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Abstract

A example is iven of a divisor of a curve which is not a trace divisor
of a foliation !

1 Introduction

We deal in this paper with a very concrete question about existence of folia-
tions with prescribed singularities.

Let F' = 0 be the equation of a plane smooth curve @) of degree 4; we fix
the line at infinity L., C CP?, transverse to @, and put Do, = Q N L. We
select 16 points @Q1,..., Q16 outside/éOo and blow up CP? at these points;
the curve Q becomes a curve Q) C CP2.

Given the quartic @) and a foliation F which leaves @) invariant we say
that the configuration of points {Q1,...,Q1s} is pre-regular for F when Q
is a leaf of the foliation F obtained after blowing up at each of these points
(in particular, @ has no singularities of F ). A simple example is given by
the pencil generated by @) and another transversal quartic; if {Q1, ..., Q16}
is the intersection of the two quadrics, then the divisor [2]16:1 Q; — 4D is
a principal divisor (for simplicity we write D = 0 for a principal divisor D).

In ([1]) it is observed that if the points @, ..., Q¢ are singularities of
F then the divisor [Z;il m;Q; — LD (its trace divisor along @) defined
putting m; as the tangent multiplicity of F along @) at ); and 4L = 2;6:1 m;
is a principal divisor. A generic choice of the configuration of points satis-
fies none of these "resonance” conditions no matter what the choice of the
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my, ..., Mg is; in particular such a configuration will not be pre-regular. We
may then allow resonances for the configuration and ask whether it is pre-
regular for some foliation. This seems to be a difficult problem. Here in this
paper we give an example of a configuration satisfying [Z;il Q;—4D] #0
and 2[2;6:1 Q; — 4Dy = 0 which is pre-regular for no foliation having
2[2]1.6:1 Q) —4D] as its trace divisor.

This is related to the so called Ueda type of Q ([]), as studied (in great
generality) in ([2]). When D = Z;il Qj — 4D, satisfies mD = 0 for some

integer smaller or equal to the Ueda type of Q, then the configuration is pre-
regular for some foliaton. It is interesting to look for cases where mD = 0
but the configuration is not pre-regular for any foliation (the simplest case
being 2D = 0 and Ueda type of @ equal to 1).

I would like to thank J.V.Pereira and M. Falla Luza for very helpful
conversations.

2 The example

The set {Q1,...,Q16} is to be chosen for now as the zero set in @) of the
function G = 111,0?, where C is a curve of degree 3 transverse to () and [;
and [y are bitangent lines to (); we assume that the points of [; = 0 and
ly = 0 lying in @) are not contained in C. It follows that D # 0 and 2D = 0,
for D = 2;6:1 ();, This example was introduced by Neeman in ([3]). We
intend to prove the

Theorem Let () be a generic smooth quartic. There exists a Neeman exam-
ple such that the configuration of points is not pre-regular for any foliation
which has 2D as its trace divisor along Q).

We will fix C' = Fx and assume: 1) the curve C is transverse to Q; 2)
Fy # 0 at the points of 1l = 0 (there is a third condition that will appear in
the proof of the Theorem). The Neeman example mentioned in the statement
is the set {l;1,C* =0} N Q.

We intend to study a foliation F which has () as an invariant set and
which is singular along () exactly at the points @1, ..., Q1; it is assumed
that the singularities have multiplicities (along ) equal to 2. Then F has



degree 10 and it is defined by the polynomial 1-form
(1) Q = GdF + Fij
with 7 = BdX — AdY’; the polynomials A and B have both degree 7.
Since the quotient g is holomorphic along @, we have that G = G + \F

for some A € C; therefore
Q=(G+ AF)dF + Fij=GdF + F( + A\FdF) = GdF + Fn

where 7 = 1+ AF'dF'. This means that we may use GG in the expression of €).
Let us remark that more generally we may state

Proposition 1 Assume H and H are polynomials such that the curves H = 0
and H = 0 intersect @ (in CP?) exactly at the points Q1, ..., Q1 with the
same multiplicities. If H is a foliation defined by HdF + F¢ = 0 which has
all its singularities along @) at the points (1, ..., Q1s, then H is also defined
by HdF + F¢ for some polynomial 1-form ¢&.

