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Recently, in the paper: T. Koszto lowicz and A. Dutkiewicz, Phys. Rev. E 104, 014118 (2021)
the g–subdiffusion equation with fractional Caputo time derivative with respect to another function
g has been considered. This equation offers new possibilities for modelling diffusion such as a
process in which a type of diffusion evolves continuously over time. However, the equation has not
been derived from a stochastic model and the stochastic interpretation of g–subdiffusion has been
unknown. In this paper we show stochastic foundations of this process. We derive the equation by
means of a modified Continuous Time Random Walk model. Interpretation of the g–subdiffusion
process is also discussed.

PACS numbers:

Introduction. Subdiffusion occurs in media in which
the movement of diffusing molecules is very difficult due
to the complex internal structure of the medium. Within
the Continuous Time Random Walk (CTRW) model,
a distribution of time between particle jumps ψ has a
heavy tail for subdiffusion, ψ(t) ∼ 1/t1+α, 0 < α < 1
[1–3]. This model leads to the “ordinary” subdiffu-
sion equation with the fractional order Caputo deriva-
tive. Recently, a more general subdiffusion equation with
the Caputo derivative with respect to another function
g has been considered [4], see also Ref. [5]; we call
it the g–subdiffusion equation which describes the g–
subdiffusion process. As shown in Ref. [4], this equa-
tion describes a process in which a type of diffusion can
change over time. Unfortunately, g–subdiffusion has not
had a stochastic interpretation yet. We show how to de-
rive the g–subdiffusion equation by means of modified
CTRW model and we discuss the interpretation of this
process.
“Ordinary” subdiffusion equation. The fractional sub-

diffusion equation with “ordinary” Caputo derivative of
the order α ∈ (0, 1) is [4]

C∂αP (x, t)

∂tα
= D

∂2P (x, t)

∂x2
, (1)

where the Caputo fractional derivative is defined for 0 <
α < 1 as

Cdα

dtα
f(t) =

1

Γ(1 − α)

∫ t

0

(t− u)−αf ′(u)du, (2)

α is a subdiffusion parameter and D is a generalized dif-
fusion coefficient measured in the units of m2/sα. To
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solve the equation the Laplace transform L can be used,

L[f(t)](s) =

∫ ∞

0

e−stf(t)dt. (3)

Due to the relation

L

[
Cdαf(t)

dtα

]

(s) = sαL[f(t)](s) − sα−1f(0), (4)

where 0 < α ≤ 1, we get

sαL[P (x, t)](s) − sα−1P (x, 0) (5)

= D
∂2L[P (x, t)](s)

∂x2
.

G–subdiffusion equation. In this paper functions de-
scribing g–subdiffusion are denoted by tilda. The g-
subdiffusion equation reads

C∂αg P̃ (x, t)

∂tα
= D

∂2P̃ (x, t)

∂x2
, (6)

where 0 < α < 1, the Caputo derivative with respect to
another function g is defined as [6]

Cdαg f(t)

dtα
=

1

Γ(1 − α)

∫ t

0

(g(t) − g(u))−αf ′(u)du, (7)

the function g fulfils the conditions g(0) = 0, g(∞) = ∞,
and g′(t) > 0 for t > 0, its values are given in a time unit.
When g(t) = t, the g-Caputo fractional derivative takes
a form of the “ordinary” Caputo derivative. To solve Eq.
(6) the g–Laplace transform can be used, this transform
is defined as [7]

Lg[f̃(t)](s) =

∫ ∞

0

e−sg(t)f̃(t)g′(t)dt. (8)
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Due to the property [7]

Lg

[
Cdαg
dtα

f̃(t)

]

(s) = sαLg[f̃(t)](s) − sα−1f̃(0), (9)

the procedure of solving Eq. (6) is similar to the pro-
cedure of solving “ordinary” subdiffusion equation by
means of the “ordinary” Laplace transform method. In
terms of the g-Laplace transform the g-subdiffusion equa-
tion is

sαLg[P̃ (x, t)](s) − sα−1P̃ (x, 0) (10)

= D
∂2Lg[P (x, t)](s)

∂x2
.

