A(0)
1 > t− s)

and hence:

(30) = P(N(t) = i|A(0)
1 > t)F (t) +

∫ t

0
P(N(t) = i|A(0)

1 > t− s)F (t− s)dm(s)

→ 1

E[A
(0)
1 ]

∫ ∞
0

P(N(t) = i|A(0)
1 > s)F (s)ds by Theorem 3 (31)

and this proves the result since the integral denotes exactly the amount of time within a cycle A(0) the
system spends in state i. �

2.2 The Pattern Occurrence Problem

With the renewal theory background established, we now consider the general problem of pattern occur-
rence. We first discuss a couple motivational examples before describing a more general result.
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Example 1 (Motivating Example: Expected Time). Suppose that we are observing a sequence of iid
binary random variables X1, X2, · · · , each with distribution

Xi =

{
1 with probability p

0 with probability q := 1− p

Suppose we designate two strings A1 and A2 composed of 0’s and 1’s. One common problem of interest is
the expected number of trials it takes to observe two consecutive instances of A1 in the sequence {Xi}∞i=1;
likewise, for A2. Denote Ti to be the time in between two consecutive instances of Ai, where i = 1, 2.

We choose for concreteness A1 := (1, 0, 1, 0, · · · , 1, 0) to be the length-2n alternating sequence of 1 and 0,
and A2 := (1, · · · , 1, 0, · · · , 0) to be the length-m string of all 1’s followed by the length-m string of all 0’s.

We first compute E[T1]. Note that if we were to treat each pair of (1, 0) as a single symbol, then we can
view A1 as a length-n string composed entirely of (1, 0) pairs. Clearly, the probability of observing exactly
(1, 0) is pq. Hence, the number of trials required to observe (1, 0) for the first time after the last occurrence
of A1 is distributed according to a Geometric random variable with parameter pq. We can now iteratively
derive the expression for the expected time it takes to obtain a new string of n pairs of (1, 0) after the last
occurrence.

E[T1] =

n∑
j=1

1

(pq)j
(32)

The expression (32) can also be directly derived using a system of linear equations. Denote En,j to be
the expected number of trials needed to observe n consecutive (1, 0)’s given j consecutive (1, 0)’s, where

0 ≤ j ≤ n, have already been observed. Further denote E
(1)
n,j to be the expected number of trials needed to

observe n consecutive (1, 0)’s given j consecutive (1, 0)’s and an additional trial with outcome 1 have been
observed. We now have n equations with these variables set up as follows:

En,n−k = 1 + pE
(1)
n,n−k + qEn,0

E
(1)
n,n−k = 1 + pE

(1)
n,0 + qEn,n−k+1, ∀2 ≤ k ≤ n

En,n = 1

Solving this system and setting E[T1] = En,0 yields the same expression as in (32).

We compute E[T2] using a similar approach. We must first observe the m consecutive 1’s before considering
the m consecutive 0’s. Note that the probability of observing exactly m consecutive 1’s is pm; hence, the
time it takes to observe m consecutive 1’s is Geometrically distributed with parameter pm. Once m 1’s
have been observed, the time it takes to observe m consecutive 0’s is also Geometrically distributed. Put
together, the time to observe A2 is Geometrically distributed with parameter pmqm.

E[T2] =
1

(pq)m
(33)

The expression (33) can also be derived by solving a system of equations. Denote Ek,i for 0 ≤ k ≤ m and
i = 0, 1 to be the expected number of trials needed to observe the full A2 given we have observed the
subsequence of A2 up to the kth outcome of i. Then:

Ek,1 = 1 + pEk+1,1 + qE0,1, ∀ 0 ≤ k ≤ m− 1

Em,1 = 1 + pEm,1 + qE1,0,
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Ek,0 = 1 + pE1,1 + qEk+1,0, ∀ 1 ≤ k ≤ m
Em,0 = 1

Solving this system and setting E[T2] = E0,1 yields the same expression as in (32). For further details on
the derivation for both E[T1] and E[T2], see [18].

�

Example 2 (Motivating Example: Probability). Given a sequence of binary random variables X1, X2, · · · ,
another problem of interest is the probability of observing one subsequence before another. Let A1 be a
string of n 1’s, A2 be a string of m 0’s, and A3 be a string of r 2’s, where n,m, r ∈ N+. Suppose the values
of {Xi}∞i=1 are generated in the following way. Until one of the two sequences A1 or A2 have been observed:

Xi =

{
1 with probability p1

0 with probability q1 := 1− p1

If A1 is observed first, the Xi take the following distribution until either A2 or A3 is observed:

Xi =

{
2 with probability p2

0 with probability q2 := 1− p2

Otherwise, if A2 is observed first, the Xi take the following distribution until either A1 or A3 is observed:

Xi =

{
1 with probability p3

2 with probability q3 := 1− p3

Given this setup, we are interested in the probability P1,3 that A1 is observed before A2, and then A3

is observed before A2. Denote E1 to be the event that A1 is observed before A2, and let P1 := P(E1).
Further denote E3 to be the event that A3 is observed before A2 given A1 has been observed first, and let
P3 := P(E3). Then by conditional probability, we can decompose the probability into two parts:

P1,3 = P1P3

Now P1 and P3 can then be computed independently. We first compute P1 by conditioning on the outcome
of the first trial X1. To that end, we denote S1 to be the event that X2 = · · · = Xn = 1 and S0 to be the
event that X2 = · · · = Xm = 0. Thus:

P1 := P(E) = p1
(
pn−11 P(E|X1 = 1,S1) + (1− pn−11 )P(E|X1 = 1,Sc1)

)
+ q1

(
qm−11 P(E|X1 = 0,S0) + (1− qm−11 )P(E|X1 = 0,Sc0)

)
(34)

Note that P(E|X1 = 1,S1) = 1 and P(E|X1 = 0,S0) = 0. Furthermore, P(E|X1 = 1,Sc1) = P(E|X1 = 0)
because Sc1 means that the outcome is 0 for one of the trials among X2, · · · , Xn, after which we need to
restart the count; the probability then becomes equivalent to P(E|X1 = 0). Likewise, P(E|X1 = 0,Sc0) =
P(E|X1 = 1). We then arrive at a system of two equations and two unknowns P(E|X1 = 0) and P(E|X1 = 1),
which we can solve and substitute back into (34). We obtain an equivalent expression for P3 via similar
calculations. Hence:

P1,3 =

(
pn−11 (1− qm1 )

qm−11 + pn−11 − qm−11 pn−11

)(
pr−12 (1− qm2 )

qm−12 + pr−12 − qm−12 pr−12

)
(35)
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Now return back to the case from Example 1 where A1 = (1, 0, 1, 0, · · · , 1, 0) with length 2n and A2 =
(1, · · · , 1, 0, · · · , 0) with length 2m. For the sake of simplicity, we will take the symmetric case of p =
q = 1/2. Again define E to be the event where A1 is observed before A2, and let P1 := P(E). We can
again compute P1 by conditioning on the outcomes of trials, but in this case, both A1 and A2 start
with 1. Thus, we instead condition on the outcome of the first two trials X1 and X2. To that end, we
denote S1 to be the event that X3 = 1, X4 = 0, · · · = X2n−1 = 1, X2n = 0 and S2 to be the event that
X3 = · · · = Xm = 1, Xm+1 = · · · = X2m = 0. Thus:

P1 := P(E) = pP(E|X1 = 1) + qP(E|X1 = 0)

= p (pP(E|X1 = 1, X2 = 1) + qP(E|X1 = 1, X2 = 0)) + qP(E)

where P(E|X1 = 0) = P(E) because neither A1 nor A2 start with 0.

Moreover, conditioning on S1 and S2, we get the following respective equations:

P(E|X1 = 1, X2 = 0) = pn−1qn−1 + (1− pn−1qn−1)
[

1

2
P(E) +

1

2
P(E|X1 = 1, X2 = 1)

]
P(E|X1 = 1, X2 = 1) = (1− pm−2qm)

[
m− 2

2m− 2
P(E|X1 = 1, X2 = 0) +

m

2m− 2
P(E|X1 = 1)

]

Altogether, we obtain a system of three equations with three unknowns. Substituting p = q = 1/2 and
solving the linear system of equations for n = 5,m = 6 yields P1,10 = 0.7895, P1,11 = 0.7884, and
P1 = 0.7889. For further details, see [18]. �

The discussion of the simpler Example 1 and Example 2 segways naturally to more complicated pattern
sequences and broader probability distributions of Xi, i.e. those that take more than two values. The next
theorem provides a result for when there is dependence among the values of Xi.