From now on we consider a foliation F defined by a polynomial 1-form
) = GdF + F(BdX — AdY') which has singularities along @) exactly at the
points 1, ..., Q15. We assume that F has multiplicity greater or equal to 2
along ) at any of these points. Let us now take local coordinates (z,y) in a
neighborhood of some @);

=X, y=F(XY)

or, equivalently
X=uz Y =Ixvy)

The relations

Fx(z,l(x,y)) + l(x,y).Fy(z,l(z,y)) =0, Fy(z,l(z,y)).l,(x,y) =1

follow from F(z,l(x,y)) = y.

We remark that for each small ¢ € C the map x — (z,[(x, ¢)) parametrizes
the curve FI(X,Y) = c.

In these local coordinates the 1-form €2 becomes

(2) 9(w,y)dy + y[B(z,l)dr — A(x,1)(l.dr + 1, dy)] =



lg — yl,A(x, )]|dy + y[B(z,1) — l,A(z,1)]dz,
where g = g(z,y) = G(z,l(z,y)) and | = U(z,y),lo = l(z,y), 1, = l,(x, y).

T =—g+ya(r,y), 1=yby)
The associated vector field is

0

[~(e0) + oy ALz )5+ 9Bl (o)~ LA o) 5

or simply
T = _g(xuy) + yoz(:c,y), y = B(xvy>

for a(z,y) = l,A(x,l(x,y)) and B(z,y) = B(x,l(z,y)) — LA(z, [(z,y)).
Let us write g(z,y) = A2™ + yg(z,y) and a(z,y) = a(z,y) — §(z,y); we
have then

(3) = -\ +ya(r,y), v=yB(z,y)

3 Blowing-up the singularities

In this section we analyse necessary conditions a singularity as in (7) must
satisfy in order to be a pre-reqular singularity of the foliation F.

Definition 1 A singularity in @ is pre-regular when after one blow-up the
intersection of the exceptional divisor with the strict transform of () is a
regular point of the strict transform of F.

After one blow-up of (7) for the case m = 2 (putting y = tx) we get
i = -\ +tza(x,tr), f=tB(x tr) — t[-Av + ta(z, tr)];

let us write &(z,y) = a+dx+ayy+... and f(z,y) = B+ Box+ By +. ...

Since the Camacho-Sad index of a pre-regular singularity is equal to 1,
we have §, = —\. The necessary conditions for pre-regularity are then

(4) a=0, =0, B, —d, =0, @ =0.

4



Let us remark that if the singularity was

&= " +ya(r,y), y=yb(z,y)

for m > 2, then the conditions in (8) of pre-regularity

a=0 8=0 By—G,=0, a4y =0, B =0

are also, but not all, necessary conditions; the fact that the Camacho-Sad
index is 1 corresponds to 87! = —\, where 87 'z™~! is the (m — 1)-term
in the Taylor development of G(z,y).

We proceed to write the conditions in terms of GG, A and B; for simplicity
we assume the singularity to be the point (0,0) € C2.

1) a=0.
Since a(z,y) = a(z,y) — g(z,y) we have a(0,0) = g(0,0). But g(z,y) =
Ay, ) thenefore £ (a,) = gla,) 5 (v.9) and 57(0,0) = 5(0.0)

Ay
dg 0G
Now we have «(0,0) = 8_y(0’ 0) so1,(0,0)A(0,1(0,0)) = 8_Y(0’ 1(0,0)).,(0,0).
We conclude that
oG

() A(0,0) = 537(0,0)
2) =0
We have B(0,0) —1,(0,0)A(0,0) = 0 and 1,(0,0) = —%(0, 0) so that

Y
(6) A(0,0)Fx (0,0) + B(0,0)Fy(0,0) = 0.
3) d, =0

As before, d(l’,y) = Oé([lﬁ',y) - g(l’,y) and dy(l’,y) = Oéy(l',y) - gy(x>y)
Since a(l’,y) = ly($7y)A($7 l($7y)> we get

ay(2,y) = lyy (2, y) Az, Uz, ) + (2, y) Ay (2, (2, y))



