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Abstract

The spread of an infectious disease depends on intrin-
sic properties of the disease as well as the connectivity and
actions of the population. This study investigates the dy-
namics of an SIR type model which accounts for human
tendency to avoid infection while also maintaining preex-
isting, interpersonal relationships. Specifically, we use a
network model in which individuals probabilistically deac-
tivate connections to infected individuals and later recon-
nect to the same individuals upon recovery. To analyze this
network model, a mean field approximation consisting of
a system of fourteen ordinary differential equations for the
number of nodes and edges is developed. This system of
equations is closed using a moment closure approximation
for the number of triple links. By analyzing the differential
equations, it is shown that, in addition to force of infection
and recovery rate, the probability of deactivating edges and
the average node degree of the underlying network deter-
mine if an epidemic occurs.

1 Introduction

The COVID-19 pandemic has had a profound impact on
society. In response, the mathematics and broader scientific
community has focused considerable research efforts to un-
derstand the spread of the virus and its impact not only on
physical health [12] but on mental health [40], the econ-
omy [40, 3], policy [10, 28], climate [38], distribution net-
works [3], equitable distribution of vaccines [2], and racial
disparities [23, 6, 41] to name but a few. Despite a tremen-
dous volume of research in this area, there is still consid-
erable effort devoted to developing and analyzing improved

mathematical models that address aspects of the above is-
sues. In particular, there is a clear need for epidemiological
models that incorporate human behavior.

In this paper we propose and study a model for the spread
of an infectious disease on an adaptive network in which
individuals can temporarily deactivate connections with in-
fected individuals and then reconnect upon recovery. Such
a situation could arise, for example, in an office setting in
which infected employees reduce their work hours or stay
at home all together and thus lower their average number of
contacts in a day. The problem we address in our model is
the determination of a minimal deactivating rate needed to
eliminate the spread of the disease as a function of the aver-
age node degree of the network, the force of infection, and
the recovery rate of the disease.

Naturally, in an adaptive network the spread of the dis-
ease can be eliminated by deleting or isolating all connec-
tions with infected individuals. However, for realistic hu-
man networks the implementation of such a process through
stay at home orders or lockdown of businesses could be in-
feasible for a variety of reasons, e.g. the work force consists
of essential workers, compliance may not be absolute, the
economic impact would be too extreme [3], etc. Instead, by
implementing an intermediary deactivation rate the network
can still be productive since some connections are main-
tained while the spread of the disease is mitigated.

1.1 Background and drawbacks of classic models

Before beginning a discussion of modeling the spread of
infectious disease on adaptive networks, we first step back
and discuss classic models for the spread of infectious dis-
eases. There are a large number of mathematical models for
the spread of infectious diseases whose efficacy and valid-
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ity vary over a wide range of spatial and temporal scales.
Typical mathematical models consist of agent based mod-
els at the microscale [29, 11, 18, 35], to network models
at the mesoscale [13, 14, 27, 7, 21], to finally mean-field
compartment models at the macroscale [15, 1, 25, 4, 5]; see
Figure 1(a)–(c). Following the pioneering of Kermack and
McKendrick [19], the unifying thread in all of these models
is that members of the population are categorized depending
on their infection status, e.g., susceptible (S), infected (I),
and recovered (R), and the dynamic evolution of each in-
dividual’s status is modeled either as a stochastic or purely
deterministic process. In agent based models this consists
of providing rules for the movement of individual agents
as well as the transmission of infection between susceptible
and infected agents. In network models infection between
individuals occurs along undirected edges of an underly-
ing static contact network. Finally, in compartment models
the state variables consist of fractions of the total popula-
tion with a given infection status and the disease evolves
according to a differential equation.

For reference, the standard compartment models are the
SIR model given by

Ṡ = −βSI,
İ = βSI − γI,
Ṙ = γI,

(1)

and the SIS model given by

Ṡ = −βSI + γI,

İ = βSI − γI,
(2)

where β is the per capita infection rate and γ the recov-
ery rate [15]. The SIR model is often used to study the
spread of diseases that confer lifelong immunity while the
SIS model is commonly used to study the spread of sexu-
ally transmitted diseases.

The network and compartment approaches can be linked
by Kurtz’s theorem which is essentially a law of large num-
bers which states that the average dynamics of the Markov
process at the network level limits to the dynamics of the de-
terministic differential equations at the compartment level
as the size of the network N → ∞ [22, 27]. Such a limit
we will refer to as a continuum limit.

The benefit of adopting a compartment modeling ap-
proach is that they are amenable to mathematical analysis
since standard tools from dynamical systems such as bifur-
cation theory can be used to precisely quantify conditions
under which the number of infected individuals grows in
time. These conditions are often given in terms of the ba-
sic reproduction number R0 > 0 which is the number of
individuals a single infected individual infects in a fully
susceptible population [15, 8, 37, 25]. Specifically, when

(a) (b)

(c) (d)

Figure 1: Illustration of mathematical frameworks for mod-
eling the spread of infections diseases in which the status
of each individual is either susceptible (S), infected (I),
or recovered (R). (a) Agent based model coupling spatial
dynamics with the spread of the disease. Arrows indicate
the direction of motion of each individual in the system.
(b) Static network with the spread of the disease propa-
gating along edges. (c) Compartment model with the dis-
ease spreading between the various population densities. (d)
Adaptive network in which the population and edge densi-
ties are incorporated into compartment models.

