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The behavior of a system of two-dimensional elongated particles (discorectangles) packed into a slit
between two parallel walls was analyzed using a simulation approach. The packings were produced
using the random sequential adsorption model with continuous positional and orientational degrees
of freedom. The aspect ratio (length-to-width ratio, ε = l/d) of the particles was varied within the
range ε ∈ [1; 32] while the distance between the walls was varied within the range h/d ∈ [1; 80]. The
properties of the deposits when in the jammed state (the coverage, the order parameter, and the long-
range (percolation) connectivity between particles) were studied numerically. The values of ε and h
significantly affected the structure of the packings and the percolation connectivity. In particular,
the observed nontrivial dependencies of the jamming coverage ϕ(ε) or ϕ(h) were explained by the
interplay of the different geometrical factors related to confinement, particle orientation degrees of
freedom and excluded volume effects.

I. INTRODUCTION

In recent years, the different patterns of self-assembly
occuring in random packings of elongated particles onto
two-dimensional (2D) substrates have attracted a great
deal of attention [1]. Such assemblies may have attrac-
tive practical applications in memory devices, the prepa-
ration of substrates with controlled wettability, transpar-
ent electrodes for optoelectronics, and for sensing mate-
rials [2, 3].

Self-assembly can be manifested in a random sequen-
tial adsorption (RSA) process consisting of the irre-
versible deposition of immobile particles onto a 2D sub-
strate [4–6]. In the RSA process, the particles are de-
posited sequentially, their overlapping is forbidden, and
above the saturated coverage concentration (“jamming
limit”) the deposition process is terminated. For disks,
the saturated coverage is ϕ = 0.5472 ± 0.0002 [7, 8].
This value is noticeably smaller than the maximum pack-
ing fraction for a close-packed configuration of disks,
π/
√

12 ≈ 0.9069 [9]. Moreover, the RSA configuration
is not stable since some disks may be rearranged to cre-
ate holes sufficiently large to accommodate new disks [8].

For elongated particles, RSA is a challenging problem
that has been the ongoing focus of many researchers. The
RSA packings of ellipses [10, 11], rectangles [12, 13], dis-
corectangles [14, 15], and other elongated objects [6, 16–
21] with different aspect ratios (length-to-width ratios
ε = l/d), have been analyzed. In many cases, intriguing
non-monotonic ϕ(ε) dependencies have been observed.
Such behavior was explained by a competition between
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the effects of orientational degrees of freedom and ex-
cluded area effects [22].

Spatially confined systems are of special interest for
analysis of the effects of particle shape and the effect
of confinement on particle self-assembly. The confine-
ment effects have been extensively studied in 2D systems
at equilibrium, when enclosed between two parallel hard
walls (in a slit), or in square or circular cavities [23–31].
The behavior of systems of particles with different ge-
ometries (ellipses, discorectangles, and rectangles) have
also been analyzed [32]. In particular, the surface phase
diagram of a 2D hard-rectangle fluid confined between
two walls was calculated [33]. Capillary columnar order-
ing and layering transitions were observed in this system.
The density and the order-parameter profiles were calcu-
lated and the formation of stationary texture consisting
of layers of particles oriented parallel to the walls was
demonstrated. Monte Carlo simulation of a system of
hard rectangles confined between two walls has been per-
formed [34]. It was shown that confined particles tend to
align their long axes parallel to the confining walls with
the effects being more pronounced for smaller separations
between those walls.

Strongly confined systems between two parallel walls
have been examined, theoretically, for rectangular parti-
cles [35–37]. The density profiles showed planar ordering
and damped oscillatory behavior [35]. For non-mesogenic
particles with small aspect ratios (ε < 3) in the extreme
confinement limit — small distances between the walls
(h/d ≤ 2), a structural transition from a planar (par-
ticle’s long axis parallel to the walls) to a homeotropic
(particle’s long axis perpendicular to the walls) layer with
increasing density was observed [37]. For hard discorect-
angles between the two parallel walls in strongly confined
systems (1 < h/d ≤ 2), a rich phase behavior with de-
pendence on the value of the particles’ aspect ratio has
been observed [38]. For hard ellipses in a circular cavity,
the formation of oriented layers in the vicinity of the wall
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was also reported [39].
For the case of confined RSA systems, we are only

aware of the study of RSA configurations of hard-discs
with diameter d in a narrow slit of width h (1 < h/d <
2) [40]. The case h = d corresponds to the one-
dimensional (1D) packing of disks onto the line. 1D jam-
ming coverage for lines was exactly evaluated to be about
ϕR = 0.7476 . . . (Rényi’s parking constant) [41].

