
ar
X

iv
:2

10
7.

10
52

2v
3 

 [
co

nd
-m

at
.s

of
t]

  1
 S

ep
 2

02
3

Prog. Theor. Exp. Phys. 2015, 00000 (39 pages)
DOI: 10.1093/ptep/0000000000

Rheology of a dilute binary mixture of inertial
suspension under simple shear flow

Satoshi Takada1, Hisao Hayakawa2, and Vicente Garzó3
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The rheology of a dilute binary mixture of inertial suspension under simple shear flow is
analyzed in the context of the Boltzmann kinetic equation. The effect of the surrounding
viscous gas on the solid particles is accounted for by means of a deterministic viscous
drag force plus a stochastic Langevin-like term defined in terms of the environmental
temperature Tenv. Grad’s moment method is employed to determine the temperature
ratio and the pressure tensor in terms of the coefficients of restitution, concentration,
the masses and diameters of the components of the mixture, and the environmental
temperature. Analytical results are compared against event-driven Langevin simulations
for mixtures of hard spheres with the same mass density m1/m2 = (σ(1)/σ(2))3, mi and
σ(1) being the mass and diameter, respectively, of the species i. It is confirmed that
the theoretical predictions agree with simulations of various size ratios σ(1)/σ(2) and for
elastic and inelastic collisions in the wide range of parameters’ space. It is remarkable
that the temperature ratio T1/T2 and the viscosity ratio η1/η2 (ηi being the partial
contribution of the species i to the total shear viscosity η = η1 + η2) discontinuously
change at a certain shear rate as the size ratio increases; this feature (which is expected
to occur in the thermodynamic limit) cannot be completely captured by simulations
due to small system size. In addition, a Bhatnagar–Gross–Krook (BGK)-type kinetic
model adapted to mixtures of inelastic hard spheres is exactly solved when Tenv is much
smaller than the kinetic temperature T . A comparison between the velocity distribution
functions obtained from Grad’s method, BGK model, and simulations is carried out.
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1. Introduction

Rheology is the subject that studies the flow properties of materials. Although the viscosity

of the Newtonian fluid is independent of the shear rate, there are many domestic substances

(liquids containing microstructures such as suspensions and polymers) where the viscosity

depends on the shear rate (non-Newtonian fluids). Within the class of non-Newtonian fluids,

some of them exhibit shear thinning (namely, when the viscosity decreases with the shear
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rate) while others display shear thickening (namely, when the viscosity increases with the

shear rate). The shear thickening is also categorized into two classes as the continuous

shear thickening (CST) and discontinuous shear thickening (DST). The viscosity increases

continuously in CST, while it abruptly changes discontinuously from a small value to a large

value at a critical shear rate in DST. DST has attracted much attention among physicists in

the last few years [1–7] as a typical nonequilibrium discontinuous phase transition between a

liquid-like phase and a solid-like phase. In addition, the understanding of the origin of DST

is also important for potential industrial applications such as protective vests and traction

controls.

Although most of the previous studies on shear thickening have been oriented to dense

suspensions, there are some other studies that analyze a DST-like process for the kinetic

temperature of inertial suspensions. This type of inertial suspensions can be regarded as an

idealistic model of aerosols [8]. The DST-like process (or the ignited-quenched transition)

of dilute inertial suspensions takes place as a result of a saddle-node bifurcation. On the

other hand, the DST-like process for dilute suspensions becomes CST-like as the density of

suspensions increases [9–16].

To gain some insight into the understanding of the generic features of rheological phase

transitions, we use kinetic theory tools in this paper. This allows us to offer a quantita-

tive theoretical analysis for the DST-like and CST-like processes in inertial suspensions.

However, it should be noted that some previous kinetic theories for inertial suspensions

have ignored thermal fluctuations in the dynamics of grains [9–11, 14]. A refined suspension

model including a Langevin-like term has been more recently considered in Refs. [12, 13, 15–

17]. The quantitative validity of these studies has already been verified by the event-driven

Langevin simulation for hard spheres (EDLSHS) [15, 16, 18].

Most of the previous theoretical studies on the rheology of inertial suspensions have focused

on monodisperse systems, namely, suspensions containing only identical spherical particles.

In reality, suspended particles are not identical since the size of the particles is distributed

and the shape and mechanical properties of the particles are also different. To quantify the

impact of polydispersity on the rheological properties of inertial suspensions under simple or

uniform shear flows (USF), we consider a binary mixture in this paper, namely, a suspension

which contains two kinds of spherical particles having different sizes. We note that bidisperse

systems are also studied in colloidal and blood suspensions [19–22].

A challenging and interesting problem in sheared granular binary mixtures is that of the

diffusion. It is well established that in the absence of shear the mass flux is proportional to

the density, pressure, and temperature gradients where the corresponding transport coef-

ficients are scalar quantities [23]. However, when the mixture is strongly sheared, due to

the anisotropy induced by the shear flow tensorial quantities are required to characterize

the mass transport instead of the conventional scalar diffusion coefficients. There have been

some previous attempts for describing the self-diffusion problem in sheared granular mix-

tures [24, 25]. As expected, all previous studies indicate that the diffusion process in USF

is highly anisotropic and the components of the diffusion can be observed in the directions

parallel and perpendicular to the velocity gradient. To characterize such anisotropy of the

diffusion tensor, there have been several theoretical studies based on kinetic theory [26, 27],
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simulation works of rapid granular shear flows [28, 29], and experimental studies of dense,

granular shear flows in a two-dimensional Couette geometry [30, 31].

One of the key features of flows of polydisperse particles is segregation [32]. This is likely one

of the most relevant problems in granular mixtures, from practical and fundamental points

of view. However, despite many industrial and scientific progresses made in the past few

years, the mechanisms involved in the segregation phenomenon are still poorly understood.

In particular, in the context of kinetic theory, many different papers have addressed the

study of segregation [33–42]. On the other hand, computer simulations of bidisperse granular

mixtures under USF (and without any influence of gravity) [43] have not found any sign of

large-scale size segregation. Another type of works has studied segregation in flows down

inclined slopes in which approximate simple shear flows have been realized, at least, in the

bulk regions away from the bottom boundaries and surfaces. It is remarkable that the trigger

of the segregation is the deviation from the USF of the velocity profile as has been reported

in Ref. [42]. This suggests that segregation can be observed even for dilute mixtures without

the influence of gravity, if we drive a shear flow through a boundary. In other words, the

segregation is localized near the boundaries.

Previous studies of granular binary mixtures based on the kinetic theory have mainly

focused on obtaining the Navier–Stokes transport coefficients of the mixture by consider-

ing states close to the homogeneous cooling state [23] and/or close to driven stationary

homogeneous states [44–46]. The results are more scarce in the study of the rheological

properties of granular binary mixtures under USF [43, 47–49]. As expected, the results show

that the mixture is non-Newtonian and in some cases, the effect of bidispersity enhances

the non-Newtonian character of the fluid. Since the USF is spatially homogeneous in the

frame moving with the linear velocity field, no segregation appears in the system. However,

when the USF state is slightly perturbed by small density and temperature gradients, a non-

vanishing mass flux is present and the corresponding components of the diffusion tensors

have been determined in the tracer limit in Refs. [26, 27]. The knowledge of the shear-rate

dependence of the above diffusion tensors has allowed to analyze thermal diffusion segrega-

tion induced by the presence of a temperature gradient orthogonal to the shear flow plane

[50].

Nevertheless, so far and to the best of our knowledge, there are few studies of binary

mixtures of inertial suspensions including diffusion processes, in which the rheology of iner-

tial suspensions drastically depends on the shear rate. Thus, as already did in the case of

granular mixtures [26, 27], one has to determine the rheological properties of sheared binary

mixtures of inertial suspensions as a first step before considering the segregation problem.

Once rheology is known, the components of the diffusion tensors can be determined by using

a similar procedure as the one followed in (dry) granular mixtures. Therefore, the study of

the rheology of a dilute binary mixture of inertial suspension is an important issue.

Beyond dilute granular flows, it is quite apparent that there are many exotic rheological

processes in dense flows. These processes include glass transitions, shear jamming, jamming,

and DST [1–7, 51–54]. Such exotic processes cannot be observed in monodisperse systems

but they can be observed only in mixtures when the volume fraction exceeds the transition

point for crystallization of identical spheres at the volume fraction ϕ = 0.49.
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In this paper, we focus on the rheology of a dilute binary mixture under USF. As in our pre-

vious works [15, 16], the influence of the interstitial gas on solid particles is accounted for in

an effective way by means of (i) a deterministic drag force proportional to the particle veloc-

ity and (ii) a stochastic Langevin-like term. While the first contribution attempts to model

the friction of grains on the viscous fluid (a collection of gas molecules), the second term

mimics the energy gained by the solid particles due to their interactions with the particles

of the surrounding gas. The corresponding set of two coupled Boltzmann kinetic equations

is solved by two complementary and independent routes: (i) Grad’s moment method and

(ii) event-driven simulations for hard spheres (EDLSHS). The comparison between kinetic

theory and EDLSHS allows us to verify the reliability of the theoretical predictions as the

first step to tackle the behavior of sheared binary mixtures of inertial suspensions. Our

(approximate) analytical results of the rheological properties of the mixture (the ratio T1/T2

between the partial temperatures and the pressure tensor) agree well with simulations for

conditions of practical interest. In particular, the temperature ratio T1/T2 and the viscos-

ity ratio η1/η2 (where ηi is the partial contribution of the component i to the total shear

viscosity η = η1 + η2) exhibit a DST-like transition for sufficiently high values of the size

ratio σ(1)/σ(2). As a complement, we have also compared the velocity distribution function

obtained by both Grad’s moment method and a kinetic model with the one obtained by

EDLSHS.

The contents of the paper are as follows. In Sect. 2, we introduce the Langevin model

and Boltzmann equation for a binary mixture of inertial suspensions under a simple shear.

Section 3 deals with the theoretical procedure to derive the rheology of inertial suspensions

in USF. Section 4 is the main part of this paper, in which we present the theoretical and

numerical results and find a new rheological phase transition similar to DST. The velocity

distribution function is also studied by comparing the results from Grad’s approximation

and simulations. In Sect. 5, we discuss and conclude our results. Moreover, there are several

appendices to explain the technical details of the paper. In Appendix A, the difference

between P
(i)
yy and P

(i)
zz is discussed. In Appendix B, we provide some mathematical steps

to compute the collisional moment needed to determine the components of the pressure

tensor from Grad’s method. The detailed rheological properties for the temperature ratio,

temperature, and viscosity are discussed in Appendix C. Appendix D discusses how the

discontinuous transition appears/disappears when we change the parameters of the mixture.

The tracer limit of the theory is briefly presented in Appendix E while Appendix F gives the

exact solution to a Bhatnagar–Gross–Krook (BGK)-like kinetic model for granular mixtures

in the high shear rate regime. This solution provides a two-dimensional velocity distribution

function. Finally, the one-dimensional velocity distribution function is displayed in Appendix

G with a comparison with the one obtained from computer simulations.

2. Basic equations for a binary mixture of inertial suspension under uniform
Shear Flows

In this section, we present the basic equations describing a dilute binary mixture of inertial

suspensions under USF. In the first subsection, we introduce the Langevin equation charac-

terizing the motion of each particle activated by the thermal noise caused by collisions with

the environmental molecules. In the second subsection, we write the corresponding set of
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two coupled nonlinear Boltzmann kinetic equations for the bidisperse inertial suspension in

the low-density regime.

