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STURMIAN SUBSHIFTS AND THEIR C
∗-ALGEBRAS

KEVIN AGUYAR BRIX

Para Clelia, en admiración y respeto. San Genaro siempre estuvo cerca.

Abstract. This paper investigates the structure of C∗-algebras built from one-sided
Sturmian subshifts. They are parametrised by irrationals in the unit interval and built
from a local homeomorphism associated to the subshift. We provide an explicit construc-
tion and description of this local homeomorphism. The C

∗-algebras are ∗-isomorphic
exactly when the systems are conjugate, and they are Morita equivalent exactly when
the defining irrationals are equivalent (this happens precisely when the systems are flow
equivalent). Using only elementary dynamical tools, we compute the dynamic asymp-
totic dimension of the (groupoid of the) local homeomorphism to be one, and by a result
of Guentner, Willett, and Yu, it follows that the nuclear dimension of the C∗-algebras is
one.

1. Introduction

Sturmian subshifts were introduced by Morse and Hedlund [35] as the first class of
symbolic dynamical systems to be systematically studied. They are canonical examples
of Cantor minimal systems [25, 45], they have vanishing topological entropy, and they
occur naturally as symbolic representations of the irrational rotation on the circle [23,
2, 31]. They also appear as Denjoy homeomorphisms on the circle restricted to their
unique minimal invariant Cantor sets, see [39] for an illuminating account. Symbolic
dynamics befriended C∗-algebra theory with the introduction of Cuntz–Krieger algebras
from (irreducible) shifts of finite type [15] in 1980, and this provided the first large class
of simple and purely infinite C∗-algebras. Matsumoto and Carlsen are among the first to
associate C∗-algebras to general subshifts in the same spirit, see e.g. [32, 9, 12]. However,
much of Matsumoto’s work is concerned with systems satisfying a certain Condition (I)
which is not enjoyed by Sturmian subshifts.
Nuclear dimension for C∗-algebras was introduced by Winter and Zacharias [49] as a

noncommutative analogue of topological covering dimension, and it has become a salient
concept in the classification programme for nuclear C∗-algebras: simple, separable, unital
C∗-algebras satisfying the UCT are classified by K-theory and traces exactly when they
have finite nuclear dimension [29, 37, 26, 21, 48]. The work going into determining
the precise values culminated in the discovery that zero and one are the only possible
finite values [34, 44, 3, 14, 13] (see also the expository [50]), coupled with the fact that
only AF-algebras have nuclear dimension zero. These remarkable results naturally lead
the attention to the settting of nonsimple C∗-algebras with some recent advances [5,
18, 22, 4, 43]. For a commutative C∗-algebra, the nuclear dimension coincides with the
covering dimension of its spectrum but in general not much is known about the precise
value for nonsimple C∗-algebras. The relationship between finite nuclear dimension and
classification of nonsimple C∗-algebras remains an open problem.
This article adresses the construction and structure of C∗-algebras associated to one-

sided Sturmian subshifts. They are not crossed products. Instead they are built from the
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2 K.A. BRIX

topological groupoid of a certain local homeomorphism, a dynamical system abstractly
associated to any one-sided subshift as in [6]. This dynamical system, called a cover, is
in general difficult to describe concretely, though for sofic systems it coincides with the
left Krieger graph (a shift of finite type). Here we provide the first concrete description
beyond the sofic case: for one-sided Sturmian subshifts the cover is a union of the two-sided
Sturmian subshift together with a countable discrete orbit.
The C∗-algebras we consider are parametrised over irrationals in the unit interval,

and they are almost never ∗-isomorphic (not even Morita equivalent), they have a unique
ideal (∗-isomorphic to the compact operators on separable Hilbert space), and the concrete
characterisation of the cover allows us to recover part of an interesting but unpublished
result of Carlsen [8] (using different methods): the C∗-algebra is an extension of a simple
crossed product by the compact operators. Moreover, we deduce several structural results.
The C∗-algebras are all infinite (though not properly infinite) and have real rank zero and
stable rank two. Finally, using only elementary dynamical tools we compute the dynamic
asymptotic dimension of the associated groupoid; using a result of Guentner, Willett, and
Yu [27] we then infer that the nuclear dimension of the C∗-algebras is one. The precise
dimension values do not seem to be derivable from any of the general theorems available
in the literature at the moment, so the method of proof is interesting in itself. It utilises
the particular structure of the Sturmian subshifts, and it would be interesting to see if a
similar strategy can be employed for larger classes of dynamical systems.
The article is structured as follows: after introducing the Sturmian subshifts in Section 2,

we characterise when these systems are conjugate and flow equivalent in Section 3. In Section 4
we carefully construct and describe the cover associated to the one-sided Sturmian sub-
shift. This allows us to build the groupoid and C∗-algebra in Section 5 and here we also
derive many structural results including the nuclear dimension.
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2. Preliminaries

Let Z, and N, and N+ denote the set of integers, the set of nonnegative and positive
integers, respectively. We identify the circle T with R/Z.

2.1. Sturmian shift spaces

We start by defining and providing a brief overview of Sturmian subshifts. For a thorough
treatment the reader is refered to, e.g. [23, Chapter 6] or [31, Chapter 13.7].
Let α ∈ (0, 1) \ Q and consider the rigid rotation Rα : T → T given by Rα(t) =

t+α (mod 1), for t ∈ T. Consider the partition {[0, 1−α), [1−α, 1)} of the unit interval
and define a coding map Iα : T→ {0, 1} by

Iα(t) =

{
0 if t ∈ [0, 1− α),

1 if t ∈ [1− α, 1),
(2.1)

for t ∈ T. The one-sided Sturmian subshift with parameter α is the space

Xα :=
{{

Iα(Ri
α(t))

}
i∈N

: t ∈ T
}
⊆ {0, 1}N, (2.2)
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with the shift operation σα : Xα → Xα given by σα(x)i = xi+1, for x = (xi)i∈N ∈ Xα and
for i ∈ N. In particular, if x =

{
Iα(R

i
α(t))

}
i
for some t ∈ T, then

σα(x) =
{
Iα(R

i+1
α (t))

}
i∈N

=
{
Iα(R

i
α(t+ α))

}
i∈N

, (2.3)

where, as before, t + α is to be understood modulo 1. The shift operation σα is an
expansive and locally injective surjection. The orbit of x ∈ Xα is

orbα(x) :=
⋃

k,l∈N

σ−l
α (σk

α(x)), (2.4)

and x′ ∈ orbα(x) exactly if there are k, l ∈ N such that σl
α(x

′) = σk
α(x).