For 1D RSA disc systems, this gives ϕ = (π/4)ϕR ≈
0.5872. With an increase of h value, a noticeable decrease
of the ϕ value was observed. However, to the best of our
knowledge, confined RSA system with elongated particles
have never been studied before.

The present work deals with 2D RSA packings of elon-
gated particles (discorectangles) in confined geometry be-
tween two parallel plates (a slit). A computationally ef-
ficient technique to generate jamming configurations has
been employed. The profiles of the coverage and ori-
entational structures of the packings were evidenced by
the presence of surface-induced ordering inside the slit.
Mean values of the coverage ϕ(ε) and the order parameter
S demonstrated non-monotonic behavior in their depen-
dence on ε and h. The connectivity of particles having
a hard core—soft shell structure was also analyzed. The
rest of the paper is organized as follows. In Sec. II, the
technical details of the simulations are described and all
necessary quantities are defined. Section III presents our
principal findings and discussions. Finally, Section IV
presents some concluding remarks.

II. COMPUTATIONAL MODEL

Elongated particles were represented by hard dis-
corectangles, which consist of a rectangular part (length
l − d and width d) with two semicircular caps of diam-
eter d at their opposite ends. To simplify presentation,
in further consideration, all lengths are given in units of
d. Particles with ε ∈ [1; 32] were analyzed. An RSA
model was used for the formation of the packings. Par-
ticles with random orientations were randomly and se-
quentially deposited into a slit (in the space between two
parallel impenetrable walls with a distance h between
them). Overlapping of a particle with any previously
deposited ones or with the walls was strictly forbidden
(Fig. 1). The jamming state was reached when no addi-
tional particle could be added to the system due to the
absence of any pores of appropriate size. The closest dis-
tance of approach of a particle to any of the walls was
0.5.

A computationally efficient technique to generate jam-
ming configurations, based on the tracking of local re-
gions, was employed [14, 15]. The saturated coverage
was evaluated as ϕ = NAp/A, where N is the number
of deposited particles, and Ap and A are the area of a
particle and of the slit, respectively. In the following dis-
cussion, only the properties of systems in the jamming
state will be analyzed.
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FIG. 1. Schematic picture of the RSA packing of elongated
particles between two parallel walls a the distance h between
them. The walls and particles (cores) are assumed to be im-
penetrable. The cores of the particles are discorectangles of
length l and width d. The spaces between particles can be
treated as pores. Periodic boundary conditions are applied
in y direction. For connectivity analysis along the x and the
y axes, the particles were covered with shells of thickness δ.
The particles of different shades correspond to the different
clusters.

The width of the slit was varied within h ∈ [1; 80] and
periodic boundary conditions (PBCs) were used in the
vertical (y) direction. The comparative data to mimic in-
finite systems were obtained using PBCs applied in both
the horizontal (x) and the vertical (y) directions using a
system size of 32ε × 32ε (more detailed information can
be found elsewhere [21]).

For connectivity analysis along the x and y axes, a
core–shell structure of the particles was assumed. The
particle cores were covered with shells of thickness δ
(Fig. 1). The minimum thickness of the overlapping
shells, required for the formation of spanning clusters
in the x or y direction, was determined using a list of
near-neighbor particles [42] and the Hoshen—Kopelman
algorithm [43].

During the deposition of particles with random orien-
tations in a confined slit, some particle orientations may
be rejected due to intersection with the walls. There-
fore, aligned packing with a preferred orientation along
the slit (y direction) is formed. Moreover, for conditions
with strong confinement at fairly small value of the slit
width h ≤ 2, “defective” packings with diminished den-
sity were observed due to a commensuration effect be-
tween the width of the particle and the wall separation.
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The degree of orientation in the aligned packings that
formed was characterized by the order parameter defined
as

S = 〈cos 2θ〉 , (1)

where 〈·〉 denotes the average, θ is the angle between the
long axis of the particle and the y axis.

The scaling tests with L = 2n, n ∈ [8; 14] evidenced
good convergence of the data for the coverage ϕ (Fig. 2).
Therefore, in the present work, the majority of calcula-
tions have been performed using L = 16384, n = 14.
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FIG. 2. Examples of the coverage ϕ versus the inverse length
of the slit 1/L for different distancesh between its walls and
with an aspect ratio of the particles ε. Inset shows ϕ/ϕ∞
versus 1/L, where ϕ∞ corresponds to the limit L→∞.

Profiles of the local coverage ϕ(x) and the order pa-
rameter S(x) were calculated as an ensemble average for
the particles that have their centers of mass at distances
between x and x+ dx from the wall.

For each given value of ε and h, the computer exper-
iments were repeated using 10 to 100 independent runs.
The error bars in the figures correspond to the standard
deviations of the means. When not shown explicitly, they
are of the order of the marker size.

