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Abstract

We study the enumeration of closed walks of given length and algebraic area
on the honeycomb lattice. Using an irreducible operator realization of honeycomb
lattice moves, we map the problem to a Hofstadter-like Hamiltonian and show that
the generating function of closed walks maps to the grand partition function of a
system of particles with exclusion statistics of order g = 2 and an appropriate spec-
trum, along the lines of a connection previously established by two of the authors.
Reinterpreting the results in terms of the standard Hofstadter spectrum calls for a
mixture of g = 1 (fermion) and g = 2 exclusion whose physical meaning and prop-
erties require further elucidation. In this context we also obtain some unexpected
Fibonacci sequences within the weights of the combinatorial factors appearing in
the counting of walks.
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1 Introduction

The algebraic area enumeration of closed random walks on two-dimensional lattices is a
topic with rich mathematical and physical implications since it has an intimate connec-
tion to discrete quantum models. The algebraic area is defined as the total oriented area
spanned by the walk as it traces the lattice. A unit lattice cell enclosed in a counter-
clockwise (positive) direction has an area +1, whereas when enclosed in a clockwise (neg-
ative) direction it has an area −1. The total algebraic area is the area enclosed by the
walk weighted by its winding number: if the walk winds around more than once, the area
is counted with multiplicity. Figure 1 represents examples of closed random walks on the
square, triangular and honeycomb lattices.

Figure 1: Closed random walks of length n = 20 on the square, triangular and honeycomb
lattice with algebraic area −2, −12 and 6, respectively.

In the case of the square lattice, the algebraic area enumeration is known to be em-
bedded in the dynamics of the Hofstadter model [1] which describes the motion of an
electron hopping on a square lattice in a uniform perpendicular magnetic field. The gen-
erating function for the number C

n
(A) of closed walks of length n = 2n (necessarily even)

enclosing an algebraic area A is given in terms of the trace of the Hofstadter Hamiltonian
Hγ

∑

A

C
n
(A)QA = TrHn

γ , (1)

where γ = 2πφ/φ0 stands for the flux per plaquette in units of the flux quantum, Q = eiγ,
and Hγ is the Hofstadter Hamiltonian

Hγ = u+ u−1 + v + v−1.

The unitary operators u and v are unit magnetic translations (hopping operators) in the
x and y directions of the square lattice and satisfy the “quantum torus” algebra

v u = Q u v (2)

due to the perpendicular magnetic field piercing the lattice. Terms contributing to the
trace in (1) must involve an equal number of u and u−1, and of v and v−1. Such terms
represent closed paths, each power of Hγ representing one step. Because of the non
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commuting u and v in (2) the total factor of Q for such paths can be seen to correspond
to the algebraic area A of the path, v−1u−1vu = Q corresponding to a path around an
elementary plaquette. In quantum mechanics the trace becomes a sum of the expectation
value of Hγ over all quantum states, with an appropriate normalization.

In [2] an explicit algebraic area enumeration was obtained in terms of a sum over
compositions of the integer n. In [3] and [4], an interpretation of this enumeration was
given in terms of the statistical mechanics of particles obeying quantum exclusion statistics

with exclusion parameter g (g = 0 for bosons, g = 1 for fermions, and higher g means
a stronger exclusion beyond Fermi). The square lattice enumeration was found to be
governed by g = 2 exclusion together with a Hofstadter-induced spectral function sk
accounting for the 1-body quantum spectrum, whereas different types of lattice walks
were governed by higher values of g and, in general, other types of spectral functions.
Explicit examples of such enumerations were given, in particular for Kreweras-like chiral
walks on a triangular lattice [3], corresponding to yet another quantum Hofstadter-like
model (chiral and non Hermitian, though) and g = 3 exclusion. This particular chiral
model is to be distinguished from the triangular lattice Hofstadter-like model originally
proposed in [5]. Its butterfly structure – among other Hosftadter-like models – has been
studied in [6].

An interesting case is the honeycomb lattice. It arises naturally in the form of
graphene and carbon nanotubes, and many of its quantum properties have been ex-
tensively studied (see, for example, [7, 8, 9]). The honeycomb lattice is also relevant in
graph theory [10] and various physical models [11, 12, 13]. The quantum model for a
particle hopping on the honeycomb lattice pierced by a perpendicular magnetic field was
introduced in [14, 15]. The effect of lattice defects on its spectrum was investigated in
[16] and its butterfly-like spectrum was obtained in [17].

In this work we address the question of the algebraic area enumeration of closed
random walks on the honeycomb lattice: can this enumeration be explicitly obtained,
and does it fall in the category described in [3] and [4], i.e., does it correspond to a
particular exclusion statistics? We will show that, indeed, the honeycomb enumeration
can be interpreted in terms of g = 2 exclusion provided that the Hofstadter spectral
function sk is “diluted” to a spectrum of alternating 1 and sk. On the other hand, if
we insist on using an undiluted sk, then g = 2 exclusion has to be traded for a mixture
of g = 1 and g = 2 exclusion whose physical meaning needs further clarification. In
this process we will obtain some unexpected Fibonacci sequences, either for the number
of compositions entering the enumeration or for the sum of the coefficients weighting
particular compositions, the occurrence of which remains to be better understood.

The paper is structured as follows: In Section 2 we review the Hofstadter model on
the square lattice, where the coefficients of the secular determinant of the Hofstadter
Hamiltonian [18] are reinterpreted in terms of g = 2 exclusion partition functions. The
algebraic area enumeration is then obtained in terms of the associated cluster coefficients.
In Section 3 we study the honeycomb lattice and calculate the relevant partition functions
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and cluster coefficients, arriving at an explicit algebraic area enumeration expression.
Some open questions are exposed in the Conclusions.

2 Square lattice walks algebraic area enumeration

From now on we consider the flux γ per lattice cell to be rational, i.e., φ/φ0 = p/q with
p and q co-prime, so Q = exp(2iπp/q).

2.1 Hofstadter Hamiltonian

When the magnetic flux is rational the quantum torus algebra has a finite-dimensional
irreducible representation in which u and v are represented by the q×q “clock” and “shift”
matrices [19]

u = eiky



















Q 0 0 · · · 0 0
0 Q2 0 · · · 0 0
0 0 Q3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Qq−1 0
0 0 0 · · · 0 Qq



















, v = eikx























0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0























. (3)

kx ∈ [0, 2π] and ky ∈ [0, 2π] are the quasimomenta in the x and y lattice directions and
are related to the Casimirs of the u, v algebra

uq = eiqky , vq = eiqkx.