R0 > 1, the infected population will grow causing an epi-
demic while if R0 < 1 the disease will be eliminated. In
the classic SIR and SIS compartment models R0 can be
explicitly calculated and is given by the ratio R0 = β/γ
[15].

Classic compartment models such as SIR and SIS are
useful models in predicting the spread of a disease on short
timescales but they have a number of drawbacks that limit
their efficacy on larger timescales. Namely, such models
assume i) a constant population size, ii) a low number of
states, iii) a well mixed population and iv) there is no feed-
back between human behavior and the spread of the dis-
ease [27]. The first two drawbacks can be addressed by
incorporating population growth into the classic models as
well as introducing additional compartments, e.g. exposed
(E), treatment (T ), quarantine (Q) and vaccinated (V )
[37, 20, 16]. The third drawback is equivalent to the as-
sumption that the underlying contact network is given by a
complete graph. The fourth drawback can be heuristically
addressed by introducing new compartments or by allowing
parameters like the infection and recovery rates to depend
on the state variables. However, problems with introducing
a large number of new compartments include the system
might become intractable to analysis and the introduction
of a large number of parameters could obscure the phys-
ical mechanisms which govern the spread of the disease.
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Moreover, by allowing parameters like the infection rate in
a compartment model to depend on the state of the disease,
it is not clear that such a model could be obtained in a con-
tinuum limit from an underlying network model.

1.2 Background on adaptive networks

With the prior discussion serving as a backdrop, we now
discuss adaptive network models for the spread of infectious
diseases that more naturally incorporate human behavior;
see for instance [13, 32, 24, 31, 33, 36, 34, 31, 33]. The
key idea in such models is that individuals can change the
topology of the network depending on the infection status of
their contacts. For example, susceptible individuals could
replace contacts with infected individuals with connections
to susceptible individuals as in [13, 24], or delete contacts
with infected individuals as in [36, 34]. In this framework,
in addition to the infection status of individual nodes, the
edges themselves are also given a status depending on the
infection status of the nodes connected by the edge. For
example, for an SIS model on a network the three states
of the edges are given by [SS], [SI] and [II] denoting the
status of an edge connecting two susceptible nodes, an in-
fected and susceptible node, and two infected nodes respec-
tively. Figure 1(d) illustrates the nine resulting state vari-
ables for an SIR model on a network placed within this
framework. The adaptive network model then typically as-
sumes that edges with an infected component, i.e. an [SI]
edge, will change its status with some probability to reduce
the spread of the disease amongst nodes, e.g. an [SI] edge
rewires to different nodes to create an [SS] edge with some
probability.

The average dynamics on an adaptive network can also
be approximated by the dynamics of a compartment model
in an appropriate continuum limit. For example, on a static
network, the governing equations for an SIS model incor-
porating edge dynamics is given by:

Ṡ = −β[SI] + γI,

İ = β[SI]− γI,
˙[SS] = γ[SI]− β[SSI],

˙[SI] = β ([SSI]− [SI]− [ISI])− γ ([SI]− 2[II]) ,

˙[II] = β ([SI] + [ISI])− 2γ[II],
(3)

where [ABC] denotes the density of triple links with a given
sequence of states A,B,C ∈ {S, I} [13, 21]. The first
two equations model the infection and recovery of nodes
while the remaining equations correspond to the conver-
sion of various edge types as nodes are infected or re-
cover. The state variables in the above equations are im-
plicitly understood to correspond to the expected values
of the node and edge densities, however the notation E

for expectation is suppressed. If we assume further that
E ([SI]) = E(S)E(I), i.e. assume a well mixed population,
we obtain the standard SIS model. However, the benefit of
retaining the dynamics of the edges is that human behavior
can now be incorporated directly into Equation (3) by mod-
ifying the dynamics of [SS], [SI], and [II] while retaining
the same dynamics on S and I .

The drawback of the continuum limit presented in Equa-
tion (3) is that it does not form a system of closed equations.
Specifically, the dynamics of the triple links must be speci-
fied resulting in the need for equations governing the quar-
tic links and so on. In order to close the system at the level
of the dynamics for the edges, the number of triple links
must be approximated by using a process called a moment
closure. The simplest moment closure can be derived by as-
suming a homogeneous degree distribution and applying a
counting argument. This moment closure is given by:

[ABC] ≈ 〈k〉 − 1

〈k〉
[AB][BC]

B
, (4)

where 〈k〉 is the average degree of a node [21]; see the Ap-
pendix for a derivation. More sophisticated moment clo-
sures that account for inhomogeneities in the degree dis-
tribution arising from the friendship paradox, existence of
triangles, a high clustering coefficient, etc. can be de-
rived based on the topology of the network; see for instance
[36, 34, 24].