2.1. Langevin equation

We consider a three-dimensional binary mixture of inertial suspension modeled as a mixture

of inelastic hard spheres of masses mi and diameters σ(i) (i = 1, 2). For the sake of simplicity,

we assume that the spheres are completely smooth and hence, collisions among all pairs are

characterized by (positive) constant coefficients of normal restitution eij ≤ 1, where the

subscripts ij denote the species i and j, respectively. Let us use the notations v
(i)
1 and v

(j)
2

when the particle 1 (species i) collides with the particle 2 (species j). The post-collisional

velocities v
(i)′
1 of particles 1 (species i) and v

(j)′
2 for 2 (species j) are expressed as





v
(i)′
1 = v

(i)
1 − mij

mi
(1 + eij)

(
v
(ij)
12 · σ̂

)
σ̂,

v
(j)′
2 = v

(j)
2 +

mij

mj
(1 + eij)

(
v
(ij)
12 · σ̂

)
σ̂,

(1)

where we have introduced the pre-collisional velocities of particles v
(i)
1 for 1 (species i) and

2 (species j), v
(ij)
12 ≡ v

(i)
1 − v

(j)
2 , the unit normal vector at contact σ̂, and the reduced mass

mij ≡ mimj/(mi +mj).

Fig. 1 Setup of our system. Two species of particles are distributed in a fluidized inertial

suspension characterized by the temperature Tenv. The shear is applied with the shear rate

γ̇ in the xy plane, where the x and y axes are the shear direction and the velocity gradient

direction, respectively. Here, we use N = 30000 particles with the size and number ratio as

σ(1)/σ(2) = 10.0 and N1/N2 = 30/29970 = 1/999, respectively.

The inertial suspension we consider is subjected to a steady simple shear flow in the x

direction as shown in Fig. 1. The equation of motion for the k-th particle of the species i is

described by the Langevin equation

dp
(i)
k

dt
= −ζip

(i)
k + F

imp
k +miξ

(i)
k , (2)

where ζi is the drag coefficient acting on the particle of species i from the environmental fluid,

and p
(i)
k ≡ mi(v

(i)
k − γ̇y

(i)
k ex) is the peculiar momentum of the k-th particle with velocity v

(i)
k .
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Here, γ̇ and ex are the shear rate and unit vector in the sheared (x) direction, respectively.

If hard-core grains are subjected to the Stokes’ drag, ζi is simply proportional to σ(i) and√
Tenv, where Tenv is the environmental temperature. When we adopt the mean diameter

σ ≡ (σ(1) + σ(2))/2 and drag coefficient ζ ≡ (ζ1 + ζ2)/2, the coefficient ζi satisfies ζi/ζ ∝
σ(i)/σ. For denser flows, the dependence of ζi on the parameters of the mixture is more

complex [55, 56]. In Eq. (2), F imp
k expresses the impulsive force accounting for the collisions

while the noise term ξ
(i)
k (t) = ξ

(i)
k,αeα (the unit vector eα in the α−direction) satisfies the

fluctuation-dissipation relation [57]:

〈ξ(i)k (t)〉 = 0,
〈
ξ
(i)
k,α(t)ξ

(j)
ℓ,β(t

′)
〉
=

2ζiTenv

mi
δijδkℓδαβδ(t− t′). (3)

2.2. Boltzmann equation

If the density of the solid particles is low enough, the Langevin equation (2) can be converted

into the Boltzmann kinetic equation for the distribution function fi(r,v, t) for the species i

of the dilute binary mixture of inertial suspensions. The set of coupled Boltzmann equations

read
(

∂

∂t
+ v ·∇

)
fi (r,v, t) = ζi

∂

∂v
·
[(

v +
Tenv

mi

∂

∂v

)
fi (r,v, t)

]
+
∑

j

Jij [v|fi, fj] , (4)

with the collision integral [23]

Jij [v1|fi, fj] = σ
(ij)2
12

∫
dv2

∫
dσ̂Θ(σ̂ · v12) (σ̂ · v12)

×
[

1

e2ij
fi
(
r,v′′

1 , t
)
fj
(
r,v′′

2 , t
)
− fi (r,v1, t)fj(r,v2, t)

]
, (5)

where we have introduced σ
(ij)
12 ≡ (σ

(i)
1 + σ

(j)
2 )/2.

From the distribution fi, one can define the number density of species i as

ni(r, t) =

∫
dv fi(r,v, t), (6)

the flow velocity Ui of species i as

Ui(r, t) =

∫
dv v fi(r,v, t), (7)

and the partial temperature Ti of species i

3

2
ni(r, t)Ti(r, t) =

∫
dv

m

2
V (r, t)2 fi(r,v, t). (8)

Here, V (r, t) ≡ v −U(r, t) is the peculiar velocity. The mean flow velocity U(r, t) and the

kinetic temperature T (r, t) are defined, respectively, as

U = ρ−1
∑

i

ρiUi, T =
∑

i

νiTi, (9)

where n ≡ n1 + n2 is the total number density, ρi ≡ mini is the mass density of species i,

ρ ≡ ρ1 + ρ2 is the total mass density, and νi ≡ ni/n = Ni/N is the fraction of species i. Here,

Ni is the number of particles of species i and N = N1 +N2.
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Let us consider the macroscopic velocity satisfying

U1 = U2 = U = γ̇yex, (10)

where γ̇ is the constant shear rate. In terms of the peculiar velocity V, Eq. (4) can be

rewritten as
[
∂

∂t
+ (V + γ̇yex) ·∇− γ̇Vy

∂

∂Vx

]
fi (r,V , t)

= ζi
∂

∂V
·
[(

V +
Tenv

mi

∂

∂V

)
fi (r,V , t)

]
+
∑

j

Jij [V |fi, fj] . (11)

At a macroscopic level, the USF is characterized by uniform density and temperature and

the linear velocity field (10). In addition, at a more fundamental level, the USF is defined as

that which is spatially uniform in the Lagrangian frame moving with the velocity field (10).

In this frame, fi(r,v, t) = fi(V , t) and Eq. (11) is reduced to the equation for the velocity

distribution function:
(

∂

∂t
− γ̇Vy

∂

∂Vx

)
fi (V , t) = ζi

∂

∂V
·
[(

V +
Tenv

mi

∂

∂V

)
fi (V , t)

]
+
∑

j

Jij [V |fi, fj ] . (12)

One of our theoretical goals is to determine the pressure tensor

Pαβ = P
(1)
αβ + P

(2)
αβ , (13)

where the partial pressure tensor for species i is defined as

P
(i)
αβ =

∫
dV miVαVβfi (V ) . (14)

We use the Greek and Latin characters for {x, y, z} and the species {1, 2}, respectively. The
knowledge of the pressure tensor allows one to get the rheological properties of the inertial

suspension. Needless to say, the flow under USF is independent of the spatial position by

its definition. Therefore, we can start from Eq. (12) as the basic equation for the theoretical

analysis.

3. Rheology under uniform shear flows

In this section, we present the results of rheology for a binary mixture of inertial suspension

under USF obtained from the Boltzmann equation (12). There are three subsections in this

Section. In the first subsection, we summarize a general framework to determine the rheology

of inertial suspensions by deriving a set of equations for the partial pressure tensors by

multiplying both sides of Eq. (12) bymiV V and integrating over velocity. No approximations

are considered in this subsection, including the moment of the collision integral (5). In the

second subsection, we focus on the steady rheology within the framework of the kinetic

theory under Grad’s moment method [58]. In the third subsection, we explain the concrete

procedure to determine the steady rheology.

3.1. Moment equation for the pressure tensor

As mentioned before, the set of equations for the pressure tensor of the species i is obtained

by multiplying by miVαVβ both sides of the Boltzmann equation (12) and integrating over
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V . The result is

∂

∂t
P

(i)
αβ + γ̇

(
δαxP

(i)
yβ + δβxP

(i)
yα

)
= −2ζi

(
P

(i)
αβ − niTenvδαβ

)
−

2∑

j=1

Λ
(ij)
αβ , i = 1, 2, (15)

where Λ
(ij) is the collisional moment

Λ
(ij)
αβ ≡ −

∫
dV miVαVβJij [V |fi, fj] . (16)

Let us introduce the anisotropic temperatures

∆Ti ≡
P

(i)
xx − P

(i)
yy

ni
, ∆T ≡ Pxx − Pyy

n
. (17)

It should be noted that there are some other anisotropic temperatures such as δT ≡ (Pxx −
Pzz)/n, which differ from ∆T in general. Nevertheless, we ignore the difference between

∆T and δT in this paper, because (i) the detection of the difference between ∆T and δT is

difficult [13], and (ii) the linear approximation of Grad’s method used later yields P
(i)
yy = P

(i)
zz

and so, ∆T = δT . In general, δT differs from ∆T even for dilute systems (Refs. [10, 11]),

although the previous studies confirmed that the effect of δT 6= ∆T is small [11, 13]. We

want also to indicate that the difference between ∆T and δT is almost imperceptible in the

simulations (see Appendix A) despite the requirement of long and tedious calculations for

evaluating this difference [13]. Therefore, for simplicity, we ignore the difference between ∆T

and δT in this paper.

If we adopt such a simplification, the evolution equations for Ti, ∆Ti, and P
(i)
xy are given

by

∂

∂t
Ti = − 2

3ni
γ̇P (i)

xy + 2ζi (Tenv − Ti)−
1

3ni

2∑

j=1

Λ(ij)
αα , (18a)

∂

∂t
∆Ti = − 2

ni
γ̇P (i)

xy − 2ζi∆Ti −
1

ni

2∑

j=1

(
Λ(ij)
xx − Λ(ij)

yy

)
, (18b)

∂

∂t
P (i)
xy = −γ̇ni

(
Ti −

1

3
∆Ti

)
− 2ζiP

(i)
xy −

2∑

j=1

Λ(ij)
xy , (18c)

where we have introduced the environmental temperature Tenv of the suspension liquid. Note

that the diagonal elements of the pressure tensor in dilute systems can be written as

P (i)
xx = ni

(
Ti +

2

3
∆Ti

)
, (19)

P (i)
yy = ni

(
Ti −

1

3
∆Ti

)
. (20)

In this paper, we adopt Einstein’s rule for the summation, i.e., P
(i)
αα =

∑3
α=1 P

(i)
αα. Upon

deriving Eqs. (19), we recall that we have made use of the identity P
(i)
yy = P

(i)
zz .

3.2. Kinetic theory of rheology for a dilute binary mixture of inertial suspension via
Grad’s method

3.2.1. Grad’s moment method for the velocity distribution function. To determine P
(i)
αβ , we

need to know the explicit form of the collisional moments Λ
(ij)
αβ . This requires the knowledge of
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the velocity distribution functions fi, which is an intricate problem even for the elastic case.

As for monodisperse inertial suspensions, a useful way to estimate Λ
(ij) is to adopt Grad’s

moment method [58] in which the true fi is approximated by the trial Grad’s distribution [11,

12, 15, 16, 26, 58–60]:

fi(V ) ≈ fi,M(V )

(
1 +

mi

2Ti
Π

(i)
αβVαVβ

)
, (21)

where

Π
(i)
αβ =

P
(i)
αβ

niTi
− δαβ , (22)

and fi,M(V ) is the Maxwellian distribution at the temperature Ti of the species i, i.e.,

fi,M(V ) = ni

(
mi

2πTi

)3/2

exp

(
−miV

2

2Ti

)
. (23)

Note that in Eq. (21) we have taken into account that the mass and heat fluxes of a binary

mixture vanish in the USF state.

With the use of the distribution (21), the integrals appearing in the expression of the colli-

sional moments Λ(ij) can be explicitly computed. After a lengthy calculation (see Appendix

B for the derivation), one gets

Λ
(ij)
αβ =

2
√
π

3
ninjmijσ

(ij)2
12 v3T

(
ǫi + ǫj
ǫiǫj

)3/2

(1 + eij)

{[
λij −

1

2

mij

mi
(1 + eij)

]
δαβ

+2
ǫiǫj

(ǫi + ǫj)2

[(
1 +

3

5

ǫi + ǫj
ǫi

λij

)
Π

(i)
αβ −

(
1− 3

5

ǫi + ǫj
ǫj

λij

)
Π

(j)
αβ

]}
, (24)

with

λij ≡ 2
miǫj −mjǫi

(mi +mj)(ǫi + ǫj)
+

1

2

mij

mi
(3− eij). (25)

Here, we have introduced ǫi ≡ miT/(mTi), and the thermal velocity vT ≡
√

2T/m with

the mean mass m defined as m ≡ (m1 +m2)/2. Upon deriving Eq. (24), nonlinear terms

in the traceless stress tensor Π
(i)
αβ have been neglected (linear Grad’s approximation). The

expression (24) agrees with a previous derivation of the collision integral Λ
(ij)
αβ [47].