Definition 7 (Pattern Overlap). For a renewal process X1, X2, · · · taking values x1, x2, · · · from a certain
probability distribution, we say that a pattern (x(1), x(2), · · · , x(m)) has an overlap of size k < m if

k := max{` < m|(x1, · · · , x`) = (xm−`+1, · · · , xm)}

That is, k is the largest value such that the first k elements are identical to the last k elements. �

Theorem 4 (Pattern Occurrence for Discrete-State Markov Chain). Let X1, X2, · · · denote a sequence
of random variables taking values from a discrete-state Markov Chain with transition probability matrix
P := {Pij} and stationary distribution {πk}. Let T denote the next time the pattern (x1, · · · , xm) occurs
after its first occurrence. Then:

• When the pattern (x1, · · · , xm) does not contain any overlaps. then the expected time T in between
consecutive observations of the pattern is given by

E[T |X0 = x0] =
1

πx1
m−1∏
i=1

Pxi,xi+1

+ µ(x0, x1)− µ(xm, x1) (36)

where µ(x, y) denotes the mean time it takes to reach state y in the Markov chain from state x.

• When the pattern (x1, · · · , xm) has an overlap (x1, · · · , xk) of size k, and (x1, · · · , xk) itself does not
contain any overlaps, then the expected time T in between consecutive observations is given by

E[T |X0 = x0] =
1

πx1
m−1∏
i=1

Pxi,xi+1

+
1

πx1
k−1∏
i=1

Pxi,xi+1

+ µ(x0, x1)− µ(xm, x1) (37)
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Example 3 (Theorem 4 for iid Sequence). We can specialize the results of Theorem 4 to the case where
the random variables Xi are iid. Let X1, X2, · · · denote a sequence of iid random variables taking on values
from a discrete, finite set X . Denote pk := P(Xi = k) for all i, and let T denote the next time the pattern
(x1, · · · , xm) occurs after its first occurrence. Then:

• When the pattern (x1, · · · , xm) does not contain any overlaps. then the expected time T in between
consecutive observations of the pattern is given by

E[T ] =
1

m∏
i=1

pxi

(38)

• When the pattern (x1, · · · , xm) has an overlap (x1, · · · , xk) of size k, and (x1, · · · , xk) itself does not
contain any overlaps, then the expected time T in between consecutive observations is given by

E[T ] =
1

m∏
i=1

pi

+
1
k∏
i=1

pi

(39)

�

Note that computing the expected times to between consecutive instances of, respectively, the A1 and A2

used in Example 1, we obtain the exact same formulas (32) and (33) Specifically, A2 does not have any
overlaps, which is why E[T2] can be derived using the formula (38); A1 has overlapping patterns in the
form of all length-2j subsequences of alternating (1, 0), for 1 ≤ j ≤ n − 1, and so E[T1] can be derived
using the formula (39).

Remark 1. Some of the standard references in renewal theory [40, 41, 42] also provide some discussion
on the pattern-occurrence problem from renewal theory, but often only present the iid case of Example 3.
In Theorem 4, we extended this result to include a possible dependence structure for its relevance to the
specific fault-tolerance and congestion control case studies we investigate later in Section 4. While a rough
sketch of the proof for the iid case Example 3 can be found in [40], we provide a more detailed derivation
of the formulas in our work [18]. The proof to Theorem 4 can also be found in [18]. �

Furthermore, we can address the question of comparing multiple different patterns at once. Let {A1, · · · , AM}
for M ∈ N+ be M different patterns of interest, and let TAi denote the time it takes to observe pattern
Ai. Denote Tmin := min{TA1 , · · · , TAM

} and denote Pi to be the probability of observing pattern Ai first
at time Tmin. We further denote TAi|Aj

to be the additional time it takes to observe the pattern Ai after
Aj has been observed. We are interested in computing the Pi and E[Tmin].

We further denote TAi|Aj
to be the additional time it takes to observe sequence Ai given that we’ve already

observed Aj , for all i 6= j. Since all the patterns {A1, · · · , AM} are known, both E[TAi ] and E[TAi|Aj
] can

be computed using either Theorem 4 or Example 3. We can then derive a system of equations with these
variables as follows:

E[TAk
] = E[Tmin] + E[TAk

− Tmin] = E[Tmin] +
∑
j 6=k

E[TAk|Aj
]Pj + 0 · Pk

which, combined with the constraint that PM := 1−
∑

i<M Pi yields M linear equations with M unknowns
P1, · · · , PM−1,E[Tmin]. For the case where M = 2, we obtain the explicit formula:

P1 =
E[TA2 ] + E[TA1|A2

]− E[TA1 ]

E[TA2|A1
] + E[TA1|A2

]
, E[Tmin] = E[TA2 ]− E[TA2|A1

]P1 (40)
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In relation to Example 2, applying (40) to the case where A1 is n consecutive 1’s and A2 is m consecutive
0’s yields the desired result (35). Likewise, applying (40) to the case where A1 := (1, 0, · · · , 1, 0) and
A2 := (1, · · · , 1, 0, · · · , 0) with n = 5,m = 6 implies that E[TA1|A2

] = E[TA1 ] and E[TA2|A1
] = E[TA2 ]. With

p = q = 1/2, we obtain the numerical values derived at the end of Example 2.

Remark 2 (Alternative Pattern-Occurrence Problem with Random Walks). If we are interested in keeping
track of longer pattern sequences of impulsive disturbances, the pattern-occurrence problem can also be
solved using an alternative approach with random walks. Borrowing influence from common motivational
problems such as the Gambler’s Ruin problem, the theory of random walks can be used to determine the
expected time it takes the system to reach certain boundaries imposed on the system state, upon which the
modulation control mechanism takes over. For the sake of keeping this paper focused, we defer discussion
of the connections between the pattern-occurrence problem and the theory of random walks to [18]. A
comprehensive treatment of random walk theory background needed to understand these connections can
also be found in [18]. �

3 The Modulation Control Component

In this section, we describe the second part of the controller synthesis procedure: the development of the
actual control action to be taken when a specific state is first recognized by the first part learning compo-
nent, especially during the event where a recognized pattern sequence of impulsive jumps causes the system
to grow more and more unstable. This requires explicit formulation of the problem as an optimal control
problem with corresponding performance objectives, and there is a wide diversity of modulation-type con-
trollers that can be used in place of this second part depending on the kind of application considered.
For the purposes of the specific fault-tolerance and congestion control applications that we investigate in
the next Section 4, we introduce the impulse control method, which is a Hamilton-Jacobi-Bellman-based
control for jump-diffusion processes that has been described in several references such as [33, 13] and used
for financial applications. Roughly speaking, the impulse control methodology forces the state of the sys-
tem down to some safer, lower-energy state once it exceeds a prespecified limit determined by the first
part of the hierarchical controller. This section adapts the general theory of the impulse control framework
from [33, 13] so that we can directly use it to the specific case examples to be studied in Section 4.

3.1 Stochastic Processes Review

The general Poisson random measure, typically denoted N(dt, dy) over the space [0, t] × E with “jump
space” E, is characterized by the intensity measure Leb×ν, where Leb denotes the standard Lebesgue
measure in time and ν(dy) is the probability measure on E describing the distribution of jumps. The
formal definition of the Poisson random measure can be found in Theorem 2.3.5 in [1] or Definition 3.1
in [50], and other standard texts pertaining to Poisson processes.

A process L(t) is said to be a Lévy process if 1) all paths of L are right-continuous and left-limit (rcll),
2) P(L(0) = 0) = 1, and 3) L has stationary and independent increments [50, 20]. This implies that both
Gaussian white noise processes and compound Poisson processes are Lévy processes, and that the affine
combination of the two, such as the process described in (4), is also a Lévy process. In fact, a well-known
result called the Lévy-Khintchine Theorem, stated formally in Theorem 1.6 of [50], Theorem 2.7 of [4],
or Theorem 1.2.14 of [2], says that Lévy measures can be represented as weak limits of the convolution
of Brownian motion processes and Poisson random measures. This even includes the Lévy process whose
intensity measure has unbounded jumps; one common example is a Gamma process, which has intensity
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measure on R+ given by ν(dy) = ay−1e−bydy such that on any finite interval of time, the number of
jumps which lies in the interval (0, 1) is infinite. We do not consider such types of Lévy processes in this
paper, since they rarely occur in the practical control and engineering applications of our target scope.
Throughout this paper, we henceforth use the phrase “Lévy noise processes” specifically to refer only to
the class of bounded-measure Lévy processes of the linear combination form in (4).