Using the g-Laplace transform to Eq. (6) yields Eq. (10)
in the same form as Eq. (5).
Model of particle random walk. To derive the subdiffu-

sion equation we use a simple model of a particle random
walk along a one–dimensional homogeneous lattice. Usu-
ally, in the CTRW model both a particle jump length and
waiting time for a particle jump are random variables. In
our considerations, we assume that the jump length dis-
tribution λ has the form λ(x) = 1

2 [δ(x − ǫ) + δ(x + ǫ)],
where δ is the delta Dirac function. Only the choice
of a particle jump direction is random, its length ǫ is
a parameter. We start with the particle random walk
model in which the particle positions and time are dis-
crete. Next, we move to continuous variables. Random
walk with discrete time n is described by the equation
Pn+1(m) = 1

2Pn(m+ 1) + 1
2Pn(m− 1), where Pn(m) is a

probability that a diffusing particle is at the position m
after n-th step. Let the initial particle position be m = 0.
Moving from discrete m to continuous x spatial variable
we assume x = mǫ and Pn(x) = Pn(m)/ǫ, where ǫ is
a distance between discrete sites. The above equations
and the relation [Pn(x + ǫ) + Pn(x − ǫ) − 2Pn(x)]/ǫ2 =
∂2Pn(x)/∂x2, ǫ → 0, provide the following equation in
the limit of small ǫ

Pn+1(x) − Pn(x) = ǫ2
∂2Pn(x)

∂x2
. (11)

To move from discrete to continuous time we use the
formula [8]

P (x, t) =

∞∑

n=0

Qn(t)Pn(x), (12)

where Qn(t) is the probability that a diffusing particle
takes n step in the time interval (0, t). The function Qn

is determined differently for the “ordinary” subdiffusion
and g–subdiffusion. In the following, we find the rule for
determining the functions Qn and the explicit form of the
functions ψ for both processes. These functions, together
with Eqs. (11) and (12), provide “ordinary” subdiffusion
and g–subdiffusion equations.
The case of “ordinary” subdiffusion. In this case the

function Qn is a convolution of n distributions ψ of a

waiting time for a particle to jump and a function U
which is the probability that a particle does not change
its position after n-th step,

Qn(t) = (ψ ∗ ψ ∗ . . . ∗ ψ
︸ ︷︷ ︸

n times

∗U)(t), (13)

where the convolution is defined as

(f ∗ h)(t) =

∫ t

0

f(u)h(t− u)du. (14)

The “ordinary” Laplace transform has the following
property that makes the transform useful in determin-
ing the function Qn

L[(f ∗ h)(t)](s) = L[f(t)](s)L[h(t)](s). (15)

From Eqs. (12), (13), and (15) we have

L[P (x, t)](s) = L[U(t)](s)

∞∑

n=0

Ln[ψ(t)](s)Pn(x). (16)

Combining Eqs. (11), (12), and (16) we get

2(1 − L[ψ(t)](s))

ǫ2L[ψ(t)](s)
L[P (x, t)](s) (17)

−
2L[U(t)](s)

ǫ2L[ψ(t)](s)
P (x, 0) =

∂2L[P (x, t)](s)

∂x2
.

Eq. (17) coincides with Eq. (5) only if

1 − L[ψ(t)](s)]

L[ψ(t)](s)
=
ǫ2sα

2D
,
L[U(t)](s)

L[ψ(t)](s)
=
ǫ2sα−1

2D
.

The solutions to the above equations are

L[ψ(t)](s) =
1

1 + ǫ2sα

2D

, (18)

and

L[U(t)](s) =
ǫ2sα−1

2D
(
1 + ǫ2sα

2D

) =
1 − L[ψ(t)](s)

s
. (19)

Due to the relations

L[1](s) =
1

s
, L

[∫ t

0

f(u)du

]

(s) =
L[f(t)](s)

s
, (20)

we get

U(t) = 1 −

∫ t

0

ψ(u)du. (21)

In order to find the function ψ we use the relation

L−1[sνe−asβ ](t) =
1

t1+ν

∞∑

k=0

1

k!Γ(−ν − βk)

(

−
a

tβ

)k

(22)

≡ fν,β(t : a),
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where a, β > 0, Γ is the Gamma-Euler function. The
function fν,β is the Wright function and the special case
of the H-Fox function. To find the inverse Laplace
transform of Eq. (18) first we calculate the inverse

Laplace transform of the function e−asβ/(1+τsα), where
τ = ǫ2/2D and a, β > 0, using the formula 1/(1 + u) =
∑∞

n=0 u
n when |u| < 1. We get

L

[

e−asβ

1 + τsα

]

(s) =







1
τ

∑∞

n=0

(
− 1

τ

)n
s−(n+1)αe−asβ , s > 1

τ1/α ,

∑∞

n=0(−τ)nsnαe−asβ , s < 1
τ1/α ,

(23)

Next, we take the limit of a → 0. From Eqs. (22), (23),
and the relations fν,β(t; 0) = 1/Γ(−ν)t1+ν , 1/Γ(0) = 0
we get

ψ(t) =







1
τ

∑∞

n=0

(
− 1

τ

)n t(n+1)α−1

Γ((n+1)α) , t < τ1/α,

∑∞

n=0 (−τ)
n+1 t−(n+1)α−1

Γ(−(n+1)α) , t > τ1/α,

(24)