The Hofstadter Hamiltonian becomes the q × q matrix

Hq =



















Qeiky +Q−1e−iky eikx 0 · · · 0 e−ikx

e−ikx Q2eiky +Q−2e−iky eikx · · · 0 0
0 e−ikx () · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · () eikx

eikx 0 0 · · · e−ikx Qqeiky +Q−qe−iky



















,

whose spectrum follows from the zeros of the secular determinant det(1− zHq), where z
denotes the inverse energy.

This secular determinant has been shown [18] to rewrite as

det(1− zHq) =

⌊q/2⌋
∑

n=0

(−1)nZ(n)z2n − 2
(

cos(qkx) + cos(qky)
)

zq, (4)
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where the Z(n)’s are given by the nested trigonometric sums

Z(n) =

q−2n
∑

k1=0

k1
∑

k2=0

· · ·
kn−1
∑

kn=0

4 sin2

(

π(k1 + 2n− 1)p

q

)

4 sin2

(

π(k2 + 2n− 3)p

q

)

· · ·

4 sin2

(

π(kn−1 + 3)p

q

)

4 sin2

(

π(kn + 1)p

q

)

(5)

with Z(0) = 1.

As we shall see, Z(n) in (5) is at the core of the lattice walks algebraic area enu-
meration. To recover (5) let us use an alternative form of the Hofstadter Hamiltonian
involving a different but equivalent representation of the operators u and v, namely −uv
and v. They still satisfy the same quantum torus algebra

v (−uv) = Q (−uv) v,

albeit with a different Casimir (−uv)q = −eiq(kx+ky), and lead to the new Hamiltonian

H ′
q = −uv − (uv)−1 + v + v−1,

i.e.,

H ′

q =



















0 (1−Qeiky )eikx 0 · · · 0 (1−Q−qe−iky )e−ikx

(1−Q−1e−iky )e−ikx 0 (1− Q2eiky )eikx · · · 0 0
0 (1−Q−2e−iky )e−ikx 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 (1 −Q(q−1)eiky )eikx

(1− Qqeiky )eikx 0 0 · · · (1−Q−(q−1)e−iky )e−ikx 0



















,

or, denoting ω(k) = (1−Qkeiky)eikx ,

H ′
q =



















0 ω(1) 0 · · · 0 ω̄(q)
ω̄(1) 0 ω(2) · · · 0 0
0 ω̄(2) 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 ω(q − 1)

ω(q) 0 0 · · · ω̄(q − 1) 0



















.

Its secular determinant is the same as that of Hq given in (4) but for the new Casimirs,
that is,

det(1− zH ′
q) =

⌊q/2⌋
∑

n=0

(−1)nZ(n)z2n −
(

q
∏

j=1

ω(j) +

q
∏

j=1

ω̄(j)

)

zq

=

⌊q/2⌋
∑

n=0

(−1)nZ(n)z2n − 2
(

cos(qkx)− cos(qkx + qky)
)

zq. (6)

6



Let us set ω(q) = 0, which makes the cosine term in (6) vanish and the matrix H ′
q

tridiagonal

H ′
q|ω(q)=0 =



















0 (1−Q1−q)eikx 0 · · · 0 0
(1−Qq−1)e−ikx 0 (1−Q2−q)eikx · · · 0 0

0 (1−Qq−2)e−ikx 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 (1−Q−1)eikx

0 0 0 · · · (1−Q)e−ikx 0



















.

This form provides an iterative procedure for calculating the Z(n)’s. Putting aside for
a moment that Q = exp(2iπp/q) and leaving it as a free parameter, we introduce the
spectral function

sk = (1−Qk)(1−Q−k). (7)

Denoting the secular determinant det(1− zH ′
q|ω(q)=0) = dq, its expansion in terms of the

first row yields
dq = dq−1 − z2sq−1 dq−2, q ≥ 2, (8)

where, by convention, d0 = d1 = 1. Expanding dq as a polynomial in z and solving the
corresponding recursion relation for its coefficients, we obtain (see Appendix A)

Z(n) =

q−2n+1
∑

k1=1

k1
∑

k2=1

· · ·
kn−1
∑

kn=1

sk1+2n−2sk2+2n−4 · · · skn−1+2skn, (9)

which, upon restoring Q to its actual value exp(2iπp/q), i.e., the spectral function sk to
its actual form sk = 4 sin2(πkp/q), gives (5).

The recursion (8) is at the root of the connection between square lattice walks and
g = 2 exclusion statistics. Interpreting the spectral function sk as the Boltzmann factor
for a 1-body level e−βǫk and −z2 as the fugacity z′, (8) can be interpreted as an expansion
of a grand partition function Zq−1 – here identified with dq – of noninteracting particles
in q− 1 quantum levels ǫ1, . . . , ǫq−1, obeying the exclusion principle that no two particles
can occupy adjacent levels, namely

Zq−1 = Zq−2 + z′sq−1Zq−3

in terms of the last level ǫq−1 being empty (first term) or occupied (second term). Then
(6) identifies Z(n) as the n-body partition function for particles occupying these q − 1
quantum states, with gaps of 2 between successive terms reproducing g = 2 exclusion.

2.2 Algebraic area enumeration on the square lattice

As already stressed, when Q = exp(2iπp/q) the algebraic area counting (1)

∑

A

C
n
(A)QA =

1

q
TrHn

q (10)
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involves a trace over a finite number q of quantum states. To normalize the contribution of
each path to QA and reproduce the left-hand side of (10), a factor of 1/q must be included
in the normalization. Also, when n ≥ q the trace involves extra terms arising from the
Casimirs kx, ky similar to the cosine terms in (4), corresponding to open paths that close
only up to periods (q, q) on the lattice (“umklapp” terms on the quantum torus). These
spurious contributions can be eliminated by integrating the Casimirs kx and ky over [0, 2π]
which makes all factors of eiqkx and eiqky vanish. So the definition of the trace in (10) is

TrHn

q =
1

(2π)2

∫ 2π

0

dkx

∫ 2π

0

dky trH
n

q ,

which corresponds to summing over the q bands of the spectrum and over the scattering
states labeled by kx, ky, in a continuum normalization.