Lemma 5 (Itô’s Formula for 1D Jump-Diffusion Processes). Consider the SDE

dX(t) = f(t)dt+ σ(t)dW (t) +

∫
R
ξ(t, z)N(dt, dz) (41)

where X(t) ∈ R. Then for functions F ∈ C(1,2), the derivative is given by

dF (t,X(t)) = ∂tF (t,X(t))dt+ ∂xF (t,X(t))dX(t) +
1

2
∂2xF (t,X(t))d[X,X](t)

= ∂tF (t,X(t))dt+ ∂xF (t,X(t))dXc(t) +
1

2
∂2xF (t,X(t))d[X,X]c(t)

+

∫
R

[F (t,X(t) + z)− F (t,X(t))]N(dt, dz) (42)

where dXc(t) represents the continuous part of the SDE, and d[X,X]c(t) represents the continuous part
of the quadratic variation.

Proof. We provide a proof of Itô’s formula which is simpler than the version presented in [37]. Note that
by integration-by-parts,

d(X(t)Y (t)) = X(t−)dY (t) + Y (t−)dX(t) + d[X,Y ](t)

=⇒ [X,Y ](t) = X(t)Y (t)−
∫ t

0
X(s−)dY (s) + Y (s−)dX(s)

where X(t) and Y (t) are two separate stochastic processes and subsequently,

[X,X](t) = X2(t) + 2

∫ t

0
X(s−)dX(s)

Hence

∆[X,X](t) = ∆(X2(t)) + 2X(t−)∆X(t)

= X2(t)−X2(t−) + 2X(t−)(X(t)−X(t−)) = (∆X(t))2

Recall the second-order Taylor expansion for F ∈ C2. We further assume x ≤ y:

F (y)− F (x) = ∂xF (x)(y − x) +
1

2
∂2xF (x)(y − x)2 +R(y, x)

where the remainder term R(y, x) can be written as

R(y, x) =
∂3x(z)

3!
(y − x)3 for some z ∈ (x, y)

Now let Pn := {0 =: Tn0 ≤ Tn1 ≤ · · · ≤ Tnmn
:= t} be a partition of the time interval [0, t]. We can then

write the difference as the sum

F (X(t))− F (x0) =

mn−1∑
i=0

[
F (X(Tni+1))− F (X(Tni ))

]
(43)

We split the analysis into two cases
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• Continuous Case: When X(t) is the state of a SDE which only has continuous terms, we can use
Taylor’s formula to expand every term in the sum (43):

(43) =

mn−1∑
i=0

∂xF (X(Tni ))(X(Tni+1)−X(Tni ))

+
1

2

mn−1∑
i=0

∂2xF (X(Tni ))
(
X(Tni+1)−X(Tni )

)2
+

mn−1∑
i=0

R(X(Tni+1), X(Tni ))

and as n→∞, i.e., as the interval size between partitions decreases to 0,

mn−1∑
i=0

∂xF (X(Tni ))(X(Tni+1)−X(Tni ))→
∫ t

0
∂xF (X(s−))dX(s)

1

2

mn−1∑
i=0

∂2xF (X(Tni ))
(
X(Tni+1)−X(Tni )

)2 → 1

2

∫ t

0
∂2xF (X(s−))d[X,X](s)

and R(X(Tni+1), X(Tni ))→ 0 since

R(X(Tni+1), X(Tni )) ∝ (X(Tni+1)−X(Tni ))3 and X(Tni+1)−X(Tni )→ 0 as n→∞

With the terms all combined altogether

F (X(t))− F (x0) =

∫ t

0
∂xF (X(s−))dX(s) +

1

2

∫ t

0
∂2xF (X(s−))d[X,X](s) (44)

which is indeed the Itô formula when the SDE contains only continuous terms.

• General Semimartingale Case: We split the intervals of the partition into two pieces: P+
n is the subset

of the subintervals over which the trajectory X(t) contains a jump of size at least 0 < ε << 1 and
P−n := Pn/P+

n is the subset of subintervals over which the trajectory X(t) is completely continuous.

P+
n := {Tni | ∃s ∈ (Tni , T

n
i+1] s.t. |X(s)−X(s−)| > ε}

Then we split the sum (43) into two parts:

(43) =

mn−1∑
i∈P+

n

[
F (X(Tni+1))− F (X(Tni ))

]
+

mn−1∑
i∈P−

n

[
F (X(Tni+1))− F (X(Tni ))

]
Note that as n→∞, the second collective summation term can be reduced to the Continuous Case
analyzed previously, with a superscript of c appended to the dX and d[X,X] terms to distinguish
the continuous part from the discontinuous part. Furthermore, as n → ∞, the first collective sum
converges as follows

mn−1∑
i∈P+

n

[
F (X(Tni+1))− F (X(Tni ))

]
→

∑
0≤s≤t

[F (X(s))− F (X(s−))]

With all the terms combined together, we obtain the Itô formula described in (42). This concludes the
proof. �
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We further define the compensated Poisson random measure as Ñ(dt, dz) := N(dt, dz) − ν(dz)dt, where
ν(dz)dt := E [N(dt, dz)]. We often care about the compensated Poisson random measure more than the
original measure N because it is mean zero. For jump-diffusions of the form

dX(t) = f(t)dt+ σ(t)dW (t) +

∫
R
ξ(t, z)Ñ(dt, dz)

=

(
f(t)−

∫
R
ξ(t, z)ν(dz)

)
dt+ σ(t)dW (t) +

∫
R
ξ(t, z)N(dt, dz) (45)

the Itô formula is written as follows

dF (t,X(t)) =

(
∂tF (t,X(t)) + ∂xF (t,X(t))f(t) +

1

2
∂2xF (t,X(t))σ2(t)

)
dt

+

∫
R

[F (t,X(t) + z)− F (t,X(t))− ∂xF (t,X(t))ξ(t, z)] ν(dz)dt

+ ∂xF (t,X(t))σ(t)dW (t) +

∫
R

[F (t,X(t) + z)− F (t,X(t))]N(dt, dz)

Definition 8 (Infinitesimal Generator). For F ∈ C(1,2), the infinitesimal generator is defined to be

LF (x) = lim
t→0

Ex [F (X(t))]− F (x)

t

where Ex[F (X(t))] denotes the expected value of F (X(t)) evaluated with initial condition X(0) = x. �

From Itô’s formula, we can determine the form of the infinitesimal generator for the SDE (41). Note that
because the integral with respect to the white noise process W (t) and the integral with respect to the
compensated Poisson process Ñ are martingales

LF (x) = ∂tF (t,X(t)) + ∂xF (t,X(t))f(t) +
1

2
∂2xF (t,X(t))σ2(t)

Theorem 5 (Dynkin’s Formula). For X(t) a trajectory of (41) and ϕ ∈ C2, the following equality holds:

Ex [ϕ(X(t))] = ϕ(x) + Ex
[∫ τS

0
Lϕ(X(s))ds

]

3.2 The Impulse Control Method

Consider the following Lévy noise system, assuming the control input enters into the system additively

dx(t) = f(x(t))dt+ σ(x(t))dW (t) +

∫
R`

ξ(x(t−), z)Ñ(dt, dz) + u(t)dt

An impulse control law is defined to be a sequence of intervention times and corresponding impulse heights
u := (τ1, τ2, · · · ; z1, z2, · · · ) such that the closed-loop system state xu(t) abides by the following dynamics:

xu(0−) = y

dxu(t) = f(xu(t))dt+ σ(xu(t))dW (t) +

∫
R`

ξ(xu(t−), z)Ñ(dt, dz) +
∑
j

1{t− τj}zj
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As with many standard optimal control problems, we seek to find an optimal impulse control law which
minimizes a certain cost. To this end, we denote the augmented state y(t) := (t,x(t))T . Define the cost-
to-go function `(y) and the terminal cost g(y(t)). Further denote the cost of making an intervention with
impulse z and state y as K(y, z). Then the overall performance objective to minimize is as follows:

Ju(y) = Ey

∫ τS

0
`(yu(t))dt+ g(yu(τS))1{τS <∞}+

∑
τj≤τS

K(yu(τj), zj)


where τS is the (possibly infinite) stopping time of the system and y is the initial state.