Now, let us rewrite the set of equations (18) in dimensionless forms. We introduce the

partial dimensionless temperatures θi and the anisotropic temperatures ∆θi for species i as

θi ≡
Ti

Tenv
, ∆θi ≡

∆Ti

Tenv
. (26)

We also introduce the global quantities θ ≡∑2
i=1 νiθi and ∆θ ≡∑2

i=1 νi∆θi, where we recall

that νi = ni/n.

Then, the dimensionless collisional moment

Λ
(ij)∗
αβ ≡

Λ
(ij)
αβ

niσ−1
√

T 3
env/m

(27)

becomes

Λ
(ij)∗
αβ = Cijθ

3/2

(
ǫi + ǫj
ǫiǫj

)3/2{[
λij −

1

2

mij

mi
(1 + eij)

]
δαβ

+2
ǫiǫj

(ǫi + ǫj)2

[(
1 +

3

5

ǫi + ǫj
ǫi

λij

)
Π

(i)
αβ −

(
1− 3

5

ǫi + ǫj
ǫj

λij

)
Π

(j)
αβ

]}
, (28)
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with

Cij ≡ 8

√
2

π

νj

ν1σ(1)∗3 + ν2σ(2)∗3
m∗

ijσ
(ij)∗2ϕ(1 + eij), (29)

where we have introduced the packing fraction

ϕ ≡ π

6
n(ν1σ

(1)3 + ν2σ
(2)3). (30)

In addition, the dimensionless reduced mass m∗

ij ≡ m∗

im
∗

j/(m
∗

i +m∗

j), m
∗

i ≡ mi/m, σ(i)∗ ≡
σi/σ, σ

(ij)∗ ≡ σ(ij)/σ, and

ξenv ≡
√

Tenv

m

1

σζ
(31)

characterizes the magnitude of the noise [13]. In terms of the temperature ratio

ϑ ≡ T1

T2
, (32)

the partial temperatures T1 and T2 can be written as

T1

T
=

ϑ

ν2 + ν1ϑ
,

T2

T
=

1

ν2 + ν1ϑ
, (33)

θ1 =
T1

T

T

Tenv
=

ϑθ

ν2 + ν1ϑ
, θ2 =

θ

ν2 + ν1ϑ
. (34)

Therefore, the parameters ǫi (i = 1, 2) can be expressed as

ǫ1 =
mi

m

θ

θ1
=

m1

m

ν2 + ν1ϑ

ϑ
, ǫ2 =

m2

m
(ν2 + ν1ϑ). (35)

Using these variables, we rewrite the set of equations (18) as

∂

∂τ
θi = −2

3
γ̇∗θiΠ

(i)
xy + 2ζ∗i (1− θi)−

1

3

2∑

j=1

Λ(ij)∗
αα , (36a)

∂

∂τ
∆θi = −2γ̇∗θiΠ

(i)
xy − 2ζ∗i ∆θi −

2∑

j=1

(
Λ(ij)∗
xx − Λ(ij)∗

yy

)
, (36b)

∂

∂τ

(
θiΠ

(i)
xy

)
= −γ̇∗

(
θi −

1

3
∆θi

)
− 2ζ∗i θiΠ

(i)
xy −

2∑

j=1

Λ(ij)∗
xy , (36c)

where we have introduced the scaled time τ ≡ t
√

Tenv/m/σ, the dimensionless shear rate

γ̇∗ ≡ γ̇σ
√

m/Tenv = γ̇/(ζξenv), and the dimensionless drag coefficient ζ∗i ≡ ζiσ
√

m/Tenv =

ζi/(ζξenv). For the sake of convenience, some explicit forms of Λ
(ij)∗
αβ in Eq. (24) can be

rewritten as

Λ(ij)∗
αα = 3Cijθ

3/2Λ̃(ij)
αα , (37a)

Λ(ij)∗
xx − Λ(ij)∗

yy = 2Cijθ
3/2
[
Λ̃(ij)
xy ∆θi − Λ̃′(ij)

xy ∆θj

]
, (37b)

Λ(ij)∗
xy = 2Cijθ

3/2
[
Λ̃(ij)
xy θiΠ

(i)
xy − Λ̃′(ij)

xy θjΠ
(j)
xy

]
, (37c)
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where

Λ̃(ij)
αα ≡

(
ǫi + ǫj
ǫiǫj

)3/2
[
2

m∗

i ǫj −m∗

j ǫi

(m∗

i +m∗

j)(ǫi + ǫj)
+

m∗

ij

m∗

i

(1− eij)

]
, (38a)

Λ̃(ij)
xy ≡ θ−1

i√
ǫiǫj(ǫi + ǫj)

(
1 +

3

5

ǫi + ǫj
ǫi

λij

)
, (38b)

Λ̃′(ij)
xy ≡

θ−1
j√

ǫiǫj(ǫi + ǫj)

(
1− 3

5

ǫi + ǫj
ǫj

λij

)
. (38c)

3.3. Theoretical expressions in the steady rheology

Although the set of Eqs. (36) applies for time-dependent states, we are mainly interested in

the rheology in the steady state. Hereafter, we focus on the steady rheology.

3.3.1. Theoretical flow curves in steady state. Let us solve the set of Eqs. (36) in the

steady state. In this case (∂τ = 0), the left hand side of the set (36) vanishes and one gets

0 = −2

3
γ̇∗θiΠ

(i)
xy + 2ζ∗i (1− θi)−

2∑

j=1

CijΛ̃
(ij)
αα θ3/2, (39a)

0 = −2γ̇∗θiΠ
(i)
xy − 2ζ∗i ∆θi − 2

2∑

j=1

Cijθ
3/2
[
Λ̃(ij)
xy ∆θi − Λ̃′(ij)

xy ∆θj

]
, (39b)

0 = −γ̇∗
(
θi −

1

3
∆θi

)
− 2ζ∗i θiΠ

(i)
xy − 2

2∑

j=1

Cijθ
3/2
[
Λ̃(ij)
xy θiΠ

(i)
xy − Λ̃′(ij)

xy θjΠ
(j)
xy

]
. (39c)

First, from Eq. (39a), one obtains

Π(i)
xy =

3

γ̇∗θi


ζ∗i (1− θi)−

1

2

2∑

j=1

CijΛ̃
(ij)
αα θ3/2


 . (40)

Substituting Eq. (40) into Eq. (39b), a set of equations which determine ∆θ1 and ∆θ2 can

be rewritten as

Fi1∆θ1 + Fi2∆θ2 = Gi, (41)

for i = 1, 2. Here, we have introduced the quantities

F11(θ, ϑ) ≡ ζ∗1 +
[
C11

(
Λ̃(11)
xy − Λ̃′(11)

xy

)
+ C12Λ̃

(12)
xy

]
θ3/2, F12(θ, ϑ) ≡ −C12Λ̃

′(12)
xy θ3/2,

(42a)

F22(θ, ϑ) ≡ ζ∗2 +
[
C22

(
Λ̃(22)
xy − Λ̃′(22)

xy

)
+ C21Λ̃

(21)
xy

]
θ3/2, F21(θ, ϑ) ≡ −C21Λ̃

′(21)
xy θ3/2,

(42b)

and

G1(θ, ϑ) ≡ −3ζ∗1 (1− θ1) +
3

2

[
C11Λ̃

(11)
αα + C12Λ̃

(12)
αα

]
θ3/2, (43a)

G2(θ, ϑ) ≡ −3ζ∗2 (1− θ2) +
3

2

[
C21Λ̃

(21)
αα + C22Λ̃

(22)
αα

]
θ3/2. (43b)
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Then, ∆θ1 and ∆θ2 can be expressed as

∆θ1(θ, ϑ) =
G1F22 −G2F12

F11F22 − F12F21
, ∆θ2(θ, ϑ) =

G2F11 −G1F21

F11F22 − F12F21
. (44)

Substituting Eqs. (40) and (44) into Eq. (39c) leads to the relationship

H1(θ, ϑ)K2(θ, ϑ) = H2(θ, ϑ)K1(θ, ϑ), (45)

where

H1(θ, ϑ) ≡ −2
(
F11γ̇

∗θ1Π
(1)
xy + F12γ̇

∗θ2Π
(2)
xy

)
, (46a)

H2(θ, ϑ) ≡ −2
(
F21γ̇

∗θ1Π
(1)
xy + F22γ̇

∗θ2Π
(2)
xy

)
, (46b)

and

K1(θ, ϑ) ≡ θ1 −
1

3
∆θ1, K2(θ, ϑ) ≡ θ2 −

1

3
∆θ2. (47)

Equation (45) determines the relationship between the (reduced) global kinetic temperature

θ and the temperature ratio ϑ. For given values of the mixture and at a given value of θ, we

determine the temperature ratio ϑ [defined in Eq. (32)] by numerically solving Eq. (45). As

will be shown in the next section, we find a solution of θ by fixing ϑ in the intermediate shear

regime where the size ratio becomes large by fixing the volume ratio. Once we determine

this relationship, we can draw the flow curve with the aid of Eq. (45), where the shear rate

is given by

γ̇∗ =

√
H1(θ, ϑ)

K1(θ, ϑ)
. (48)

4. Comparison between theory and simulation

In this section, we compare the theoretical results obtained in sec. 3 with those of EDLSHS

[18]. We will consider binary mixtures constituted by species of the same mass density

[m1/m2 = (σ(1)/σ(2))3] and a (common) coefficient of restitution [e11 = e12 = e21 = e22 ≡ e].

In the first subsection, we examine the case of an equimolar mixture (ν1 = ν2 = 1/2 or

N1 = N2) while the general case of N1 6= N2 will be analyzed in the second subsection. In

particular, we find a new DST-like rheological phase transition for N1 ≪ N2 when we fix

the volume ratio, i.e., a binary mixture in which the concentration of one of the species

(the large tracer particles 1) is much more smaller than that of the other species (the small

particles 2).

4.1. The rheology for N1 = N2

In this subsection, we present the results of EDLSHS to verify the validity of the predictions

of the kinetic theory for N1 = N2. In this case, we should note that the occupied volume

is dominated by the large grains for a large size ratio σ(1)/σ(2). For example, the ratio

of occupied volumes V ≡ N1σ
(1)3/(N2σ

(2)3) becomes 125 if we adopt σ(1)/σ(2) = 5.0. The

results of EDLSHS under the control of N1/N2 with fixing V will be discussed in the next

subsection. For the comparison of the theoretical results with those of EDLSHS, we have

used the steady solutions of Eqs. (39) for both elastic (e = 1) and inelastic (e = 0.5, 0.7, and

0.9) cases when we fix N = 1000, ϕ = 0.01, ξenv = 1.0, and ν1 = ν2 = 1/2.
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Fig. 2 Temperature ratio ϑ = T1/T2 against the dimensionless shear rate γ̇∗ for σ(1)/σ(2) =

1.4 (solid line and open circles), 2.0 (dashed line and open squares), and 5.0 (dotted line and

open triangles) when we fix ϕ = 0.01, ξenv = 1.0, and ν1 = ν2 = 1/2 for (a) e = 0.5, (b) 0.7,

(c) 0.9, and (d) 1. The lines and symbols correspond to the steady theoretical solutions (48)

and the simulation results (N = 1000), respectively.