As before, g—g(x, y) = g(z,y) + yg—g(:ﬁ,y); this implies

gyy(za y) = 2§y(l’, y) + ygyy(xa y)

and

1, (0,0)Gy-(0, 0) + 12(0, 0) Ay (0, 0) — M 0

We have now to compute g, (0,0), [,(0,0) and I,,(0,0).

e g(z,y) = G(z,l(z,y)) and gy(z,y) = Gy (z,l(z,y))l,(x,y) so
Gyy(2,y) = Ly (2, y) Gy (z,1(2, y)) + L(2,9)Gyy (2, (2,y))
12(07 O>GYY(07 0) B lyy((]? O>GY(07 0)

and £2(0,0) Ay (0,0) = 5 :

o F(z,l(x,y)) =y implies Fy (x,l(z,y))ly(x,y) =1
and Fyy (z,1(z,y))l2(x,y) + Fy (2, (2, y)ly,(z,y) = 0 so that

Fyy(l', Z(ZL', y))lg(za y)

lyy(x>y) == FY .

Finally we get

0,0) , Fyy(0,0)Gy(0,0)
2F(0,0)

) Av(0,0) =

4) B, —d, =0
From 6(z,y) = B(x,1(z,y)) — L(z,y) A, (2, y)) we get

By(w,y) = By (z, Uz, y))ly (7, y)—ley (2, y) Az, (2, y)) =l (z, y)l, (7, y) Ay (2, (2, y))
In order to compute &, = a, — g, we use:
o a(z,y) =l,(x,y)A(z,l(z,y)) implies

O‘x(Ia y) = ll‘y(x> y)A(:L', l(:)j’, y))—l—ly(x, y[(Ax(ZL', l(:)j’, y))_l_lx(Ia y)AY(Ia Z(Ia y))]



 gy(x,y) = g(x,y) +yg(z,y) implies

92 (2, Y) = Gay(2,y) — Ygu(x,y) =

(Gyby)e(2,y) = ydu(z,y) =
(Gyx (2, U(z,y)) + Gyy (2, [(z,y))lo(z,y)|l, (2, y)+
Gy (2, [z, y)) Ly (2, Y) — YGa(2,y)
It follows that

a5(0,0) = 1,(0,0)[Ax(0,0) + 15(0,0) Ay (0,0) — Gyx(0,0) — Gyyl.(0,0)]

Using (9) and (11) we have [By (0,0) — Ax(0,0)],(0,0) =
Fyy(0,0)Gy(0,0)

Fy(0,0)

To finish the computation we notice that from [, (z,y)Fy(z,l(z,y)) = 1 it
follows that

lxy(l’, y)FY(Ia Z(Ia y))+ly(x, y)[Fyx(ZL', l(:)j’, y))_I_FYY(Ia Z(Ia Z(Ia y))lx(za y) =0
and finally

l4(0,0)Gy(0,0) + l+y(0,0) — Gxy(0,0)L,(0,0)

0,0)Gy(0,0)

8)  By(0,0)— Ax(0,0)= XY(Fy(O 00 G00)
We have A = _gm(O, 0).

From f(z,y) = B(xQ, lx,y)) — l(x,y)A(x, l(z,y)) it follows
B, = Bx(0,0)+ By (0,0)— Ax (0, 0)]4,(0, 0) L., (0, 0) A(0, 0)—I2(0, 0) Ay (0, 0)
On the other hand g(z,y) = G(x,(x,y)) implies
922(0,0) = Gxx(0,0) + 2Gxy (0,0) + I,(0,0)Gy (0, 0) + Gyy (0, 0)12(0, 0)
and F'(z,l(z,y)) + l.(x,y) Fy(z,l(x,y)) = 0 implies
L2 (0, 0)Fy (0,0) = —=2Fxy (0, 0)1,(0,0) — Fxx(0,0) — 2(0,0) Fyy (0,0)
Using (11) and (12) we finally get

 Gxx(0,0)  Fxx(0,0)Gy(0,0)




4 Consequences and Proof of the Theorem

Let us consider again the foliation F{ of degree 10 defined by the 1-form
Q) = GdF + F(BdX — AdY); here G = [;1,C? and A, B are polynomials
of degree 7. The question we address now is: is it possible that all the

singularities @)1, ..., Q¢ are pre-regular?
We denote by Q13, Q14 the points of {l;(X,Y) =0} NQ and by Q15, Q16
Il F
the points of {lo(X,Y) =0} N Q; we have (Ll)x = —X at these points.