As is standard in many Hamilton-Jacobi optimal control approaches, the problem is posed as the following
minimization scheme: we want to find Φ(y) and u∗ ∈ U such that

Φ(y) := inf
u∈U

Ju(y) = Ju∗(y)

A verification theorem provides for a tractable way to iteratively design such a u∗ with guaranteed op-
timality. A more general version of the verification theorem with certain continuity, differentiability, and
convergence conditions imposed on any candidate value function ϕ : R+×Rn → R≥0 such that ϕ(y) ≥ Φ(y)
for all y is presented in [33, 13], but it is too complex for the purposes of our controller synthesis pro-
cedure. Theorem 6 introduces a simplified version of the verification theorem. For the case studies we
investigate in Section 4, any candidate value function that we consider immediately satisfies the continuity,
differentiability, and convergence conditions imposed in the general statement from [33, 13]; we thus remove
explicit mention of these conditions. More importantly, Theorem 6 yields a variational inequality that is
easier to solve. For simplicity of notation, the verification theorem is presented with the state space taken
to be the real line (` = 1) with the notation Y (t) := y(t) and Yu(t) := yu(t), but extension to multiple
dimensions is straightforward.

Theorem 6 (Verification Theorem). Define

Mϕ(y) := inf
z∈R
{ϕ(y + z) +K(y, z)}

for Borel-measurable, twice continuously-differentiable function ϕ.

A. Suppose

(a) Lϕ(y) + `(y) ≤ 0 for all y ∈ D where D := {y ∈ R|ϕ(y) ≥Mϕ(y)}
(b) ϕ(Y (t))→ g(Y (τS))1{τS <∞} as t→ τS

Then ϕ(y) ≥ Φ(y) for all y ∈ R.

B. Put τ0 = 0 and construct û inductively by

τ̂j+1 = min{τS , inf{t > τ̂j |Yûj (t) 6∈ D}}
ẑj+1 = ζ̂(Yûj (τ̂j+1−))

where ζ̂(y) ∈ argminzMϕ(y) and Yûj is the result of applying ûj := (τ1, · · · , τj ; z1, · · · , zj) to Y .

Suppose that in addition to A, we have

(a) Lϕ(y) + `(y) = 0 for all y ∈ D
(b) û ∈ U and {ϕ(Yû(t))} is uniformly integrable.
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Then ϕ(y) = Φ(y) for all y ∈ R.

Proof. To prove part A, we recall Dynkin’s formula from Theorem 5. Applying this formula to consecutive
intervals [τj , τj+1) which each contain a single impulse jump yields:

Ey [ϕ(Yu(τj+1−))]− Ey [ϕ(Yu(τj))] = Ey

[∫ τj+1

τj

Lϕ(Yu(s))ds

]

Fix a specific m ∈ N+. Then summing all equations of the above form from j = 0 to m gives

−ϕ(y)−
m∑
j=1

Ey [ϕ(Yu(τj))− ϕ(Yu(τj−))] + Ey [ϕ(Yu(τm+1−))] = Ey
[∫ τm+1

0
Lϕ(Yu(s))ds

]
(46)

By definition of M, we have

Mϕ(Yu(τj−)) ≤ ϕ(Yu(τj)) +K(Yu(τj−), zj)

and subtracting both sides by ϕ(Yu(τj−)):

Mϕ(Yu(τj−))− ϕ(Yu(τj−)) ≤ ϕ(Yu(τj))− ϕ(Yu(τj−)) +K(Yu(τj−), zj) (47)

Substituting the left side of (47) into (46) and multiplying the inequality throughout by −1:

ϕ(y) +
m∑
j=1

Ey [Mϕ(Yu(τj−))− ϕ(Yu(τj−))−K(Yu(τj−), zj)]

− Ey [ϕ(Yu(τm+1−))] ≥ −Ey
[∫ τm+1

0
Lϕ(Yu(s))ds

]
(48)

Using the first condition, we have

m∑
j=1

Ey [Mϕ(Yu(τj−))− ϕ(Yu(τj−))] ≤ 0

− Ey
[∫ τm+1

0
Lϕ(Yu(s))ds

]
≥ Ey

[∫ τm+1

0
`(Yu(s))ds

]
which transforms (48) to

ϕ(y) ≥ Ey
[∫ τm+1

0
`(Yu(s))ds

]
+ Ey [ϕ(Yu(τm+1−))] +

m∑
j=1

Ey [K(Yu(τj−), zj)] (49)

Taking m→∞, i.e. t→ τS , and applying it to (49) gives

ϕ(y) ≥ Ey

∫ τS

0
`(Yu(s))ds+ g(τS)1{τS <∞}+

∑
τj<τS

K(Yu(τj−), zj)

 =: Φ(y)

and this proves part A of the theorem. To prove part B, we can simply repeat the proof of part A while
replacing every inequality with an equality, which comes from the conditions of part B in the theorem’s
hypothesis. �
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Overall, the optimal value function Φ(y) should satisfy the following variational inequality for all y ∈ R.

max{Lϕ(y) + `(y), ϕ(y)−Mϕ(y)} = 0

Further illustrative examples demonstrating how to apply the impulse control method for certain jump-
diffusion systems is presented in our textbook preprint [18]. For additional background on the connection
between the impulse control approach and other standard Hamilton-Jacobi-Bellman optimal control meth-
ods, we refer the interested reader to [18].

4 Application Case Studies

4.1 Incremental Stability for Jump-Linear System

Now that we have established the relevant theory for the proposed two-part controller, we demonstrate its
usage using shot-noise-modified extensions of two simple scalar systems which are commonly studied in the
field of stochastic processes. In both examples, stability bounds are explicitly computed using the framework
discussed in our first part of this paper [19], then used as the certified safety bound which determines the
threshold at which the system transitions between two independent controllers. This hierarchical layering
of controllers is motivated by spacecraft control applications [16, 49, 27], which manipulates the thrusters
by switching between different flight control systems depending on factors such as how far away the system
is from a desired trajecory or how close the system is to an impending meteorite strike. When the system
remains within the safety region, a lower-level controller (e.g., a reference-tracking controller) drives the
trajectory. Moreover, previous incremental stability results for deterministic [29] and Gaussian white noise-
perturbed systems [12] show that such systems are guaranteed to remain within the safety region. Hence,
for our systems of consideration, (3) and (4), the shot noise component of the noise process is arguably the
main cause of destabilization in the system. Thus, when the system no longer remains within the safety
region, the two-part controller is used to first identify the sequence of impulsive disturbances which caused
the destabilization, then steer the trajectory back to within the safety region.

The first scalar system of our study is as follows. We assume the control input enters into the system
additively. It can be viewed as the Ornstein-Uhlenbeck process [32] augmented with shot noise instead of
the usual white noise:

dx(t) = ax(t)dt+ u(t)dt+ ξ

∫
R
zN(dt, dz) (50)

where a 6= 0, ξ > 0 are constants, and N(dt, dz) is a 1D Poisson random measure with rate λ > 0 and
jump height distribution as a Bernoulli random variable which takes value η > 0 with probability p, and
−η with probability q := 1− p. As motivated above, we distinguish the control law into two parts

u(t) := 1{x(t) ∈ S}u`(t) + 1{x(t) 6∈ S}utp(t)

where S ⊂ R defines the safety region computed from the bound of [19], u`(t) describes the lower-level
controller, and utp(t) describes the two-part controller. For the purposes of keeping the discussion relevant
to the paper, we focus on the degisn and impact of utp(t) on the system and assume that u`(t) is already
given. One possible choice is a reference-tracking controller designed to track some reference trajectory
xr(t):

u`,r(t) = ẋr(t)− axr(t), u`(t) = u`,r(t)− k(x(t)− xr(t)) (51)
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and gain k > |a|.

