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Abstract

This note considers fairly general quasi-homogeneous systems of first-order nonlinear ODEs

and homogeneous systems of second-order nonlinear ODEs that contain arbitrary functions of

several arguments. It presents several exact solutions to these systems in terms of elementary

functions.
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1. Brief introduction

Systems of ordinary differential equations are a common object of study in various scientific

disciplines. Many exact solutions to such systems can be found in the handbooks [1, 2]. The

article [3] presented partial solutions to a class of systems of first-order nonlinear ordinary

differential equations with homogeneous polynomial right-hand sides. The current note deals

with more general (than in [3]), quasi-homogeneous systems of first-order nonlinear ODEs

as well as homogeneous systems of second-order nonlinear ODEs. It presents several exact

solutions to these systems in terms of elementary functions.

2. Quasi-homogeneous systems of nonlinear first-order ODEs

Consider the following quasi-homogeneous systems of N first-order ordinary differential

equations for the unknowns x1 = x1(t), . . . , xN = xN(t):

x′

n = xmn+1
n Fn

(

x
m2/m1

2

x1
,
x
m3/m1

3

x1
, . . . ,

x
mN /m1

N

x1

)

, n = 1, . . . , N, (1)

where Fn(. . . ) are given arbitrary functions, mn are arbitrary constants, and N is an arbitrary

positive integer.

System (1) preserves its form under the transformation

t = λ−m1 t̄, xn = λm1/mn x̄n, n = 1, . . . , N,

where λ > 0 is an arbitrary constant.
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Assuming that mn 6= 0 (n = 1, . . . , N), we look for an exact solution to system (1) in the

form

xn(t) = an(1 + Ct)−1/mn , n = 1, . . . , N, (2)

where C is an arbitrary constant and an = xn(0) are constants (initial values of the unknowns)

to be determined.

The system of equations (1) admits an exact solution of the form (2) with the constants an
related by the algebraic (or transcendental) constraints

amn

n mnFn

(

a
m2/m1

2

a1
,
a
m3/m1

3

a1
, . . . ,

a
mN /m1

N

a1

)

+ C = 0, n = 1, . . . , N. (3)

Example 1. For m1 = · · · = mN = m, the quasi-homogeneous system (1) simplifies to

become a homogeneous system that can be represented as

x′

n = xm+1
n Fn

(

x2

x1
,
x3

x1
, . . . ,

xN

x1

)

, n = 1, . . . , N, (4)

where Fn(. . . ) are arbitrary functions. The system of ODEs (4) admits an exact solution of the

form (2) with mn = m, where the constants an are related by the constraints

amn mFn

(

a2
a1

,
a3
a1

, . . . ,
aN
a1

)

+ C = 0, n = 1, . . . , N.

The note [4] presents system (4) and its solution for positive integer m.

In the degenerate case m = 0, exact solutions to system (4) can be sought in the exponential

form

xn(t) = an exp(−Ct), n = 1, . . . , N,

where C is an arbitrary constant. The constants an and C are related by the constraints

Fn

(

a2
a1

,
a3
a1

, . . . ,
aN
a1

)

+ C = 0, n = 1, . . . , N.

Example 2. The homogeneous system of ODEs (4) can be represented in the equivalent

form

x′

n = xm+1
1 Gn

(

x2

x1

,
x3

x1

, . . . ,
xN

x1

)

, n = 1, . . . , N, (5)

where Gn(. . . ) = (xn/x1)
m+1Fn(. . . ). Suppose that the functions Gn are all multivariate poly-

nomials of degree M = m+ 1 such that

Gn =
∑

αnµ2...µN

(

x2

x1

)µ2

. . .

(

xN

x1

)µN

, n = 1, . . . , N,

where αnµ2...µN
are some constants and µ2, . . . , µN are some nonnegative integers. Then sys-

tem (5) becomes

x′

n =
∑

cnµ1...µN
xµ1

1 . . . xµN

N , n = 1, . . . , N,

where cnµ1...µN
are some constants and µ1 = M−µ2−· · ·−µN . We see that µ1+· · ·+µN = M .