(hl)y Py
We have the following list of identities

o G = (l41,)C?

Gx = (lily)xC? +2(111,)CCx

Gy = (Iily)y C? + 2(1115)CCy

Gxx = (1) xxC? + 4(l115) x CCx + 2(1115)CCxx + 2(l115)C%

Gxy = (o) xy C?+2[(I1ls) x CCy+(I115)y CCx +111:Cy Cx +111,CCxy ]
o Gyy = (Iily)yyC? + 4(l1ly)y CCy + 2(1115) CE + 2(1115)CC)yy

Let us remind that C' = Fx and Fxx # 0 at the points of {Fx =0} N Q.
Lemma 1 (i) A= B = 0 at the points of QN {C = 0}; (ii) Bx = —(l112)C%
1
at Qq,...,Qu; (ili) Bx = _§(lll2)XXC2 — 2(l1y)xCCx — £(lly)x FxFxx
at the point )13.

Proof. It is enough to use (9) and (10) and the identities above. O

Proposition 2 There exist polynomials h, b’ of degree 4 and k, k' polyno-
mials of degree 3 such that

(10) A=hC+kF, B=hC+FKF

A
Proof. Since the meromorphic function (5) | has its polar divisor supported
A
in L, there exists a polynomial i such that (=)|g = h|g. As (A—hC)|g =0,
it follows that there exists a polynomial k satisfying A—hC' = kF'. The same
argument works for B. O



We observe that (h',k’) can be changed by (h' + pF, k" — uC) for any
€ C. Consequently we may assume that at Q13 we have A’ # 0 and k" # 0.

Lemma 2 7'+ (I1l3)Fxx + (l1l2) x Fx = 0 at the points Q1, . . ., Q6.

Proof. Let us look first at the points of {Fx} N @Q = 0. Since Bx = W' Fxx
and By = —(l1l3)C%, we have I/ = —(l1ly)Fxx. As for Qi3,....Qi, A =
(lily)y F% (because of (5)). But B = h'Fyx and AFx + BFy = 0 (because of
(lil)x _ Fx 0
(hl)y  Fy™

Let us put uw = b’ + (I1l2) Fxx + (l1l2) x Fix; we wish to show that u is not
identically zero along (). In order to do that, we parametrize a neighborhood
of Q13 = (0,0) with the variable X and compute the derivative of u|g. We
observe that (ulg)' = ux — I;—ifuy at this point.

Without any loss of generality we may assume that [;(X,Y) =Y 4+ aX
and lo(X,Y) =Y + aX + b, for some a # 0 and b # 0. Using Lemma 1 we

get after a straight computation that at ()q3:

(6)), so we get h' = —(l1ls) x F'x (using

(ul@Q)" = —a*Fx — %abFXX — a*bFxy — (K + ahg/)

In order to get rid of the term k' + ah’,, we replace the 1-form GdF — F'n
that defines the foliation by GdE — F 7 where F = ¢F for some ¢ € C. Since,
according to Proposition 2, B = K'C+k'F we see that i/ = k' and ¥ = ¢~ 'k'.
Consequently &'+ ah}y = ¢ 'k 4 ahl,; we can therefore choose ¢ € C in order
that &' + aﬁg/ = 0. The corresponding function @ that replaces u satisfies

1
(ﬁ|Q), = C[_a2FX - §abFXX — aszXy]

We may now complete the meaning of the term ”generic” which appears
in the statement of the Theorem. We ask that the following inequality holds

in ngi
1
aFX + §bex —l—abFXy 7& 0
This ensures that @|@Q in not identically zero along Q.
In order to finish the proof of the Theorem we use the degree 4 polynomial
u. Since this polynomial vanishes at @Q)q,...,Q1, we get that the divisor

2]1.6:1 Q; — 4D is a principal divisor, contradiction.
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