We now explicitly compute the form of the safety region S. The contraction metric M(t, x) is chosen to
be the identity 1, meaning m = m = 1, and we have contraction rate α := |a|. We substitute only the
lower-level controller u`(t) into (50) for the computation of the stability bound, with the interpretation
being that we want to determine the local extent of which the lower-level controller is able to handle the
system.

x(t) = x0e
(a−k)t +

∫ t

0
(ur(t) + kxr(t)) e

(a−k)(t−s)ds+

∫ t

0

∫
R
ξze(a−k)(t−s)N(ds, dz)

A trajectory of the noiseless system is given by

y(t) = y0e
(a−k)t +

∫ t

0
(ur(t) + kxr(t)) e

(a−k)(t−s)ds

Taking the mean-squared difference between x(t) and y(t) yields:

E
[
|y(t)− x(t)|2

]
≤ E

[
|y0 − x0|2

]
e2(a−k)t + κs(2(a− k), t) (52)

with steady-state error bound

κs(2(a− k), t) = 2e(a−k)tE [|y0 − x0|]E
[∣∣∣∣∫ t

0

∫
R
ξze(a−k)(t−s)N(ds, dz)

∣∣∣∣]
+ E

[∣∣∣∣∫ t

0

∫
R
ξze(a−k)(t−s)N(ds, dz)

∣∣∣∣2
]

≤ 2ξe(a−k)tc0E
[∫ t

0

∫
R

∣∣∣ze(a−k)(t−s)∣∣∣N(ds, dz)

]
+ ξ2E

[∫ t

0

∫
R

∣∣∣ze(a−k)(t−s)∣∣∣2N(ds, dz)

]
(53)

where c0 > 0 is the length of the compact support of the probability distribution where the initial conditions
x0, y0 are drawn from, and the second inequality follows from the Cauchy-Schwarz Inequality. Note that
the Poisson integrals in the two terms can be evaluated using Campbell’s formula (presented in Section
3.2 of [26] and Proposition 2.7 of [28]) and the definition of the Poisson integral from Section 2.3.2 of [1]:

E
[∫ t

0

∫
R

∣∣∣ze(a−k)(t−s)∣∣∣N(ds, dz)

]
=

∫ t

0
e(a−k)(t−s)

∫
R
|z|ν(dz)ds =

η

a− k
(e(a−k)t − 1)

E
[∫ t

0

∫
R

∣∣∣ze(a−k)(t−s)∣∣∣2N(ds, dz)

]
=

∫ t

0
e(a−k)(t−s)

∫
R
z2ν(dz)ds =

η2

2(a− k)
(e2(a−k)t − 1)

and substituting back into (53) yields:

(53) ≤ 2ξηc0
a− k

(e2(a−k)t − e(a−k)t) +
ξ2η2

2(a− k)
(e2(a−k)t − 1) (54)

We simulate (50) using the state-feedback lower-level controller to track the zero reference line (i.e., perform
disturbance rejection), and visualize our results in Figure 2 for three values of λ ∈ {2, 1, 0.5}. For each
λ value, we simulate three sample trajectories (in three different shades of gray) representing the mean-
squared-difference |y(t)−x(t)|2. The initial conditions x0 and y0 are sampled uniformly in the range [0, 2].
For each subfigure, plotted in black-dashed line with their respective colors is the upper-bound of the
envelope captured by the theoretical bound of κs(−2(a− k), t) provided by (54). Notice that it is entirely
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Figure 2: Three sample absolute MSE differences (in varying shades of gray) between the trajectory of a stable linear system
and the trajectory of the system with additive shot noise for varying values of λ. For each subplot corresponding to λ, the
black-dashed line shows the outline of the envelope captured by the theoretical error bound derived as in (52).

feasible for the shot noise perturbations to bring each trajectory outside of the safety envelope, upon which
we allow the two-part controller to take over and steer the system back to within the envelope. Note that we
achieve global exponential convergence for the system because of its simplified linear nature, so the lower-
level controller manages to stabilize the system even while it is outside of the safety envelope by itself.
However, we can still demonstrate the procedure of using the learning component of the two-part controller
for determining re-ocurring jump patterns on this system; in our second example, we add Gaussian white
noise to the dynamics so that the necessity of the two-part controller is more apparent.

We assume that a given specific pattern sequence of jump sizes leads to instability in the system. In this
simple setup, the learning component approximates variations in the interarrival time between consecutive
jumps using various zero paddings. What is the number of jumps T after which the exact pattern sequence
of jumps will occur again? For concreteness, we focus on the specific pattern of (1, 2, 1) with M = 9. Then

E[T ] =
1

p21p2
+

1

p1
(55)

By symmetry of the problem, negative valued jumps should also be considered, i.e. (−1,−2,−1). In this
case, we compute E[T ] by conditioning using the same methodology described in Section 2.2. Denote
A := (1, 2, 1) and B := (−1,−2,−1) and use the notation T [(∗)] := E[T (∗)] and T [min] := E[Tmin] for
simplicity. Similar to (55), we get:

T [A] =
1

p21p2
+

1

p1
, T [B] =

1

p2−1p−2
+

1

p−1

and because there is no overlap between A and B, the conditional quantities are exactly the same as the
original quantities: T [B|A] = T [B] and T [A|B] = T [A].
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Denote PA to be the probability that the string sequence A occurs before B. Then the renewal time in
between consecutive unstable jump sequences is given by Tmin := min{TA, TB}, which can be obtained
according to Section 2.2.

Now, further note that the order of the jump sizes also does not matter, since it is the cumulative sum of the
jump sizes which impacts the system trajectory (again, assuming the interarrival times between consecutive
jumps are not accounted for). Hence, all three combinations for (1, 2, 1) and (−1,−2,−1) should be taken
into consideration. For the moment, we will only consider the permutations of (1, 2, 1). Define A := (1, 2, 1),
B := (1, 1, 2), and C := (2, 1, 1). Tmin := min{T (A), T (B), T (C)}. Computing the expected renewal time
T [min] only requires a slight extension to the procedure of Section 2.2, but the idea is the same.

Note that

T [A] =
1

p21p2
+

1

p1
, T [B] = T [C] =

1

p21p2

and

T [A|B] = T [A], T [A|C] = T [A]− T [(1)] =
1

p21p2

T [B|A] = T [B]− T [(1)] =
1

p21p2
− 1

p1
, T [B|C] = T [B]− T [(1, 1)] =

1

p21p2
− 1

p21
− 1

p1

T [C|A] = T [C], T [C|B] = T [C]− T [(2)] = − 1

p21p2
− 1

p2

Now denote PA to be the probability that A is the first to occur among all three patterns. Likewise, define
PB and PC = 1− PA − PB. We can write a system of three equations with three unknowns

T [min] = T [A] + T [min]− T [A] = T [A] + T [A|B]PB + T [A|C]PC

T [min] = T [B] + T [min]− T [B] = T [B] + T [B|A]PA + T [B|C]PC

T [min] = T [C] + T [min]− T [C] = T [C] + T [C|A]PA + T [C|B]PB

Now we consider the following Lévy noise system, which can be viewed as a Lévy noise extension to the
well-known Geometric SDE [32]. We demonstrate how to design the control action synthesis part of the
two-part controller.

dx(t) = ax(t)dt+ u(t)dt+ σx(t)dW (t) + ξx(t)

∫
R
zN(dt, dz) (56)

where a 6= 0, σ > 0, ξ > 0 are constants, and the jump size z is distributed uniformly over the interval
[−2,−1] ∪ [1, 2]. We invoke the impulse control methodology described in Section 3.2 to determine how to
steer the trajectory of the system back towards the bounded error ball after the instability pattern has
occurred. Suppose that we seek to minimize the performance objective designed with the cost-to-go and
impulse cost functions chosen as

K(y, z) = e−t5|z|, `(y) = e−tx2

We have y := (t, x) to be the state of the augmented system. Consider a value function of the form
ϕ(s, x) = e−sψ(x). Due to the symmetry of the problem, we choose region

D := {x ∈ R|ψ(x) <Mψ(x)} = (−b, b)
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for some b > 0 to be determined.