1.3 A roadmap

We conclude the Introduction with a roadmap for the
paper. In Section 2 we present mathematical models for
the spread of an infectious disease on adaptive small world
networks at both the network and compartment level. Our
models are built on the work of Shaw et. al. in [36, 34] in
which an SIS model was implemented on an adaptive net-
work with temporary link deactivation. Network assump-
tions such as those used by Gross et al. in [13], prioritize
maintaining the original connectedness, or average node de-
gree, of a network and reflects some aspects of human in-
teractions by disconnecting potentially infectious connec-
tions and creating new, safer links. On an interpersonal
scale, however, we know this to be inconsistent with hu-
man behavior. To address this concern, our adaptive net-
work model preserves known relationships throughout the
course of the disease while allowing individuals to protect
themselves from infection by temporarily deactivating po-
tentially infectious interactions.

In Section 3 we present the primary results of our work.
We first numerically study the convergence between the
network and compartment models in the continuum limit.
While the compartment model slightly overestimates the
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dynamics of the disease, the edge dynamics agree remark-
ably well and moreover the parameter conditions in which
an epidemic occur are in agreement. To further probe the
conditions under which an epidemic occurs, we investigate
parameter regimes in our compartment model in which state
changes including not only the sign of İ(0) but also Ï(0)
and S̈(0) occur. Through these calculations we replicate
the standard value of R0 as well as identify the following
critical edge deactivation rates:

p∗1 = β

(
〈k〉
2
− 3

2

)
− γ,

p∗2 = p∗1 − γ +
γ2

β〈k〉
.

(5)

Specifically, if the deactivation rate p satisfies p > p1
then limI(0)→0 I(0)−1S̈(0) > 0 and if p > p∗2 then
limI(0)→0 I(0)−1Ï(0) < 0. We provide numerical evi-
dence that if R0 > 1 but the deactivating rate is above these
thresholds then the the disease will still initially spread but
the total number of infected individuals is drastically re-
duced. This provides additional criteria beyond R0 < 1
for controlling the spread of an infectious disease.

We conclude in Section 4 with a discussion of our key re-
sults, the implications of our results that elucidate the con-
nection between human behavior and the spread of a dis-
ease, and avenues for further work.

2 Models

This work uses two models to investigate temporary link
deactivation on an SIR disease model. The first is a net-
work model which applies system changes including infec-
tion, recovery and edge deactivation as probabilities while
tracking the states of all individual nodes and edges. We de-
termine appropriate values for the number of Monte-Carlo
simulations M , the temporal spacing ∆t, and network size
N to ensure convergence of our simulations for the mean
field dynamics. Using the determined parameter values, we
consider the network model to be a proxy for reality since
all dynamics are tracked on an individual scale. The sec-
ond model is an ODE model with compartments for each
node and edge type. This model approximates the network
behavior on a macro scale while applying system changes
as rates applied to the compartments. By developing an
ODE model that reflects the network model behavior, we
can more efficiently simulate and more robustly analyze the
system behavior.

2.1 Network Model

For the network model, we study disease spread on a
population represented by a graph, G = {V,E}, where

V denotes the set of N vertices (i.e. nodes) and E de-
notes the set of edges. The graph used is a Watts-Strogatz
model which creates a realistic model of human connec-
tions referred to as a small-world network [39]. Specifically,
this graph has a large number of nodes, short average path
lengths and tightly knit groups of nodes as measured by a
high clustering coefficient. This graph is created by first
generating a ring lattice of average node degree 〈k〉. Apply-
ing the handshaking theorem with a constant degree yields
the approximation N̄ ≈ 〈k〉N2 where N̄ is the total number
of edges in our system. A portion, α, of the edges are then
randomly rewired. This preserves the average node degree
and total number of edges but creates the desired charac-
teristics of a small world network including more tightly
clustered nodes. From the graph, we generate an adjacency
matrix which is a symmetric, N ×N matrix, A, defined by
Ai,j = 1 if node i is connected to node j and is 0 otherwise.

We model an SIR type disease progression on this net-
work in which individuals move from susceptible (S) to in-
fected (I) to recovered (R) corresponding to three possible
node states {S, I,R}. Letting i index nodes and k index
time, we define V k

i ∈ {S, I,R} as the state of node i at time
k∆t where ∆t > 0 is the temporal spacing. Based off of
the status of V k

i we define another set of vectors Sk
i , I

k
i , R

k
i

with the ith entry equal to 1 if V k
i = S, I,R respectively and

0 otherwise. We define β∆t as the probability of infection
applied based on edges between a susceptible and infected
node and γ∆t as the probability of recovery applied to in-
fected nodes. Finally, we apply a temporary deactivation
assumption to the edges of the graph by storing deactivated
edges in another symmetric, N × N adjacency matrix, D,
which is initialized with all zeros.