The two-sided Sturmian subshift is given as the projective limit Λα = lim←−(Xα, σα) or,
equivalently (and more concretely), as

Λα :=
{{

Iα(Ri
α(t))

}
i∈Z

: t ∈ T
}
⊆ {0, 1}Z, (2.5)

with a shift operation σα : Λα → Λα given by σα(x)i = xi+1, for x = (xi)i∈Z ∈ Λα and
i ∈ Z. This is a homeomorphism. We shall use the same symbol σα for the shifts on
the one-sided and the two-sided systems, and this should cause no confusion. There is a
surjective continuous map ρα : Λα → Xα given by ρ(x) = x[0,∞) for x ∈ Λα. It intertwines
the shift operations (it is a factor map), and we shall refer to it as the canonical truncation.
A finite sequence µ = µ0 . . . µn of length |µ| = n + 1 is an admissible word of Xα if

it appears in some infinite sequence x ∈ Xα. Let L(Xα) be the collection of admissible
words. A basis for the topology on Xα is then given by cylinder sets of the form

Z(µ) := {x ∈ Xα : x[0,|µ|) = µ}, (2.6)

where µ ∈ L(Xα). As a space Xα is homeomorphic to the Cantor space (in particular,
there are no isolated points), and the system (Xα, σα) is minimal in the sense that every
orbit is dense. In fact, if µ is an admissible word, then there is number β(µ) ∈ N such
that if x ∈ Xα, then µ appears in x[0,β(µ)).
The one-sided shift map σα is one-to-one except at a single point ωα ∈ Xα corresponding

to t = α above. This is the unique element satisfying

σ−1
α (ωα) = {0ωα, 1ωα}, (2.7)

and we refer to ωα as a branch point.1 With our choice of coding map Iα, the preimage
0ωα corresponds to t = 0, and 1ωα is added in the closure; however, using an alternative
coding map I ′α defined in terms of the partition {(0, 1− α], (1− α, 1]} the preimage 1ωα

would correspond to t = 0, and 0ωα would be added in the closure.
The system (Xα, σα) is aperiodic in the sense that it contains no eventually periodic

points, but the branch point ωα is isolated in past equivalence so Xα does not satisfy
Matsumoto’s condition (I), cf. [6, Proposition 2.10].
The ordered cohomology of a Sturmian system with parameter α ∈ (0, 1) \ Q is the

ordered group Z + αZ (the ordering is inherited from the real line) with a distinguished
order unit 1 ∈ Z + αZ. This is a simple dimension group with no infinitesimals, cf. [25,
Section 1].

1In [23, Chapter 6], this point is called (left) special and denoted ℓ.
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2.2. Continued fractions

The group GL(2,Z) (2 × 2 matrices with integer entries whose determinant is ±1) acts
on irrationals by linear fractional transformations, i.e.

(
a b
c d

)
α =

aα + b

cα + d
, (2.8)

where α is irrational, and a, b, c, d ∈ Z satisfy ad− cb = ±1. Two irrationals α and β are
equivalent if they are in the same orbit under this action; we write α ∼ β.
Every irrational number α has a unique continued fraction representation [a0; a1, a2, . . .],

with α0 ∈ Z and ai ∈ N+ for all i ∈ N+, and two irrationals are equivalent if and only if
their continued fraction representations [a0; a1, a2, . . .] and [b0; b1, b2, . . .] are tail equivalent,
cf. [28, Section 10.11].

Example 2.1. The Fibonacci substitution

τ :

{
0 7→ 01

1 7→ 0
(2.9)

with fixed point
x = 0 1 0 0 1 0 1 0 0 1 . . . (2.10)

is called the Fibonacci sequence. It is a Sturmian sequence with parameter α = (3−
√
5)/2,

and the continued fraction expansion is α = [0; 2, 1, 1, . . . ]. In particular, it is ultimately
periodic. See e.g. the very careful exposition in [2, Example 2.1.1].

3. Dynamical relations of Sturmian systems

In this section, we discuss the dynamical relations between Sturmian systems of different
parameters. Most of the results are well known to experts and the section serves to
highlight complete invariants of conjugacy and flow equivalence. The final result on
rigidity of continuous orbit equivalence is new.
A pair of two-sided Sturmian systems (Λα, σα) and (Λβ, σβ) are conjugate if there is a

homeomorphism h : Λα → Λβ such that h◦σα = σβ◦h. Since the shift is a homeomorphism,
the reversed action (Λα, σ

−1
α ) defines a new dynamical systems, and we say that (Λα, σα)

and (Λβ, σβ) are flip conjugate if either (Λα, σα) or (Λα, σ
−1
α ) is conjugate to (Λβ, σβ).

Note that σ−1
α corresponds to reversing the rotation of the circle, so it is conjugate to

σ(1−α). Moreover, the map T→ T sending t to 1− t (mod 1) actually induces a conjugacy
between (Xα, σα) and (X(1−α), σ(1−α)). This map just implements an interchanging of
the two symbols. In particular, flip conjugacy implies conjugacy. The systems are orbit
equivalent if there is a homeomorphism h : Λα → Λβ which maps the orbit of x ∈ Λα onto
the orbit of h(x) ∈ Λβ.

Proposition 3.1. Let (Λα, σα) and (Λβ, σβ) be two-sided Sturmian subshifts. The follow-
ing are equivalent:

(1) α = β or α = 1− β;
(2) (Λα, σα) and (Λβ, σβ) are two-sided conjugate;
(3) (Λα, σα) and (Λβ, σβ) are orbit equivalent; and
(4) the dimension groups (Z+ αZ, 1) ∼= (Z+ βZ, 1) are isomorphic as ordered groups

with distinguished order units.

Proof. (1) =⇒ (2): The map T→ T that sends t to 1 − t induces a conjugacy between
(Λα, σα) and (Λ(1−α), σ(1−α)) which simply interchanges the two symbols.
(2) =⇒ (3): This is clear.
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(3) ⇐⇒ (4): The dimension group of a Sturmian subshift contains no infinitesimals,
so it follows from [25, Theorems 2.1 and 2.2] that two systems are orbit equivalent
exactly when their dimension groups are order isomorphic in a way which respects the
distinguished order units.
(4) =⇒ (1): If there is an order isomorphism Z + αZ → Z + βZ which maps 1 to

1, then there are integers n,m, p, q ∈ Z such that α = n + βm and β = p + αq. This
means that α = (n+ pm) + αqm, so qm = 1. Since α ∈ (0, 1), we see that if m = 1, then
α = n + β = β, and if m = −1, then α = (n + pm)− β = 1− β. �

Remark 3.2. This characterisation of conjugacy is well known, see e.g. [16, p. 26].