We have ψ(t) ≈ ατ/Γ(1 − α)t1+α in the limit of t →
∞. The function ψ was already derived using the
relation L−1[1/(1 + τsα)] = tα−1Eα,α(−tα/τ), where
Eα,α(z) =

∑∞
n=0 z

n/Γ(α(n + 1)) is the two–parameter
Mittag–Leffler function, see for example Ref. [10]. Then,
the function ψ corresponds to Eq. (24) but for the case
of t < τ1/α only.
The case of g–subdiffusion. To get Eq. (10) we use the

g–Laplace transform. This transform has the following
property [7]

Lg[(f ∗g h)(t)](s) = Lg[f(t)](s)Lg[h(t)](s), (25)

where the g–convolution is defined as

(f ∗g h)(t) =

∫ t

0

f(u)h(g−1(g(t) − g(u))g′(u)du. (26)

We involve the g–convolution in the CTRW model.
Then, the procedure for deriving the g–subdiffusion equa-
tion using the g–Laplace transform is analogous to the
procedure for deriving the ”ordinary” subdiffusion equa-
tion using the “ordinary” Laplace transform. Assuming

P̃ (x, t) =

∞∑

n=0

Q̃n(t)Pn(x). (27)

and

Q̃n(t) = (ψ̃ ∗g ψ̃ ∗g . . . ∗g ψ̃
︸ ︷︷ ︸

n times

∗gŨ)(t), (28)

from Eqs. (25), (27), and (28) we obtain

Lg[P̃ (x, t)](s) =

∞∑

n=0

Lg[Ũ(t)](s)Ln
g [ψ̃(t)](s)Pn(x). (29)

From Eqs. (11) and (29) we get

1 − Lg[ψ̃(t)](s)

ǫ2Lg[ψ̃(t)](s)
Lg[P̃ (x, t)](s) (30)

−
Lg[Ũ(t)](s)

ǫ2Lg[ψ̃(t)](s)
P̃ (x, 0) =

∂2L[P̃ (x, t)](s)

∂x2
.

Eq. (30) is consistent with Eq. (10) only when

Lg[ψ̃(t)](s) =
1

1 + ǫ2sα

2D

(31)

and

Lg[Ũ(t)](s) =
ǫ2sα−1

2D
(
1 + ǫ2sα

2D

) . (32)

Comparing Eqs. (31) and (32) with Eqs. (18) and (19),
respectively, we get

Lg[ψ̃(t)](s) = L[ψ(t)](s), (33)

Lg[Ũ(t)](s) = L[U(t)](s). (34)

From the relation

Lg[f̃(t)](s) = L[f̃(g−1(t))](s), (35)

we get the following rule [4]

Lg[f̃(t)](s) = L[f(t)](s) ⇔ f̃(t) = f(g(t)). (36)

Due to Eq. (36), from Eqs. (33) and (34) we obtain

ψ̃(t) = ψ(g(t)), (37)

and

Ũ(t) = U(g(t)). (38)

Eqs. (24) and (37) provide

ψ̃(t) =







1
τ

∑∞

n=0

(
− 1

τ

)n g(n+1)α−1(t)
Γ((n+1)α) , t < g−1(τ1/α),

∑∞

n=0 (−τ)
n+1 g−(n+1)α−1(t)

Γ(−(n+1)α) , t > g−1(τ1/α),

(39)

We get ψ(t) ≈ ατ/Γ(1 − α)g1+α(t) when t→ ∞.
We link the g–convolution with the “ordinary” convo-

lution. Let f̃(t) = f(g(t)) and h̃(t) = h(g(t)). After
simple calculation we get

(f̃ ∗g h̃)(t) = (f ∗ h)(g(t)). (40)

From Eqs. (27), (28), and (40) we have

P̃ (x, t) =

∞∑

n=0

Qn(g(t))Pn(x). (41)
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Comparing Eqs. (41) and (12) we obtain

P̃ (x, t) = P (x, g(t)). (42)

Interpretation. The g–subdiffusion process is associ-
ated to “ordinary” subdiffusion controlled by the same
parameter α. The waiting time for a particle jump in
the g–subdiffusion process is controlled by the functions
ψ and g. A particle jump that would occur with some
probability after time t in ”ordinary” subdiffusion process
will occur with the same probability after time t̃ = g−1(t)
in the g–subdiffusion process. If g(t) < t we have t < t̃,
subdiffusion is then slowed down. When g(t) > t subdif-
fusion is accelerated. An example of g–subdiffusion is the
diffusion of molecules in a medium consisting of matrix
in which there are narrow channels. If channels have a
complicated geometric structure and diffusing molecules
do not interact with the matrix, then ”ordinary” sub-
diffusion controlled by the parameter α occurs. When
temporary penetration of a molecule into the matrix is
possible then the molecule ”disappears” from channels
and may diffuse further upon returning to a channel. In
this case, ”ordinary” subdiffusion is slowed down. Such
a process occurs in a vessel filled with alginate beads im-
mersed in water in which colistin antibiotic diffuses [11].
When the matrix provides the diffusing molecules with
additional energy, subdiffusion can be accelerated.
Final remarks. We have shown that the g–subdiffusion