The first condition of Theorem 6 states that the following expression needs to be zero for x ∈ [−b, b] in
order for ϕ to be optimal:

Lϕ(t, x) + `(t, x) = e−t
(
−ψ(x) + axψ′(x) +

1

2
σ2x2ψ′′(x) +

∫
R

[ψ(x+ z)− ψ(x)] ν(dz) + x2
)

where Lϕ, i.e. dψ, was computed using Itô’s formula. ψ must then satisfy the following differential equation:

−ψ(x) + axψ′(x) +
1

2
σ2x2ψ′′(x) +

∫
R

[ψ(x+ z)− ψ(x)] ν(dz) = −x2

Again, we can solve this nonhomogeneous ordinary differential equation as a sum of homogeneous and
nonhomogeneous parts. We guess the exponent of the homogeneous solution ψh(x) := xr through the
following auxiliary equation:

− 1 + ar +
1

2
σ2r(r − 1) +

∫
R

[(1 + z)r − 1] ν(dz) = 0 (57)

Note that∫
R

[(1 + z)r − 1] ν(dz) =
1

2

[∫ −1
−2

[(1 + z)r − 1] dz +

∫ 2

1
[(1 + z)r − 1] dz

]
=

1

r + 1

(
(−1)r + 3r+1 − 2r+1

)
− 2

and so (57) reduces to

− 3 + ar +
1

2
σ2r(r − 1) +

1

r + 1

(
(−1)r + 3r+1 − 2r+1

)
= 0

Solving this auxiliary equation yields one positive root r+ and one negative root r−. Furthermore, the
partial solution ψp(x) corresponding to the nonhomogeneous part of the equation can be assumed to take
on a form of a second-order polynomial A2x

2+A1x+A0. Substitute ψ(x) = ψh(x)+ψp(x) into the original
equation, then match the coefficients to determine the Ai. Overall, when |x| ≤ b, the complete solution
turns out to be

ψ(x) = ψ1(x) := C+e
r+x + C−e

r−x + x2 + 1 (58)

Since we have symmetry of the problem in the sense that we desire to push the trajectory within an
equidistant tube surrounding the zero line, we choose specifically C+ = C− = −C, where C > 0, so that

ψ1(x) = C(er+x + er−x) + x2 + 1

When |x| > b, we look at the second condition from Theorem 6. First, the intervention operator is written
as:

Mψ(x) = inf
z∈R
{ψ(x+ z) + 5|z|} (59)

which implies that the minimizing value of z satisfies{
ψ′(x+ z) = −5 if z > 0

ψ′(x+ z) = 5 if z < 0
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Figure 3: A sample closed-loop trajectory of the Lévy noise system with the designed impulse control applied.

and so we want to find a > 0 such that −b < −a < 0 < a < b. Essentially, the impulse control law is
designed to push the trajectory up (z > 0) to −a if it goes beneath level −b and push the trajectory
down (z < 0) to a if it goes above level +b. This corresponds to the first-order conditions ψ′(a) = −5 and
ψ′(−a) = 5.

With level a assigned, we explicitly choose the form of

ψ2(x) :=

{
ψ1(a) + 5(x− a), if x > b

ψ1(−a)− 5(x+ a), if x < −b
(60)

Thus, in combination, the form of ψ can be written as follows:

ψ(x) =


C(er+x + er−x) + x2 + 1 if |x| ≤ b
ψ1(a) + 5(x− a), if x > b

ψ1(−a)− 5(x+ a), if x < −b
(61)

Now, we can use the first-order conditions and the continuity and differentiability conditions to solve for a
and C.

1. Continuity at x = b implies we need ψ(b−) = ψ(b+):

ψ1(b) = ψ1(a) + 5(b− a)

=⇒ C(er+b + er−b) + b2 + 1 = C(er+a + er−a) + a2 + 1 + 5(b− a)

2. Differentiability condition at x = b implies we need ψ′1(b) = ψ′2(b+):

Cr+e
r+b + Cr−e

r−b + 2b = 5
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3. We also have the required condition that ψ′(a) = ψ′1(a) = −5 (and the opposite condition does not
need to be mentioned due to symmetry):

Cr+e
r+a + Cr−e

r−a + 2a = −5

See Figure 3 for a visualization of a sample trajectory for the system (56) with the impulse control law
applied. Intuitively, it is easy to see that the impulse control method is optimal because it instantaneously
pushes the state of the system down to a safer, lower-energy state. Furthermore, the nature of the control
law is that this only happens once the trajectory exceeds a prespecified limit. We remark that the behavior
of the trajectory illustrated in Figure 3 shows the ideal system response under no physical constraints on
the system’s components, e.g. its actuators. This is similar to the well-known bang-bang control action for
spacecraft applications; while theoretically optimal, they are not always practical to implement. Similarly,
in this setting, it may be difficult or most practical systems to perform a maneuver as sharp as an impulse
control. However, we emphasize that the impulse control mechanism can be replaced with a synthesis
procedure that incorporates physical constraints. The hierarchical nature of the two-part controller still
remains the same, hence, the benefits arising from storing in memory control laws for future occurrences
of destabilizing patterns which have been observed before are still present.

4.2 Controlling Vehicle Traffic at an Intersection

In this section, we demonstrate application of the two-part controller synthesis procedure on congestion
control problems for discrete-valued quantities, such as the number of vehicles present in each lane of a
stretch of road, or the number of packets in each flow that is queued up at an internet router. Particularly
for congestion control problems, the discrete value of the state allows the learning component of the two-
part procedure to identify recurring patterns much more accurately. For that reason, the pattern-occurrence
problem is arguably better suited to congestion-type applications moreso than the scalar fault-tolerance
control problem presented in the previous section. Another key distinction for how the two-part procedure
treats congestion control-type problems is that the control action is applied as soon as possible in an effort
to drive the level of congestion close to zero as quickly as possible, as opposed to the fault-tolerance control
problems considered previously, which waits until an appropriate accumulation of impulsive disturbances
has driven the trajectory beyond a nonzero bound.

For concreteness, we demonstrate this application to the specific congestion-type problem of controlling
vehicle traffic across a single intersection by adjusting light signal patterns, and we look into two specific
types of intersection scenarios: 1) the four-way intersection with one lane per road, and 2) the four-way
intersection with one lane per road assuming the lanes on the opposite side of the intersection can be
congested, and 3) the four-way intersection with two lanes per road, one for forward and right-turning
traffic and one for left-turning traffic. For each of the scenarios, we look into how the learning component
is designed by using the pattern-occurrence problem to compute the expected time that elapses between
two consecutive instances of the same intersection state. First, we establish the general setting and the
relevant simplifying assumptions for the problem.

Consider a single four-way intersection for oncoming vehicles. The four ways of each intersection are E for
East, N for North, W for West, and S for South. New platoons of vehicles can enter the intersection from
any of the four directions according to compound Poisson processes of possibly different intensities, where
the jump sizes indicate the number of vehicles entering the lane. For the dynamics, the state we keep track
of is the queue length (i.e., number of vehicles) at each of the lanes, represented by the vector x ∈ Rn.
Furthermore, each component x` ∈ [0, xmax], where ` ∈ N+ denotes the ID of the lane in the intersection,
and xmax ∈ Z+ denotes the maximum number of cars allowed to enter a single lane within one timestep. For
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concreteness, we take xmax = 5. One simplification we make is the discretization of time and the consequent
representation of vehicle interarrival times as Geometric random variables instead of Exponential ones. This
allows us to model the dynamics of the number of vehicles per lane of the intersection as a Markov chain.
We denote pk to be the probability that k ∈ [1, xmax] vehicles enter into lane i within one timestep.

The intersection is locally controlled by traffic lights, one per lane, and each take on binary values depending
on whether the light is green (1) or not (0). Suppose that the control law signal is such that the probability
of the light being green at a certain time instance can be represented by a probability 0 < pG < 1 and
let pR := 1 − pG be the probability that the light is red. This probability is what the second part of the
two-part controller adjusts in order to optimize traffic flow, and we discuss this aspect in more detail later
on. For simplicity, we assume that all vehicles travel at the same speed, and thus at a single timestep when
the light is green, a constant number M < xmax of vehicles can pass.

The learning component seeks to solve the following problem. Suppose that at time t, the state of the
intersection is given by x0 ∈ Rn. We are interested in computing the expected number of timesteps
after t in which the state x0 occurs again. This is precisely the pattern-occurrence problem that we’ve
studied in Section 2.2; in this setup, the renewals denote the event that the state of the intersection is x0.
We are interested in this quantity for two complementary reasons. On one hand, it saves computational
resources to have the system memorize the optimal traffic signal patterns for the first occurrence of x0,
then apply it for every future occurrence of x0. On the other hand, if the system has limited memory
storage and the time between consecutive occurrences of x0 is too long, then the optimal control sequence
may no longer be retained in memory, prompting recomputation from scratch anyway. We now address the
pattern-occurrence problem for each of hte three cases described above.