The probability a node satisfying V k
i = S becomes in-

fected at the next time step is equal to β∆t times the num-
ber of active connections between that susceptible node and
other infected nodes. The number of such connections is
found by taking the difference between the adjacency ma-
trix, A, and the current deactivated matrix, D, isolating the
ith node’s connections by right multiplying by the standard
basis vector ei and summing the number of infected connec-
tions by left multiplying by the transpose of the vector Ik.
The probability that a susceptible node remains susceptible
is then 1 minus the above calculated probability. The prob-
ability a node satisfying V k

i = I recovers at the next time
step is equal to γ∆twhile the probability that the same node
remains infected is 1− γ∆t. Finally, the probability a node
satisfying V k

i = R remains recovered is equal to 1 since
we assume the recovered class is immune and cannot return
to susceptible or infected states. This gives the infection
probabilities
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P(V k+1
i = S|V k

i = S) = 1− β∆t · (Ik)T (A−D)ei,

P(V k+1
i = I|V k

i = S) = β∆t · (Ik)T (A−D)ei,

P(V k+1
i = I|V k

i = I) = 1− γ∆t,

P(V k+1
i = R|V k

i = I) = γ∆t,

P(V k+1
i = R|V k

i = R) = 1.
(6)

For the link deactivation assumption, since infection can
be passed by connections between infected and suscepti-
ble nodes, we apply a temporary deactivation probability,
p∆t, to any such edges. That is, if at time k∆t, Ai,j = 1,
Dk

i,j = 0, Sk
i = 1, and Ikj = 1 then with probability

p∆t, Dk+1
i,j and Dk+1

j,1 become 1. When deactivated edges
Dk

i,j = 1 are no longer potentially infectious, i.e. i, j in-
dices correspond to susceptible to recovered and recovered
to recovered edges, they are reactivated with probability
r∆t. That is, if at time k∆t, Dk

i,j = 1, Rk
i = 1 and Sk

j = 1

then with probability r∆t,Dk+1
i,j andDk+1

j,i become 0. Sim-
ilarly, if at time k∆t, Dk

i,j = 1, Rk
i = 1 and Rk

j = 1 then
with probability r

2∆t, Dk+1
i,j and Dk+1

j,i become 0. Note
this probability is halved to account for the symmetry of R
to R edges. These assumptions preserve the original graph
structure as created by the Watts-Strogatz model by never
updating the adjacency matrix A. This gives the edge tran-
sition probabilities

P(Dk+1
i,j = 1|Sk

i = Ikj = Ai,j = 1, Dk
i,j = 0) = p∆t,

P(Dk+1
i,j = 0|Rk

i = Sk
j = Dk

i,j = 1) = r∆t,

P(Dk+1
i,j = 0|Rk

i = Rk
j = Dk

i,j = 1) =
r

2
∆t,

(7)
where transitions made to Dk+1

i,j are made symmetrically to
Dk+1

j,i for all i and j.
Figure 2 depicts an example progression of the Watts

Strogatz network states through a disease simulation before,
during, and after the infectious event. In all simulations, the
network was initialized with 10% of nodes randomly se-
lected to be infected.

2.2 Convergence of Network Model

To ensure the consistency of conclusions drawn from the
statistics of Monte-Carlo (MC) simulations of our network
model we need to test for convergence in the number of
simulations M , time step ∆t and network size N . For all
convergence analysis, we will use the L2 norm as our di-
agnostic for convergence. Specifically, to compute an er-
ror for M simulations we will generate two sets of data of
M simulations each assuming one of these sets is a proxy

(a) Initial State (b) Intermediate State

(c) Final State

Figure 2: Snapshots of the dynamics of the SIR network
model with link deactivation at (a) time t = 0, (b) an in-
termediate time, and (c) the final network state. Black lines
correspond to active edges while cyan are temporarily de-
activated edges. Susceptible nodes are blue, infected red,
and recovered green. The initial conditions consisted of 10
randomly selected infected nodes and the parameters were
given by β = 0.1, γ = 0.2, p = 0.8, and r = 0.9.

for the converged statistics. On each set of M simulations
we compute the average number of infected nodes at time
step k and denote these computed values by Jk and J

k
re-

spectively. The relative error is then computed using the L2

norm and is given by

E(M,N,∆t, p) =

(∑
k

(
Jk − J̄k

)2) 1
2

(∑
k (Jk)

2
) 1

2

, (8)

where we have also included p as a variable to emphasize
that the deactivating rate could influence the convergence.
Note, this definition of the error is equivalent to estimating
the variance of the Monte-Carlo estimator [30].

First, we investigate the convergence on a 100 node
network over a range of deactivation rates and time step
sizes between two sets of 20 MC simulations. Specifically,
we compute E(20, 100,∆t, p) for ∆t values from 0.1 to
0.0001 and p values ranging from 0 to 2.5. Figure 3(a)
shows the value of of our error is below our cut off value
of 0.1 for ∆t = 0.01 and all tested p values. Additionally,
the error did not decrease significantly for smaller ∆t val-
ues. This indicates that averaging 20 simulations with 100
nodes and ∆t = 0.01 gives sufficient convergence for any
p ∈ [0, 2.5].

