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Abstract. We analyse four approaches to elimination of a fast variable, which are applicable
to systems like passive Brownian particles: (i) moment formalism, (ii) corresponding cumulant
formalism, (iii) Hermite function basis, (iv) formal ‘cumulants’ for the Hermit function basis.
The accuracy and its strong order are assessed. The applicability and performance of two first
approaches are also demonstrated for active Brownian particles.

1. Introduction

Characterization of dynamics of overdamped systems can be often reduced to a single
variable, which can be coordinate for mechanical systems in a viscous media (like Brownian
particles) [1, 2, 3] or an oscillation phase for self-sustained periodic oscillators [4, 5], where the
transversal deviations from the limit cycle decay quick enough to be neglected. However, in
stochastic systems with delta-correlated noise, this reduction becomes nontrivial as the inertia
term is non-small for rapid fluctuations in mechanical systems [1, 2, 3, 6, 7, 8] and the deviations
from the limit cycle are non-negligible for oscillatory systems [9, 10, 11]. For the phase equation
of oscillatory systems, an effective inertia-like term may appear owing to different reasons leading
to a significant increase of the dynamics complexity [12, 13, 14, 15, 16]. The problem of the
transition to the small inertia limit, in other words, the problem of adiabatic elimination of
a fast variable (velocity), was thoroughly addressed in the literature for passive Brownian
particles [1, 2, 3, 6, 7, 8] and for some types of active Brownian particles [17].

Recently, a systematic approach to the construction of low-dimensional model reductions for
oscillator populations was suggested on the basis of the circular cumulant representation [18,
19, 20]; this approach generalizes the Ott–Antonsen ansatz [21, 22] based on the Watanabe–
Strogatz partial integrability [23, 24, 25, 26]. Application of this new approach to systems with
non-negligible inertia necessitates a systematic analysis of possible approaches to the problem
of elimination of a fast variable. In this paper we provide such an analysis with the focus on
non-conventional techniques.
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2. Results

We consider the Langevin equation with inertia

µϕ̈+ ϕ̇ = F (ϕ, t) + σξ(t) , µ ≪ 1 , (1)

where µ is mass or a measure of ‘inertia’ in the system (for Josephson junctions [16], power grid
models [27, 28], etc.), F is a deterministic force, σ is the noise strength, ξ(t) is a normalized
δ-correlated Gaussian noise: 〈ξ〉 = 0, 〈ξ(t) ξ(t′)〉 = 2δ(t − t′).

The Fokker–Planck equation for the probability density ρ(v, ϕ), where v ≡ ϕ̇, reads

∂tρ = −v∂ϕρ+ ∂v

[

1

µ

(

v − F (ϕ, t)
)

ρ

]

+
σ2

µ2
∂2
vρ (2)

(ϕ may be in a rotating reference frame, where it is useful).
Our aim is to eliminate the velocity and consider effective dynamics solely for ϕ. We analyse

four approaches to accomplishing this task:

• Moment formalism: representation in terms of wn(ϕ) =
∫ +∞
−∞ vnρ(v, ϕ) dv ;

calculations with equations (3)–(5) (or equation (29) for active Brownian particles).
Adiabatic elimination requires elements 0–2; the µ1-correction: 0–4; the µm-approximation:
0–(2m + 2).

• Cumulant formalism: representation in terms of Kn(ϕ) (or κn = Kn

n! ), defined as follows:

f(s, ϕ) =
∑∞

n=0wn(ϕ)
sn

n! , ln f = φ(s, ϕ) =
∑∞

n=0Kn(ϕ)
sn

n! [29];
calculations with equations (12)–(13).
Adiabatic elimination requires elements 0–2; the µ1-correction: 0–2 (for the adiabatic
elimination fewer number of contributions for these elements are included); the µm-
approximation: 0–(m+ 1).

• Basis of Hermite functions hn(u), which are the eigenfunctions of operator L̂1 = ∂u(u+∂u):

ρ(v, ϕ) =
∑∞

n=0
σ√
µ hn

(√
µ
σ v

)

Wn(ϕ, t) ;

calculations with equations (16)–(17).
Adiabatic elimination requires elements 0–1; the µ1-correction: 0–2; the µm-approximation:
0–(m + 1).

• An analogue of the cumulant representation for the basis of Hermite functions:
representation in terms of κn defined via f(s, ϕ) =

∑∞
n=0Wn(ϕ)s

n (notice, no n!) and
ln f = φ(s, ϕ) =

∑∞
n=0 κn(ϕ)s

n;
calculations with equations (20)–(21).
Adiabatic elimination requires elements 0–1; the µ1-correction: 0–2; the µm-approximation:
0–(m + 1).