If µ1 is also a nonnegative integer, we obtain system (1) from [3]. It admits the exact solution

xn(t) = an(1 + Ct)1/(1−M), n = 1, . . . , N,

where C is an arbitrary parameter and the constants an satisfy the algebraic constraints

Can = (1−M)
∑

µ1+···+µN=M

cnµ1...µN
am1

1 . . . amN

N , n = 1, . . . , N.
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3. Homogeneous systems of nonlinear second-order ODEs

Now we look at homogeneous systems of second-order ODEs of the form

x′′

n = xm
n (x

′

n)
kFn

(

x2

x1
,
x3

x1
, . . . ,

xN

x1
,
x′

2

x′

1

,
x′

3

x′

1

, . . . ,
x′

N

x′

1

)

, n = 1, . . . , N, (6)

where Fn(. . . ) are arbitrary functions of their arguments, m and k are arbitrary constants, and

N is an arbitrary positive integer.

Assuming all unknowns to be proportional, we look for a particular solution to system (6)

in the special form

xn = any, y = y(t), n = 1, . . . , N, (7)

where an are constants to be determined. As a results, we arrive at the following second-order

ODE for y:

y′′ = λym(y′)k, (8)

where λ is an arbitrary constant, while an satisfy the relations

am+k−1
n Fn

(

a2
a1

,
a3
a1

, . . . ,
aN
a1

,
a2
a1

,
a3
a1

, . . . ,
aN
a1

)

= λ, n = 1, . . . , N.

It is noteworthy that equation (8) is solvable and its general solution can be represented in

implicit form.

For arbitrary m and k such that m + k − 1 6= 0, equation (8) admits the simple power-law

particular solution

y = A(1 + Ct)σ, σ =
k − 2

m+ k − 1
, A =

[

C2−k(σ − 1)

λσk−1

]

1
m+k−1

,

where C is an arbitrary constant.

For m+ k − 1 = 0, equation (8) admits the exponential partial solution

y = B exp(Ct), λ = C2−k,

where B and C are arbitrary constants.

Below are two examples of more complicated solutions to equation (8) and system (6).

Example 3. In the special case of m = 1 and k = 0, system (6) becomes

x′′

n = xnFn

(

x2

x1

,
x3

x1

, . . . ,
xN

x1

,
x′

2

x′

1

,
x′

3

x′

1

, . . . ,
x′

N

x′

1

)

, n = 1, . . . , N.

Its has two different exact solutions depending on the sign of λ. These are obtained from the

second-order linear equation (8) with m = 1 and k = 0:

xn = an[C1 exp(−βt) + C2 exp(βt)] if λ = β2 > 0;

xn = an[C1 cos(βt) + C2 sin(βt)] if λ = −β2 < 0,
(9)

where C1 and C2 are arbitrary constants. The constants an satisfy the constraints

Fn

(

a2
a1

,
a3
a1

, . . . ,
aN
a1

,
a2
a1

,
a3
a1

, . . . ,
aN
a1

)

= ±β2, n = 1, . . . , N,
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where the upper sign refers to the first group of solutions in (9), while the lower sign refers to

the second group of solutions.

Example 4. In the special case of m = −3 and k = 0, system (6) becomes

x′′

n = x−3
n Fn

(

x2

x1
,
x3

x1
, . . . ,

xN

x1
,
x′

2

x′

1

,
x′

3

x′

1

, . . . ,
x′

N

x′

1

)

, n = 1, . . . , N.

An exact solution to this system can be found from equation (8) with m = −3 and k = 0. It is

given by

xn = an(C1t
2 + C2t+ C3)

1/2, n = 1, . . . , N,

where C1, C2, and C3 are constants of integration, which are related by C1C3 −
1
4
C2

2 = λ. The

constants an satisfy the constraints

a−4
n Fn

(

a2
a1

,
a3
a1

, . . . ,
aN
a1

,
a2
a1

,
a3
a1

, . . . ,
aN
a1

)

= C1C3 −
1
4
C2

2 , n = 1, . . . , N.
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