Next, in order to compare the network model to a com-
partment model, we consider the continuum limit of the
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(a) 100 Node Convergence

(b) 200 Node Convergence

Figure 3: Numerically computed error of the average num-
ber of infected individuals for MC simulations of the net-
work model. (a) 100 node network with 20 MC simulations
for various values of ∆t and p. (b) 200 node network with
2 sets of 20 MC simulations (circles) and 200 vs 100 node
network (asterisk) for various p and ∆t = 0.01

system as the number of nodes N → ∞. We compute
E(20, 200, 0.01, p) for p values ranging from 0 to 2.5. The
results shown as circles in Figure 3(b) shows 20 MC sim-
ulations is also sufficient for the 200 node network to meet
our 0.1 cut off for the relative error.

For our final convergence analysis, we need a different
definition of error. This error will compare the results be-
tween a set of simulations with 100 nodes and a set with
200 nodes. We compute the average number of infected
nodes from each set of simulations at time step k and de-
note these computed values from the 100 node network by
Jk and from the 200 node network by Lk. This relative
error is again computed using the L2 norm and is given by

F (M,N1, N2,∆t, p) =

(∑
k

(
Jk − Lk

)2) 1
2

(∑
k (Jk)

2
) 1

2

. (9)

We compute F (20, 100, 200, 0.01, p) for p values rang-
ing from 0 to 2.5. The results shown as asterisks in Figure
3(b) demonstrate convergence of the results from the 200
to the 100 node network. Altogether, this analysis gives us
confidence that our 100 node network simulated with time
step ∆t = 0.01 for p ∈ [0, 2.5] has converged sufficiently
to compare results to a compartment ODE model. Table 1
summarizes the parameters previously defined and provides
the values used in this study.

Parameter Definition Value
α Watts-Strogatz rewiring 0.2
〈k〉 average node degree 12
β infection probability [0, 1]
γ recovery probability 0.2
p deactivating probability [0, 2.5]
r reconnecting probability 0.9

∆t temporal spacing .01
N number of nodes 100
N̄ number of edges 600
M number of MC simulations 20

Table 1: Parameter values used in MC simulations of the
network model.

2.3 Proposed ODE Model

In order to facilitate system analysis, we approximate the
network with a system of ordinary differential equations us-
ing a mean-field approach. The following system of differ-
ential equations describes the change in the number of each
type of node:

Ṡ =− β[SI],

İ =β[SI]− γI,
Ṙ =γI,

(10)

and the number of each type of edge:

˙[SS] =− β[SSI],

˙[SI] =β[SSI]− β([SI] + [ISI])− γ[SI]− p[SI],

˙[SR] =− β[ISR] + γ[SI] + r[ŜR],

˙[II] =β([SI] + [ISI])− 2γ[II],

˙[IR] =2γ[II]− γ[IR] + β[ISR],

˙[RR] =γ[IR] + r[R̂R],

˙
[ŜI] =p[SI]− γ[ŜI]− β[IŜI],

˙
[ŜR] =γ[ŜI]− r[ŜR]− β[IŜR],

˙
[ÎI] =β[IŜI]− 2γ[ÎI],

˙
[ÎR] =2γ[ÎI] + β[IŜR]− γ[ÎR],

˙
[R̂R] =γ[ÎR]− r[R̂R],

(11)
where X denotes the expected number of nodes of each
type and [XY ] and [X̂Y ] denote the number of active and
deactivated edges respectively between nodes in state X
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and Y with X ∈ {S, I,R}. The notation [XŶ Z] repre-
sents triple connection between an [XY ] edge and an [Ŷ Z]
edge centered at a Y type node. For ease of presentation
we wrote the above equations with the triple link states but
these equations were closed using Equation (4).

The transitions in the ODE model reflect the behavior of
the previously defined network model and utilize the same
parameters. The state transitions are depicted in Figure
4 with the node states, active edge states, and deactivated
edge states shown in the first, second and third columns re-
spectively. The node state transitions include susceptible
nodes being infected at rate β proportional to [SI] edges
and I nodes recovering at rate γ. Edge state transitions
involve the parameters p, r, β, and γ. The deactivation
parameter p is applied only to [SI] which become [ŜI].
The reconnecting parameter r is applied to both [ŜR] and
[R̂R] which return to their equivalent active edge compart-
ments. Edge states involving the infection of an S node
transition at rate β. For active edges, these transitions in-
clude [SS] becoming [SI] through [SSI] triples, [SI] be-
coming [II] through both [SI] and [ISI] triples, and [SR]
becoming [IR] through [ISR] triples. Deactivated edges in-
volve some of the same transitions including [ŜI] becoming
[ÎI] through [IŜI] triples and [ŜR] becoming [ÎR] through
[IŜR] triples. Notably, the deactivated edges do not include
a parallel [SS] transition because [ŜS] does not exist nor do
they include [ŜI] becoming [ÎI] directly through [ŜI] since
these deactivated edges cannot pass infection. Finally, the
recovery rate γ facilitates the transition of edges involved in
the recovery of an I node. The transitions include [SI] be-
coming [SR], [II] becoming [IR] at twice the recovery rate
for each I node involved, and [IR] becoming [RR]. The
same transitions occur in the equivalent deactivated edge
compartments.