The numerical simulations for F = 0.5−1.8 sinϕ, which is relevant for the study [12], revealed
the following. The actual accuracy of all approximations for a given order of approximation is
practically the same. Meanwhile, the behavior of elements with n significantly differs. The most
regular scaling with the growth on n is observed for ‘cumulants’ for the Hermite basis. For the
plain cumulants, the κ2 is large, as it should be, but the higher-order elements gradually decay.
Noticeably, in spite these elements are not as small as the ‘cumulants’ for the Hermite basis,
the truncation at the same m-th element leads to the same accuracy for the probability density
evolution of ϕ.

For the case of active Brownian particles [17, 30, 31, 32], one can immediately employ the
moment or cumulant formalisms, while the Hermit function basis needs to be significantly



corrected. With the latter approach an individual mathematical preparation for each new
problem is required, which can be problematic. Generally, calculations with system (29) for
active Brownian particles requires a large number of terms in series and might suffer from
numerical instabilities. We overcome these challenges by employing a modification [33] of the
exponential time differencing method [34] which provides high performance and accuracy for
stiff systems.

3. Methods

3.1. Moment formalism for Fokker–Planck equation
One can introduce the moments for v:

wn(ϕ) =

∫ +∞

−∞
vnρ(v, ϕ) dv .

For these moments the Fokker–Planck equation (2) yields

∂tw0 + ∂ϕw1 = 0 , (3)

w1 + µ∂tw1 = Fw0 − µ∂ϕw2 , (4)

wn +
µ

n
∂twn = Fwn−1 −

µ

n
∂ϕwn+1 + (n− 1)

σ2

µ
wn−2 for n ≥ 2 . (5)

For constructing a regular perturbation theory with respect to small parameter µ it is
convenient to take the scaling laws for 〈vn〉 with respect to µ [8] into account explicitly by
means of rescaling

wn =











1

µn/2
Wn , for even n ;

1

µ(n−1)/2
Wn , for odd n .

Then equations (3)–(5) can be recast in a form free from 1/µ-coefficients:

∂tW0 + ∂ϕW1 = 0 , (6)

W1 = FW0 − ∂ϕW2 − µ∂tW1 , (7)

Wn = (n− 1)σ2Wn−2 + µ
[

FWn−1 −
1

n
∂ϕWn+1 −

1

n
∂tWn

]

for n = 2m, (8)

Wn = (n− 1)σ2Wn−2 + FWn−1 −
1

n
∂ϕWn+1 −

µ

n
∂tWn for n = 2m+ 1 . (9)

3.1.1. Elimination of a fast variable System (6)–(9) for µ = 0 yields, after some algebra [8],

∂tW0 + ∂ϕ(FW0)− σ2∂2
ϕW0 = 0 . (10)

Thus, we obtain a conventional Fokker–Planck equation for W0, and all Wn≥1 are trivially
determined by W0 (see [8] for detailed equations).

Keeping µ1-corrections for W0, one can find from the infinite equation system (6)–(9) [8];

∂tW0 + ∂ϕ
[

(F − µ(∂tF + F∂ϕF ))W0

]

− σ2∂ϕ
[

(1− µ∂ϕF ) ∂ϕW0

]

= 0 . (11)

This is the corrected Smoluchowski equation [2, 6].
The conventional adiabatic elimination of a fast variable requires first three moments w0, w1,

w2; the first correction for small µ requires w3 and w4. Running equation system (3)–(5) for w0,
w1, ..., w2m+2 with formal closure w2m+3 = 0 yields the order of accuracy µm.



3.2. Cumulant formalism
The equation system for wn,

nwn + µ∂twn = nFwn−1 − µ∂ϕwn+1 + n(n− 1)σ
2

µ wn−2 ,

in terms of f(s, ϕ) =
∑+∞

n=0wn
sn

n! acquires the following form:

(s∂s + µ∂t)f = (sF − µ∂s∂ϕ + s2 σ
2

µ )f .

For φ = ln f , ∂f = f∂φ,

(s∂s + µ∂t)φ = sF + s2 σ2

µ − µ[∂s∂ϕφ+ (∂sφ)(∂ϕφ)] .