The suspension (or mapping torus) of (Λα, σα) is the compact Hausdorff space Λα×R/ ∼
where (x, s + 1) ∼ (σα(x), s). Let [x, s] denote the equivalence class of (x, s). The
suspension carries a flow (an action of R) given by φs′[x, s] = [x, s′ + s], for s′ ∈ R, and
two systems are flow equivalent if there is a homeomorphism between their suspensions
which respects the flow orbits in an orientation-preserving way, cf. [31, Section 13.6].

Proposition 3.3. Let (Λα, σα) and (Λβ, σβ) be two-sided Sturmian subshifts. The follow-
ing are equivalent:

(1) α ∼ β (equivalence of irrationals);
(2) Λα and Λβ are flow equivalent;
(3) the suspension spaces of Λα and Λβ are homeomorphic; and
(4) the dimension groups Z + αZ ∼= Z + βZ are isomorphic as ordered groups (not

necessarily preserving the distinguished order unit).

Proof. (1) ⇐⇒ (4): The fact that dimension groups of the form Z+ αZ and Z+ βZ for
irrationals α and β are isomorphic as ordered groups exactly when α and β are equivalent
irrationals is stated in [19, Theorem 3.2] (see also [17, p. 148]).
(2) ⇐⇒ (4): By [25, Theorem 2.6], the systems (Λα, σα) and (Λβ, σβ) are Kakutani

strong orbit equivalent (in the sense that (Λα, σα) and (Λβ, σβ) are strong orbit equiv-
alent to systems which are Kakutani equivalent) if and only if their dimension groups
are isomorphic as ordered groups. Strong orbit equivalent Sturmian systems are conju-
gate (cf. Proposition 3.1), and Kakutani equivalence is the same as flow equivalence (see
e.g. [30, Remark 2.4] and [36]) so the equivalence follows.
(1) ⇐⇒ (3): This is known as Fokkink’s theorem [1, Theorem 4.6]. Although it is

not mentioned by Barge and Williams in their paper, the Denjoy continuum of a rigid
rotation may be identified with the suspension space of a Sturmian subshift, see e.g. [24,
Section 3.6]. �

Let us now consider dynamical relations between one-sided Sturmian systems. A home-
omorphism h : Xα → Xβ is a continuous orbit equivalence if there are continuous maps
k, l : Xα → N and k′, l′ : Xβ → N such that

σ
l(x)
β (h(x)) = σ

k(x)
β (h(σα(x))), (3.1)

σl′(y)
α (h−1(y)) = σk′(y)

α (h−1(σβ(y))), (3.2)

for x ∈ Xα and y ∈ Xβ, in which case Xα and Xβ are continuously orbit equivalent. We
say h is an eventual conjugacy if we can choose l = k + 1 and l′ = k′ + 1 in which case
Xα and Xβ are eventually conjugate. Finally, h is a conjugacy if h ◦ σα = σβ ◦ h in which
case we say that Xα and Xβ are one-sided conjugate.

Proposition 3.4. Let (Xα, σα) and (Xβ, σβ) be one-sided Sturmian subshifts.

(i) An eventual conjugacy h : Xα → Xβ is a conjugacy.
(ii) If (Xα, σα) and (Xβ, σβ) are continuously orbit equivalent, then they are conjugate.
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Proof. (i): Let h : Xα → Xβ be an eventual conjugacy with continuous cocycles k : Xα → N

and k′ : Xβ → N. Take x ∈ Xα such that h(x) /∈ orbβ(ωβ). Then h(σα(x)) /∈ orb(ωβ) and
the relation

σ
k(x)+1
β (h(x)) = σ

k(x)
β (h(σα(x))) (3.3)

implies that k|orbα(x) = 0 (since h(x) and h(σα(x)) have unique pasts, cf. Definition 4.3).
Since orbα(x) is dense in Xα and k is continuous we have k = 0, so h is a conjugacy.
(ii) This proof uses results and terminology from the next section. Suppose h : Xα → Xβ

be a continuous orbit equivalence. By a lifting result [6, Lemma 6.3], there is an induced

continuous orbit equivalence h̃ : X̃α → X̃β between the covers satifying h̃ ◦ πα = πα ◦ h.
Since h̃ maps isolated points to isolated point, the map h̃ restricts to a continuous orbit

equivalence h̃ : Λ̃α → Λ̃β. Via the conjugacies φα : Λα → Λ̃α and φβ : Λβ → Λ̃β, we

therefore obtain an orbit equivalence h̃ : Λα → Λβ with a continuous cocycle c : Λα → Z

such that

σ
c(x)
β h̃(x) = h̃(σα(x)), (3.4)

for x ∈ Λα. Therefore, the systems (Λα, σα) and (Λβ, σβ) are two-sided continuously orbit
equivalent and hence flip conjugate, by [25, Theorem 2.4]. This means that α = β or
α = 1− β, so (Xα, σα) and (Xβ, σβ) are conjugate. �

4. The cover of a Sturmian subshift

In this section, we first review the construction of the cover of a general subshift from [6,
Section 2.1] and then analyse the cover associated to a Sturmian system in detail.
Fix N ∈ N+ and let σ be the shift operation on {1, . . . , N}N, i.e. σ(x)i = xi+1 for any

x = (xi)i∈N ∈ {1, . . . , N}N. To any closed subset X ⊆ {1, . . . , N} which is shift invariant
(in the sense that σ(X) = X) we can associate a totally disconnected compact Hausdorff

space X̃ with a local homeomorphism σ
X̃
which we shall also refer to as a shift operation.

There is a surjective continuous map πX : X̃ → X which intertwines the shift operations,

and the pair (X̃, σ
X̃
) is called the cover of the subshift (X, σ|X). There is also a (not

necessarily continuous) injective function ιX : X→ X̃ such that πX ◦ ιX = idX and ιX(X) is

dense in X̃.

4.1. The cover

Let us first construct the cover of a one-sided subshift (X, σX) with σX(X) = X. For l ∈ N,
the l-past of a point x ∈ X is the set

Pl(x) := {µ ∈ L(X) : |µ| = l, µx},

and x is isolated in past equivalence if Pl(x) = Pl(x
′) implies x = x′, for some l ∈ N. In

this case, we say x is isolated in l-past equivalence. Note that if x is isolated in l-past
equivalence, then it is also isolated in (l + 1)-past equivalence.
Let � be the partial order on the set I = {(k, l) ∈ N× N : k 6 l} given by

(k1, l1) � (k2, l2) ⇐⇒ k1 6 k2 and l1 − k1 6 l2 − k2, (4.1)

for (ki, li) ∈ I, i = 1, 2. Each (k, l) ∈ I defines an equivalence relation
k,l∼ on X given by

x
k,l∼ x′ ⇐⇒ x[0,k) = x′

[0,k) and Pl(σ
k
X
(x)) = Pl(σ

k
X
(x′)). (4.2)
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Let k[x]l denote the
k,l∼-equivalence class of x ∈ X, and let kXl = X/

k,l∼ be the finite set

of
k,l∼-equivalence classes. If (k1, l1) � (k2, l2), then

x
k2,l2∼ x′ =⇒ x

k1,l1∼ x′, (4.3)

so there is a surjection (k1,l1)Q(k2,l2) : k2Xl2 → k1Xl1 given by (k1,l1)Q(k2,l2)(k2 [x]l2) = k1 [x]l2 ,
for x ∈ X. The sets kXl together with the maps Q constitute a projective system and we

define X̃ to be the projective limit.

