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Abstract

A example is given of a divisor of a curve which is not a trace divisor

of a foliation.1

1 Introduction

We deal in this paper with a very concrete question about existence of folia-
tions with prescribed singularities.

Let F = 0 be the equation of a plane smooth curve Q of degree 4; we fix
the line at infinity L∞ ⊂ CP 2, transverse to Q, and put D∞ = Q ∩ L∞. We
select 16 points Q1, . . . , Q16 outside L∞ and blow up CP 2 at these points;

the curve Q becomes a curve Q̂ ⊂ ĈP 2.
Given the quartic Q and a foliation F which leaves Q invariant we say

that the configuration of points {Q1, . . . , Q16} is pre-regular for F when Q̂

is a leaf of the foliation F̂ obtained after blowing up at each of these points
(in particular, Q̂ has no singularities of F̂). A simple example is given by
the pencil generated by Q and another transversal quartic; if {Q1, . . . , Q16}
is the intersection of the two quadrics, then the divisor [

∑
16

j=1
Qj − 4D∞] is

a principal divisor (for simplicity we write D = 0 for a principal divisor D).
In ([1]) it is observed that if the points Q1, . . . , Q16 are singularities of

F then the divisor [
∑

16

j=1
mjQj − LD∞] (its trace divisor along Q) defined

putting mj as the tangent multiplicity of F along Q at Qj and 4L =
∑

16

j=1
mj

is a principal divisor. A generic choice of the configuration of points satis-
fies none of these ”resonance” conditions no matter what the choice of the
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m1, . . . , m16 is; in particular such a configuration will not be pre-regular. We
may then allow resonances for the configuration and ask whether it is pre-
regular for some foliation. This seems to be a difficult problem. Here in this
paper we give an example of a configuration satisfying [

∑
16

j=1
Qj − 4D∞] 6= 0

and 2[
∑

16

j=1
Qj − 4D∞] = 0 which is pre-regular for no foliation having

2[
∑

16

j=1
Qj − 4D∞] as its trace divisor.

This is related to the so called Ueda type of Q̂ ([4]), as studied (in great
generality) in ([2]). When D =

∑
16

j=1
Qj − 4D∞ satisfies mD = 0 for some

integer smaller or equal to the Ueda type of Q̂, then the configuration is pre-
regular for some foliaton. It is interesting to look for cases where mD = 0
but the configuration is not pre-regular for any foliation (the simplest case
being 2D = 0 and Ueda type of Q̂ equal to 1).

I would like to thank J.V.Pereira and M. Falla Luza for very helpful
conversations.

2 The example

The set {Q1, . . . , Q16} is to be chosen for now as the zero set in Q of the
function G = l1l2C

2, where C is a curve of degree 3 transverse to Q and l1
and l2 are bitangent lines to Q; we assume that the points of l1 = 0 and
l2 = 0 lying in Q are not contained in C. It follows that D 6= 0 and 2D = 0,
for D =

∑
16

j=1
Qj, This example was introduced by Neeman in ([3]). We

intend to prove the

Theorem Let Q be a generic smooth quartic. There exists a Neeman exam-
ple such that the configuration of points is not pre-regular for any foliation
which has 2D as its trace divisor along Q.

We will fix C = FX and assume: 1) the curve C is transverse to Q; 2)
FY 6= 0 at the points of l1l2 = 0 (there is a third condition that will appear in
the proof of the Theorem). The Neeman example mentioned in the statement
is the set {l1l2C

2 = 0} ∩Q.

We intend to study a foliation F which has Q as an invariant set and
which is singular along Q exactly at the points Q1, . . . , Q16; it is assumed
that the singularities have multiplicities (along Q) equal to 2. Then F has
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degree 10 and it is defined by the polynomial 1-form

(1) Ω = G̃dF + F η̃

with η̃ = BdX −AdY ; the polynomials A and B have both degree 7.

Since the quotient
G̃

G
is holomorphic along Q, we have that G̃ = G+ λF

for some λ ∈ C; therefore

Ω = (G+ λF )dF + F η̃ = GdF + F (η̃ + λFdF ) = GdF + Fη

where η = η̃+λFdF . This means that we may use G in the expression of Ω.
Let us remark that more generally we may state

Proposition 1 Assume H and H̃ are polynomials such that the curves H = 0
and H̃ = 0 intersect Q (in CP 2) exactly at the points Q1, . . . , Q16 with the
same multiplicities. If H is a foliation defined by HdF + Fξ = 0 which has
all its singularities along Q at the points Q1, . . . , Q16, then H is also defined
by H̃dF + F ξ̃ for some polynomial 1-form ξ̃.