Figures 2 (for ϑ = T1/T2) and 3 (for η1/η2) show some characteristic rheological flow curves

for binary mixtures for both elastic and inelastic cases. Here, we have introduced the viscosity

ηi for species i as

ηi ≡ −P (i)
xy /γ̇. (49)

Now, let us focus on the plot of the temperature ratio ϑ ≡ T1/T2 against the reduced

shear rate γ̇∗ in Fig. 2. In the low shear regime, the temperature ratio converges to unity

as shown in Fig. 2. This is because the temperatures of both the larger and smaller parti-

cles are determined by the thermal noise of the background fluid. On the other hand, the

temperature ratio converges to a constant in the high shear regime, which is determined

by the interparticle inelastic collisions. Note that this converged value agrees with the one

previously obtained for granular gases [47].
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Fig. 3 Viscosity ratio η1/η2 against the dimensionless shear rate γ̇∗ for σ(1)/σ(2) = 1.4

(solid line and open circles), 2.0 (dashed line and open squares), and 5.0 (dotted line and

open triangles) when we fix ϕ = 0.01, ξenv = 1.0, and ν1 = ν2 = 1/2 for (a) e = 0.5, (b) 0.7,

(c) 0.9, and (d) 1. The lines and symbols correspond to the steady theoretical solutions (49)

and the simulation results (N = 1000), respectively.

Interestingly, our theory predicts the existence of a negative peak for ϑ in the intermediate

shear regime. In particular, there exists a cusp for smaller values of σ(1)/σ(2) at a certain

shear rate γ̇∗c (at which |∂ϑ/∂γ̇∗| → ∞; see Fig. 2). Correspondingly, the ratios of the other

quantities such as η1/η2 exhibit cusps around γ̇∗c (see Fig. 3). It is worth remarking that these

observables exhibit common features since (i) they do not have sharp minima even near the

DST-like transition point of one of two species, (ii) the deviations from unity become larger

with increasing the size ratio σ(1)/σ(2), and (iii) the ratios converge to values different from

unity even in the low-shear limit. These singularities are inherently connected with the DST-

like transition observed (see Appendix C) for the global kinetic temperature θ and the shear

viscosity η∗ = η∗1 + η∗2 [η∗i ≡ ηi/(nTenv/ζ) with Eq. (49)] because the cusps vanish as the size

ratio increases. Indeed, the flow curves for ϑ and η1/η2 become smooth for σ(1)/σ(2) = 5.0

(see Figs. 2 and 3).
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Fig. 4 Plots of the dimensionless partial viscosities η∗1 and η∗2 against the dimensionless

shear rate γ̇∗ for (a) σ(1)/σ(2) = 1.4 and (b) 5.0 when we fix ϕ = 0.01, ξenv = 1.0, and ν1 =

ν2 = 1/2.

Let us also discuss the existence of cusps in the flow curves observed in Figs. 2 and

3 when the size ratio is small. As shown in Fig. 4, the partial viscosities η∗i also have

discontinuous jumps when the mean viscosity η∗ = η∗1 + η∗2 has also this jump. At points

(γ̇c) where ∂η∗i /∂γ̇
∗ → ±∞ (i = 1, 2) are satisfied, the viscosity ratio also diverges as

∂

∂γ̇∗

(
η∗1
η∗2

)
=

1

η∗22

(
∂η∗1
∂γ̇∗

η∗2 − η∗1
∂η∗2
∂γ̇∗

)
→ ±∞. (50)

This explains the reason for the existence of the cusps.

It is remarkable that the predictions of kinetic theory agree well with the simulation results

of EDLSHS without any fitting parameter. Therefore, we conclude that our kinetic theory

based on the Boltzmann equation with Grad’s method is reliable to describe the rheology,

at least, for N1 = N2.

To close this subsection, we also note that the flow curves become discontinuous and

continuous depending on the other parameters of the mixture. These behaviors are discussed

in Appendix D.

4.2. The rheology for N1 6= N2

In this subsection, we compare the simulation results for the rheology for N1 6= N2 with those

derived from the theoretical predictions by fixing the volume ratio V ≡ N1σ
(1)3/(N2σ

(2)3) =

1. This means that the occupied volume by the large particles is the same as that by the

small ones. From the definition of the volume ratio, the size ratio correspondingly becomes

σ(1)/σ(2) = (N2/N1)
1/3 = [(1− ν1)/ν1]

1/3. Thus, as the size ratio increases, the number of

collisions between large particles decreases. On the other hand, the impulse from the larger

particle at each collision increases as compared with that from the smaller particle.

Figures 5(a) and 5(b) plot the results of ϑ and η1/η2, respectively, against γ̇∗ for ν1 =

1.0× 10−3 (solid line and open circles), 3.0× 10−3 (dashed line and open squares), 1.0×
10−2 (dotted line and open upper triangles), and 2.0× 10−2 (dot–dashed line and open

lower triangles) by fixing ϕ = 0.01, e = 0.9, and ξenv = 1.0. Here, the corresponding size
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Fig. 5 (a) Temperature ratio ϑ against the dimensionless shear rate γ̇∗ for ν1 = 1.0 × 10−3

(solid line and open circles), 3.0× 10−3 (dashed line and open squares), 1.0 × 10−2 (dotted

line and open upper triangles), and 2.0× 10−2 (dot–dashed line and open lower triangles)

when we fix ϕ = 0.01, ξenv = 1.0, e = 0.9, and V = 1. (b) Viscosity ratio η1/η2 against the

dimensionless shear rate γ̇ for the same set of parameters. All results of simulations are

obtained for N = 1000.

ratios become (a) σ(1)/σ(2) = 10.0, (b) 6.93, (c) 4.63, and (d) 3.66, respectively. It should

be noted that the number of particles of EDLSHS is fixed as N = 1000 in Fig. 5. It is

quite apparent that the theory compares well with the simulation results in the wide range

of the shear rate and without any fitting parameter when the size ratio is not large (or

equivalently, ν1 & 3.0× 10−3 in Fig. 5). On the other hand, some discrepancies between the

theoretical prediction and the EDLSHS simulations are observed in the high shear regime

when the size ratio becomes sufficiently large (see the data for ν1 = 1.0× 10−3 in Fig. 5).

In particular, at γ̇∗ ≈ 30, the theory predicts a new DST-like transition in which the flow

curve becomes an S-shape; in this region the temperature ratio versus the shear rate becomes

a multivalued function (see Fig. 5(a)). Here, the upper branch becomes almost 100 times

larger compared to the lower branch. This behavior is analogous to the ignited-quenched

transitions for the shear-rate dependence of both the temperature and the viscosity for the

monodisperse case [13, 15]. (See Appendix D for the minimum value of the size ratio at

which this transition occurs.) The origin of the discrepancy between theory and simulations

is essentially associated with the suppression of the collisions between the large (tracer)

particles because the number of them becomes N1 ∼ O(1) for σ(1)/σ(2) ≫ 1, as discussed in

the following.

To verify our conjecture, we examine the simulation results obtained for different large

system sizes: N = 10000 and 30000. We find that the disagreement between theory and

simulation tends to decrease as the number of particles in the EDLSHS increases. As an

illustration, Fig. 6 shows the dependence of both the temperature ratio ϑ and the vis-

cosity ratio η1/η2 on the number of particles N when we fix ν1 = 1.0× 10−3. Here, the

relationships between the total number of particles and that of large particles correspond

to (N,N1) = (1000, 1), (10000, 10), and (30000, 30). As N1 increases, the effect of collisions

between large particles on rheology becomes non-negligible. The collisions between large
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Fig. 6 (a) Temperature ratio ϑ and (b) viscosity ratio η1/η2 against the dimensionless

shear rate γ̇∗ for N = 1000 (open circles), 10000 (open squares), and 30000 (open triangles)

when we fix ϕ = 0.01, ξenv = 1.0, e = 0.9, V = 1, and ν1 = 1.0 × 10−3. The solid and dashed

lines indicate the theoretical curves for Eqs. (48) and (49) and the tracer limit explained in

Appendix E, respectively. The dotted and dot–dashed lines represent the granular gas limits

for Eqs. (48) and (49) and that under the tracer limit in Appendix E, respectively.

particles affect the flow curve in particular in the high shear regime. Correspondingly, the

quantities discontinuously change at a certain shear rate; this shear rate depends on the

number of particles. The above results suggest that (i) the discontinuous change predicted

by the kinetic theory can be universally observed in the thermodynamic limit and (ii) the

picture of an impurity enslaved to the host fluid (namely, when the tracer-tracer collisions

are neglected) is insufficient to capture the above discontinuous transition. The fact that the

seemingly natural “enslaved impurity” picture breaks down for large shear rates has been

also shown the responsible for the extreme violation of energy equipartition in a sheared

granular mixture in the tracer limit [61, 62].

We can also understand this finite size effect of EDLSHS when we observe the time evo-

lution of the temperature ratio ϑ for a very large system. Figure 7 exhibits the typical

evolution of ϑ for N = 30000. The solid line refers to the solution obtained for a binary

mixture assisted by Eq. (45) with ν1 = 1.0 × 10−3 while the dashed line corresponds to the

analytical result obtained in the Appendix E in the tracer limit (i.e., by neglecting collisions

between tracer particles and by assuming that the excess species 2 is not affected by the

presence of tracer particles). We observe the transient behavior in the result of EDLSHS

from the tracer limit line (dashed line) to that of the (complete) solution including collisions

between large particles (solid line). It is apparent that collisions between large tracer par-

ticles do not play any role in the early stage since the temperature ratio measured in the

simulation agrees well with the tracer limit line (see the data for τ . 2 in Fig. 7). As time

goes on, however, those contributions become important for the rheology of the system. As

a result, the temperature ratio measured in EDLSHS starts to increase abruptly (see the

data for τ ≃ 3 in Fig. 7), and tends to converge to the asymptotic theoretical value (τ & 5).

Let us check how the discontinuous changes of the temperature ratio and the viscosity

ratio appear in the thermodynamic limit. According to Fig. 5, there must exist a critical
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Fig. 7 Time evolution of the temperature ratio ϑ when we fix ϕ = 0.01, ξenv = 1.0, e =

0.9, N = 30000, V = 1, γ̇∗ = 5.6× 102, and ν1 = 1.0× 10−3, where we have introduced the

dimensionless time τ ≡ t
√

Tenv/m/σ. The solid line refers to the solution obtained for a

binary mixture assisted by Eqs. (45) and (48) with ν1 = 1.0× 10−3 while the dashed line

corresponds to the analytical result obtained in the Appendix E in the tracer limit.

(a) (b)

10
1

10
2

10
3

10
4

0 0.001 0.002

0

0.001

0.002
30

40

50

10
0

10
1

10
2

10
3

Fig. 8 (a) Plot of the phase coexistence line ∂γ̇∗/∂ϑ = 0 (solid lines) and the spinodal

line ∂2γ̇∗/∂ϑ2 = 0 (dashed line) for ϕ = 0.01, ξenv = 1.0, e = 0.9, and V = 1. (b) Plot of the

projection of the phase coexistence line and the spinodal line onto the (ν1, ϑ) plane. The

point indicates the critical point (ν1, γ̇
∗, ϑ) ≃ (2.28 × 10−2, 45.9, 28.9).

value ν1,c of the fraction in the range 1.0× 10−3 < ν1,c < 3.0× 10−3. The discontinuity is

characterized by a point (i) at which ∂ϑ/∂γ̇∗ → ∞ in the higher temperature regime and

where (ii) the curve of ϑ versus γ̇∗ discontinuously changes in the lower regime. Here, we

introduce a critical temperature ratio ϑc, which satisfies the identities

(
∂γ̇∗

∂ϑ

)

e,ϕ,ν1

= 0,

(
∂2γ̇∗

∂ϑ2

)

e,ϕ,ν1

= 0. (51)

18/39



The relations (51) are analogous to the critical point at the first-order transition [15]. Figure

8 shows the dependence of both the phase coexistence line (∂γ̇∗/∂ϑ = 0) and the spinodal

line (∂2γ̇∗/∂ϑ2 = 0) on the fraction fraction ν1 for ϕ = 0.01, ξenv = 1.0, e = 0.9, and V = 1.