Definition 4.1. Let (X, σX) be a one-sided subshift with σX(X) = X. The cover X̃ is the
projective limit lim←−(k,l)∈I

(kXl, Q).

The cover is a second-countable and totally disconnected compact Hausdorff space. An

element of X̃ is of the form x̃ ∈ ∏
(k,l)∈I kXl with kx̃l = k[x]l for some x ∈ X (which we

refer to as a (k, l)-representative of x̃), and such that if x is a (k2, l2)-representative of x̃
and (k1, l1) � (k2, l2), then x is also a (k1, l1)-representative.

A basis for the topology of X̃ is given by compact open sets of the form

U(z, k, l) := {x̃ ∈ X̃ : z
k,l∼ kx̃l} (4.4)

for z ∈ Z and (k, l) ∈ I.
For each (k, l) ∈ I with k > 1, we observe that

x
k,l∼ x′ =⇒ σX(x)

k−1,l∼ σX(x
′), (4.5)

so there is a surjective map kσl : kXl → k−1Xl given by kσl(k[x]l) = k−1[σX(x)]l for x ∈ X.

This defines a shift operation σ
X̃
on X̃ given by

kσX̃
(x̃)l = k+1σl(k+1[k+1x̃l]l) = k[σX(k+1x̃l)]l, (4.6)

for x̃ ∈ X̃, and σ
X̃
is a surjective local homeomorphism.

There is a canonical map πX : X̃ → X given as follows: if x̃ ∈ X̃, then x = πX(x̃) is
the unique point satisfying x[0,k) = (kx̃l)[0,k), for every (k, l) ∈ I. This is a factor map in
the sense that it is surjective and satisfies πX ◦ σX = σ

X̃
◦ πX. It is injective (and hence a

conjugacy) exactly if (X, σX) is a shift of finite type.

Finally, there is an injective function ιX : X→ X̃ defined as follows: if x ∈ X then ιX(x)
is the unique element whose (k, l)-representative is x for all (k, l) ∈ I. This is a section
in the sense that πX ◦ ιX = idX but it is not necessarily continuous.
Before specialising to Sturmian subshifts, we record two lemmas which are valid for

general one-sided subshifts.

Lemma 4.2. Let X be a one-sided subshift. Any isolated point in the cover X̃ is contained

in the image of ιX : X→ X̃, and each fibre π−1
X
(x) contains at most one isolated point.

Proof. Assume x̃ ∈ X̃ is an isolated point. This means that

{x̃} = U(z, k, l), (4.7)

for some z ∈ X and (k, l) ∈ I, so that kx̃l
k,l∼ z. Note that if (k, l) � (k′, l′), then

U(z, k′, l′) ⊆ U(z, k, l). In particular, kx̃l
k′,l′∼ z, for all (k, l) � (k′, l′). So x̃ = ιX(z).

For each x ∈ X, we have π−1
X
(x) ∩ ιX(X) = {ιX(x)}, so each fibre contains at most one

isolated point. �

Let us say that σk
X
is injective at x ∈ X if σ−k

X
(x) := (σk

X
)−1(x) is a singleton. The next

definition is particularly relevant to Sturmian systems.
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Definition 4.3. A point x ∈ X has a unique past if σk
X
is injective at x for all k ∈ N.

A similar definition applies to elements in the cover.

Lemma 4.4. Let X be a one-sided subshift with σX(X) = X. If σk
X
is injective at x ∈ X,

then σk

X̃
is injective at any x̃ ∈ π−1

X
(x). In particular, if x ∈ X has a unique past, then

any x̃ ∈ π−1
X
(x) has a unique past.

Proof. Suppose σk
X
is injective at x ∈ X and let µ ∈ Lk(X) be the unique prefix of x with

|µ| = k. Fix x̃ ∈ π−1
X
(x). Let ỹ, z̃ ∈ σ̃−k

X
(x̃) and observe that

πX(ỹ) = µx = πX(z̃). (4.8)

By [6, Lemma 2.8(i)], we have ỹ = z̃. If x has unique past, then this argument applies
for all k ∈ N+, so we conclude that x̃ has a unique past. �

4.2. Sturmian systems

Let us now restrict attention to Sturmian systems. When the parameter is α ∈ (0, 1) \Q,

we denote the cover by (X̃α, σ̃α), the factor map by πα, and the injection by ια. Recall
that the shift operation σα is one-to-one everywhere except at the unique branch point
ωα ∈ Xα at which σα is two-to-one, cf. [23, Theorem 6.1.20]. We first recall a lemma which
will be useful throughout the section (see [6, Lemma 2.8] for a more general statement
and a proof).

Lemma 4.5. Let (Xα, σα) be a Sturmian subshift and let (X̃α, σ̃α) be its cover. If x̃, z̃ ∈ X̃

satisfy πα(x̃) = πα(z̃) and σ̃k
α(x̃) = σ̃l

α(z̃) for some k, l ∈ N, then x̃ = z̃.

We first discuss isolated points.

Lemma 4.6. For x ∈ Xα, the fibre π−1
α (x) ⊆ X̃α contains an isolated point if and only if

x ∈ orbα(ωα) ⊆ Xα.

Proof. Let ω = ωα be the branch point. If x = σk
α(ω) for some k ∈ N, then σk

α(ω) is the
unique element satisfying

Pk+1(σ
k
α(ω)) = {0ω[0,k), 1ω[0,k)}, (4.9)

so σk
α(ω) is isolated in (k + 1)-past equivalence. This implies that

{ια(x)} = U(x, 0, k + 1), (4.10)

and ια(x) ∈ X̃α is an isolated point.

Suppose instead x ∈ σ−k
α (ω) for some k ∈ N+ so that x = µω with |µ| = k. If x

k,k∼ z
for some z ∈ Xα, then z ∈ Zα(µ) and

Pk(σ
k
α(z)) = Pk(ω). (4.11)

Since ω is isolated in 1-past equivalence, it is isolated in k-past equivalence, so σk
α(z) = ω.