One Lane per Road: Suppose there is one lane per direction, and vehicles in each lane are only al-
lowed to pass the intersection by going straight forward. Then the dimension of the state is n = 4 and
x := (x1, · · · , x4)T ∈ R4. We order the counts of the lanes in the intersection as a vector according to
(E,N,W, S). We further suppose that thhere is one designated traffic light assigned to each lane in each
direction for a total of four lights, i.e. u := (u1, · · · , u4)T ∈ {0, 1}4. However, certain constraints can be
imposed on the four lights for basic efficiency, e.g. E and W traffic can pass simultaneously, and likewise
for N and S traffic.

If we modeled the number of vehicles in each lane x`, ` = 1, · · · , 4, as a Markov chain then we take the
transition probabilities to be given by

pij =


pRp0 + pGpM if j = i

pRpj−i + pGpj−i+M if j ∈ {i+ 1, · · · , i+M + 1}
pRpj−i if j ∈ {i+M + 2, i+ xmax}
pGp0 if j = max{0, i−M}

for all i ∈ Z≥0. Now suppose for concreteness, M = 2, xmax = 5, and pG = 0.6, and suppose we are
interested in the intersection snapshot x0 := (5, 1, 5, 1)T . Enumerating all possible one-timestep previous
states x0 could have come from yields:

1. (y1, x1, y2, x2)
T where y1, y2 ∈ {2, 3, 4, 5, 6, 7} and x1, x2 ∈ {0, 1}, which reach x0 in one step if the

East and West lanes were given the green light at the same time some number of vehicles between five
and zero entered the corresponding lanes, and if traffic in the North and South lanes were stopped
at the same time one or no vehicles entered the correpsonding lanes.

2. (y1, x1, y2, x2)
T where y1, y2 ∈ {0, 1, 2, 3, 4, 5} and x1, x2 ∈ {0, 1, 2, 3}, which reach x0 in one step if

the East and West lanes were stopped at the same time some number of vehicles between five and
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zero entered the corresponding lanes, and if if traffic in the North and South lanes were given the
green light at the same time three, two, one, or no vehicles entered the corresponding lanes.

Then the expected time in between consecutive instances of x0 is given by

E[T ] :=

 ∑
x1,x2∈{0,1}

y1,y2∈{2,3,4,5,6,7}

π(y1,x1,y2,x2)py1,5px1,1py2,5px2,1 +
∑

x1,x2∈{0,1,2,3}
y1,y2∈{0,1,2,3,4,5}

π(y1,x1,y2,x2)py1,5px1,1py2,5px2,1


−1

(62)

Now we set x
(1)
0 := x0 and consider an alternative snapshot of the intersection x

(2)
0 := (3, 3, 3, 3)T . We are

interested in the probability P1 of observing x
(1)
0 before x

(2)
0 and the minimum time Tmin it takes to observe

one of the two patterns. Denote E[T1] := E[T ] from (62). This is analogous to the coin tossing example of
Section 2.2.

Again enumerating all possible one-timestep previous states x
(2)
0 could have come from yields:

1. (y1, x1, y2, x2)
T where y1, y2 ∈ {2, 3, 4, 5} and x1, x2 ∈ {0, 1, 2, 3}, which reach x0 in one step if the

East and West lanes were given the green light at the same time three, two, one, or no vehicles
entered the corresponding lanes, and if traffic in the North and South lanes were stopped at the same
time one or no vehicles entered the correpsonding lanes.

2. (y1, x1, y2, x2)
T where y1, y2 ∈ {0, 1, 2, 3} and x1, x2 ∈ {2, 3, 4, 5}, which reach x0 in one step if the

East and West lanes were stopped at the same time one or no vehicles entered the correpsonding
lanes, and if if traffic in the North and South lanes were given the green light at the same time three,
two, one, or no vehicles entered the corresponding lanes.

Then the expected time in between consecutive instances of x
(2)
0 is given by

E[T ] :=

 ∑
x1,x2∈{0,1,2,3}
y1,y2∈{2,3,4,5}

π(y1,x1,y2,x2)py1,3px1,3py2,3px2,3 +
∑

x1,x2∈{2,3,4,5}
y1,y2∈{0,1,2,3}

π(y1,x1,y2,x2)py1,3px1,3py2,3px2,3


−1

(63)

As in the coin tossing example of Section 2.2, we can set up the equations as follows. Note that there is no
overlap between the two patterns, which implies T1|2 = T1 and T2|1 = T2.

E[T1] = E[Tmin] + (E[T1]− E[Tmin]) = E[Tmin] + (1− P1)E[T1|2] = E[Tmin] + (1− P1)E[T1]

E[T2] = E[Tmin] + (E[T2]− E[Tmin]) = E[Tmin] + P1E[T2|1] = E[Tmin] + P1E[T2]

Hence,

P1 =
E[T2]

E[T2] + E[T1]

where T1 is from (62) and T2 is from (63).
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Figure 4: A single four-way intersection with two lanes per direction. Red bars indicate that the corresponding lane is
given the red light and stopped, while green bars indicate that vehicles in that lane are allowed to pass. In this particular
configuration, the North and South left-turning lanes are given the green light.

One Lane per Road with Possible Jamming: Suppose now there is the possibility of a traffic jam on
the opposite side of the intersection, which might prevent vehicles from being able to pass the intersection
even on a green light. Note that if the rate of cars clearing the intersection on a green light without
jams is given by M , the rate of cars leaving from the opposite side of the intersection and clearing space
should also be M . Furthermore, since jams are most likely caused by adjacent intersections, we let pG be
the probability that the vehicles in the jammed lanes begin to move, and pR is the probability that they
remain in place, preventing cars on the incident side of the intersection from being able to cross.

The sole difference between including and excluding lane jams is the transition probability matrix. Es-
sentially, vehicles can only cross an intersection when both lights are green, and can be stopped at an
intersection if the opposite lane is blocked with other cars.

pij =


(pR + pGpR)p0 + p2GpM if j = i

(pR + pGpR)pj−i + p2Gpj−i+M if j ∈ {i+ 1, · · · , i+M + 1}
(pR + pGpR)pj−i if j ∈ {i+M + 2, i+ xmax}
p2Gp0 if j = max{0, i−M}

for all i ∈ Z≥0. We can then repeat the compuation shown in the previous scenario without lane jamming,
with the appropriate Markov chain probabilities replaced.

Two Lanes per Road: Now suppose there are two lanes per road: one for forward and right-turning traffic,
and one for left-turning traffic. The dimension of the state is now n = 8, x := (x1, · · · , x8)T ∈ R8, and
we order of the components in the vector is ‘forward/right’ first, ‘left’ second with the directions ordered
counterclockwise from East to South. We again assume that there is one designated traffic light per lane
u := (u1, · · · , u8)T ∈ {0, 1}8, but impose certain common-sense constraints as in the previous one-lane case,
i.e., vehicle streams passing in opposite directions (E and W , or N and S) can pass simultaneously. We
also assume that the roads of the intersection are wide enough so that left-turning vehicles from opposite
directions can also pass at the same time. For a visualization of the intersection, we refer to Figure 4.

A vehicle can either choose to turn left, right, or go straight forward with the following probabilities:

1. pL denotes the probability of vehicles which enter the left-turn lane among all the vehicles which
enter the intersection from a neighboring intersection, and denote pFR := 1− pL.
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2. qF denotes the probability that vehicles in the forward/right-turning lane of an intersection go for-
wards, and qR := 1− qF denotes the probability that a vehicle turns right.

For each of the four directions, we let pG,L be the probability that vehicles in left-turning lane are given
the green light, pG,FR be the probability that vehicles in forward and right-turning lane are given the
green light, and pR,L := 1 − pG,L, pR,FR := 1 − pG,FR. Additionally, since there are different distances
that need to be crossed depending on whether a vehicle is turning left, right, or going forward, constant
speed vehicles still take different amounts of time to cross the intersection. Thus, we also distinguish the
constants ML < xmax and MFR < xmax.