With φ =
∑+∞

n=0Kn
sn

n! ,

µ∂tK0 = −µ[∂ϕK1 +K1∂ϕK0] , (12)

(n+ µ∂t)Kn = Fδ1n + 2σ2

µ δ2n − µ
[

∂ϕKn+1 +
n
∑

j=0

n!
j!(n−j)!Kj+1∂ϕKn−j

]

for n ≥ 1 . (13)

Notice, with equations (12)–(13), the conventional elimination of a fast variable requires the
first three cumulants (or w0, w1, w2 with equations (3)–(5)); the first correction for small µ
requires additionally w3 and w4, while, as was shown in [8], within the framework of a cumulant
formalism the same first three equations of (12)–(13) are sufficient to obtain

∂tK0 = −(∂ϕ +K ′
0)
[

F − σ2K ′
0 + µ(∂tF + F ′F + σ2F ′K ′

0)
]

+O(µ2) , (14)

K1 = F − σ2K ′
0 − µ

(

∂tF + F ′F + σ2F ′K ′
0

)

+O(µ2) ,

K2 =
σ2

µ − σ2F ′ + σ4K ′′
0 +O(µ) .

We can see that equation (14) is equivalent to corrected Smoluchowski equation (11), if one
substitutes K0 = lnW0 and notices that ∂K0 = W−1

0 ∂W0 , (∂ϕ +K ′
0)(·) = W−1

0 ∂ϕ(W0(·)) .
To summarize, cumulant equations (12)–(13) for finite µ are significantly more lengthy, than

equations for moments wn. However, the convergence properties of Kn for µ → 0 are better,
than that of wn. The adiabatic elimination of velocity in terms of Kn and wn requires the
first three elements. However, the µ1-correction to the Smoluchowski equation in terms of wn

requires 5 terms (see [6] for the multiple-dimension case), while in terms of cumulants Kn the
same first three elements K0, K1, K2 are sufficient. Generally, for the µm-correction one needs
the leading order accuracy for Km+1, i.e., the first m + 2 cumulants are required. Meanwhile,
in terms of wn (or Wn), one needs the first 2m+ 3 moments.

3.3. Basis of Hermite functions
A conventional way for handling the fast velocity variable in the Fokker–Planck equation is the
employment of the basis of Hermite functions for v [2, 12]. For operator L̂1 = ∂u(u+∂u)—which
lies in the foundation of the adiabatic elimination of the velocity in FP equation (2) for ρ(v, ϕ) :

∂tρ = −v∂ϕρ+ ∂v

[

1

µ

(

v − F (ϕ, t)
)

ρ

]

+
σ2

µ2
∂2
vρ

—one can see that L̂1hn(u) = −nHn(u),

hn(u) = Hn(u)
1√
2π

e−u2/2 ,



Hn(u) is the n-th Hermite polynomial of the order n, which obeys

H ′′
n − uH ′

n = −nHn . (15)

With normalization condition
∫ +∞

−∞
duhn(u)hm(u) =

n! δnm√
2π

(which provides
∫ +∞
−∞ duh0(u) = 1), the following recursive formulae are valid: H ′

n = nHn−1

and uHn = nHn−1+Hn+1. With these recursive formulae, the Fokker–Planck equation (2) (see
also equation (4) in [12]) for

ρ =

∞
∑

n=0

σ√
µ
hn

(√
µ

σ
v

)

Wn(ϕ, t)

yields

Ẇ0 = − σ√
µ
∂ϕW1 , (16)

Ẇn =
σ√
µ

(

(σ−2F − ∂ϕ)Wn−1 − (n+ 1)∂ϕWn+1

)

− n

µ
Wn for n ≥ 1 . (17)

3.3.1. Elimination of a fast variable For µ ≪ 1, it is more convenient to rewrite equations (16)–
(17) as

Ẇ0 = − σ√
µ
∂ϕW1 , (18)

Wn =

√
µσ

n

(

(σ−2F − ∂ϕ)Wn−1 − (n+ 1)∂ϕWn+1

)

− µ

n
∂tWn for n ≥ 1 . (19)

With equations (18)–(19), one finds Wn ∼ µn/2.
Taking the leading order for WN , one has error(WN ) ∼ µN/2+1, error(WN−1) ∼ µN/2+1+1/2,

. . . , error(W1) ∼ µN/2+1+(N−1)/2, and error(∂tW0) ∼ µN . Thus, the truncation after WN leads
to inaccuracy ∼ µN .

3.4. “Cumulant” formalism for the Hermite function basis
Let us construct an analogue of cumulant representation for v. For generating function
f(s, ϕ) =

∑∞
n=0 Wn(ϕ)s

n (it will be essential below to use sn, but not sn/n!), one finds

ḟ =
σ√
µ

(

s(σ−2F − ∂ϕ)f − ∂s∂ϕf
)

− 1

µ
s∂sf .