Therefore z = µω = x, and
{ια(x)} = U(µω, k, k) (4.12)

which means that ια(x) ∈ X̃α is an isolated point.
For the converse implication, suppose x /∈ orbα(ω). By Lemma 4.2 we only need to

verify that ια(x) is not isolated, so take any basic open subset U(z, k, l) containing ια(x),
for some z ∈ Xα and (k, l) ∈ I. Let µ be the unique word satisfying µx ∈ Xα and |µ| =
l−k, and put ν := x[0,r). Since Xα is recurrent, there exists K ∈ N such that σK

α (x) = µνx′

for some x′ ∈ Xα. Note that x 6= νx′ because x is aperiodic. Now σ
K+|µ|
α (x) = νx′ r,s∼ x,

so ια(νx
′) ∈ U(z, r, s), and this implies that ια(x) is not isolated. �
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Remark 4.7. Let orb+
α (ωα) := {σk

α(ωα) : k ∈ N}. We have seen that x ∈ orb+
α (ωα) exactly

if x is isolated in past equivalence (viz. σk
α(ωα) is isolated in (k + 1)-past equivalence),

and x /∈ orb+
α (ωα) exactly if x has a unique past.

Lemma 4.8. The collection ια(orbα(ωα)) of isolated points is dense in X̃α.

Proof. Take a basic open set U(x, k, l) for some x ∈ Xα and integers 0 6 k 6 l. We shall

find a point z ∈ orbα(ωα) such that x
k,l∼ z; this will imply that iα(z) ∈ ια(orbα(ωα)) ∩

U(x, k, l). We may assume that x /∈ orbα(ωα) so, in particular, Pl(σ
k
α(x)) = {µ} for some

word µ. As orbα(ωα) is dense in Xα, there is a point z′ ∈ orbα(ωα) ∩ Z(µ). Since Xα is
recurrent we may assume that z′ = σK

α (ωα) for some K > 0 so that Pl(σ
l
α(z

′)) = {µ}.
Set z := σl−k

α (z′). Then z[0,k) = x[0,k) and Pl(σ
k
α(z)) = Pl(σ

l
α(z

′)) = {µ}, so x
k,l∼ z as

wanted. �

The next lemma is a well known result which shows that Sturmian subshifts satisfy
Property (∗) of [10, Definition 3.1].

Lemma 4.9 (Property (∗)). For any word µ ∈ Lα there is a point x ∈ Xα such that
P|µ|(x) = {µ}.
Proof. Take any z /∈ orbα(ωα). As Xα is minimal, there is z′ ∈ orbα(z) such that z′ ∈
Zα(µ). Then x = σ

|µ|
α (z′) /∈ orbα(ωα) so P|µ|(x) = {µ}. �

We can use Property (∗) to understand the precise structure of the cover. Loosely
speaking, for every x ∈ Xα each choice of past generates a distinct element in the cover.
This means that only points in the orbit orbα(ωα) will have more than a single element
in the corresponding fibre because points outside of this orbit have unique pasts.

Construction 4.10. Consider the branch point ω = ωα which has exactly two distinct
pasts, one corresponding to the prefix 0 and another to the prefix 1. We shall explicitly
construct an element x̃ ∈ π−1

α (ω) corresponding to the prefix 0; the construction of an
element x̃′ ∈ π−1

α (ω) for the prefix 1 is analogous.
We start by defining the representatives, so let (k, l) ∈ I, i.e. 0 6 k 6 l are integers.

Take the unique word µ0 ∈ Lα satisfying µ0ω ∈ Xα and |µ0| = l−k, and choose x(k,l) ∈ Xα

such that Pl(x(k,l)) = {µ0ω[0,k)}, in accordance with Property (∗) (Lemma 4.9). Set

kx̃l := ω[0,k)x(k,l), (4.13)

and note that kx̃l 6
k,l∼ ω.

The notation indicates that each kx̃l are representatives of a well defined element x̃ ∈
π−1
α (ω), and this is what we will now verify. Given integers 0 6 k1 6 l1 and 0 6 k2 6 l2

satisfying (k1, l1) � (k2, l2) (i.e. k1 6 k2 and l1 − k1 6 l2 − k2), we must show that

k1 x̃l1

k1,l1∼ k2x̃l2 . (4.14)

Choose the word µ0 ∈ Lα such that µ0ω ∈ Xα and |µ0| = l1 − k1. It is clear from the
construction that

(k1 x̃l1)[0,k1) = ω[0,k1) = (k2x̃l2)[0,k1), (4.15)

so it remains to verify that

Pl1(σ
k1
α (k1x̃l1)) = Pl1(σ

k1
α (k2x̃l2)). (4.16)

But this follows from the observations that

σk1
α (k1 x̃l1) = x(k1,l1), σk1

α (k2x̃l2) = ω[k1,k2)x(k2,l2), (4.17)

so
Pl1(σ

k1
α (k1 x̃l1)) = {(µ0ω[0,k1))[k1,k1+l1)} = Pl1(σ

k1
α (k2x̃l2)). (4.18)
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Therefore, we have a well defined element x̃ ∈ X̃α satisfying πα(x̃) = ω. It is clear from
the construction that x̃ is independent of the choice of x(r,s), and that x̃ 6= ια(ω) so x̃ is
not isolated.

We are now ready to describe the precise structure of the cover.

Theorem 4.11. Let α ∈ (0, 1) \ Q and let Xα be the associated one-sided Sturmian

subshift. The canonical factor map πα : X̃α → Xα is

(1) three-to-one on the forward orbit orb+
α (ωα) := {σk

α(ωα) : k > 0},
(2) two-to-one on the backward orbit orb−

α (ωα) := orbα(ωα) \ orb+α (ωα), and
(3) one-to-one otherwise.

Moreover, ια(orbα(ωα)) ⊆ X̃α are exactly the isolated points in X̃α.

Proof. Let ω = ωα be the unique branch point.
(1) and (2): We know from Lemma 4.6 that each x ∈ orbα(ω) defines an isolated

point ια(x) in the cover and all isolated points arise like this. Every point in the forward
orbit x ∈ orb+

α (ω) has two distinct pasts, and an easy adaptation of the procedure in
Construction 4.10 defines two distinct and nonisolated elements in π−1

α (x). Similarly,
every point in the backward orbit x ∈ orb−

α (ω) has a unique past, so the procedure of
Construction 4.10 defines a nonisolated element in π−1

α (x).
It remains to verify that there are no more elements in the fibres. We illustrate this

for the case of the branch point ω = ωα but the argument applies to every point in the
orbit orbα(ωα). If x̃ ∈ π−1