To relate this trace to the Z(n)’s in (5) or, equivalently, in (9), one has to use

log det(1− zHq) = tr log(1− zHq) = −
∞
∑

n=1

zn

n
trHn

q ,

and the fact that, in statistical mechanics, the Z(n) are viewed as n-body partition func-
tions with cluster coefficients b(n) defined via the grand partition function

∑∞
n=0 Z(n)z

n

log

(

∞
∑

n=0

Z(n)zn

)

=

∞
∑

n=1

b(n)zn (11)

with z playing the role of the fugacity. Trading z for −z2 in (11), keeping in mind that
trivially trH2n+1

q = 0, and putting everything together we reach the conclusion [2, 3] that
the trace in (10) for n = 2n is nothing but the cluster coefficient b(n) up to a trivial factor

TrHn

q = 2n(−1)n+1b(n). (12)

The cluster coefficients can in turn be directly read from the Z(n)’s in (9): one gets

b(n) = (−1)n+1
∑

l1,l2,...,lj
composition of n

c(l1, l2, . . . , lj)

q−j
∑

k=1

s
lj
k+j−1 · · · sl2k+1s

l1
k , (13)

where the c(l1, l2, . . . , lj)’s are labeled by the compositions of the integer n with

c(l1, l2, . . . , lj) =

(

l1+l2
l1

)

l1 + l2
l2

(

l2+l3
l2

)

l2 + l3
· · · lj−1

(

lj−1+lj
lj−1

)

lj−1 + lj
. (14)

Further, the trigonometric sums 1
q

∑q−j
k=1 s

lj
k+j−1 · · · sl2k+1s

l1
k can also be computed [2, 4]

1

q

q−j
∑

k=1

s
lj
k+j−1 · · · sl2k+1s

l1
k =

+∞
∑

A=−∞

cos

(

2Aπp

q

)

l3
∑

k3=−l3

l4
∑

k4=−l4

· · ·
lj
∑

kj=−lj

(

2l1

l1 +A+
∑j

i=3(i− 2)ki

)(

2l2

l2 −A−
∑j

i=3(i − 1)ki

) j
∏

i=3

(

2li
li + ki

)

. (15)
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Using (12), (13), (14) and (15) and keeping in mind that n = 2n, we deduce the desired
algebraic area counting

∑

A

C
n
(A)QA =

1

q
TrHn

q = 2n
∑

l1,l2,...,lj
composition of n

c(l1, l2, . . . , lj)
1

q

q−j
∑

k=1

s
lj
k+j−1 · · · sl2k+1s

l1
k ,

i.e.,

Cn(A) = 2n
∑

l1,l2,...,lj
composition of n

c(l1, l2, . . . , lj)

l3
∑

k3=−l3

l4
∑

k4=−l4

· · ·
lj
∑

kj=−lj

(

2l1

l1 +A+
∑j

i=3(i− 2)ki

)(

2l2

l2 −A−
∑j

i=3(i− 1)ki

) j
∏

i=3

(

2li
li + ki

)

.

(16)

We also note that, since

∑

l1,l2,...,lj
composition of n

c(l1, l2, . . . , lj) =

(

2n
n

)

2n
,

and, when q → ∞ [2, 3],

1

q

q−j
∑

k=1

s
lj
k+j−1 · · · sl2k+1s

l1
k →

(

2(l1 + l2 + . . .+ lj)

l1 + l2 + . . .+ lj

)

, (17)

the overall closed square lattice walks counting

2n
∑

l1,l2,...,lj
composition of n

c(l1, l2, . . . , lj)

(

2(l1 + l2 + . . .+ lj)

l1 + l2 + . . .+ lj

)

=

(

2n

n

)2

=

(

n

n/2

)2

is recovered as it should (see Appendix B for some enumeration examples).

3 Honeycomb lattice walks algebraic area enumera-

tion

We plan to follow the same route as above to obtain an explicit algebraic area enumeration
for closed walks on the honeycomb lattice.
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3.1 Honeycomb Hamiltonian

U V

W

U

V

W

Figure 2: Hopping operators U , V , W on the honeycomb lattice with U2 = V 2 = W 2 = 1
and (UVW )2 = Q.

Consider a particle hopping on a honeycomb lattice pierced by a constant magnetic field
(see Fig. 2). The lattice is bipartite with unitary operators U, V,W generating the hop-
pings in each direction and such that when the particle hops around a honeycomb cell it
picks up a phase Q due to the magnetic field. They satisfy the honeycomb algebra

U2 = V 2 = W 2 = 1, (UVW )2 = Q. (18)

The Hofstadter-like Hamiltonian follows as

Hhoneycomb = aU + bV + cW,

with a, b, c ∈ R
+ transition amplitudes. The physical Hilbert space consists of the ir-

reducible representations of the honeycomb algebra. As in the square lattice case, the
quasimomenta are encoded in the Casimirs of the algebra.

In the case of an isotropic lattice, a = b = c = 1, and a rational flux, Q = exp(2iπp/q)
with p and q co-prime, the irreducible representation of U , V and W for generic quasi-
momenta (Casimirs) becomes 2q-dimensional (see Appendix C)

U =

(

0 u
u−1 0

)

, V =

(

0 v
v−1 0

)

, W =

(

0 Q1/2vu−1

Q−1/2uv−1 0

)

with u, v given in (3), and the honeycomb Hamiltonian reduces to the 2q × 2q matrix

H2q =

(

0 u+v+Q1/2vu−1

u−1+v−1+Q−1/2uv−1 0

)

=

(

0 A
A† 0

)

. (19)

Its square is block-diagonal

H2
2q =

(

AA† 0
0 A†A

)

=

(

Hq 0

0 H̃q

)

,

10



where Hq = AA† and H̃q = A†A have identical spectra equal to the square of the honey-
comb Hamiltonian spectrum. Denoting

ω(k) = Q−k
(

1 + e−ikyQ
1
2
−k
)

e−i(ky−kx),

Hq can be rewritten as

Hq =



















1 + ω(2)ω̄(2) ω(2) 0 · · · 0 ω̄(1)
ω̄(2) 1 + ω(3)ω̄(3) ω(3) · · · 0 0
0 ω̄(3) () · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · () ω(q)

ω(1) 0 0 · · · ω̄(q) 1 + ω(1)ω̄(1)



















(20)

with secular determinant

det(1− zH2q) = det(1− z2Hq)

=

q
∑

n=0

(−1)nZ(n)z2n +

(

(−1)q
q
∏

j=1

ω(j)ω̄(j)−
q
∏

j=1

ω(j)−
q
∏

j=1

ω̄(j)

)

z2q

=

q
∑

n=0

(−1)nZ(n)z2n + 2

(

−Q
q
2

(

cos(qkx − 2qky) + cos(qky)
)

+ (−1)q
(

cos(qkx − qky) + 1
)

)

z2q.