III. RESULTS AND DISCUSSION

Figure 3 demonstrates examples of the packing pat-
terns (top), and profiles of the scaled coverage g(x) =
ϕ(x)/ϕ̄ and the order parameter S(x) (bottom) for the
value of the aspect ratio ε = 2 and distances between the
walls h = 4 (a) and h = 10 (b). Here, ϕ̄ is the mean
value of the coverage, averaged across the slit.

The oscillating profiles of g(x) and S(x) were observed
for other values of ε and h. Obtained data evidenced
that hard walls induced the formation of layers of parti-
cles in the vicinity of the walls with the particles’ long
axes preferentially aligned parallel to the walls. Both the

profiles were symmetrical with respect to a line along the
center of the slit.

Similar profiles were captured both by the simulations
and from theories for equilibrium systems of particles
confined between parallel hard walls with varying sep-
arations, h. For example, in three-dimensional confined
geometries between parallel walls, oscillatory behavior of
the local density was observed for hard spheres [44], sphe-
rocylinders [45–48], rod-like particles [49], cylinders [50],
and rectangular rods [51]. Strong structurization of the
systems near the walls, and different confined isotropic,
nematic, and smectic phases for the elongated particles
were observed [47]. Similar effects have also been ob-
served in 2D confined geometries between parallel hard
walls for ellipses, discorectangles, and rectangles [32–
34, 51].

It is remarkable that, in our case for RSA packings us-
ing, the selected value of ε = 2 (Fig. 3), the coverage and
the order parameter profiles revealed a distinctive peak
at a distance of about the width of a particle (xm ≈ 1)
from the wall surface. Generally, the positions of the first
maximum in the g(x) dependency and the first minimum
in S(x) were observed at nearly the same distance from
the wall, xm. The value of xm may correspond to the
surface layer thickness.

Figure 4 presents the dependencies of the thickness xm
versus ε at different values of h (a) and xm versus h at
different values of ε (b). At a fixed value of h, the thick-
ness xm initially increased with ε and saturated for long
particles with large values of ε (Fig. 4a). Specifically, the
saturated values of xm were ≈ 0.83 at h = 2, ≈ 1.54
at h = 5, and ≈ 2.56 at h = 10. Similarly, at a fixed
value of ε, the thickness xm initially increased with h
and then saturated for larger values of h (Fig. 4b). The
dashed line in Fig. 4b corresponds to the linear depen-
dence xm = 0.25(1+h). This linear increase of the surface
layer thickness with h was only observed in strongly con-
fined systems with h ≤ ε, while at larger values of h, a
transition of xm(h) to saturated behavior was observed.
Therefore, in confined systems the extent of perturbation
induced by walls depends upon the interrelation between
the values of h and ε.

Figure 5 presents the dependencies of the mean cover-
age ϕ̄ (a) and the mean order parameter S̄ (b) versus the
aspect ratio ε in slits with different distances h between
the walls. For strongly confined 1D systems (h = 1), the
dependence ϕ̄(ε) may be calculated as

ϕ̄ = ϕR
π/4 + ε− 1

ε
, (2)

where ϕR = 0.7476 . . . is the Rényi’s parking con-
stant [41]. This formula gives the dashed line for h = 1
presented in Fig. 5a with ϕ̄ = (π/4)ϕR for disks (ε = 1),
and ϕ̄ = ϕR for infinitely long particles (ε =∞).

For 2D systems with h > 1, a wide variety of mono-
tonic and non-monotonic ϕ̄(ε) dependencies have been
observed. Particularly, for the system with PBCs (sys-
tems with size 32ε×32ε were used to imitate an infinitely
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FIG. 3. Examples of the packing patterns (top), and profiles of the scaled coverage g(x) = ϕ(x)/ϕ̄ and the order parameter, S(x)
(bottom) for the value of the aspect ratio ε = 2 and distances between the walls h = 4 (a) and h = 10 (b). The corresponding
mean values, averaged across the slit, are ϕ̄ = 0.518± 0.01 and S̄ = 0.54± 0.01 (a) and ϕ̄ = 0.558± 0.01 and S̄ = 0.26± 0.01
(b). Here, xm corresponds to the positions of the extremum in the ϕ∗(x) (maxima) or S(x) (minima) dependencies.

large system) the maximum in the ϕ̄(ε) dependence can
be explained a a result the competition between the par-
ticles’ orientational degrees of freedom and the excluded
area effects [14, 15, 21].