α (ω) is not one of the elements we constructed above, then each
representative kx̃l is the form kx̃l = ω[0,k)x(k,l) for some x(k,l) ∈ Xα satisfying |Pl(x(k,l))| = 2.
We show that kx̃l = ω, and this will imply that x̃ = ια(ω).
Fix integers 0 6 k 6 l. The condition |Pl(x(k,l))| = 2 implies that

x(k,l) = σ
n(k,l)
α (ω), (4.19)

for some n(k,l) ∈ N. We will show that n(k,l) = k from which it follows that kx̃l = ω.
Consider integers 0 6 k′ 6 l′ with (k, l) � (k′, l′). The representative is of the form

k′x̃l′ = ω[0,k′)x(k′,l′), and we have kx̃l
k,l∼ k′x̃l′ , so

Pl(σ
n(k,l)
α (ω)) = Pl(ω[k,k′)x(k′,l′)). (4.20)

Since σ
n(k,l)
α (ω) is isolated in l-past equivalence, we have σ

n(k,l)
α (ω) = ω[k,k′)x(k′,l′). In

particular,
σ
n(k,l)
α (ω) ∈ Zα(ω[k,k′)). (4.21)

As this reasoning applies whenever (k, l) � (k′, l′) we infer that σ
n(k,l)
α (ω) = σk

α(ω), and
since ω is aperiodic we conclude n(k,l) = k as wanted.
(3): Let x /∈ orbα(ω) and take x̃ ∈ π−1

α (x) so that kx̃l = x[0,k)x(k,l), for some x(k,l) ∈ Xα.

We aim to show that kx̃l
k,l∼ x from which it follows that x̃ = ια(x). It only remains to

show that
Pl(x(k,l)) = Pl(σ

k
α(x)). (4.22)

Since x has unique past, we know that Pl(σ
k
α(x)) = {µx[0,k)}, where µ ∈ Lα is the unique

prefix of x with |µ| = l − k.

By Lemma 4.4, x̃ has a unique past so, in particular, there is a unique x̃′ ∈ X̃α satisfying
σ̃l−k
α (x̃′) = x̃. This means that

x[0,k)x(k,l) = kx̃l
k,l∼ σl−k

α (k+(l−k)x̃
′
l) = σl−k

α (lx̃
′
l), (4.23)

and since πα(x̃
′) = µx, we see that µx[0,k) ∈ Pl(x(k,l)). Since Pl(x(k,l)) is a singleton this

proves (4.22). �
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Corollary 4.12. Let Λ̃α := X̃α \ ια(orbα(ωα)) be the collection of nonisolated elements in

the cover. The restricted dynamical system (Λ̃α, σ̃α) is conjugate to the two-sided Sturmian

system (Λα, σα). Consequently, there is an injective sliding block code i : Λα → X̃α such
that ρα = πα ◦ i, where ρα is the canonical truncation.

Proof. We know from Theorem 4.11 that ια(orbα(ω)) = orbα(ια(ω)) are exactly the iso-

lated points of the cover. They form an open and invariant subset, so Λ̃α is a closed
invariant subset homeomorphic to the Cantor set. We will first show that σ̃α restricted

to Λ̃α is a homeomorphism, and then construct a conjugacy φ : Λα → Λ̃α.
We show that σ̃α|Λ̃α

is injective by showing that every element of Λ̃α has a unique past.

Every x /∈ orb+
α (ω) has a unique past, so any nonisolated x̃ ∈ π−1

α (x) has a unique past
by Lemma 4.4. It remains to verify that every nonisolated x̃ ∈ π−1

α (σk
α(ω)) also has a

unique past for all k ∈ N.
Fix k ∈ N and a nonisolated element x̃ ∈ π−1

α (σk
α(ω)). Choose an integer i > k and

take z̃ ∈ σ̃−i
α (x̃) corresponding to the 0-past (the argument for the 1-past is analogous).

Then z̃ is not isolated, and

πα(z̃) = µ0ω

where µ0 ∈ Lα is the unique prefix of ω with |µ0| = i− k. But there is a unique element
satisfying these properties, so σ̃−i

α (x̃) is a singleton. As this applies to all i > k, we
conclude that x̃ has a unique past.

From the description of the cover X̃α in Theorem 4.11, there is an obvious conjugacy

φ : Λα → Λ̃α. Specifically,

• if x ∈ Λα and x[0,∞) ∈ Xα has a unique past (which is x itself), then there is a
unique nonisolated element x̃ ∈ π−1

α (x[0,∞)), and φ(x) = x̃;
• if x ∈ Λα and x[0,∞) ∈ Xα does not have a unique past (i.e. x[0,∞) = σk

α(ω), for
some k ∈ N, so x[−k,∞) = ω), and if x−(k+1) = 0, then there is a unique nonisolated
element x̃ ∈ π−1

α (σk
α(ω)) corresponding to the 0-past, and φ(x) = x̃ (if x−(k+1) = 1,

then there is a unique nonisolated element x̃′ ∈ π−1
α (σk

α(ω)) corresponding to the
1-past, and φ(x) = x̃′).

Finally, the conjugacy φ : Λα → Λ̃α composed with the inclusion Λ̃α → X̃α is an injective

sliding block code i : Λα → X̃α. From the above description we see that ρα = πα ◦ i, where
ρα : Λα → Xα is the canonical truncation. �

Sturmian subshifts are canonical examples of Cantor minimal systems. However, we see
that the cover associated to the (one-sided) Sturmian subshift cannot be minimal since
it contains an invariant countable discrete subset. Moreover, the shift operation on the
cover is not expansive. If it were, the cover would be conjugate to a shift of finite type
and the Sturmian subshift would be sofic.

5. Groupoids and C∗-algebras of Sturmian systems

In this section we associate a C∗-algebra Oα to the one-sided Sturmian system (Xα, σα)
via a groupoid construction as in [6]. We study their relation to the underlying dynamical
systems as well as their intrinsic structure. Finally, we show that the dynamic asymptotic
dimension of the groupoid is one, and that the nuclear dimension of Oα is one.