For Φ = ln f , ∂Φ = ∂f/f ,

Φ̇ =
σ√
µ

(

s(σ−2F − ∂ϕΦ)− ∂s∂ϕΦ− (∂sΦ)(∂ϕΦ)
)

− 1

µ
s∂sΦ .

With Φ(s, ϕ) =
∑∞

n=0 κn(ϕ)s
n, the latter equation yields

κ̇0 = − σ√
µ(∂ϕκ1 + κ1∂ϕκ0) , (20)

κ̇n = σ√
µ

(

σ−2Fδ1n − ∂ϕκn−1 − (n+ 1)∂ϕκn+1 −
∑

n1+n2
=n+1

n1κn1
∂ϕκn2

)

− n
µκn for n ≥ 1 . (21)



For µ ≪ 1, it is convenient to recast the latter system as

κ̇0 = − σ√
µ(∂ϕκ1 + κ1∂ϕκ0) , (22)

κn =
√
µσ
n

(

σ−2Fδ1n − ∂ϕκn−1 − (n+ 1)∂ϕκn+1 −
∑

n1+n2
=n+1

n1κn1
∂ϕκn2

)

− µ
n∂tκn for n ≥ 1 .

(23)

For the µ1-approximation,

κ̇0 = −(κ′
0 + ∂ϕ)

[

F − µ(∂t + F ′)F − σ2(1− µF ′)κ′
0

]

+O(µ2) , (24)

κ1 =
√
µσ

(

σ−2F − ∂ϕκ0 − µ
[

σ−2(∂t + F ′)F − F ′
κ
′
0

])

+O(µ5/2) , (25)

κ2 = −
√
µ σ
2 ∂ϕκ1 +O(µ2) . (26)

Equation (24) is equivalent to (11) (see explanations after equation (14)).
For system (22)–(23), κn ∼ µn/2; the µN -approximation requires truncation atfer κN+1.
Here, there seems to be no preference between the Wn- and κn-representations, except the

equations in terms of κn are more lengthy.
In this subsection, it is essential that the definition of the generating function f(s, ϕ) with

Wns
n/n! is inappropriate, since such a definition leads to the term ∂−1

s f in the governing equation
for f ; this term cannot be represented with simple regular sums in terms of κn.

3.5. Moment and cumulant formalisms for active Brownian particles
Let us consider the following Langevin equation

µϕ̈+ αϕ̇+ βϕ̇3 = F (ϕ, t) + σξ(t) , µ ≪ 1 , (27)

where β > 0. This example can be useful only as an illustration since the fluctuation term
and the leading dissipation term here are not in concordance with the Fluctuation–Dissipation
Theorem.

With the Fokker–Planck equation

∂tρ = −v∂ϕρ+ ∂v

[

αv + βv3 − F (ϕ, t)

µ
ρ

]

+
σ2

µ2
∂2
vρ , (28)

the moment equation system acquires the following form:

αnwn + βnwn+2 + µ∂twn = nFwn−1 − µ∂ϕwn+1 + n(n− 1)σ
2

µ wn−2 , (29)

which yields in terms of f(s, ϕ) =
∑+∞

n=0wn
sn

n! :

(αs∂s + βs∂3
s + µ∂t)f = (sF − µ∂s∂ϕ + s2 σ

2

µ )f .

For φ = ln f , ∂f = f∂φ,

(αs∂s + µ∂t)φ+ βs[∂3
sφ+ 3∂sφ∂

2
sφ+ (∂sφ)

3] = sF + s2 σ
2

µ − µ[∂s∂ϕφ+ (∂sφ)(∂ϕφ)] .

With φ =
∑+∞

n=0Kn
sn

n! ,

µ∂tK0 = −µ[∂ϕK1 +K1∂ϕK0] , (30)

(αn + µ∂t)Kn + βn
[

Kn+2 + 3
n
∑

j=1

(n−1)!
(j−1)!(n−j)!KjKn+2−j +

∑

j1+j2+j3
=n+2

(n−1)!
(j1−1)!(j2−1)!(j3−1)!Kj1Kj2Kj3

]

= Fδ1n + 2σ2

µ δ2n − µ
[

∂ϕKn+1 +
n
∑

j=0

n!
j!(n−j)!Kj+1∂ϕKn−j

]

for n ≥ 1 . (31)