Monotonic ϕ̄(ε) dependencies have only been observed
in strongly confined systems with h < 3. In particular,
confined systems with h = 2 demonstrated specific be-
havior with the smallest values of coverage being below
ϕ̄ ≈ 0.4 for ε > 2. However, for higher distances be-
tween the walls (h ≥ 3) similar maximums in the ϕ̄(ε)
dependencies have also been detected (Fig. 5a).

The dependencies S̄(ε) showed only monotonic char-
acter while the order parameter was higher for thinner
slits and increased with increase of ε (Fig. 5b). This be-
havior reflected the presence of highly oriented layers of
particles formed in the vicinity of both walls (Fig. 3).
Therefore, confinement by walls resulted in the addition
of a supplementary lever into the competition between
the particles’ orientational degrees of freedom and the
excluded area effects.

Figure 6 presents the dependencies of the mean cover-
age ϕ̄ (a) and the mean order parameter S̄ (b) versus the
slit width h for particles with different values of aspect
ratio, ε. The dependencies ϕ̄(h) displayed minimums at
approximately the same h ≈ 1.9 − 2 separations for all
studied values of the aspect ratio, ε (Fig. 6a). Obtained
data for disks (ε = 1) were in good agreement with pre-

viously reported data for the range 1 < h ≤ 2 [40].
Note, that in strongly confined systems (1 < h ≤ 2)

of discorectangles or ellipses, rich phase behavior in the
dependence of the value on the particles’ aspect ratio has
recently been reported [38, 52]. For small values of the
aspect ratio (ε = 1−5), the values of the mean coverage ϕ̄
showed saturation for larger distances between the walls
(h > 10). However, for particles with large aspect ratio
values (ε ' 10− 20), a decrease in the mean coverage ϕ̄
with increase values of h was observed for larger values of
the distance between the walls (h > 10− 20). The mean
order parameters S̄ continuously decreased with increas-
ing values of h. The effects were more pronounced for
particles with small values of the aspect ratio, ε (Fig. 6b).

Figure 7 presents the thickness of the connectivity shell
δ versus the aspect ratio ε in directions across the hor-
izontal axis x(↔) and along the vertical axis y(l) for
different distances h between the walls. The values of
δ for the horizontal axis x(↔) were relatively small and
independent of the aspect ratio ε.

The behavior of δ along the vertical axis y(l) was more
complicated. For a 1D-confined system with h = 1, a lin-
ear dependence δ = 0.5ε along the y(l) axis was observed
(dashed line with the slope equal to 1). For this case,
the connectivity emerged at higher values for a soft shell
thickness around the particles. For strongly confined sys-
tems with h = 1.5 − 5, the dependencies δ(ε) revealed
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non-monotonic anomalies with inflection points at small
values of ε (Fig. 7). For larger distances (h ≥ 10) between
the walls, there were powerlike dependencies δ ∝ εα with
exponent 0.25 < α < 1. Finally, for the imitated infinite
systems (systems with PBCs applied in both the horizon-
tal (x) and the vertical (y) directions and of the system
size 32ε × 32ε [21]) the value α ≈ 0.25 was estimated.
Obtained data evidenced that the confinement between
walls resulted in a weakening of connectivity along the
vertical axis y(l) and an enhancement of it across the
horizontal axis x(↔).

IV. CONCLUSION

Numerical studies of two-dimensional RSA deposition
of discorectangles confined between two parallel walls (in
a slit) were carried out. It was shown that the introduc-
tion of such confinement significantly affected the distri-
bution of the particles and their orientations inside the
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S̄ (b) versus the aspect ratio ε in slits with different distances
h between the walls.

slit. Near the walls, the particles were mostly aligned
parallel to the walls. The thickness of the surface layers
and the extent of the surface perturbation induced by the
walls depend upon the interrelation between the values
of h and ε. The mean coverage ϕ̄ and the mean order
parameter S̄ were also strongly dependent upon the val-
ues of h and ε. Particularly, for finite values of h, the
monotonic ϕ̄(ε) dependencies have only been observed
in strongly confined systems with h < 3. However, for
greater distances between the walls (h ≥ 3), maxima in
the ϕ̄(ε) dependencies have also been detected. More-
over, minima in the ϕ̄(h) dependencies at approximately
the same values of h ≈ 1.9 − 2 for all studied values of
the aspect ratio, ε, have been observed. This behavior
reflects the presence in confined systems of a supplemen-
tary lever affecting the competition between the particles’
orientational degrees of freedom and the excluded area ef-
fects. Obtained data also evidenced that the confinement
between walls results in a weakening of the connectivity
along the walls and an enhancement of it perpendicular to
the walls. Future studies could generalize our approach
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to different anchoring interactions of particles contained
between walls and for confinement within different ge-
ometries such as circular or square cavities.
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