For all later simulations, we use ode45 in Matlab[26].
These equations become unstable as S → 0 since the mo-
ment closure approximation divides by S. To account for
this instability in our simulations, we set all moment clo-
sure approximations equal to 0 when S < 0.001. The sys-
tem is initialized with S = 90, I = 10 and R = 0 for
the nodes. For the edges, we averaged the initial number
of each edge type from 100 network simulations giving ini-
tial values [SS] = 485, [SI] = 110, [II] = 5 and 0 for
everything else. These initial conditions preserved the total
number of nodes, edges and average node degree used in
the network simulations.

Figure 4: Flow chart depicting edge and node dynamics in
the ODE model.

3 Results

3.1 Infected Population Convergence

The size and duration of an infectious event, as measured
through the infected population, are key components to un-
derstanding the severity of an outbreak. Similarly, the in-
fected nodes and the I compartment are characteristic of
overall model dynamics. In Figure 5, we plot the propor-
tion of the population that is infected over time and β for
p values of 0, 0.5, 1, 1.5, 2, and 2.5 in each subplot. Fig-
ure 5(a) has results for the network model. Striations on the
plot are a result of the coarseness of simulations on a 100
node network. This plot demonstrates the influence of the
deactivation rate as the contours appear to shift upward, to-
wards higher β values, for higher p values. With p = 0,
the infected proportion remains less than 0.2 for all time
for only β < 0.05. Conversely, with p = 2.5, the infected
proportion is less than 0.2 for all time for β < 0.2. The dif-
ference in β values corresponding to infected populations
of the same size indicates that the deactivation rate lowers
the effective infection rate as we would expect.

Figure 5(b) repeats the same plots described above for
the compartment model. These plots appear to be roughly
the same as those shown for the network model indicat-
ing convergence of our compartment model to the network
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model. The compartment model plots also show a “tail”
where the infected population is non-zero for an extended
period of time for a particular β value in each p value sub-
plot. Below this tail, the infection has a lower peak and
shorter duration than in simulations above the tail. This tail
corresponds to a β and p combination in which the recov-
ery rate is approximately balanced by the effective infection
rate causing a prolonged infectious event as the infected
population proportion remains roughly constant. This be-
havior is hard to detect in the network model given the
small, finite number of nodes used in simulations.

Finally, to justify the convergence of the network model
to the compartment model, Figure 5(c) shows the absolute
difference between the results shown in Figures 5(a) and
(b). Note, the scale for the infected proportion only ranges
from 0 to 0.5 in this plot. This figure demonstrates re-
markable consistency between the infected proportions in
the network and the compartment model simulations. The
maximum difference in value is less than 0.2 across all plot-
ted values and most inconsistencies are in the the peak value
of the infected proportion and along the tail seen in the com-
partment model.

3.2 Comparison of Nodes and Edges over Time

While the previous section analyzed the convergence of
the infected population between our models, it is also im-
portant to consider the consistency in the other node and
edge proportions between the models. Figure 6 plots the
proportion of (a) node types and (b) edge types over time
for β = 0.2 and p ∈ [0, 0.5, 1, 1.5, 2, 2.5]. Overall, Figure
6(a) show consistency between the network and compart-
ment model. The most notable discrepancy is an over esti-
mate of the infected population by the compartment model.
These plots also demonstrate the influence of the p value in
the proportion of the population that is in the recovered cat-
egory after the disease has died off. Since an SIR model
assumes immunity, the ending recovered population propor-
tion is equivalent to the cumulative proportion of the popu-
lation which was infected over the course of the epidemic.
This factor is significant to assessing the severity of an out-
break and will be revisited in the following subsection.

Figure 6(b) demonstrates remarkable consistency in the
proportion of edges deactivated over time between the net-
work and compartment model. This is also a key indicator
that the compartment model we constructed matches the as-
sumptions made in the network model and strengthens our
use of the compartment model for broader system analysis.

3.3 Epidemic Severity Analysis

Traditionally, the basic reproduction rate, R0, is used to
assess the severity of an outbreak. Since this value quanti-

(a) Network Model

(b) Compartment Model

(c) Absolute Difference

Figure 5: Plots of infected population proportions as func-
tions of time and β for various values of p for (a) network
model, (b) compartment model and (c) absolute difference
between models.
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(a) Node States

(b) Edge States

Figure 6: Average proportions in SIR model of (a) node
states and (b) edge conditions over time with β = 0.2, γ =
0.2, r = .9, p ranging from 0 to 2.5 and I0 = 10. Solid lines
correspond to results from the network model and dashed
correspond to results from the compartment ODE model.