From now on we consider a foliation F defined by a polynomial 1-form
Ω = GdF + F (BdX − AdY ) which has singularities along Q exactly at the
points Q1, . . . , Q16. We assume that F has multiplicity greater or equal to 2
along Q at any of these points. Let us now take local coordinates (x, y) in a
neighborhood of some Qj

x = X, y = F (X, Y )

or, equivalently
X = x, Y = l(x, y)

The relations

FX(x, l(x, y)) + lx(x, y).FY (x, l(x, y)) = 0, FY (x, l(x, y)).ly(x, y) = 1

follow from F (x, l(x, y)) ≡ y.
We remark that for each small c ∈ C the map x 7→ (x, l(x, c)) parametrizes

the curve F (X, Y ) = c.
In these local coordinates the 1-form Ω becomes

(2) g(x, y)dy + y[B(x, l)dx− A(x, l)(lxdx+ lydy)] =
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[g − ylyA(x, l)]dy + y[B(x, l)− lxA(x, l)]dx,

where g = g(x, y) = G(x, l(x, y)) and l = l(x, y), lx = lx(x, y), ly = ly(x, y).

ẋ = −g + yα(x, y)), ẏ = yβ(x, y)

The associated vector field is

[−g(x, y) + ylyA(x, l(x, y))
∂

∂x
+ y[B(x, l(x, y))− lxA(x, l(x, y))]

∂

∂y

or simply
ẋ = −g(x, y) + yα(x, y), ẏ = β(x, y)

for α(x, y) = lyA(x, l(x, y)) and β(x, y) = B(x, l(x, y))− lxA(x, l(x, y)).
Let us write g(x, y) = λxm + yg̃(x, y) and α̃(x, y) = α(x, y)− g̃(x, y); we

have then

(3) ẋ = −λxm + yα̃(x, y), ẏ = yβ(x, y)

3 Blowing-up the singularities

In this section we analyse necessary conditions a singularity as in (7) must
satisfy in order to be a pre-regular singularity of the foliation F .

Definition 1 A singularity in Q is pre-regular when after one blow-up the
intersection of the exceptional divisor with the strict transform of Q is a
regular point of the strict transform of F .

After one blow-up of (7) for the case m = 2 (putting y = tx) we get

ẋ = −λx2 + txα̃(x, tx), ṫ = tβ(x, tx)− t[−λx+ tα̃(x, tx)];

let us write α̃(x, y) = α̃+ α̃xx+ α̃yy+ . . . and β(x, y) = β+βxx+βyy+ . . . .

Since the Camacho-Sad index of a pre-regular singularity is equal to 1,
we have βx = −λ. The necessary conditions for pre-regularity are then

(4) α̃ = 0, β = 0, βy − α̃x = 0, α̃y = 0.
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Let us remark that if the singularity was

ẋ = −λxm + yα̃(x, y), ẏ = yβ(x, y)

for m > 2, then the conditions in (8) of pre-regularity

α̃ = 0, β = 0, βy − α̃x = 0, α̃y = 0, βx = 0

are also, but not all, necessary conditions; the fact that the Camacho-Sad
index is 1 corresponds to βm−1

x = −λ, where βm−1

x xm−1 is the (m− 1)-term
in the Taylor development of β(x, y).

We proceed to write the conditions in terms of G,A and B; for simplicity
we assume the singularity to be the point (0, 0) ∈ C

2.

1) α̃ = 0.

Since α̃(x, y) = α(x, y) − g̃(x, y) we have α(0, 0) = g̃(0, 0). But g(x, y) =

λx2+yg̃(x, y); therefore
∂g

∂y
(x, y) = g̃(x, y)+y

∂g̃

∂y
(x, y) and

∂g

∂y
(0, 0) = g̃(0, 0)

Now we have α(0, 0) =
∂g

∂y
(0, 0) so ly(0, 0)A(0, l(0, 0)) =

∂G

∂Y
(0, l(0, 0)).ly(0, 0).

We conclude that

(5) A(0, 0) =
∂G

∂Y
(0, 0)

2) β = 0

We have B(0, 0)− lx(0, 0)A(0, 0) = 0 and lx(0, 0) = −
FX

FY

(0, 0) so that

(6) A(0, 0)FX(0, 0) +B(0, 0)FY (0, 0) = 0.