Remark 5.1. The two-sided system (Λα, σα) admits a transformation groupoid Λα⋊σα
Z,

and its groupoid C∗-algebra C(Λα)⋊Z is well understood. This crossed product is a unital
and simple AT-algebra with real rank zero; it has stable rank one and a unique trace,
cf. [25, p. 60] (see also [38]) and [39, Proposition 4.2].
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We shall now consider the C∗-algebra associated to the one-sided Sturmian system

(Xα, σα) as in [6]. The cover (X̃α, σ̃α) from Section 4 admits a natural topological groupoid
construction (sometimes known as the Deaconu–Renault groupoid)

Gα := {(x̃, p, ỹ) ∈ X̃α × Z× X̃α | ∃k, l ∈ N : σ̃k
α(x̃) = σ̃l

α(ỹ), p = k − l}. (5.1)

The product of (x̃, p, ỹ) and (ỹ′, q, z̃) is defined exactly if ỹ = ỹ′ in which case

(x̃, p, ỹ)(ỹ, q, z̃) = (x̃, p+ q, z̃),

and inversion is given by (x̃, p, ỹ)−1 = (ỹ,−p, x̃). The unit space is canonically identified

with X̃α, and the source and range maps s, r : Gα → X̃α are given as s(x̃, p, ỹ) = ỹ and
r(x̃, p, ỹ) = x̃, respectively.
A basis for a topology on Gα is given by sets of the form

Z(Ũ ,m, n, Ṽ ) := {(x̃, m− n, ỹ) ∈ Gα : x̃ ∈ Ũ , ỹ ∈ Ṽ , σ̃m
α (x̃) = σ̃n

α(ỹ)},
where Ũ , Ṽ ⊆ X̃α are open. Equivalently, we can ask that σ̃m

α |Ũ and σ̃n
α|Ṽ are homeomor-

phisms and σ̃m
α (Ũ) = σ̃n

α(Ṽ ). This is a second-countable, locally compact Hausdorff and

étale groupoid [47, Lemma 3.1], and it is principal because Xα (and hence X̃α) contains
no periodic points. By [47, Lemma 3.5] Gα is amenable, so the reduced and full groupoid
C∗-algebras coincide.
We define the C∗-algebra Oα of (Xα, σα) to be the groupoid C∗-algebra C∗(Gα). It

carries a canonical diagonal subalgebra Dα := C(X̃α) ⊆ Oα which is a Cartan subalgebra.

Moreover, the factor map πα : X̃α → Xα induces an inclusion C(Xα) ⊆ Dα in Oα. The
C∗-algebra Oα also admits a canonical gauge action γα : T y Oα which is induced from
the canonical cocycle c : Gα → Z given by c(x̃, p, ỹ) = p (though we shall not need it here).
From our study of the cover in Section 4, we immediately get the following result.

Lemma 5.2. Let α ∈ (0, 1) \Q. The groupoid Gα of (Xα, σα) is ample, principal, and not

minimal, and the unit space decomposes into invariant subsets X̃α = orbα(ω̃α) ∪ Λ̃α such
that

(1) orbα(ω̃α) ⊆ X̃α is an open and invariant subset, and Gα restricted to this open
subset is (isomorphic to) the full equivalence relation on a countably infinite set;

(2) Λ̃α ⊆ X̃α is a closed and invariant subset, and Gα restricted to this closed subset
is (isomorphic to) the crossed product Λα ⋊ Z.

As a corollary, we can now recover an unpublished result of Carlsen [8, Theorem 8.18]
for Sturmian subshifts in a form where we understand the maps already at the levels of
the underlying dynamical systems and with a different proof.

Corollary 5.3. For α ∈ (0, 1) \Q there is a commutative diagram

0 c0 Dα C∗(Λα) 0

0 K Oα C(Λα)⋊ Z 0

(5.2)

where the rows are short exact and the vertical arrows are canonical inclusions.

Proof. The groupoid Gα restricted to the open invariant subset orbα(ω̃α) is the full equiv-
alence relation on a countably infinite set, so its C∗-algebra is isomorphic to the compact

operators, cf. e.g [46, Example 9.3.7]. Furthermore, the groupoid restricted to Λ̃α on which
the dynamics is reversible, is isomorphic to the transformation groupoid Λα ⋊ Z whose
C∗-algebra is the crossed product C(Λα)⋊Z. The fact that the horizontal sequences are
exact follows, e.g. from [46, Proposition 10.3.2]. �
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The compact operators is the unique ideal of Oα.

Remark 5.4. The K-theory of Oα was computed in [11, Example 5.3] and [20, Corollary
4.1] to be

K0(Oα) ∼= Z+ αZ, and K1(Oα) = 0. (5.3)

The first isomorphism is of ordered groups when Z+αZ inherits the order of the real line.

We can now relate existence of ∗-isomorphisms or Morita equivalence between these
C∗-algebras to the dynamics of the underlying subshifts by using the results of Section 3.
Note that similarity with [41, Theorems 2 and 4]

Proposition 5.5. Let α, β ∈ (0, 1) \ Q. The two-sided Sturmian systems (Λα, σα) and
(Λβ, σβ) are two-sided conjugate (equivalently, the one-sided Sturmian subshifts (Xα, σα)
and (Xβ , σβ) are one-sided conjugate) if and only if the C∗-algebras Oα and Oβ are ∗-
isomorphic if and only if α = β or α = 1− β.

Proof. The two-sided subshifts (Λα, σα) and (Λβ, σβ) are conjugate if and only if the one-
sided subshifts (Xα, σα) and (Xβ, σβ) are one-sided conjugate, and this happens exactly
when α = β or α = 1 − β. By [6, Theorem 4.4] there is a ∗-isomorphism from Oα and
Oβ which is diagonal-preserving and intertwines the gauge actions. Conversely, if Oα

and Oβ are ∗-isomorphic, then their K-theory agrees; in fact, Z + αZ and Z + βZ are
order isomorphic in a way which preserves the distinguished unit. Therefore, α = β or
α = 1− β. �

Proposition 5.6. Let α, β ∈ (0, 1) \ Q. The two-sided Sturmian systems (Λα, σα) and
(Λβ, σβ) are flow equivalent if and only if Oα and Oβ are Morita equivalent if and only if
α ∼ β (equivalence of irrationals).

Proof. The systems (Λα, σα) and (Λβ, σβ) are flow equivalent exactly when α and β are
equivalent irrationals. Flow equivalence implies the existence of a ∗-isomorphism from
Oα ⊗ K to Oβ ⊗ K which is diagonal-preserving; in particular, Oα and Oβ are Morita
equivalent. Conversely, if Oα and Oβ are Morita equivalent, then their ordered K-theory
agrees, so the irrationals α and β are equivalent. �

These results tell us that the class {Oα}α of C∗-algebras associated to Sturmian systems
contains uncountably many non-∗-isomorphic (even non-Morita equivalent) C∗-algebras,
and the ordered K-theory classifies them up to Morita equivalence, cf. [20, Corollary 4.1].

Remark 5.7. The diagonal subalgebra Dα inside Oα is a Cartan subalgebra in the sense
of [40] and it is unique in the following sense: if Oα and Oβ are ∗-isomorphic, then the
systems (Xα, σα) and (Xβ, σβ) are conjugate (by the above result) so there is a diagonal-
preserving isomorphism from Oα to Oβ , i.e. a ∗-isomorphism which maps the diagonal
onto the diagonal, cf. [6, Theorem 4.1]. This is reminiscent of AF-algebras and not
something to expect among Cantor minimal system, cf. [25, pp. 65–66].
Moreover, we may deduce a stable ∗-isomorphism implies ∗-isomorphism result. If a

∗-isomorphism from Oα ⊗ K to Oβ ⊗ K which maps C(Xα)⊗ c0 onto C(Xβ) ⊗ c0 can be
chosen to also intertwine the gauge actions γα⊗ id and γβ⊗ id, then (Λα, σα) and (Λβ, σβ)
are conjugate (cf. [6, Corollary 7.6]) so Oα and Oβ are ∗-isomorphic.