fies the conditions under which the number of infected in-
dividuals grows in time, the rate of growth of the infected
compartment can be used to calculate a formula forR0. Us-
ing the İ equation from Equation (10), we take the limit as
the initial infected population, I(0) = I0, goes to zero at
time t = 0. To compute this limit, we approximate [SI](0)
as 〈k〉I0 given that it is expected all edges from the ini-
tially infected nodes will be connected to susceptible nodes
as I0 → 0. This gives the calculation

lim
I0→0

1

I0
İ(0) = lim

I0→0

1

I0
[β〈k〉I0 − γI0] = β〈k〉−γ. (12)

Setting this equation equal to 0 produces the formula

R0 =
β〈k〉
γ

. (13)

Substituting in the parameters 〈k〉 = 12 and γ = 0.2
we find a critical value β∗ = 1

60 corresponding to R0 = 1
for our simulations. For values of β < 1

60 , we expect the
disease to die off immediately since the infected compart-
ment is shrinking. For β > 1

60 , we know that the infected
compartment does not decrease immediately but we cannot
assume anything else about the system behavior.

From Figure 5(b) it is clear that the severity of the dis-
ease depends on both β and p parameter values while from
the above calculationR0 does not. Given this limitation and
the otherwise limited information provided by the standard
R0 calculation, we extend our analysis to the [SI] edges.
Since [SI] is a key component of the İ equation, we hy-
pothesize that the growth of this compartment may further
exemplify system behaviors. We mirror the same calcula-
tions as done above on the İ equation to the [ṠI] equation
as shown in Equation (11). Writing out the moment closure
approximation, this equation becomes

˙[SI] =β

((
〈k〉 − 1

〈k〉

)
[SS][SI]− [SI]2

[S]
− [SI]

)
− (γ + p)[SI].

(14)

Note that [SS](0) + [SI](0) = N̄ and, as used above,
[SI](0) ≈ 〈k〉I0. Making the above substitutions, we have

˙[SI](0)

I0
=β

((
〈k〉 − 1

〈k〉

) 〈k〉2N
2 − 2〈k〉2I0
N − I0

− 〈k〉

)
− (γ + p)〈k〉.

(15)
Therefore,

lim
I0→0

1

I0
[ṠI](0) = β

(
〈k〉2

2
− 3

2
〈k〉
)
− (γ+ p)〈k〉. (16)
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Setting this equal to 0 and solving for p gives ṠI(0) = 0
when

p∗1 = β

(
〈k〉
2
− 3

2

)
− γ =

γ

2〈k〉
(R0(〈k〉 − 3)− 2〈k〉) .

(17)
Since S̈ = −β ˙[SI], it follows that p∗1 is also the critical
transition for the concavity or acceleration of the S com-
partment. Note, necessary and sufficient conditions for p∗1
to exist in the sense that it is a positive number are that
〈k〉 > 3 and R0 > 2〈k〉/(〈k〉 − 3). That is, the network
has to on average have a sufficiently large number of con-
nections and the disease has to be sufficiently contagious
for deactivating edges to be necessary.

To find an equivalent critical value for the concavity of
the I compartment, we have

lim
I0→0

1

I0
[Ï](0) = lim

I0→0

(
β[ṠI](0)− γİ(0)

)
. (18)

Substituting in the previously computed limit for [ṠI](0) as
found in Equation (16) and solving for p gives the critical
value

p∗2 = p∗1 − γ +
γ2

β〈k〉
= p∗1 − γ

(
1− 1

R0

)
(19)

for the concavity or acceleration of the I compartment.
Note, necessary and sufficient conditions for p∗2 to be a pos-
itive number are that p∗1 > 0, which implies that R0 > 1,
and γ < p∗1R0/(R0 − 1). That is, the disease has to be suf-
ficiently contagious and the recovery rate must be not too
large for deactivating edges to be necessary.

To investigate the influence of these critical values on
system behavior, we consider the cumulative proportion of
the population which was infected over the course of the
infectious event. In an SIR model, this is equivalent to cal-
culating the ending recovered population proportion,R(tf ).
Figure 7 plots the log of the ending recovered population
proportion for 0 ≤ β ≤ 0.5 and 0 ≤ p ≤ 2.5. For
these simulations, an I0 = 10−10 was used in correspon-
dence with the analytic assumption of I0 → 0. The other
compartments were then initialized with S(0) = 100 − I0,
SI(0) = 〈k〉I0, SS(0) = N̄ −〈k〉I0 and all others equal to
0. Additionally, on Figure 7, β∗ corresponding to R0 = 1
is plotted as a solid white line, p∗1 is a dashed white line and
p∗2 is a dashed-dotted white line.