3) α̃y = 0

As before, α̃(x, y) = α(x, y)− g̃(x, y) and α̃y(x, y) = αy(x, y)− g̃y(x, y).
Since α(x, y) = ly(x, y)A(x, l(x, y)) we get

αy(x, y) = lyy(x, y)A(x, l(x, y)) + l2y(x, y)AY (x, l(x, y))
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As before,
∂g

∂y
(x, y) = g̃(x, y) + y

∂g̃

∂y
(x, y); this implies

gyy(x, y) = 2g̃y(x, y) + yg̃yy(x, y)

and

lyy(0, 0)GY (0, 0) + l2y(0, 0)AY (0, 0)−
gyy(0, 0)

2
= 0

We have now to compute gyy(0, 0), ly(0, 0) and lyy(0, 0).

• g(x, y) = G(x, l(x, y)) and gy(x, y) = GY (x, l(x, y))ly(x, y) so

gyy(x, y) = lyy(x, y)GY (x, l(x, y)) + l2y(x, y)GY Y (x, l(x, y))

and l2y(0, 0)AY (0, 0) =
l2y(0, 0)GY Y (0, 0)− lyy(0, 0)GY (0, 0)

2
.

• F (x, l(x, y)) = y implies FY (x, l(x, y))ly(x, y) = 1

and FY Y (x, l(x, y))l
2

y(x, y) + FY (x, l(x, y)lyy(x, y) = 0 so that

lyy(x, y) = −
FY Y (x, l(x, y))l

2

y(x, y)

FY

.

Finally we get

(7) AY (0, 0) =
GY Y (0, 0)

2
+

FY Y (0, 0)GY (0, 0)

2FY (0, 0)

4) βy − α̃x = 0

From β(x, y) = B(x, l(x, y))− lx(x, y)A(x, l(x, y)) we get

βy(x, y) = BY (x, l(x, y))ly(x, y)−lxy(x, y)A(x, l(x, y))−lx(x, y)ly(x, y)AY (x, l(x, y))

In order to compute α̃x = αx − g̃x we use:

• α(x, y) = ly(x, y)A(x, l(x, y)) implies

αx(x, y) = lxy(x, y)A(x, l(x, y))+ly(x, y[(AX(x, l(x, y))+lx(x, y)AY (x, l(x, y))]
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• gy(x, y) = g̃(x, y) + yg̃(x, y) implies

g̃x(x, y) = gxy(x, y)− yg̃x(x, y) =

(GY .ly)x(x, y)− yg̃x(x, y) =

[GY X(x, l(x, y)) +GY Y (x, l(x, y))lx(x, y)]ly(x, y)+

GY (x, l(x, y)).lxy(x, y)− yg̃x(x, y)

It follows that

α̃x(0, 0) = ly(0, 0)[AX(0, 0) + lx(0, 0)AY (0, 0)−GY X(0, 0)−GY Y lx(0, 0)]

Using (9) and (11) we have [BY (0, 0)− AX(0, 0)]ly(0, 0) =

lxy(0, 0)GY (0, 0) +
FY Y (0, 0)GY (0, 0)

FY (0, 0)
lxy(0, 0)−GXY (0, 0)ly(0, 0)

To finish the computation we notice that from ly(x, y)FY (x, l(x, y)) = 1 it
follows that

lxy(x, y)FY (x, l(x, y))+ly(x, y)[FY X(x, l(x, y))+FY Y (x, l(x, l(x, y))lx(x, y) = 0

and finally

(8) BY (0, 0)− AX(0, 0) = −
FXY (0, 0)GY (0, 0)

FY (0, 0)
−GXY (0, 0)

5) βx = −λ

We have λ = −
gxx(0, 0)

2
.

From β(x, y) = B(x, l(x, y))− lx(x, y)A(x, l(x, y)) it follows

βx = BX(0, 0)+[BY (0, 0)−AX(0, 0)]lx(0, 0)−lxx(0, 0)A(0, 0)−l2x(0, 0)AY (0, 0)

On the other hand g(x, y) = G(x, l(x, y)) implies

gxx(0, 0) = GXX(0, 0) + 2GXY (0, 0) + lxx(0, 0)GY (0, 0) +GY Y (0, 0)l
2

x(0, 0)

and F (x, l(x, y)) + lx(x, y)FY (x, l(x, y)) = 0 implies

lxx(0, 0)FY (0, 0) = −2FXY (0, 0)lx(0, 0)− FXX(0, 0)− l2x(0, 0)FY Y (0, 0)

Using (11) and (12) we finally get

(9) BX(0, 0) = −
GXX(0, 0)

2
−

FXX(0, 0)GY (0, 0)

2FY (0, 0)
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4 Consequences and Proof of the Theorem

Let us consider again the foliation F0 of degree 10 defined by the 1-form
Ω = GdF + F (BdX − AdY ); here G = l1l2C

2 and A, B are polynomials
of degree 7. The question we address now is: is it possible that all the
singularities Q1, . . . , Q16 are pre-regular?