Lemma 5.8. The C∗-algebra Oα is infinite (though not properly infinite), has real rank
zero, and stable rank two for any α ∈ (0, 1) \Q.

Proof. The fact that Oα has real rank zero follows from [7, Theorem 3.14]. Since both the
compacts and the crossed product has stable rank one, it follows from [42, Corollary 4.12]
and Corollary 5.3 that the stable rank of Oα is one or two. The existence of an infinite
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projection in Oα shows that it is an infinite C∗-algebra and that the stable rank must be
two (stable rank one would imply that Oα were stably finite).

Let B ⊆ Gα be the union of Λ̃α, {ια(σ−k
α (0ωα) : k ∈ N)}, {ια(σk

α(ωα)) : k ∈ N}, and
{(ια(ν1ωα), 1, ια(σα(ν1ωα))) : |ν| > 1}. (5.4)

Then B is an open bisection with s(B) = X̃α and r(B) = X̃α \ {1ω̃α}. Therefore, the
indicator function χB ∈ Oα is a proper isometry, so Oα is infinite. Since K0(Oα) is an
ordered group, Oα is not properly infinite. �

Finally we turn our attention to the nuclear dimension for C∗-algebras. This was
introduced in [49] as a noncommutative analogue of topological covering dimension, and
it has proven to be immensely valuable to the classification programme. Since (Λα, σα) is
a Cantor minimal system it is well known that its crossed product C∗-algebra has nuclear
dimension one (since it is not AF). By general results on extensions of C∗-algebras ([49,
Proposition 2.9]), it follows from Corollary 5.3 that the nuclear dimension of Oα is at most
two. We will show that the nuclear dimension is one by first determining the dynamic
asymptotic dimension of the groupoid Gα ([27, Section 5]).

Definition 5.9. An étale groupoid G has dynamic asymptotic dimension at most d ∈ N

if for any open and relatively compact subset K ⊆ G there exist open subsets U0, . . . , Ud

in G(0) such that s(K) ∪ r(K) ⊆
⋃

i Ui and such that the groupoid generated by the set

KUi
:= {g ∈ G : s(g), r(g) ∈ Ui} (5.5)

is relatively compact in G for each i = 0, . . . , d.

The crossed product groupoid of (Λα, σα) has dynamic asymptotic dimension one by [27,
Theorem 1.4(i)].
In the proof below we shall use the notation

Z
(
σj
α(µ) : j = 0, . . . , n

)
:=

n⋃

j=0

Z
(
σj
α(µ)

)
(5.6)

for a word µ ∈ Lα and an integer n 6 |µ|. Moreover, if µ and ν are two words, then we
write µ � ν to say that µ appears somewhere in ν.

Theorem 5.10. The dynamic asymptotic dimension of Gα is one for any α ∈ (0, 1) \Q.

Proof. Let K ⊆ Gα be an open and relatively compact subset. In particular, K̄ ⊆⋃
iZ(X̃α, ki, li, X̃α) for some finite union. Note that

Z(X̃α, ki, li, X̃α) = Z(X̃α, 0, ki − li, X̃α) ∪ Z(orb(ω̃), ki, li, orb(ω̃)) (5.7)

if ki − li 6 0 (of course, a similar thing happens if ki − li > 0), and that the groupoid
generated by the right most set is finite. Since the groupoid generated by a subset K only
depends on K ∪K−1 ∪ s(K) ∪ r(K), we may therefore assume that

K =
⋃

l∈F

Z(X̃α, 0, l, X̃α), (5.8)

for some finite subset F ⊆ N.
Let l̄ = max{l : l ∈ F} and choose distinct words µ′, ν ′ of length l̄. Extend both words

to the left (in any way) to obtain words µ, ν of length 2l̄. Now let

Ũ := π−1
α

(
Z(σj

α(µ) : j = 0, . . . , l̄ − 1)
)

and Ṽ := X̃ \ Ũ , (5.9)
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and observe that π−1
α

(
Z(σj

α(ν) : j = 0, . . . , l̄ − 1)
)
⊆ Ṽ . Then Ũ and Ṽ are disjoint open

sets which cover X̃. Let

K
Ũ
:= {g ∈ K : s(g), r(g) ∈ Ũ} and K

Ṽ
:= {g ∈ K : s(g), r(g) ∈ Ṽ }. (5.10)

We shall verify that the groupoids generated by these two sets in Gα are relatively compact,
and this will prove the claim.
If there is a bound on the number of elements in {g ∈ KṼ : c(g) > 0} that can be

concatenated, say β ∈ N, then the groupoid generated by KṼ is contained in
⋃

ki,li6k̄β

Z(X̃α, ki, li, X̃α) (5.11)

which is compact (being a finite union of compact sets).

Suppose that g ∈ K with x̃ := s(g), r(g) ∈ Ṽ , and let x := πα(x̃) ∈ Xα. Let β(µ) ∈ N

be such that µ � x[0,β(µ)], and note that this number can be chosen to be independent of
x. After applying at most β(µ) shifts to x̃, there is an element x̃′ such that

x′ := πα(x̃
′) ∈ Z

(
σj
α(µ) : j = 0, . . . , l̄ − 1

)
.

So x̃′ ∈ Ũ . This means that there can be at most β(µ) concatenations of elements in
{g ∈ KṼ : c(g) > 0}. A similar argument applies to {g ∈ KṼ : c(g) 6 0}. Therefore,
the groupoid generated by KṼ is contained in a compact set of the form (5.11) so it is
relatively compact.

A similar argument applies to g ∈ K with x̃ := s(g), r(g) ∈ Ũ . Let x := πα(x̃) ∈
Z(σj

α(µ) : j = 0, . . . , k̄ − 1). If β(ν) ∈ N is a number such that ν � x[0,β(ν)] (independent
of x), then after at most β(ν) shifts of x̃, there is an element x̃′ with x′ := πα(x̃

′) ∈
Z(σj

α(ν) : j = 0, . . . , l̄ − 1). As above, it follows that the groupoid generated by KŨ is
contained in a set of the form (5.11) and is hence relatively compact. �

Corollary 5.11. The nuclear dimension of Oα is one for every α ∈ (0, 1) \Q.

Proof. The unit space X̃α of Gα is zero-dimensional, so it follows from Theorem 5.10
and [27, Theorem 8.6] that the nuclear dimension of Oα is one. �
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