(21)

3.2 Honeycomb coefficients Z(n)

Our aim is to find for the Z(n) in (21) an expression analogous to the one in (5) or (9)
obtained in the Hofstadter case. To this end, we reduce the honeycomb matrix (20) to a

tridiagonal form by making both corners ω(1) and ω̄(1) vanish, i.e., by setting e−iky = −Q
1
2

so that ω(k) becomes

ω(k)|ω(1)=0 = −Q
1
2
−k
(

1−Q1−k
)

eikx ,

and

Hq

∣

∣

∣

∣

ω(1)=0

=





















1 + (1−Q−1)(1−Q) −Q−
3
2 (1−Q−1)eikx 0 · · · 0 0

−Q
3
2 (1−Q)e−ikx 1 + (1−Q−2)(1 −Q2) −Q−

5
2 (1−Q−2)eikx · · · 0 0

0 −Q
5
2 (1−Q2)e−ikx () · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · () −Q
1
2−q(1−Q−(q−1))eikx

0 0 0 · · · −Qq− 1
2 (1−Qq−1)e−ikx 1 + (1−Q−q)(1 −Qq)





















.

This also eliminates the z2q umklapp term in (21), i.e., the secular determinant reduces to

det
(

1− z2Hq|ω(1)=0

)

=

q
∑

n=0

(−1)nZ(n)z2n.

11



Let us now consider Q as a free parameter and denote dq = det(1 − z2Hq|ω(1)=0). Then
expanding dq in terms of its bottom row we obtain the recursion relation

dq =
(

1−
[

1 + (1−Qq)(1−Q−q)
]

z2
)

dq−1 − z4(1−Qq−1)(1−Q−(q−1))dq−2, q ≥ 1,

i.e.,

dq =
(

1−
(

1 + sq
)

z2
)

dq−1 − z4sq−1dq−2, (22)

with d0 = 1, dj = 0 for j < 0, and sk as in (7). From (22) we can iteratively derive the
Z(n) (see Appendix D).

The above recursion admits a simple g = 2 exclusion statistics interpretation. Con-
sider a set of 2q energy levels with spectral parameters Sn, n = 1, 2, . . . , 2q given by

S2k−1 = 1, S2k = sk,

that is, sk “diluted” by unit insertions: 1, s1, 1, s2, . . . , 1, sq, and consider the grand parti-
tion function of g = 2 exclusion particles in the above spectrum Sn with fugacity param-
eter z. Calling Z1,n the truncated grand partition function for levels S1, S2, . . . , Sn and
expanding it in terms of the last level n being empty or filled, we obtain the recursion
relations

n = 2k : Z1,2k = Z1,2k−1 + zskZ1,2k−2,

n = 2k−1 : Z1,2k−1 = Z1,2k−2 + zZ1,2k−3.

From the n = 2k relation we can express the odd functions Z2k−1 in terms of even ones,
Z1,2k−1 = Z1,2k − zskZ1,2k−2. Substituting this expression in the n = 2k − 1 relation and
rearranging we obtain

Z1,2k = (1 + z + zsk)Z1,2k−2 − z2sk−1Z1,2k−4.

This is identical to the recursion (22) upon shifting z → −z2 and identifying Z1,2k = dk.
Moreover, Z2k satisfies the same initial conditions as dk, namely Z1,0 = 1, Z1,2k = 0 for
k < 0. Therefore, dq = Z2q.

It follows that the expressions for the n-body partition functions Z(n) and the cluster
coefficients b(n) are identical to the corresponding expressions (9) and (13) for square
lattice walks but now, instead of the spectrum sk, one has to consider the diluted spectrum
Sk, k = 1, . . . , 2q (but note that S2q = sq = 0, so the levels effectively end at S2q−1 = 1)

Z(n) =

2q−2n+2
∑

k1=1

k1
∑

k2=1

· · ·
kn−1
∑

kn=1

Sk1+2n−2Sk2+2n−4 · · ·Skn−1+2Skn,

b(n) = (−1)n+1
∑

l1,l2,...,lj
composition of n

c(l1, l2, . . . , lj)

2q−j+1
∑

k=1

S
lj
k+j−1 · · ·Sl2

k+1S
l1
k

12



with the same Hofstadter combinatorial factors c(l1, l2, . . . , lj) given in (14). The corre-

sponding diluted trigonometric sums 1
q

∑2q−j+1
k=1 S

lj
k+j−1 · · ·Sl2

k+1S
l1
k can be expressed as

1

q

2q−j+1
∑

k=1

S
lj
k+j−1 · · ·S

l2
k+1S

l1
k =

+∞
∑

A=−∞

cos

(

2Aπp

q

)

(

l5
∑

k5=−l5

l7
∑

k7=−l7

· · ·

l2⌊(j−1)/2⌋+1
∑

k2⌊(j−1)/2⌋+1=−l2⌊(j−1)/2⌋+1

(

2l1

l1 +A+

2⌊(j−1)/2⌋+1
∑

i=5
i odd

(i− 3)ki/2

)(

2l3

l3 −A−

2⌊(j−1)/2⌋+1
∑

i=5
i odd

(i− 1)ki/2

)

2⌊(j−1)/2⌋+1
∏

i=5
i odd

( 2li

li + ki

)

+

l6
∑

k6=−l6

l8
∑

k8=−l8

· · ·

l2⌊j/2⌋
∑

k2⌊j/2⌋=−l2⌊j/2⌋

(
2l2

l2 + A+

2⌊j/2⌋
∑

i=6
i even

(i− 4)ki/2

)(
2l4

l4 −A−

2⌊j/2⌋
∑

i=6
i even

(i− 2)ki/2

)

2⌊j/2⌋
∏

i=6
i even

( 2li

li + ki

)

)

.

Following the same steps as in Section (2.2) regarding the number C
n
(A) of closed random

walks of length n = 2n enclosing on the honeycomb lattice an algebraic area A, i.e.,
considering on the one hand

∑

A

C
n
(A)QA =

1

2q
TrHn

2q,

which is the anologous of (10) for the honeycomb Hamiltonian (19) (where the factor 1/q
is replaced by 1/(2q) in view of a proper normalisation over the 2q states), and on the
other hand

TrHn

2q = 2n(−1)n+1b(n),

which generalizes (12), the expressions above directly lead to an algebraic area enumera-
tion similar to the square lattice walks enumeration (16).

In the sequel, we will consider dq in terms of the original (undiluted) Hofstadter
spectrum sk. In that case, the g = 2 exclusion interpretation does not hold anymore and
has to be traded for a mixture of g = 2 and g = 1 statistics, as we are going to show in
detail.