We denote by Q13, Q14 the points of {l1(X, Y ) = 0} ∩Q and by Q15, Q16

the points of {l2(X, Y ) = 0} ∩Q; we have
(l1l2)X
(l1l2)Y

=
FX

FY

at these points.

We have the following list of identities

• G = (l1l2)C
2

• GX = (l1l2)XC
2 + 2(l1l2)CCX

• GY = (l1l2)YC
2 + 2(l1l2)CCY

• GXX = (l1l2)XXC
2 + 4(l1l2)XCCX + 2(l1l2)CCXX + 2(l1l2)C

2

X

• GXY = (l1l2)XYC
2+2[(l1l2)XCCY +(l1l2)YCCX+l1l2CYCX+l1l2CCXY ]

• GY Y = (l1l2)Y YC
2 + 4(l1l2)YCCY + 2(l1l2)C

2

Y + 2(l1l2)CC)Y Y

Let us remind that C = FX and FXX 6= 0 at the points of {FX = 0}∩Q.

Lemma 1 (i) A = B = 0 at the points of Q∩{C = 0}; (ii) BX = −(l1l2)C
2

X

at Q1, . . . , Q12; (iii) BX = −
1

2
(l1l2)XXC

2 − 2(l1l2)XCCX − 1

2
(l1l2)XFXFXX

at the point Q13.

Proof. It is enough to use (9) and (10) and the identities above.

Proposition 2 There exist polynomials h, h′ of degree 4 and k, k′ polyno-
mials of degree 3 such that

(10) A = hC + kF, B = h′C + k′F

Proof. Since the meromorphic function (
A

C
)|Q has its polar divisor supported

in L∞, there exists a polynomial h such that (
A

C
)|Q = h|Q. As (A−hC)|Q = 0,

it follows that there exists a polynomial k satisfying A−hC = kF . The same
argument works for B.
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We observe that (h′, k′) can be changed by (h′ + µF, k′ − µC) for any
µ ∈ C. Consequently we may assume that at Q13 we have h

′ 6= 0 and k′ 6= 0.

Lemma 2 h′ + (l1l2)FXX + (l1l2)XFX = 0 at the points Q1, . . . , Q16.

Proof. Let us look first at the points of {FX} ∩ Q = 0. Since BX = h′FXX

and BX = −(l1l2)C
2

X , we have h′ = −(l1l2)FXX . As for Q13, . . . .Q16, A =
(l1l2)Y F

2

X (because of (5)). But B = h′FX and AFX +BFY = 0 (because of

(6)), so we get h′ = −(l1l2)XFX (using
(l1l2)X
(l1l2)Y

=
FX

FY

).

Let us put u = h′ + (l1l2)FXX + (l1l2)XFX ; we wish to show that u is not
identically zero along Q. In order to do that, we parametrize a neighborhood
of Q13 = (0, 0) with the variable X and compute the derivative of u|Q. We
observe that (u|Q)

′ = uX − FX

FY

uY at this point.
Without any loss of generality we may assume that l1(X, Y ) = Y + aX

and l2(X, Y ) = Y + aX + b, for some a 6= 0 and b 6= 0. Using Lemma 1 we
get after a straight computation that at Q13:

(u|Q)′ = −a2FX −
1

2
abFXX − a2bFXY − (k′ + ah′

Y )

In order to get rid of the term k′+ ah′

Y , we replace the 1-form GdF −Fη

that defines the foliation by GdF̂ − F̂ η where F̂ = cF for some c ∈ C. Since,
according to Proposition 2, B = ĥ′C+k̂′F̂ we see that ĥ′ = h′ and k̂′ = c−1k′.
Consequently k̂′+aĥ′

Y = c−1k′+ah′

Y ; we can therefore choose c ∈ C in order

that k̂′ + aĥ′

Y = 0. The corresponding function û that replaces u satisfies

(û|Q)′ = c[−a2FX −
1

2
abFXX − a2bFXY ]

We may now complete the meaning of the term ”generic” which appears
in the statement of the Theorem. We ask that the following inequality holds
in Q13:

aFX +
1

2
bFXX + abFXY 6= 0

This ensures that û|Q in not identically zero along Q.

In order to finish the proof of the Theorem we use the degree 4 polynomial
û. Since this polynomial vanishes at Q1, . . . , Q16, we get that the divisor∑

16

j=1
Qj − 4D∞ is a principal divisor, contradiction.
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