Then the Markov chain probabilities for all four forward and right-turning lanes are different from the
probabilities for all four left-turning lanes. Namely, for the number of vehicles in each forward and right-
turning lane x`, ` = 1, 3, 5, 7, the corresponding Markov chain transition probabilities are as follows:

pij =


pR,FRp0 + pG,FRpM,FR if j = i

pR,FRpj−i + pG,FRpj−i+MFR
if j ∈ {i+ 1, · · · , i+MFR + 1}

pR,FRpj−i if j ∈ {i+MFR + 2, i+ xmax}
pG,FRp0 if j = max{0, i−MFR}

for all i ∈ Z≥0 and for the number of vehicles in each left-turning lane x`, ` = 2, 4, 6, 8, the corresponding
transition probabilities are:

pij =


pR,Lp0 + pG,LpM,L if j = i

pR,Lpj−i + pG,Lpj−i+ML
if j ∈ {i+ 1, · · · , i+ML + 1}

pR,Lpj−i if j ∈ {i+ML + 2, i+ xmax}
pG,Lp0 if j = max{0, i−ML}

5 Conclusion

In this paper, we extended the study of stochastic control theory to include the class of Poisson shot noise by
designing a two-part hierarchical control policy for systems of the form (3) and (4). The first part of the con-
trol policy invokes renewal theory to construct a learning component which recognizes previously-occurred
states and their corresponding optimal control responses. Namely, we utilize the “pattern-occurrence” prob-
lem to determine the expected time between consecutive instances of the same state. Even incorporating
this simple learning component into the system has the potential to save time and computational energy
because there is no need to devote resources towards recomputing a control action for a state that has
been observed before. The second part of the control policy invokes an impulse control approach which
computes the actual control action which is optimal for each of the specific states kept track of by the first
learning component part.

We then presented two simplified specific applications for control design: 1) a 1D fault-tolerance system and
2) a control problem for moderating vehicle traffic at an intersection. For the 1D fault-tolerance problem,
we explicitly computed steady-state error bound κs(βs, t) and showed that larger jump norm bounds η and
2) shorter interarrival times between jumps correspond to a larger error ball. We then used renewal theory
to address the converse problem of determining the largest possible values of the shot noise characteristics,
i.e. intensity and maximum absolute jump norm, such that the steady state error bound remains bounded
by a desired tolerance. In this context, the renewals referred to the event where the trajectory exceeds
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the stability bound by an amount which makes the system unstable. The impulse control method is then
applied at these points to navigate the trajectory back within the desired error bound.

For the vehicle traffic control problem, we used renewal theory to compute the expected time between
consecutive renewals, which referred to certain snapshots of the intersection. The reason for saving these
snapshots and their corresponding optimal control actions is to save resources. One might observe 10 cars
in the East lane and five cars in the North lane, and the optimal control action might be to let the first
five East cars pass, then the five North cars, and finally the last five East cars. If the system observes the
exact same scenario in a future time, we simply recycle the same optimal control action used previously.
We showed that renewal theory is also useful for choosing which states are worth saving in memory. For
snapshots which do not have a high probability of occurring (e.g., ten vehicles occupying all four directions
of the intersections simultaneouly), there is not much computational benefit to saving the corresponding
optimal control action, especially when the system has limited storage. The performance objective for the
impulse control method refers to the level of congestion in the intersection, and we desire to compute an
action of traffic light sequences which minimizes the level of congestion as quickly as possible. Unlike the 1D
reference-tracking problem, a necessary addition to the standard impulse control method is a time-varying
performance criteria which assigns varying priorities to the lanes depending on the number of vehicles that
are present at each lane.

We argue that the simplified examples investigated in this paper are sufficient enough to develop the
theoretical framework for the controller synthesis procedure. To make the controller more applicable to
more complex real-life instances, certain factors also need to be considered. One extension is towards the
direction of continuous-valued jumps, which may be addressed by first discretizing the space of jumps:

S := {ξ(t,x, z)| ‖ξ(t,x, z)‖ ≤ η} =⇒ Si := {ξ(t,x, z)| ‖ξ(t,x, z)‖ ≤ ηi}

for chosen threshold values 0 < η1 < η2 < · · · ≤ ηk := η, where η is the upper bound on the norm of the
jumps, and some k ∈ N. Then any two jumps ξa(t,x, z), ξb(t,x, z) which belong in the same set Si can
be controlled using the same law. Another possible extension to the pattern occurrence problem is when
we care about what specific order a certain number of patterns A1, · · · , AM occurs in. For example, for
the case of M = 3, define T ∗ to be the expected time until we see A3 after we have already observed
occurrences of A1, A2 in any order. Then, with the notation Pi being the probability of observing pattern
Ai first among all M patterns, we have

E[T ∗] = PA1(E[TA1 ] + E[TA2|A1
]) + PA2(E[TA2 ] + E[TA1|A2

])

The interest for looking into these types of pattern arrangements arises from applications in fault tolerance
such as the turbulence of ocean waves affecting a drifting boat, or the collapse of the Tacoma Narrows
Bridge in 1940. While these systems may have been designed to withstand strong perturbations, it may fail
in events resulting from a steady accumulation of consecutive smaller perturbations. An extension for the
modulation control component is the replacement of the impulse controller with an alternative controller,
especially in applications where a sharp decay in the state is not physically feasible. The hierarchical
structure of the two-part controller remains the same regardless: the learning component facilitates the
recognition of destabilizing patterns, and the modulation controller is applied only then. One could also
derive first-order conditions to impose additional limits on the extent of being able to control the system
using impulsive jumps of large magnitude.
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by Lévy noise. Journal of Applied Probability, 46:1116–1129.

[3] Baccelli, F. and Blaszczyszyn, B. (2009). Stochastic Geometry and Wireless Networks, Part I: Theory.
Now Publishers Inc., Hanover, MA, USA.

[4] Bass, R. F. (2014). Jump processes. http://bass.math.uconn.edu/jump-processes.pdf.

[5] Beenakker, C. W. J. (1992). Quantum transport in semiconductor-superconductor microjunctions.
Phys. Rev. B, 46:12841–12844.

[6] Bernstein, D. S. and Haddad, W. M. (1988). LQG control with an h∞ performance bound: a Riccati
equation approach. In 1988 American Control Conference, pages 796–802.

[7] Capuano, V., Harvard, A., Lin, Y., and Chung, S.-J. (2019). DGNSS-vision integration for robust and
accurate relative spacecraft navigation. In Proceedings of the 32nd International Technical Meeting of
the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), pages 2923–2939.

[8] Collaboration, T. L. S. (2011). A gravitational wave observatory operating beyond the quantum shot-
noise limit. Nature Phys, 46:962–965.

[9] Cont, R. and Tankov, P. (2004). Financial Modelling With Jump Processes. CRC Press UK, London,
UK.

[10] Cox, D. R. (1962). Renewal Theory. John Wiley & Sons Inc., London.

[11] Cox, D. R. and Miller, H. D. (1965). The Theory of Stochastic Processes. Taylor & Francis Group.

[12] Dani, A. P., Chung, S.-J., and Hutchinson, S. (2015). Observer design for stochastic nonlinear systems
via contraction-based incremental stability. IEEE Transactions on Automatic Control, 60(3):700–714.

[13] Davis, M. H. A., Guo, X., and Wu, G. (2010). Impulse control of multidimensional jump diffusions.
SIAM J. Control Optim., 48(8):5276–5293.

[14] Deisenroth, M. P., Fox, D., and Rasmussen, C. E. (2015). Gaussian processes for data-efficient learning
in robotics and control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):408–
423.

[15] Doyle, J. (1978). Guaranteed margins for LQG regulators. IEEE Transactions on Automatic Control,
23(4):756–757.

[16] Franchi, L., Feruglio, L., Mozzillo, R., and Corpino, S. (2018). Model predictive and reallocation
problem for CubeSat fault recovery and attitude control. Mechanical Systems and Signal Processing,
98:1034–1055.

[17] Han, J. and Weinan, E. (2016). Deep learning approximation for stochastic control problems. ArXiv
preprint, arxiv:1611.07422.

[18] Han, S. (2021). Stochastic Differential Equations and Random Processes for Control Engineers. Book
preprint.

37

http://bass.math.uconn.edu/jump-processes.pdf


[19] Han, S. and Chung, S.-J. (2021, to be submitted). Incremental nonlinear stability analysis for stochastic
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