3.3 Modified statistics for the spectral function sk

If we insist on keeping sk as the spectral function, the first few Z(n) rewrite as

Z(1) =

q
∑

i=1

(

1 + si
)

,

Z(2) = +

q−1
∑

i=1

i
∑

j=1

(

1 + si+1

)(

1 + sj
)

−
q−1
∑

i=1

si,

13



Z(3) = +

q−2
∑

i=1

i
∑

j=1

j
∑

k=1

(

1 + si+2

)(

1 + sj+1

)(

1 + sk
)

−
q−2
∑

i=1

i
∑

j=1

(

1 + si+2

)

sj

−
q−2
∑

i=1

i
∑

j=1

si+1

(

1 + sj
)

,

Z(4) = +

q−3
∑

i=1

i
∑

j=1

j
∑

k=1

k
∑

l=1

(

1 + si+3

)(

1 + sj+2

)(

1 + sk+1

)(

1 + sl
)

−
q−3
∑

i=1

i
∑

j=1

j
∑

k=1

(

1 + si+3

)(

1 + sj+2

)

sk

−
q−3
∑

i=1

i
∑

j=1

j
∑

k=1

(

1 + si+3

)

sj+1

(

1 + sk
)

−
q−3
∑

i=1

i
∑

j=1

j
∑

k=1

si+2

(

1 + sj+1

)(

1 + sk
)

+

q−3
∑

i=1

i
∑

j=1

si+2sj ,

14



Z(5) = +

q−4
∑

i=1

i
∑

j=1

j
∑

k=1

k
∑

l=1

l
∑

m=1

(

1 + si+4

)(

1 + sj+3

)(

1 + sk+2

)(

1 + sl+1

)(

1 + sm
)

−
q−4
∑

i=1

i
∑

j=1

j
∑

k=1

k
∑

l=1

(

1 + si+4

)(

1 + sj+3

)(

1 + sk+2

)

sl

−
q−4
∑

i=1

i
∑

j=1

j
∑

k=1

k
∑

l=1

(

1 + si+4

)(

1 + sj+3

)

sk+1

(

1 + sl
)

−
q−4
∑

i=1

i
∑

j=1

j
∑

k=1

k
∑

l=1

(

1 + si+4

)

sj+2

(

1 + sk+1

)(

1 + sl
)

+

q−4
∑

i=1

i
∑

j=1

j
∑

k=1

(

1 + si+4

)

sj+2sk

−
q−4
∑

i=1

i
∑

j=1

j
∑

k=1

k
∑

l=1

si+3

(

1 + sj+2

)(

1 + sk+1

)(

1 + sl
)

+

q−4
∑

i=1

i
∑

j=1

j
∑

k=1

si+3

(

1 + sj+2

)

sk

+

q−4
∑

i=1

i
∑

j=1

j
∑

k=1

si+3sj+1

(

1 + sk
)

.

We infer that in general the Z(n)’s are combinations of nested multiple sums of products
of (1 + sk) and sk such that

• The rightmost factor is either sk or
(

1 + sk
)

.

• Any factor multiplying si immediately on its left obeys g = 2 exclusions, i.e.,
∑

i

∑

j sisj or
∑

i

∑

j

(

1 + si
)

sj where i− j ≥ 2.

• Any factor multiplying
(

1 + si
)

immediately on its left obeys g = 1 exclusions, i.e.,
∑

i

∑

j si
(

1 + sj
)

or
∑

i

∑

j

(

1 + si
)(

1 + sj
)

where i− j ≥ 1.

• The leftmost factor is either si+n−2 or
(

1+si+n−1

)

with summation range
∑q−(n−1)

i=1 .

• The sign is ±(−1)n for even/odd number of factors.

From these rules and the very definition (11) we get the b(n)’s in terms of single sums of
products of sk (up to terms involving sq which vanish anyway) with a form a bit more

15



complicated than in the Hofstadter case

b(1) =

q−1
∑

k=1

sk +

q
∑

k=1

s0k,

−b(2) =
1

2

q−1
∑

k=1

s2k + 2

q−1
∑

k=1

sk +
1

2

q
∑

k=1

s0k,

b(3) =
1

3

q−1
∑

k=1

s3k + 2

q−1
∑

k=1

s2k +

q−2
∑

k=1

sk+1sk + 3

q−1
∑

k=1

sk +
1

3

q
∑

k=1

s0k,

−b(4) =
1

4

q−1
∑

k=1

s4k + 2

q−1
∑

k=1

s3k +

q−2
∑

k=1

s2k+1sk +

q−2
∑

k=1

sk+1s
2
k

+ 5

q−1
∑

k=1

s2k + 4

q−2
∑

k=1

sk+1sk + 4

q−1
∑

k=1

sk +
1

4

q
∑

k=1

s0k,

b(5) =
1

5

q−1
∑

k=1

s5k + 2

q−1
∑

k=1

s4k +

q−2
∑

k=1

s3k+1sk +

q−2
∑

k=1

s2k+1s
2
k +

q−2
∑

k=1

sk+1s
3
k

+ 7

q−1
∑

k=1

s3k + 6

q−2
∑

k=1

s2k+1sk + 6

q−2
∑

k=1

sk+1s
2
k +

q−3
∑

k=1

sk+2sk+1sk

+ 10

q−1
∑

k=1

s2k + 10

q−2
∑

k=1

sk+1sk + 5

q−1
∑

k=1

sk +
1

5

q
∑

k=1

s0k,

i.e.,

b(n) = (−1)n+1
∑

l1,l2,...,lj
composition of n′=0,1,2,...,n

j≤min(n′,n−n′+1)

cn(l1, l2, . . . , lj)

q−j
∑

k=1

s
lj
k+j−1 · · · sl2k+1s

l1
k .

The new combinatorial coefficients cn(l1, l2, . . . , lj) are labeled by the compositions of
n′ = 0, 1, 2, . . . , n with a number of parts j ≤ min(n′, n−n′+1) (by convention the unique
composition of n′ = 0 has only one part and the trigonometric sum becomes

∑q
k=1 s

0
k).

Since the number of compositions of an integer n′ with j parts is
(

n′−1
j−1

)

, the total number
of such compositions is

1+
n
∑

n′=1

min(n′,n−n′+1)
∑

j=1

(

n′ − 1

j − 1

)

= 1+

⌊(n+1)/2⌋
∑

j=1

n−j+1
∑

n′=j

(

n′ − 1

j − 1

)

=

⌊(n+1)/2⌋
∑

j=0

(

n− j + 1

j

)

= Fn+2.