As expected, these lines converge to the critical values ν1 ≃ 2.28 × 10−2, γ̇∗ ≃ 45.9, and

ϑ ≃ 28.9. The finding of a DST-like rheological phase transition in the large shear rate

region if the size ratio is large under fixing the volume ratio is one of the most interesting

results achieved in this paper.

4.3. Velocity distribution function

In this subsection, let us compare the velocity distribution function (VDF) (21) of Grad’s

moment method with the one obtained by means of simulations. As a complement, we also

include the exact VDF of a BGK-like kinetic model in the large shear limit (see the Appendix

F).

For later analysis, let us introduce the dimensionless velocity c and the distribution

function gi,G(c) as

c ≡
√

mi

2Ti
V , gi,G(c) ≡

(
2Ti

mi

)3/2 fi,G(V )

ni
, (52)

where fi,G stands for Grad’s VDF (21) for species i. Now, we focus on the VDF of the larger

particles 1. It is convenient to consider the marginal distribution g
(xy)
1,G instead of using the

full three-dimensional VDF. The distribution g
(xy)
1,G is defined as

g
(xy)
1,G (cx, cy) =

∫
∞

−∞

dczg1,G(c)

= g
(xy)
1,M (cx, cy)

[
1 +

(
1

2
+ c2y − 2c2x

)
Π(1)

yy + 2cxcyΠ
(1)
xy

]
, (53)

where

g
(xy)
1,M (cx, cy) =

1

π
e−(c

2

x+c2y). (54)

The VDF g
(x,y)
1,G (cx, cy) in Eq. (53) can characterize the anisotropy of the VDF induced by

the shear flow.

Figures 9 and 10 present g
(xy)
1,G (cx, cy)− g

(xy)
1,M (cx, cy) for γ̇∗ = 0.32, 1.0, 3.2, 10, and 32.

These values of the shear rate belong to the lower (0.32 and 1.0), intermediate (3.2 and

10), and higher (32) branches of the flow curve for e = 0.9 in Fig. 9 and e = 1 in Fig. 10,

respectively. It is remarkable that Grad’s distribution works well in the wide range of the

shear rate as shown in Figs. 9 and 10. The corresponding trends are clearly observed when we

consider the one-dimensional VDF in the x direction (see the Appendix G). Nevertheless,

it seems that the enhancement of the VDF in the shear direction is underestimated in

the theoretical prediction. It should be noted that this enhancement is suppressed for the

one-dimensional VDF as shown in the Appendix G.

We also check whether the VDF obtained from the BGK-like model can be used (see

the Appendix F for details). As expected, the deviation of the distribution of BGK-like

model from that of the simulation is large for low shear regime. On the other hand, the

agreement between BGK and simulations is reasonable in the high shear regime (see Fig. 11).

In particular, the BGK distribution is more accurate than that of Grad’s distribution in the
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Fig. 9 Velocity distribution functions of the larger particles g
(xy)
1,G (cx, cy)− g

(xy)
1,M (cx, cy)

in the (cx, cy)-plane for (a) γ̇∗ = 0.32, (b) 1.0, (c) 3.2, (d) 10, and (e) 32 when we fix

ϕ = 0.01, e = 0.9, ξenv = 1.0, σ(1)/σ(2) = 2.0, and ν1 = ν2 = 1/2. The color plot corresponds

to the simulation results. The solid, dashed, dotted, and dot–dashed lines represent the

contours 0.2cmax, 0.1cmax, −0.1cmax, and −0.2cmax obtained from Grad’s method (53) with

(a) cmax = 0.02, (b) 0.03, (c) 0.2, and (d, e) 0.1, respectively.

small velocity region. In any case, it is important to recall that the BGK distribution obtained

in the Appendix F only holds when Tenv = 0. This means that the possible discrepancies

between the BGK distribution and simulations can be in part due to the fact that Tenv 6= 0

in the simulations.

5. Discussion and conclusion

In this paper, we have theoretically derived the rheology of a dilute binary mixture of iner-

tial suspensions under USF. As in previous papers [15, 16], two different but complementary

approaches have been employed to solve the set of coupled Boltzmann kinetic equations.

On the analytical side, Grad’s moment method [58] has been used to approximately solve

the Boltzmann equation. Since the mass and heat fluxes vanish in the USF, only the partial

traceless stress tensors Π
(i)
αβ are retained in the trial distribution functions fi(V ). Then, the

theoretical predictions for the temperature ratio T1/T2 and the viscosity ratio η1/η2 have

been compared against computer simulations based on the event-driven Langevin simulation

method. We have confirmed that the theoretical predictions agree with the results of simula-

tion for hard spheres for various size ratios in most parameters’ regions. We have found that

the temperature ratio and viscosity ratio discontinuously change at a certain shear rate as
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Fig. 10 Velocity distribution functions of the larger particles g
(xy)
1,G (cx, cy)− g

(xy)
1,M (cx, cy)

in the (cx, cy)-plane for (a) γ̇∗ = 0.32, (b) 1.0, (c) 3.2, (d) 10, and (e) 32 when we fix

ϕ = 0.01, e = 1.0, ξenv = 1.0, σ(1)/σ(2) = 2.0, and ν1 = ν2 = 1/2. The color plot corresponds

to the simulation results. The solid, dashed, dotted, and dot–dashed lines represent the

contours 0.2cmax, 0.1cmax, −0.1cmax, and −0.2cmax obtained from Grad’s method (53) with

(a) cmax = 0.02, (b) 0.03, (c) 0.2, (d) 0.05, and (e) 0.02, respectively.

the size ratio increases. This feature cannot be captured by simulations when the size of the

system is small. The above transition is similar to DST in dense suspensions or the first-order

phase transition at equilibrium. Although the tracer limit of the theory is validated when

the system size is small, the collisions between large tracer particles play dominant roles in

the high shear regime. We have also compared the velocity distribution functions obtained

by Grad’s method and BGK-like model with those obtained from the simulations.

There are several future perspectives. First, we plan to analyze the mass transport of

impurities in a sheared inertial suspension. As already did in Ref. [27], a Chapman–Enskog-

like expansion around the local shear flow distribution obtained here will be considered

to identify the shear-rate dependent diffusion Dαβ , pressure diffusion Dp,αβ, and thermal

diffusion DT,αβ tensors. The determination of Dαβ , Dp,αβ, and DT,αβ will be discussed in a

forthcoming paper. More importantly, the knowledge of the above diffusion tensors will allow

us to analyze segregation by thermal diffusion [50]. In the present paper, we have restricted to

homogeneous systems, which makes the analysis easier than that for inhomogeneous systems.

However, depending on the size or density of particles, the segregation is inevitable when one

considers binary mixtures. In a sheared system, the segregation has been observed if there

exists an inhomogeneous velocity profile [42]. However, the velocity profile remains linear in
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Fig. 11 Velocity distribution functions of the larger particles g
(xy)
1,G (cx, cy)− g

(xy)
1,M (cx, cy) in

the (cx, cy)-plane for (a) γ̇∗ = 0.32, (b) 1.0, (c) 3.2, (d) 10, and (e) 32 when we fix ϕ = 0.01,

e = 0.9, ξenv = 1.0, σ(1)/σ(2) = 2.0, and ν1 = ν2 = 1/2. The color plot corresponds to the

simulation results. The solid, dashed, dotted, and dot–dashed lines represent the contours

0.2cmax, 0.1cmax, −0.1cmax, and −0.2cmax obtained from the BGK model (F16) with (a)

cmax = 0.02, (b) 0.03, (c) 0.2, and (d, e) 0.1, respectively.

our simulations as far as we have checked. This linearity is violated if we consider systems

under gravity or wall driven sheared systems. We believe that this scenario of segregation

can be described by a dilute system described by the Boltzmann equation. We will analyze

such systems in the near future.

Needless to say, we plan also to extend our analysis to moderately dense systems with

the aid of the Enskog equation. The extension is tough but straightforward using a similar

procedure as the one followed for monodisperse systems [16]. This study will be also carried

out in the future.
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A. Difference between P
(i)
yy and P

(i)
zz

In this Appendix, we show the difference between P
(i)
yy and P

(i)
zz . As mentioned in the main

text, the second normal stress difference of species i, N
(i)
2 ≡ P

(i)
yy − P

(i)
zz is, in general, non-

zero. However, the second difference N
(i)
2 is treated as zero in the dilute limit of the kinetic

theory. Figure A1 shows the plot of the ratio of the second to the first normal stress differences

against the shear rate for σ(1)/σ(2) = 2.0 and 5.0 obtained from the simulations when we fix

ϕ = 0.01, ξenv = 1.0, e = 0.9, and ν1 = ν2 = 1/2. Here, we have introduced the first normal

stress difference of species i as N
(i)
1 ≡ P

(i)
xx − P

(i)
yy . Although the second difference N

(i)
2 is

values are much smaller than the values of N
(i)
1 in the wide range of shear rates considered.

Therefore, we do not consider the difference between them in this paper. It is noted that the

second normal stress difference cannot be neglected when the volume fraction is finite.
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Fig. A1 Plots of the ratio of the second to the first difference of each species i, |N (i)
2 /N

(i)
1 |

for σ(1)/σ(2) = 2.0 and 5.0 when we fix ϕ = 0.01, ξenv = 1.0, e = 0.9, and ν1 = ν2 = 1/2.

B. Derivation of Λ
(ij)
αβ under the linear approximation of Grad’s expansion

In this Appendix, we obtain the expression (24) for the collisional moment Λ
(ij)
αβ . For this

purpose, we introduce the dimensionless velocities





G =
miV1 +mjV2

(mi +mj)vT
,

g =
V1 − V2

vT
,

(B1)
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and equivalently




V1 =

(
G+

mij

mi
g

)
vT,

V2 =

(
G− mij

mj
g

)
vT.

(B2)

Let us rewrite fi (V1) fj (V2) in terms of G and g. Using the Grad’s trial distribution (21),

we can rewrite fi(V1)fj(V2) as

fi (V1) fj (V2)

= ninj

(
m

2πT

)3

(ǫiǫj)
3/2

× exp

[
−(ǫi + ǫj)G

2 − 2

(
mij

mi
ǫi −

mij

mj
ǫj

)
(G · g)−

(
m2

ij

m2
i

ǫi +
m2

ij

m2
j

ǫj

)
g2

]

×
[
1 + ǫiΠ

(i)
αβ

(
Gα +

mij

mi
gα

)(
Gβ +

mij

mi
gβ

)
+ ǫjΠ

(j)
αβ

(
Gα − mij

mj
gα

)(
Gβ − mij

mj
gβ

)]
.

(B3)

We note that nonlinear contributions of the stress tensor Π
(i)
αβ are ignored in this Appendix.

Let us rewrite the argument of the exponential part in Eq. (B3) as

(ǫi + ǫj)G
2 + 2

(
mij

mi
ǫi −

mij

mj
ǫj

)
(G · g) +

(
m2

ij

m2
i

ǫi +
m2

ij

m2
j

ǫj

)
g2

= (ǫi + ǫj)

[
G+

mjǫi −miǫj
(mi +mj)(ǫi + ǫj)

g

]2
+

ǫiǫj
ǫi + ǫj

g2. (B4)

Introducing G′ as

G′ ≡ G+
mjǫi −miǫj

(mi +mj)(ǫi + ǫj)
g, (B5)

one gets the identities




G+
mij

mi
g = G′ +

ǫj
ǫi + ǫj

g,

G− mij

mj
g = G′ − ǫi

ǫi + ǫj
g.