These critical transitions partition Figure 7 into four re-
gions. In Region I, R0 < 1, İ(0) < 0, S̈(0) < 0 and
Ï(0) < 0. In this region the disease quickly dies out and the
dynamics are equivalent to the standard SIR model with
R0 < 1. In Region II, R0 > 1, İ(0) > 0, S̈(0) < 0 and
Ï(0) < 0. In this region even though İ(0) > 0 the total
number of infections is still low since the rate of change of

Figure 7: Contour plot of the log of the total recovered
proportion of the population for the compartment model
for ranging β and p. The solid white line corresponds to
β = β∗. The dashed white line is p∗1 and the dashed-dotted
line is p∗2.

infections is decelerating. In Region III, R0 > 1, İ(0) > 0,
S̈(0) > 0 and Ï(0) < 0. While the rate of change of in-
fections is initially accelerating in this region, the rate of
change of susceptible individuals is initially decelerating
and thus again the total number of infections is still com-
parably low. In Region IV, R0 > 1, İ(0) > 0, S̈(0) > 0
and Ï(0) > 0. Consequently, in Region IV the number of
infections is orders of magnitude higher than in regions I-III
and the dynamics is similar that of a standard SIR model
with R0 > 1. It is interesting to note that the existence of
Regions II and III are unique to compartment models that
include edge dynamics.

4 Discussion

In this work we developed and analyzed a mathematical
model for the spread of an SIR type infectious disease on
an adaptive network with temporary link deactivation. The
approach taken was to develop a system of fourteen differ-
ential equations for not only the node states but the edge
states as well. This mean field approach agreed well with
Monte-Carlo simulations of small sized networks. Through
an analysis of these equations we not only recovered the
standard calculation of R0 but identified two new parame-
ters p∗1, p∗2 which also control the severity of the epidemic.
Specifically, while the value of R0 controls whether the in-
fection is growing in time, if the deactivation rate p is below
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p∗2 then the initial number of infections is accelerating lead-
ing to a severe epidemic, i.e. Region IV in Figure 7. This is
in contrast with the standard SIR model in which R0 = 1
is the condition in which both İ(0) and Ï(0) changes sign.
Indeed, one naive approach to understanding the dynam-
ics caused by the deactivating of connections is to assume
that deactivating edges is equivalent to lowering the value
of β in the standard SIR model. Our model shows that
this approach will not adequately capture the nonlinear in-
teractions between the node and edge dynamics which are
necessary to model the spread of the disease.

It is important to note that while the dynamics of the
ODE model captures the mean field dynamics of the edge
states it overestimates the severity of the disease as com-
pared to the network model. The cause for this discrep-
ancy is at least three fold. First, the moment closure as-
sumed that the average excess degree 〈k〉ex was equal to
〈k〉 − 1. However, the random variables k and kex have dif-
ferent distributions and the relationship between their aver-
ages is an inequality called the “friendship paradox” where
〈k〉ex ≥ 〈k〉 + 1 [9]. In particular, in graphs in which there
is a significant variance in the degree distribution, it is not
clear if a set of differential equations for the various com-
partments can be derived in the continuum limit [17]. Sec-
ond, in the derivation of the moment closure, higher order
information about the topology of the network such as clus-
tering and the number of triangles were ignored. Third, the
truncation of the system at the level of nodes and edges ex-
cludes the dynamics of higher order links which depend-
ing on the structure of the graph could be relevant. Many
of these challenges can be addressed by more carefully ap-
proximating the conditional distributions that arise in the
moment closure approximation; see for instance [36, 34].
Nevertheless, since the ODE models provide overestimates
for the severity of the disease, the critical deactivation rates
given by Equation (5) are still useful in that they provide up-
per bounds for the critical deactivation rates in the realized
network dynamics.

Finally, we propose that the general approach of in-
troducing compartments for the edge dynamics discussed
in this paper is the more natural approach when model-
ing adaptive networks. Specifically, when considering the
spread of infectious diseases in which there is human be-
havior in the form of quarantining, contact tracing, recon-
necting, etc. it is important to consider the dynamics of
the connections themselves, i.e. the edges. The alternative
approach of introducing new node states as compartments
does not capture how the topology of the connections them-
selves changes during the epidemic. Indeed, this discrep-
ancy is captured in our model due to the existence of pa-
rameters in addition to R0 which depend nonlinearly on the
average node degree and also govern the severity of the epi-
demic.

Appendix

In this appendix we briefly derive the moment closure
given by Equation (4) following the derivation given on
page 124 of [21]. First, in a network with a average node
degree 〈k〉, it follows that 〈k〉B is equal to the expected
number of edges containing a node of status B and thus
[AB]/(〈k〉B) and [BC]/(〈k〉B) correspond to the expected
proportion of edges which start at a statusB node that are of
type [AB] or [BC] respectively. Therefore, if we are given
that a nodeB is connected to two other nodes then the prob-
ability that the three nodes forms a triple link of type [ABC]
is approximately given by [AB][BC]/(〈k〉B)2. Therefore,
since the number of ways to choose the edges connecting
to B is given by 〈k〉(〈k〉 − 1), it follows that the probabil-
ity that a triple link a node status of B at its center is of
type [ABC] is equal to 〈k〉(〈k〉 − 1)([AB][BC])(〈k〉[B])2.
Finally, we calculate the expected value of [ABC] triples
by multiplying by the proportion of B nodes to obtain the
following moment closure approximation:

[ABC] ≈ 〈k〉 − 1

〈k〉
[AB][BC]

B
.
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