Note that the Fibonacci number Fn+2 is also the number of compositions of (n+ 1) with

16



only parts 1 and 2. We obtain for the cn(l1, l2, . . . , lj)’s

cn(0) =
1

n
,

cn(l1) =
1

l1

(

n+ l1 − 1

2l1 − 1

)

,

cn(l1, l2) =
1

l1l2

min(l1,l2)
∑

m=0

m

(

l1
m

)(

l2
m

)(

n+ l1 + l2 −m− 1

2(l1 + l2)− 1

)

,

cn(l1, l2, . . . , lj) =
1

l1l2 . . . lj

min(l1,l2)
∑

m1=0

min(l2,l3)
∑

m2=0

· · ·
min(lj−1,lj)
∑

mj−1=0

(j−1
∏

i=1

mi

(

li
mi

)(

li+1

mi

))(

n+
∑j

i=1 li −
∑j−1

i=1 mi − 1

2
∑j

i=1 li − 1

)

.

(23)

We also note that by ignoring the n-dependant binomial
(n+

∑j
i=1 li−

∑j−1
i=1 mi−1

2
∑j

i=1 li−1

)

in the sums

(23) one recovers the c(l1, l2, . . . , lj) in (14), that is,

cn(l1, l2) →
1

l1l2

min(l1,l2)
∑

m=0

m

(

l1
m

)(

l2
m

)

=

(

l1+l2
l1

)

l1 + l2
,

and thus by factorization

cn(l1, l2, . . . , lj) →
1

l1l2 . . . lj

min(l1,l2)
∑

m1=0

min(l2,l3)
∑

m2=0

· · ·
min(lj−1,lj)
∑

mj−1=0

j−1
∏

i=1

mi

(

li
mi

)(

li+1

mi

)

=

(

l1+l2
l1

)

l1 + l2
l2

(

l2+l3
l2

)

l2 + l3
· · · lj−1

(

lj−1+lj
lj−1

)

lj−1 + lj
.

We also have

n

n
∑

l=0

cn(l) = F2n+1 + F2n−1 − 1,

where again a Fibonacci counting appears, and

n
∑

l1,l2,...,lj
composition of n′

j≤min(n′,n−n′+1)

cn(l1, l2, . . . , lj) =

(

n

n′

)2

,

from which we infer

n
∑

l1,l2,...,lj
composition of n′=0,1,2,...,n

j≤min(n′,n−n′+1)

cn(l1, l2, . . . , lj) =

(

2n

n

)

.
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Again using (17), the counting of closed honeycomb lattice walks of length 2n is recovered

n
∑

l1,l2,...,lj
composition of n′=0,1,2,...,n

j≤min(n′,n−n′+1)

cn(l1, l2, . . . , lj)

(

2(l1 + l2 + . . .+ lj)

l1 + l2 + . . .+ lj

)

=

n
∑

n′=0















n
∑

l1,l2,...,lj
composition of n′

j≤min(n′,n−n′+1)

cn(l1, l2, . . . , lj)

(

2(l1 + l2 + . . .+ lj)

l1 + l2 + . . .+ lj

)















=

n
∑

n′=0

(

n

n′

)2(
2n′

n′

)

.

3.4 Algebraic area enumeration on the honeycomb lattice

Remembering that the spectrum ofHq is the square of that of the honeycomb Hamiltonian
H2q, the generating function for the number C

n
(A) of closed walks of length n = 2n

enclosing an algebraic area A can as well be given in terms of the trace of Hn
q weighted

by 1/q, i.e.,
∑

A

C
n
(A)QA =

1

q
TrHn

q ,

where now, following again the steps of Section (2.2),

TrHn
q = (−1)n+1nb(n).

We arrive at the conclusion that on the honeycomb lattice the C
n
(A)’s are

Cn(A) = n
∑

l1,l2,...,lj
composition of n′=0,1,2,...,n

j≤min(n′,n−n′+1)

cn(l1, l2, . . . , lj)

l3
∑

k3=−l3

l4
∑

k4=−l4

· · ·
lj
∑

kj=−lj

(

2l1
l1 +A+

∑j
i=3(i− 2)ki

)(

2l2
l2 −A−∑j

i=3(i− 1)ki

) j
∏

i=3

(

2li
li + ki

)

with the cn(l1, l2, . . . , lj)’s given in (23) and the algebraic area bounded1 by ⌊(n2+3)/12⌋.
1The sequence OEIS A135711 states that the minimal perimeter of a polyhex with A cells is

2⌈
√
12A− 3⌉. The maximum A for walks of length 2n is then ⌊(n2 + 3)/12⌋.
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A few examples of 1
q
TrHn

q are listed below, and the corresponding C
n
(A) are listed in

Table 1.

1

q
TrHq = 3,

1

q
TrH2

q = 15,

1

q
TrH3

q = 3

(

29 + 2 cos
2πp

q

)

,

1

q
TrH4

q = 3

(

181 + 32 cos
2πp

q

)

,

1

q
TrH5

q = 3

(

1181 + 360 cos
2πp

q
+ 10 cos

4πp

q

)

,

1

q
TrH6

q = 3

(

7953 + 3520 cos
2πp

q
+ 242 cos

4πp

q
+ 8 cos

6πp

q

)

,

1

q
TrH7

q = 3

(

54923 + 32032 cos
2πp

q
+ 3710 cos

4πp

q
+ 266 cos

6πp

q
+ 14 cos

8πp

q

)

.

n = 2 4 6 8 10 12 14
A = 0 3 15 87 543 3543 23859 164769

±1 6 96 1080 10560 96096
±2 30 726 11130
±3 24 798
±4 42

total counting 3 15 93 639 4653 35169 272835

Table 1: C
n
(A) up to n = 14 for honeycomb lattice walks of length n.
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4 Conclusions

We demonstrated that the area counting of honeycomb walks derives from an exclusion
statistics g = 2 system with a “diluted Hofstadter” spectrum. This fact calls for a more
detailed justification: in previous works [3, 4], two of the authors had shown that lattice
walks that map to exclusion statistics are of the general form

H = f(u) v + v1−g g(u)

with u, v the quantum torus matrices and f(u), g(u) scalar functions. The honeycomb
Hamiltonian is apparently not of this form. However, the expression of a walk in terms of a
Hamiltonian is not unique: alternative versions corresponding to modular transformations
on the lattice, or, equivalently, alternative realizations of the quantum torus algebra, can
exist. We expect that an alternative realization of the honeycomb Hamiltonian H2q that
makes its connection to g = 2 statistics and the diluted spectral function Sk manifest
does exist, and is related to the form given in Section (3.1) by a unitary transformation.
The identification of this transformation and the alternative form of H2q is an interesting
open question.