(B6)

Thus, we can rewrite Eq. (B3) as

fi (V1) fj (V2) = ninjv
−3
T (ǫiǫj)

3/2 π−3 exp

[
−(ǫi + ǫj)G

′2 − ǫiǫj
ǫi + ǫj

g2
]

×
[
1 + ǫiΠ

(i)
αβ

(
G′

α +
ǫj

ǫi + ǫj
gα

)(
G′

β +
ǫj

ǫi + ǫj
gβ

)

+ǫjΠ
(j)
αβ

(
G′

α − ǫi
ǫi + ǫj

gα

)(
G′

β − ǫi
ǫi + ǫj

gβ

)]
. (B7)
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Let us rewrite Eq. (16). From Eqs. (1) and (B5), one gets

miv
′

1,αv
′

1,β −miv1,αv1,β

= −mij(1 + eij)v
2
T(g · σ̂)

[(
Gα +

mij

mi
gα

)
σ̂β +

(
Gβ +

mij

mi
gβ

)
σ̂α − mij

mi
(1 + eij)(g · σ̂)σ̂ασ̂β

]

= −mij(1 + eij)v
2
T(g · σ̂)

[
G′

ασ̂β +G′

βσ̂α +
ǫj

ǫi + ǫj
(gασ̂β + gβσ̂α)−

mij

mi
(1 + eij)(g · σ̂)σ̂ασ̂β

]
.

(B8)

Using Eqs. (B3) and (B8), we can rewrite the collisional moment Λ
(ij)
αβ as

Λ
(ij)
αβ = mij(1 + eij)ninjσ

(ij)2(ǫiǫj)
3/2v3TΛ̃

(ij)
αβ , (B9)

with the linear collisional moment

Λ̃
(ij)
αβ ≡ π−3

∫
dG′

∫
dg

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)2 exp

[
−(ǫi + ǫj)G

′2 − ǫiǫj
ǫi + ǫj

g2
]

×
[
G′

ασ̂β +G′

βσ̂α +
ǫj

ǫi + ǫj
(gασ̂β + gβσ̂α)−

mij

mi
(1 + eij)(g · σ̂)σ̂ασ̂β

]

×
[
1 + ǫiΠ

(i)
γδ

(
G′

γ +
ǫj

ǫi + ǫj
gγ

)(
G′

δ +
ǫj

ǫi + ǫj
gδ

)

+ǫjΠ
(j)
γδ

(
G′

γ −
ǫi

ǫi + ǫj
gγ

)(
G′

δ −
ǫi

ǫi + ǫj
gδ

)]
. (B10)

For further calculation, let us first introduce Ĩ
(ℓ)
ij (σ̂) and Ĩ

(ℓ)
ij,α(σ̂) as

{
Ĩ
(ℓ)
ij (σ̂)

Ĩ
(ℓ)
ij,α(σ̂)

}
≡ 1

π3

∫
dG′

∫
dgΘ(σ̂ · g)(σ̂ · g)ℓ

{
1

gα

}
exp

[
−(ǫi + ǫj)G

′2 − ǫiǫj
ǫi + ǫj

g2
]

×
[
1 + ǫiΠ

(i)
γδ

(
G′

γ +
ǫj

ǫi + ǫj
gγ

)(
G′

δ +
ǫj

ǫi + ǫj
gδ

)

+ǫjΠ
(j)
γδ

(
G′

γ −
ǫi

ǫi + ǫj
gγ

)(
G′

δ −
ǫi

ǫi + ǫj
gδ

)]

=
1

π3/2(ǫi + ǫj)3/2

∫
dgΘ(σ̂ · g)(σ̂ · g)ℓ

{
1

gα

}
exp

(
− ǫiǫj
ǫi + ǫj

g2
)
P1({g}),

(B11)

with

P1({g}) ≡ 1 +
ǫiǫ

2
j

(ǫi + ǫj)2
gγgδΠ

(i)
γδ +

ǫ2i ǫj
(ǫi + ǫj)2

gγgδΠ
(j)
γδ . (B12)
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We also introduce Î
(ℓ)
ij,α(σ̂) as

Î
(ℓ)
ij,α(σ̂) ≡

1

π3

∫
dG′

∫
dgΘ(σ̂ · g)(σ̂ · g)ℓG′

α exp

[
−(ǫi + ǫj)G

′2 − ǫiǫj
ǫi + ǫj

g2
]

×
[
1 + ǫiΠ

(i)
γδ

(
G′

γ +
ǫj

ǫi + ǫj
gγ

)(
G′

δ +
ǫj

ǫi + ǫj
gδ

)

+ǫjΠ
(j)
γδ

(
G′

γ −
ǫi

ǫi + ǫj
gγ

)(
G′

δ −
ǫi

ǫi + ǫj
gδ

)]

=
1

π3/2(ǫi + ǫj)3/2

∫
dgΘ(σ̂ · g)(σ̂ · g)ℓ exp

(
− ǫiǫj
ǫi + ǫj

g2
)
Q1,α({g}), (B13)

with

Q1,α({g}) =
ǫiǫj

(ǫi + ǫj)2
gγ

(
Π(i)

αγ −Π(j)
αγ

)
. (B14)

Using Eqs. (B11) and (B13), Eq. (B10) is rewritten as

Λ̃
(ij)
αβ ≡

∫
dσ̂
{
Î
(2)
ij,α(σ̂)σ̂β + Î

(2)
ij,β(σ̂)σ̂α

+
ǫj

ǫi + ǫj

[
Ĩ
(2)
ij,α(σ̂)σ̂β + Ĩ

(2)
ij,β(σ̂)σ̂α

]
− mij

mi
(1 + eij)Ĩ

(3)
ij (σ̂)σ̂ασ̂β

}
. (B15)

Let us go further by integrating over σ̂. Here, the following results are needed:
∫

dσ̂Θ(σ̂ · g)(σ̂ · g)nσ̂ = βn+1g
n−1g, (B16)

∫
dσ̂Θ(σ̂ · g)(σ̂ · g)nσ̂ασ̂β =

βn
n+ 3

gn−2(ngαgβ + g2δαβ), (B17)

with

βn = π

Γ

(
n+ 1

2

)

Γ

(
n+ 3

2

) =
2π

n+ 1
. (B18)

With the aid of Eqs. (B16)–(B17), one gets
∫

dσ̂Î
(2)
ij,α(σ̂)σ̂β =

β3

π3/2(ǫi + ǫj)3/2

∫
dgggβ exp

(
− ǫiǫj
ǫi + ǫj

g2
)
Q1,α({g})

=
2
√
π

3
(ǫiǫj)

−3/2 1√
ǫiǫj(ǫi + ǫj)

(
Π

(i)
αβ −Π

(j)
αβ

)
, (B19)

and there,
∫

dσ̂Î
(2)
ij,α(σ̂)σ̂β +

∫
dσ̂Î

(2)
ij,β(σ̂)σ̂α =

2
√
π

3
(ǫiǫj)

−3/2

(
ǫi + ǫj
ǫiǫj

)3/2 2ǫiǫj
(ǫi + ǫj)2

(
Π

(i)
αβ −Π

(j)
αβ

)
.

(B20)

Similarly, one achieves the result
∫

dσ̂Ĩ
(2)
ij,α(σ̂)σ̂β =

β3

π3/2(ǫi + ǫj)3/2

∫
dgggαgβ exp

(
− ǫiǫj
ǫi + ǫj

g2
)
P1({g})

=
2
√
π

3
(ǫiǫj)

−3/2

(
ǫi + ǫj
ǫiǫj

)3/2 [
δαβ +

6

5

(
ǫj

ǫi + ǫj
Π

(i)
αβ +

ǫi
ǫi + ǫj

Π
(j)
αβ

)]
,

(B21)
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and then,
∫

dσ̂
ǫj

ǫi + ǫj

[
Ĩ
(2)
ij,α(σ̂)σ̂β + Ĩ

(2)
ij,β(σ̂)σ̂α

]

=
2
√
π

3
(ǫiǫj)

−3/2

(
ǫi + ǫj
ǫiǫj

)3/2 2ǫj
ǫi + ǫj

[
δαβ +

6

5

(
ǫj

ǫi + ǫj
Π

(i)
αβ +

ǫi
ǫi + ǫj

Π
(j)
αβ

)]
. (B22)

In addition, one gets
∫

dσ̂Ĩ
(3)
ij (σ̂)σ̂ασ̂β =

β3

6π3/2(ǫi + ǫj)3/2

∫
dg(g3δαβ + 3ggαgβ) exp

(
− ǫiǫj
ǫi + ǫj

g2
)
P1({g})

=
2
√
π

3
(ǫiǫj)

−3/2

(
ǫi + ǫj
ǫiǫj

)3/2 [
δαβ +

3

5

(
ǫj

ǫi + ǫj
Π

(i)
αβ +

ǫi
ǫi + ǫj

Π
(j)
αβ

)]
,

(B23)

and then
∫

dσ̂
mij

mi
(1 + eij)Ĩ

(3)
ij (σ̂)σ̂ασ̂β

=
2
√
π

3
(ǫiǫj)

−3/2

(
ǫi + ǫj
ǫiǫj

)3/2 mij

mi
(1 + eij)

[
δαβ +

3

5

(
ǫj

ǫi + ǫj
Π

(i)
αβ +

ǫi
ǫi + ǫj

Π
(j)
αβ

)]
. (B24)

Substituting Eqs. (B20), (B22), and (B24) into Eq. (B15), one obtains

Λ̃
(ij)
αβ =

2
√
π

3
(ǫiǫj)

−3/2

(
ǫi + ǫj
ǫiǫj

)3/2

×
([

2ǫj
ǫi + ǫj

− mij

mi
(1 + eij)

]
δαβ +

2ǫiǫj
(ǫi + ǫj)2

{
1 +

3

5

ǫi + ǫj
ǫi

[
2ǫj

ǫi + ǫj
− 1

2

mij

mi
(1 + eij)

]
Π

(i)
αβ

}

− 2ǫiǫj
(ǫi + ǫj)2

{
1− 3

5

ǫi + ǫj
ǫj

[
2ǫj

ǫi + ǫj
− 1

2

mij

mi
(1 + eij)

]
Π

(j)
αβ

})

=
2
√
π

3
(ǫiǫj)

−3/2

(
ǫi + ǫj
ǫiǫj

)3/2{[
λij −

1

2

mij

mi
(1 + eij)

]
δαβ

+2
ǫiǫj

(ǫi + ǫj)2

[(
1 +

3

5

ǫi + ǫj
ǫi

λij

)
Π

(i)
αβ −

(
1− 3

5

ǫi + ǫj
ǫj

λij

)
Π

(j)
αβ

]}
. (B25)

Finally, the combination of Eqs. (B9) and (B25) yields Eq. (24).

C. Detailed flow curves

In this Appendix, we present supplemental results of rheology explained in Sec. 4 of the

main text. We display the results for θ versus γ̇∗ and η∗ ≡ −(ν1Π
(1)∗
xy + ν2Π

(2)∗
xy )/γ̇∗ versus

γ̇∗.

When we focus on the reduced temperature θ (see Fig. C1), the effect of the bidisper-

sity only appears around an intermediate shear regime (γ̇∗ ≃ 5.0), where the discontinuous

change corresponding to the DST is observed. Although this discontinuous change itself is

reported even in monodisperse systems [13], the point at which the discontinuous change

occurs depends on the size ratio. It is noteworthy that the change of the reduced temperature

is drastic but continuous when the size ratio becomes large (see the data for σ(1)/σ(2) = 2.0

and 5.0 in Fig. C1).
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As well as in Fig. C1, the viscosity η∗ is also plotted against the shear rate γ̇∗ in Fig. C2.