equation can be derived by means of the modified CTRW
model (we call it the g–CTRW model). In the g-
CTRW model we use the g-convolution and the g-Laplace
transform instead of the “ordinary” convolution and
the“ordinary” Laplace transform, respectively, which are
used in the ”ordinary” CTRW model.

We note that the condition Lg[ψ̃(t)](0) = 1 does not

guarantee that the function ψ̃ is normalized. Therefore,
ψ̃ is not a probability distribution. Thus, it seems that
the g-CTRW model is merely a mathematical procedure.
However, this model can be interpreted as an ”ordinary”
CTRW model in which the time scale is controlled by
the function g(t), see Eqs. (37)–(42). The key issue for
the g–subdiffusion process is determining the parameter
α and the function g. An example of their determination
from empirical data is shown in [11].

In practice, the transformations made in deriving the
g–subdiffusion equation within the g-CTRW model are
the same as in deriving the ”ordinary” subdiffusion equa-
tion using ”ordinary” CTRW. Within the ”ordinary”
CTRW, subdiffusion-reaction equations [12] as well as the
Green’s functions and membrane boundary conditions for
a system in which a thin membrane separates different
subdiffusive media [13] have been derived. Within the
g–CTRW model the same procedures can also be used to
derive g–subdiffusion-reaction equations, Green’s func-
tions, and boundary conditions at the membrane for the
processes described by g–subdiffusion equations.

We suppose that the g–subdiffusion model can be used
to describe diffusion of antibiotics in a biofilm. Biofilm
usually has a gel structure. When the antibiotic does
not interact with bacteria, the “ordinary” antibiotic sub-
diffusion in the biofilm is expected. However, bacteria
in the biofilm have different defense mechanisms against
the action of the antibiotic. These mechanisms may hin-
der or even facilitate antibiotic subdiffusion, see Ref. [14]
and the references cited therein. Thus, the application of
the g–subdiffusion equation to describe this process may
be effective.

[1] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
[2] J. Klafter and I.M. Sokolov, First step in random walks.

From tools to applications, (Oxford UP, New York, 2011).
[3] E. Barkai, R. Metzler, and J. Klafter, Phys. Rev. E 61,

132 (2000).
[4] T. Koszto lowicz and A. Dutkiewicz, Phys. Rev. E 104,

014118 (2021).
[5] B. Samet and Y. Zhou, RACSAM 113, 2887 (2019); R.

Garra, A. Giusti, and F. Mainardi, Ricerche Mat. 67,
899 (2018).

[6] W. Abdelhedi, Comp. Appl. Math. 40, 53 (2021); R.
Almeida, Commun. Nonlinear Sci. Numer. Simul. 44, 460
(2017); A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo,
Theory and Applications of Fractional Differential Equa-

tions (North-Holland Mathematics Studies, 204, Elsevier,
Amsterdam, 2006); J.V.D.C. Sousa and E.C. de Oliveira,
Commun. Nonlinear Sci. Numer. Simul. 60, 72 (2018).

[7] F. Jarad and T. Abdeljawad, Discrete And Continuous
Dynamical Systems-S 13, 709 (2020); F. Jarad, T. Abdel-

jawad, S. Rashid, and Z. Hammouch, Adv. Differ. Equ.
2020, 303 (2020).

[8] E.W. Montroll and G.H. Weiss, J. Math. Phys. 6, 167
(1965).

[9] T. Koszto lowicz, J. Phys. A 37, 10779 (2004).
[10] F. Mainardi, WSEAS Trans. Math. 19, 74 (2020); En-

tropy 22, 1359 (2020).
[11] T. Koszto lowicz, A. Dutkiewicz, K. Lewandowska, S.

Wa̧sik, and M. Arabski, arXiv: cond-mat. 2107.02419
(2021).

[12] T. Koszto lowicz and K. Lewandowska, Phys. Rev. E 90,
032136 (2014).

[13] T. Koszto lowicz, Phys. Rev. E 99, 022127 (2019); Int. J.
Heat Mass Transf. 111, 1322 (2017).

[14] T. Koszto lowicz and R. Metzler, Phys. Rev. E 102,
032408 (2020); T. Koszto lowicz, R. Metzler, S. Wa̧sik,
and M. Arabski, PLoS One 15, e0243003 (2020).