Further, the anisotropic honeycomb Hamiltonian with general transition amplitudes
a, b, c, is of physical interest. The corresponding generating function of lattice walks would
depend on these parameters and would “count” the number of moves in the three differ-
ent lattice directions U, V,W separately. The calculation of this generalized generating
function through traces of powers of the Hamiltonian appears to be within reach using the
methods and techniques of this paper and constitutes a subject for further investigation.
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[9] E. Perfetto, J. González, F. Guinea, S. Bellucci, and P. Onorato,
Phys. Rev. B 76, 125430 (2007).

[10] M.-H. Kang, Discrete Math. 311, 2384 (2011).

[11] A. Kitaev, Ann. Phys. 321, 2 (2006).

[12] M. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005).

[13] I. F. Herbut, Phys. Rev. Lett. 97, 146401 (2006).

[14] R. Rammal, J. Phys. 46, 1345 (1985).

[15] Ch. Kreft and R. Seiler, J. Math. Phys. 37, 5207 (1996).

[16] A. L. C. Pereira and P. A. Schulz, Phys. Rev. B 78, 125402 (2008).

[17] A. Agazzi, J.-P. Eckmann, and G. M. Graf, J. Stat. Phys. 156, 426 (2014).

[18] Ch. Kreft, SFB 288 Preprint No. 89, TU-Berlin, 1993 (to be published).

[19] H. Weyl, The theory of groups and quantum mechanics (Dover, New York, 1950),
Chap. IV, p. 279.

21

https://doi.org/10.1103/PhysRevA.95.063628
https://doi.org/10.1126/science.1137201
https://doi.org/10.1038/nature08582
https://doi.org/10.1103/PhysRevB.76.125430
https://doi.org/10.1016/j.disc.2011.06.018
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/10.1103/PhysRevLett.97.146401
https://doi.org/10.1051/jphys:019850046080134500
https://doi.org/10.1063/1.531681
https://doi.org/10.1103/PhysRevB.78.125402
https://doi.org/10.1007/s10955-014-0992-0
https://www-sfb288.math.tu-berlin.de/Publications/preprint-list/51/100


Appendices

A Z(n) for square lattice walks

We denote Z(n) as Zq(n) to include its dependence on q.

Substituting dq =

⌊q/2⌋
∑

n=0

(−1)nZq(n)z
2n into (8) and equating the coefficient of z2n on

both sides, we get

Zq(n) = Zq−1(n) + sq−1Zq−2(n− 1)

= Zq−2(n) + sq−2Zq−3(n− 1) + sq−1Zq−2(n− 1)

= · · ·

= Z1(n) +

q−2
∑

m=0

sm+1Zm(n− 1).

Since Zm(n− 1) = 0 for n− 1 > ⌊m/2⌋, i.e., m < 2n− 2, we obtain

Zq(n) =

q−2
∑

m=2n−2

sm+1Zm(n− 1)

with Zq(0) = 1.

Thus,

Zq(1) =

q−2
∑

m=0

sm+1Zm(0)

=

q−1
∑

k1=1

sk1 ,

Zq(2) =

q−2
∑

m=2

sm+1Zm(1)

=

q−2
∑

m=2

m−1
∑

k1=1

sm+1sk1

=

q−3
∑

k1=1

k1
∑

k2=1

sk1+2sk2,
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Zq(3) =

q−2
∑

m=4

sm+1Zm(2)

=

q−2
∑

m=4

m−3
∑

k1=1

k1
∑

k2=1

sm+1sk1+2sk2

=

q−5
∑

k1=1

k1
∑

k2=1

k2
∑

k3=1

sk1+4sk2+2sk3.

The formula (9) can be then proven by mathematical induction, where we check

Zq(n + 1) =

q−2
∑

m=2n

sm+1Zm(n)

=

q−2
∑

m=2n

m−2n+1
∑

k1=1

k1
∑

k2=1

k2
∑

k3=1

· · ·
kn−1
∑

kn=1

sm+1sk1+2n−2 · · · skn−1+2skn

=

q−2n−1
∑

k1=1

k1
∑

k2=1

k2
∑

k3=1

k3
∑

k4=1

· · ·
kn
∑

kn+1=1

sk1+2nsk2+2n−2 · · · skn+2skn+1.

B Examples of algebraic area enumeration of random walks on

the square lattice

A few examples of 1
q
TrHn

q and the corresponding C
n
(A)’s are listed below and in Table 2.

1

q
TrH2

q = 4,

1

q
TrH4

q = 4

(

7 + 2 cos
2πp

q

)

,

1

q
TrH6

q = 4

(

58 + 36 cos
2πp

q
+ 6 cos

4πp

q

)

,

1

q
TrH8

q = 4

(

539 + 504 cos
2πp

q
+ 154 cos

4πp

q
+ 24 cos

6πp

q
+ 4 cos

8πp

q

)

,

1

q
TrH10

q = 4

(

5486 + 6580 cos
2πp

q
+ 2770 cos

4πp

q
+ 780 cos

6πp

q
+ 210 cos

8πp

q
+ 40 cos

10πp

q
+ 10 cos

12πp

q

)

.
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n = 2 4 6 8 10
A = 0 4 28 232 2156 21944

±1 8 144 2016 26320
±2 24 616 11080
±3 96 3120
±4 16 840
±5 160
±6 40

counting 4 36 400 4900 63504

Table 2: C
n
(A) up to n = 10 for square lattice walks of length n.

C Representation of the honeycomb algebra

Define three new operators u, v, σ as

σ = Q−1/2UVW, u = Uσ, v = V σ

⇒ U = uσ, V = vσ, W = Q1/2vσu.

From the honeycomb algebra (18) we see that σ, u and v are all unitary and satisfy

vu = Quv, uσ = σu−1, σv−1 = vσ, σ2 = 1. (24)

Since U , V and W can be uniquely expressed in terms of σ, u and v, it is sufficient to
derive the irreducible representation (“irrep” for short) of u, v and σ.

Operators u and v satisfy the quantum torus algebra and have a q-dimensional irrep
if Q = exp(2iπp/q). However, σ can be embedded within this irrep only for specific values
of the Casimirs uq = eiφ and vq = eiθ. Indeed, assuming σ acts within this irrep,

uq = σuqσ = u−q ⇒ eiφ = e−iφ.