If the size ratio σ(1)/σ(2) is close to unity, such as 1.4, the flow curves of θ and η∗ are similar

to the corresponding ones for monodisperse gases, in which there are discontinuous changes

of θ and η∗ around γ∗ ≈ 5. However, as the size ratio increases, the discontinuous changes

of θ and η∗ become continuous. Moreover, these flow curves for inelastic inertial suspensions

for large σ(1)/σ(2) are characteristic. Indeed, the slopes of θ and η∗ are oscillated with γ̇∗

before reaching their asymptotic values in the large shear rate limit.
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Fig. C1 (a) Dimensionless temperature θ against the dimensionless shear rate γ̇∗ for

σ(1)/σ(2) = 1.4 (solid line and open circles), 2.0 (dashed line and open squares), and 5.0

(dotted line and open triangles), when we fix ϕ = 0.01, ξenv = 1.0, and ν1 = ν2 = 1/2 for

e = 0.9. (b) θ against γ̇∗ for σ(1)/σ(2) = 1.4, 2.0 and 5.0 by fixing ϕ = 0.01, ξenv = 1.0, and

ν1 = ν2 = 1/2 for e = 1.0. The lines and symbols correspond to the steady solutions of the

theoretical predictions (48) and the simulation results, respectively.

We also draw 3D-phase diagrams of the number of solutions obtained by the kinetic theory

in the (ν1, γ̇
∗, e)-plane for ϕ = 0.01 in Fig. C3. The filled regions represent those whose

number of solutions is three, while the empty regions represent only one solution. These

plots show that the regions for the multiple solutions are localized in the narrow regimes in

the (ν1, γ̇
∗, e)-plane.

D. Appearance/disappearance of the discontinuous transition

In this Appendix, let us show how the discontinuous transition appears/disappears when we

change the parameters of the mixture. This appendix consists of three subsections. In the

first part, we discuss how the results depend on the environmental temperature ξenv. In the

second part, we distinguish the region of DST-like behavior from the CST-like behavior when

we fix ν1 = ν2 = 1/2. In the last part, we also distinguish the region of DST-like behavior

from the CST-like behavior if we fix the volume ratio V = 1,

D.1. Effect of the environmental temperature ξenv

First, since ξenv ∝
√
Tenv, we analyze the dependence of the flow curves on the environmental

temperature for ν1 = ν2 = 1/2. This temperature determines the state in the low shear
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Fig. C2 The dimensionless viscosity η∗ against the dimensionless shear rate γ̇∗ for

σ(1)/σ(2) = 1.4 (solid line and open circles), 2.0 (dashed line and open squares), and 5.0

(dotted line and open triangles) when we fix ϕ = 0.01, ξenv = 1.0, and ν1 = ν2 = 1/2 for (a)

e = 0.9 and (b) 1. The lines and symbols correspond to the steady solutions of the theoretical

predictions (49) and the simulation results, respectively.
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Fig. C3 Phase diagrams of the number of solutions against (e, ν1, γ̇
∗) for (a) σ(1)/σ(2) =

1.1 and (b) 1.4 by fixing ϕ = 0.01 and ξenv = 1.0. Here, the filled (empty) region represents

that the number of the solutions is three (unity).

regime, but is independent in the high shear regime. The latter fact is understood because

interparticle collisions are dominant in the latter regime. Figure D1 illustrates the above

fact: The high shear regime is independent of the choice of the environmental temperature,

but the low shear regime is determined by the value of the environmental temperature. It

is interesting to note that the Newtonian regime becomes narrower as ξenv increases. More

importantly, DST-like behavior for η∗ for low ξenv becomes CST-like as ξenv increases.

D.2. Effect of the size ratio for N1 = N2

Next, let us consider the size ratio dependence in the case of ν1 = ν2 = 1/2 based on the

theoretical calculation. In this case, the discontinuous jumps are observed when the size ratio
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Fig. D1 Plots of the global viscosity η∗ against the dimensionless shear rate γ̇∗ for ξenv =

10−1 (solid line), 100 (dashed line), and 101 (dotted line) when we fix ϕ = 0.01, e = 0.9,

σ(1)/σ(2) = 1.4, and ν1 = ν2 = 1/2.
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Fig. D2 Plot of the critical size ratio against the restitution coefficient when we fix

ϕ = 0.01, ξenv = 1.0, and ν1 = ν2 = 1/2.

is not large such as σ(1)/σ(2) = 1.4 in Figs. 2 and 3 as shown in Fig. D2. On the other hand,

the flow curves become continuous for larger size ratio. We can understand this behavior

by considering first the discontinuous jump for the monodisperse system (ν1 = 1, ν2 = 0).

Depending on the value of the (reduced) shear rate γ̇∗ ≡ γ̇/ζ1, there are two different regimes;

high-shear and low-shear regimes. The former regime is known as Bagnold’s expression,

η∗ ∝ γ̇∗/(ξ2envϕ
2) for e < 1 [13]. We note that, for the elastic case, a different expression

is obtained as η∗ ∝ γ̇∗2. However, the latter regime (low shear regime) is determined by

the interaction between the particles and the solvent [13], and so η∗ ∼ 1. These two regimes

switch to each other at γ̇∗ ≃ 1. Given that the difference between two regimes is proportional

to the inverse of the volume fraction, the flow curve forms an S-shape connecting the two

regimes.
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Now, we consider binary systems. If the size ratio is not sufficiently large, such as

σ(1)/σ(2) = 1.4 as shown in Figs. C1 and C2, the picture for the monodisperse system can

also be used for a binary system. This means that the discontinuous jumps appear in this

case. On the other hand, as the size ratio increases, collisions between smaller and larger

particles compete with those between particles with the same size. This means that we need

to discuss the mixing energy between smaller and larger particles in this case. Relating

to this, we may use a discussion analogous to the phase coexistence and spinodal lines at

equilibrium phase transitions, respectively, in the phase space of (θ, γ̇∗, σ(1)/σ(2)). Figure
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10
1
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Fig. D3 Plot of the phase coexistence line ∂γ̇∗/∂θ = 0 (solid lines) and the spinodal line

∂2γ̇∗/∂θ2 = 0 (dashed line) for ϕ = 0.01, e = 0.9 ξenv = 1.0, and ν1 = ν2 = 1/2.

D3 shows both lines for ϕ = 0.01, e = 0.9 ξenv = 1.0, and ν1 = ν2 = 1/2, where the critical

point is given by θc ≃ 34.8, γ̇∗c ≃ 4.81, and (σ(1)/σ(2))c ≃ 1.46. This means that two (ignited

and quenched) states can coexist for σ(1)/σ(2) . 1.46. This result is quite analogous to the

transition from DST-like to CST-like behaviors for monodisperse cases [15].

D.3. Effect of the size ratio for N1 6= N2
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no DST-like trans.
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Fig. D4 Plot of the critical size ratio against the restitution coefficient e when we fix

ϕ = 0.01, ξenv = 1.0, and V = 1.

Let us consider the case of constant volume ratio V = 1. As shown in Fig. 6, the discontinu-

ous transition occurs as the fraction ν1 decreases, i.e., the size ratio increases. This transition
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is different from the one found in Appendix D.2. Figure D4 plots the critical line between the

discontinuous transition and continuous transition for ϕ = 0.01, ξenv = 1.0, and V = 1 based

on the theoretical calculation. As the restitution coefficient e increases, the minimum size

ratio also increases, which means that the fraction ν1 decreases as ν1 = 1/[1 + (σ(1)/σ(2))3]

from the definition of the volume ratio V. Unfortunately, it is a tough job to check this

behavior in simulations. When the DST-like transition occurs, one needs to simulate a sit-

uation where multiple collisions between large particles occur. However, as the size ratio

increases, the fraction of the larger particles, ν1, becomes small, then the collision frequency

between them also decreases. This means that the time for multiple collisions exceeds the

limit of realistic simulation time.

E. Detailed analysis in the tracer limit and the finite size effect of the simulation
results

In this Appendix, we display the explicit expressions of the partial pressure tensors of a

binary mixture in the tracer limit. These expression are then compared with the simulation

results when the number of particles is small.

In the tracer limit (ν1 → 0), the kinetic equation for the velocity distribution function f2 of

the excess granular gas 2 is the (closed) nonlinear Boltzmann equation since its state is not

perturbed by the presence of the tracer particles 1. This means that collisions between tracer

and gas particles in the kinetic equation for P
(2)
αβ can be neglected, i.e., Λ

(21)
αβ + Λ

(22)
αβ → Λ

(22)
αβ

in Eq. (15) for i = 2. In addition, since the concentration of tracer particles is negligible,

one can also neglect the tracer-tracer collisions in the kinetic equation for P
(1)
αβ . This implies

that Λ
(11)
αβ + Λ

(12)
αβ → Λ

(12)
αβ in Eq. (15) for i = 1.

The expressions of the (reduced) elements of the pressure tensor Π
(2)
αβ coincide with those

obtained for a monodisperse granular suspension. The nontrivial components of Π
(2)
αβ are

given by [13]

Π(2)
yy = −λ

(2)∗
η

√
θ2 + 2(1− θ−1

2 )

ν
(2)∗
η

√
θ2 + 2

, (E1)

Π(2)
xy = −

2θ−1
2 −

(
λ
(2)∗
η − ν

(2)∗
η

)√
θ2

(
ν
(2)∗
η

√
θ2 + 2

)2 ˜̇γ, (E2)

where ˜̇γ = γ̇/ζ2 and we have introduced

λ(2)∗
η ≡ 8√

π
(1− e222)ϕ2

√
Tenv

m2σ(2)2ζ2
, (E3)

ν(2)∗η ≡ 24

5
√
π
(1 + e22)(3− e22)ϕ2

√
Tenv

m2σ(2)2ζ2
, (E4)

with the partial volume fraction

ϕ2 ≡
π

6
nν2σ

(2)3. (E5)

Here, it should be noted that the global temperature is approximately given by θ ≃ θ2 in

the tracer limit [26]. Using the same procedure as in Ref. [13], the reduced shear rate γ̇∗ is
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written in terms of the reduced temperature θ2 as

γ̇∗ =
(
ν(2)∗η

√
θ2 + 2

)
√√√√√

3

2

λ
(2)∗
η

√
θ2 + 2(1 − θ−1

2 )(
ν
(2)∗
η − λ

(2)∗
η

)√
θ2 + 2θ−1

2

. (E6)

Now, let us calculate the quantities for the tracer species 1. First, the quantities Λ̃
(12)
αα , Λ̃

(12)
xy ,

and Λ̃
′(12)
xy are written as

Λ̃(12)
αα ≡ 1

m
∗3/2
2

(ϑ′ + 1)1/2
{[

m∗

1 +
1

2
m∗

2 (1− e12)

]
ϑ′ − 1

2
m∗

2(1 + e12)

}
, (E7a)

Λ̃(12)
xy ≡ 1

10m∗

1m
∗1/2
2

1

θ2(ϑ′ + 1)1/2
[
2(5 + 6ϑ′)− 3µ21(ϑ

′ + 1)(1 + e12)
]
, (E7b)

Λ̃′(12)
xy ≡ 1

10m
∗3/2
2

θ−1
2

(ϑ′ + 1)1/2

[
3µ21(ϑ

′ + 1)(1 + e12)− 2ϑ′
]
, (E7c)

where we have introduced ϑ′ ≡ m2θ1/(m1θ2). Then, the nonzero elements of Π
(1)
αβ read

Π(1)
xy ==

3

γ̇∗θ1

[
ζ∗1 (1− θ1)−

1

2
C12Λ̃

(12)
αα θ

3/2
2

]
, (E8)

Π(1)
xx = −2Π(1)

yy , (E9)

Π(1)
yy = Π(1)

zz = −
(
1 +

2

γ̇∗
ζ∗1Π

(1)
xy

)
− 2

C12

γ̇∗
θ
3/2
2

[
Λ̃(12)
xy θ1Π

(1)
xy − Λ̃′(12)

xy θ2Π
(2)
xy

]
. (E10)

Substituting Eqs. (E8)–(E10) into Eq. (39a) with C11 = 0, we can obtain the equation which

determines θ1 as

2

3
γ̇∗θ1Π

(1)
xy = 2ζ∗1 (1− θ1)− C12Λ̃

(12)
αα θ

3/2
2 . (E11)

Figure E1 presents the shear-rate dependence of both the temperature ratio ϑ and the

viscosity ratio η1/η2 in the tracer limit. It should be noted that the flow curves become

smooth in the whole range of the shear rate even for a larger size ratio.