For the first five equations of (30)–(31),

∂tK0 = −∂ϕK1 −K1∂ϕK0 ,

(α+ µ∂t)K1 + β[K3 + 3K1K2 +K3
1 ] = F − µ

[

∂ϕK2 +K1∂ϕK1 +K2∂ϕK0

]

,

(2α + µ∂t)K2 + 2β
[

K4 + 3(K2
1 +K1K3) + 3K2

1K2

]

= 2σ2

µ − µ
[

∂ϕK3 +K1∂ϕK2 + 2K2∂ϕK1 +K3∂ϕK0

]

,

(3α + µ∂t)K3 + 3β
[

K5 + 3(3K3K2 +K1K4) + 3K2
1K3 + 6K2

2K1

]

= −µ
[

∂ϕK4 +K1∂ϕK3 + 3K2∂ϕK2 + 3K3∂ϕK1 +K4∂ϕK0

]

,

(4α + µ∂t)K4 + 4β
[

K6 + 3(4K4K2 + 3K2
3 +K1K5) + 6K3

2 + 18K1K2K3 + 3K2
1K4

]

= −µ
[

∂ϕK5 +K1∂ϕK4 + 4K2∂ϕK3 + 6K3∂ϕK2 + 4K4∂ϕK1 +K5∂ϕK0

]

,

. . . . (32)

The inspection of equation system (32) reveals the following scaling properties of Kn with
respect to µ:

Kn ∼
{

µ−n
4 for even n ,

µ
3

4
−n

4 for odd n .

With such scaling properties the β- and σ2-terms for even n in equation system (32) dominate
and one cannot truncate the equation chain without affecting the leading order with respect
to µ. Moreover, one faces similar issue with even n; which is coupled with the F -term in the
leading order. Thus, the calculations in the leading order require β-, F - and σ2-terms and
these calculations in terms of Kn (or wn) are extremely challenging. This problem can be more
efficiently solved with the Fokker–Planck equation (28) where all terms without β, F or σ2 are
dropped. One finds

ρ = C(ϕ)e
µ

σ2 (−
βv4

4
+Fv) + . . . ,

where . . . stand for higher-order corrections. After laborious but straightforward calculations
one can obtain:

w2n+1 ≈
4F

β

Γ(n2 + 3
4)

Γ(14)

(

2σ√
βµ

)n−1

w0 , (33)

w2n ≈ Γ(n2 + 1
4)

Γ(14)

(

2σ√
βµ

)n

w0 . (34)

Corresponding cumulants:

K0 = lnw0 , K2 ≈ Γ( 3
4
)

Γ( 1
4
)

2σ√
βµ

, K4 ≈ −
(

3
[

Γ( 3
4
)

Γ( 1
4
)

]2

− 1
4

)

4σ2

βµ ,

K6 ≈ 3
Γ( 3

4
)

Γ( 1
4
)

(

10
[

Γ( 3
4
)

Γ( 1
4
)

]2

− 1

)

(

2σ√
βµ

)3
, . . . ,

K1 ≈ 4F
β

Γ( 3
4
)

Γ( 1
4
)

√
βµ
2σ , K3 ≈ −4F

β

(

3
[

Γ( 3
4
)

Γ( 1
4
)

]2

− 1
4

)

,

K5 ≈ 34F
β

Γ( 3
4
)

Γ( 1
4
)

(

10
[

Γ( 3
4
)

Γ( 1
4
)

]2

− 1

)

2σ√
βµ

, . . . .

Obviously, the cumulant representation can be beneficiary mainly for the systems where the
distribution of the fast variable is close to the Gaussian distribution. An example of the latter is
the case of passive Brownian particles, where the Fluctuation–Dissipation theorem requires the
Gaussian distribution for the unperturbed state, and can be often relevant for active Brownian
particles, where the leading dissipation term is in concordance with the fluctuations-term.



4. Conclusion

The four analyzed formalisms for elimination of a fast variable (velocity) yield a comparable
accuracy for the same strong order of accuracy with respect to the inertia parameter µ (mass).
However, for the moment formalism employing wn(ϕ) =

∫

vnρ(v, ϕ)dv, the strong order µm

requires 2m+ 3 equations (from the order 0 to the order 2m+ 2); for corresponding cumulants
Kn, only m+2 equations are required (from 0th to (m+1)th orders); for the Hermite function
basis and its formal ‘cumulant’ version, the same m+ 2 equations are required.

For the case of active Brownian particles one cannot employ the Hermite function basis,
while one can still use the moment or cumulant formalisms. Practical implementation of
these formalisms for numerical simulation can be efficiently performed with employment of
a modification of the exponential time differencing method [33].
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