So φ can only be 0 or π (mod 2π), and similarly for θ. For θ, φ ∈ {0, π} we can show
that the irrep of (24) is unique up to unitary transformations, and up to the algebra
automorphism σ → −σ, and is given by the action on basis states |n〉

u |n〉 = ei(φ+2πpn)/q |n〉 , n = 0, 1, . . . , q − 1,

v |n〉 = eiθ/q |n−1〉 , |−1〉 ≡ |q − 1〉 ,
σ |n〉 = eiθ(2n−r)/q |r−n〉 , rp+ φ/π = 0 (mod q).

The “pivot” r in the inversion action of σ is r = 0, if φ = 0, and the primary solution of
the Diophantine equation kq − rp = 1, if φ = π. The momenta qkx = θ and qky = φ in
this irrep are quantized as

kx =
πnx

q
, ky =

πny

q
, nx, ny ∈ Z. (25)
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For either θ or φ /∈ {0, π} the irrep of (24) must decompose into more than one
q-dimensional irreps of the quantum torus algebra u, v with σ mixing the irreps. The
minimal irrep of the full algebra (24) involves 2 irreps of the torus algebra, all other
situations being reducible. Representing all operators in block diagonal form in the space
of the two irreps ui, vi, i = 1, 2, with Casimirs uq

i = eiφi , vqi = eiθi ,

u =

(

u1 0
0 u2

)

, v =

(

v1 0
0 v2

)

, σ =

(

A B
B† C

)

,

and implementing the relations σuqσ = u−q, σvqσ = v−q leads to
(

eiφ1 − e−iφ1
)

A =
(

eiφ2 − e−iφ2
)

C =
(

eiφ1 − e−iφ2
)

B = 0,
(

eiθ1 − e−iθ1
)

A =
(

eiθ2 − e−iθ2
)

C =
(

eiθ1 − e−iθ2
)

B = 0.

Since not both of φ1, φ2 and of θ1, θ2 can be 0 or π, the above relations imply A = C = 0.
σ2 = 1 then implies B†B = 1, and the last equalities above require φ1 = −φ2, θ1 = −θ2.
Further, a unitary transformation

S =

(

B† 0
0 1

)

, u → SuS−1, v → SvS−1, σ → SσS−1

eliminates B in σ, and σuσ = u−1, σvσ = v−1 imply u1 = u−1
2 , v1 = v−1

2 . Altogether,
the irrep of (24) for two arbitrary Casimirs φ = φ1 = −φ2, θ = θ1 = −θ2, is given by the
2q-dimensional matrices

u =

(

uo 0
0 u−1

o

)

, v =

(

vo 0
0 v−1

o

)

, σ =

(

0 1
1 0

)

, (26)

where uo and vo are the basic q-dimensional quantum torus irrep with Casimirs eiφ and
eiθ. Finally, from (24) we obtain the corresponding irreducible forms for U, V,W

U =

(

0 uo

u−1
o 0

)

, V =

(

0 vo
v−1
o 0

)

, W = Q1/2

(

0 vou
−1
o

v−1
o uo 0

)

.

We conclude with a demonstration that the above representation becomes reducible
if φ, θ ∈ {0, π}. In that case, as we demonstrated before in (25), there is a q × q matrix
σo (to be distinguished from the 2q × 2q matrix σ in (26) above) satisfying (24) for the
matrices uo and vo. Performing the unitary transformation

So =
1√
2

(

1 −σo

σo 1

)

on all matrices, and using σouoσo = u−1
o etc., we obtain

u =

(

uo 0
0 u−1

o

)

, v =

(

vo 0
0 v−1

o

)

, σ =

(

σo 0
0 −σo

)

,

or

U =

(

uoσo 0
0 −σouo

)

, V =

(

voσo 0
0 −σovo

)

, W = Q1/2

(

vou
−1
o σo 0
0 −σovou

−1
o

)

reducing to the direct sum of two q-dimensional irreps.
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D Z(n) for honeycomb lattice walks

We denote Z(n) as Zq(n) to include its dependence on q.

Substituting dq =

q
∑

n=0

(−1)nZq(n)z
2n into (22) and equating the coefficient of z2n on

both sides, we get

Zq(n) = Zq−1(n) +
(

1 + sq
)

Zq−1(n− 1)− sq−1Zq−2(n− 2)

= Zq−2(n) +
(

1 + sq−1

)

Zq−2(n− 1) +
(

1 + sq
)

Zq−1(n− 1)− sq−2Zq−3(n− 2)− sq−1Zq−2(n− 2)

= · · ·

= Z1(n) +

q−1
∑

m=1

(

1 + sm+1

)

Zm(n− 1)−
q−2
∑

m=0

sm+1Zm(n− 2).

Since Zm(n) = 0 for n > m, we obtain

Zq(n) =

q−1
∑

m=n−1

(

1 + sm+1

)

Zm(n− 1)−
q−2
∑

m=n−2

sm+1Zm(n− 2)

with Zq(0) = 1 and Zq(j) = 0 for j < 0.

Thus,

Zq(1) =

q−1
∑

m=0

(

1 + sm+1

)

Zm(0)

=

q
∑

k1=1

(

1 + sk1
)

,

Zq(2) =

q−1
∑

m=1

(

1 + sm+1

)

Zm(1)−
q−2
∑

m=0

sm+1Zm(0)

=

q−1
∑

m=1

m
∑

k1=1

(

1 + sm+1

)(

1 + sk1
)

−
q−2
∑

m=0

sm+1

=

q−1
∑

k1=1

k1
∑

k2=1

(

1 + sk1+1

)(

1 + sk2
)

−
q−1
∑

k1=1

sk1 ,

Zq(3) =

q−1
∑

m=2

(

1 + sm+1

)

Zm(2)−
q−2
∑

m=1

sm+1Zm(1)

=

q−1
∑

m=2

m−1
∑

k1=1

k1
∑

k2=1

(

1 + sm+1

)(

1 + sk1+1

)(

1 + sk2
)

−
q−1
∑

m=2

m−1
∑

k1=1

(

1 + sm+1

)

sk1 −
q−2
∑

m=1

m
∑

k1=1

sm+1

(

1 + sk1
)

=

q−2
∑

k1=1

k1
∑

k2=1

k2
∑

k3=1

(

1 + sk1+2

)(

1 + sk2+1

)(

1 + sk3
)

−
q−2
∑

k1=1

k1
∑

k2=1

(

1 + sk1+2

)

sk2 −
q−2
∑

k1=1

k1
∑

k2=1

sk1+1

(

1 + sk2
)

.
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