The limitation of the tracer limit is also understood in Fig. E2, where the absolute values

of the ratio
∣∣∣Λ(ij)

αα /Λ
(22)
αα

∣∣∣ are plotted as a function of the dimensionless shear rate. Here, the

expression of Λ
(ij)
αα is given by Eq. (24). In the low shear regime, the values for (i, j) = (1, 1)

and (2, 1) are smaller than unity, which means that the contributions coming from the

collisions between the large tracer particles are negligible. This indicates that the tracer

limit description is a reasonable approximation in this regime. In the high shear regime,

on the other hand, the contributions from the collisions between tracer particles play an

important role to the flow curve, though the number of collisions is small. Moreover, it

is interesting that Λ
(2,1)
αα and Λ

(1,2)
αα become negative in the high and intermediate shear

regimes, respectively, though their origins are not clear. As the number of particles used

in the simulation increases, the simulation results recover the values of ϑ and η1/η2 in the

high shear regime. Then, we expect that the results of simulation for N → ∞ agree with

the theoretical results. In other words, the results of EDLSHS containing a small number of

particles is not reliable in this regime.

33/39



(a) (b)

10
,.

10
0

10
1

10
2

10
/4

10
0

10
1

10
2

0.020

0.010

0.003

0.001

10
67

10
9:

10
;<

10
0

10
=>

10
0

10
1

10
2

0.020

0.010

0.003

0.001

Fig. E1 (a) Temperature ratio ϑ and (b) viscosity ratio η1/η2 against the dimensionless

shear rate γ̇∗ in the tracer limit for the same set of parameters of Fig. 5. The data of the

simulation are obtained for N = 1000.
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Fig. E2 Plot of
∣∣∣Λ(ij)

αα /Λ
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∣∣∣ for (i, j) = (1, 1) (solid line), (1, 2) (dashed line), and (2, 2)

(dotted line) against the dimensionless shear rate γ̇∗ for ϕ = 0.01, ξenv = 1.0, e = 0.9, V = 1,

and ν1 = 1.0× 10−3.

F. Two-dimensional velocity distribution function of BGK model

A possible way of overcoming the mathematical difficulties associated with the Boltzmann

collision operators Jij [fi, fj] is to use a kinetic model. As usual, the idea behind a kinetic

model is to replace the true operator Jij by a simpler term that retains the main physical

properties of the above operator. In the case of dilute granular mixtures, a BGK-like kinetic

model was proposed in Ref. [63]. In the case of the USF state (where U1 = U2 = U), the

BGK-like model is obtained by the replacement of the Boltzmann collision operator Jij [fi, fj ]

by the diffusive term

Jij [V |fi, fj] → −1 + eij
2τij

(fi − fij) +
εij
2

∂

∂V
· (V fi), (F1)

34/39



where we have introduced the quantities

1

τij
=

8
√
π

3
njσ

(ij)2

(
2Ti

mi
+

2Tj

mj

)1/2

, (F2)

εij =
1

2τij

m2
ij

m2
i

(
1 +

miTj

mjTi

)
(1− e2ij), (F3)

fij(V ) = ni

(
mi

2πTij

)3/2

exp

(
−miV

2

2Tij

)
, (F4)

Tij = Ti +
2mimj

(mi +mj)2
(Tj − Ti). (F5)

The corresponding BGK-like equation for the distribution f1 in the steady USF is

−γ̇Vy
∂f1
∂Vx

− ζ1
∂

∂V
· (V f1)−

ζ1Tenv

m1

∂2f1
∂V 2

= −1

2

2∑

j=1

[
1 + e1j
τ1j

(f1 − f1j)− ε1j
∂

∂V
· (V f1)

]
.

(F6)

The kinetic equation for f2 is obtained from Eq. (F6) by setting 1 ↔ 2. So far, we have not

been able to obtain the explicit exact form of fi(V ) in Eq. (F6). An exception corresponds

to the simple limit case Tenv = 0 with keeping ζi = const. It corresponds to a situation where

the background temperature Tenv is much smaller than the kinetic temperature T under the

high shear rate limit. Hence, the suspension model ignores the effects of thermal fluctuations

on solid particles and the impact of the gas phase on grains is only accounted by the drag

force term. Although ζi should be proportional to
√
Tenv for hard-core molecules, such a

simplified model has been employed in some previous works [9, 10, 14].

If we take the limit Tenv/T ≪ 1, Eq. (F6) becomes

−γ̇Vy
∂f1
∂Vx

− 3α1f1 − α1V · ∂f1
∂V

+ ξ1f1 = Φ1, (F7)

where we have introduced the parameters:

α1 = ζ1 +
ε11 + ε22

2
, (F8)

ξ1 =
1

2

(
1 + e11
τ11

+
1 + e12
τ12

)
, (F9)

Φ1 =
1

2

(
1 + e11
τ11

f11 +
1 + e12
τ12

f12

)
. (F10)

The formal solution of Eq. (F7) can be written as

f1(V ) =

(
ξ1 − 3α1 − γ̇Vy

∂

∂Vx
− α1V1 ·

∂

∂V1

)
−1

Φ1(V )

=

∫
∞

0
ds e−(ξ1−3α1)seγ̇sVy

∂

∂Vx eα1sV ·
∂

∂V Φ1(V ). (F11)

Note that the velocity operators appearing in Eq. (F11) commute. Their action on an

arbitrary function g(V ) ≡ g(Vx, Vy, Vz) is

eγ̇sVy
∂

∂Vx g(V ) = g(Vx + γ̇sVy, Vy, Vz), (F12a)

eα1sV ·
∂

∂V g(V ) = g (eα1sV ) . (F12b)
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Taking into account the action of these operators in Eq. (F11), the velocity distribution

f1(V ) can be written as

f1(V ) = n1

(
m1

2T1

)3/2

g1,B(c), c ≡
(
m1

2T1

)
−1/2

V , (F13)

where

g1,B(c) = π−3/2

∫
∞

0
ds e−(ξ1−3α1)s

{
1 + e11
2τ11

χ
−3/2
1 exp

[
−χ−1

1 e2α1s
(
(cx + γ̇scy)

2 + c2y + c2z
)]

+
1 + e12
2τ12

χ
−3/2
12 exp

[
−χ−1

12 e
2α1s

(
(cx + γ̇scy)

2 + c2y + c2z
)]}

= π−3/2

∫
∞

0
ds e−(ξ∗

1
−3α∗

1
)s

{
1 + e11
2τ∗11

χ
−3/2
1 exp

[
−χ−1

1 e2α
∗

1
s
(
(cx + γ̇∗scy)

2 + c2y + c2z
)]

+
1 + e12
2τ∗12

χ
−3/2
12 exp

[
−χ−1

12 e
2α∗

1
s
(
(cx + γ̇∗scy)

2 + c2y + c2z
)]}

.

(F14)

Here, ξ∗1 ≡ ξ1σ/
√

m/Tenv, α
∗

1 ≡ α1σ/
√

m/Tenv, τ
∗

ij ≡ τij
√

Tenv/m/σ, χ1 ≡ T1/T , and χ12 ≡
T12/T .

To illustrate the shear-rate dependence of the BGK distribution g1,B(c), let us define the

marginal (two-dimensional) distribution function

g
(xy)
1,B (cx, cy) =

∫
∞

−∞

dczg1,B(c). (F15)

From Eq. (F14), one gets

g
(xy)
1,B (cx, cy) =

1

π

∫
∞

0
ds e−(ξ∗

1
−2α∗

1
)s

{
1 + e11
2τ∗11

χ−1
1 exp

[
−χ−1

1 e2α
∗

1
s
(
(cx + γ̇scy)

2 + c2y
)]

+
1 + e12
2τ∗12

χ−1
12 exp

[
−χ−1

12 e
2α∗

1
s
(
(cx + γ̇scy)

2 + c2y
)]}

.

(F16)

Figure 11 shows how this model works when we compare with the simulation results.

Interestingly, the BGK-like model gives the correct VDF in the wider range of (cx, cy) plane in

the high shear regime. In particular, some features of the true VDF (such as the enhancement

in the shear direction and the form of g
(xy)
1 near the positive and negative peaks) are captured

in a more precise way by the BGK distribution than the Grad’s distribution (see Figs. 9 and

11). Nevertheless, we recall that the applicability of the solution Eq. (F16) to the BGK-like

model is limited to the high shear regime. As the environmental temperature plays a role

in the rheology, the BGK solution (F16) cannot capture the properties of the VDF in the

complete range of shear rates (see Figs. 11(a), (b), and (c)).

G. One-dimensional velocity distribution function

In the main text and Appendix F, we have compared the marginal two-dimensional velocity

distribution function obtained from the simulations with those obtained from Grad’s method

and the BGK-like model. In this Appendix, on the other hand, we investigate whether both

approximations work when we consider the one-dimensional velocity distribution.
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Let us define the marginal (one-dimensional) distribution obtained from Grad’s method

g
(x)
1,G(cx) ≡

∫
∞

−∞

dcyg
(xy)
1,G (cx, cy) =

1√
π
e−c2x

(
1− Π

(1)
xx

2
+ Π(1)

xx c
2
x

)
, (G1)

and from the BGK model

g
(x)
1,B(cx) ≡

∫
∞

−∞

dcyg
(xy)
1,B (cx, cy)

=
1√
π

∫
∞

0
ds

e−(ξ∗
1
−α∗

1
)s

√
1 + γ̇∗2s2

[
1 + e11
2τ∗11

χ
−1/2
1 exp

(
−χ−1

1 e2α
∗

1
s c2x
1 + γ̇∗2s2

)

+
1 + e12
2τ∗12

χ
−1/2
12 exp

(
−χ−1

12 e
2α∗

1
s c2x
1 + γ̇∗2s2

)]
. (G2)

Figure G1 shows the comparison of the VDF obtained from the simulations with Eqs. (G1)

and (G2) when we control the shear rate from γ̇∗ = 0.32 to 32. Here, we have fixed ϕ = 0.01,

e = 0.9, ξenv = 1.0, and σ(1)/σ(2) = 2.0. The one-dimensional VDF estimated from Grad’s

method works well in the wide range of the shear rate, although this approximation cannot

reproduce the fat tail of the VDF in the intermediate regime. The consistency in the high

shear regime is different when we compare with the two-dimensional VDF in Figs. 9(c), (d),

and (e). On the other hand, the BGK one-dimensional VDF is worse than that of Grad’s

distribution. Although it captures the behavior of the VDF near cx ∼ 0, the solution to the

BGK-like model overestimates the high energy tail of the VDF in the high shear regime (see

Fig. G1(d) and (e)).

(a) (b) (c) (d) (e)

QR ST 0 2 4UV WX 0 2 4YZ [\ 0 2 4]^ _` 0 2 4
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Fig. G1 One-dimensional velocity distribution functions of the larger particles for (a)

γ̇∗ = 0.32, (b) 1.0, (c) 3.2, (d) 10, and (e) 32 when we fix ϕ = 0.01, e = 0.9, ξenv = 1.0, and

σ(1)/σ(2) = 2.0. The solid and dashed lines represent Grad’s approximation (G1) and the

BGK model (G2), respectively.
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[45] N. Khalil and V. Garzó, Transport coefficients for driven granular mixtures at low density,

Phys. Rev. E 88, 052201 (2013).
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