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Sheared granular matter & the empirical relations of seismicity
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The frictional instability associated with earthquake initiation and earthquake dynamics is be-
lieved to be mainly controlled by the dynamics of fragmented rocks within the fault gauge. Principal
features of the emerging seismicity (e.g. intermittent dynamics and broad time and/or energy scales)
have been replicated by simple experimental setups, which involve a slowly driven slider on top of
granular matter, for example. Yet, these set-ups are often physically limited and might not allow
one to determine the underlying nature of specific features and, hence, the universality and gen-
erality of the experimental observations. Here, we address this challenge by a numerical study of
a spring-slider experiment based on two dimensional discrete element method simulations, which
allows us to control the properties of the granular matter and of the surface of the slider, for ex-
ample. Upon quasi-static loading, stick-slip-type behavior emerges which is contrasted by a stable
sliding regime at finite driving rates, in agreement with experimental observations. Across large pa-
rameter ranges for damping, inter-particle friction, particle polydispersity etc. the earthquake-like
dynamics associated with the former regime results in several robust scale-free statistical features
also observed in experiments. At first sight these closely resemble the main empirical relations of
tectonic seismicity at geological scales. This includes the Gutenberg-Richter distribution of event
sizes, the Omori-Utsu-type decay of aftershock rates, as well as the aftershock productivity relation
and broad recurrence time distributions. Yet, we show that the correlations associated with tectonic
aftershocks are absent such that the origin of the Omori-Utsu relation, the aftershock productivity
relation, and B̊ath’s relation in the simulations is fundamentally different from the case of tectonic
seismicity. We argue that the same is true for previous lab experiments.

PACS numbers: 62.20.Fe, 62.20.-x, 61.43.Er

I. INTRODUCTION

The frictional instability is a commonly observed phe-
nomenon in a wide class of physical settings ranging from
plastically deforming solids [1–3] and fractured rocks [4–
9] in laboratory-based experiments to faulting and land-
slides at geological scales [10]. Under a slow driving rate,
this mechanism leads to an irrecoverable slip motion that
a stuck system undergoes beyond its frictional threshold,
hence the term “stick-slip” instability [11]. The emer-
gent dynamics exhibits highly intermittent features, the
so-called “avalanches”, with a broad range of associated
time, length, and energy scales. The scale-free nature of
avalanche statistics may be considered as a signature of
a dynamical yielding transition which is characterized by
universal scaling features such as diverging length and/or
timescales and power-law distributions of avalanche sizes
[12, 13].
Essential features of this critical dynamics have been

recovered in several numerical frameworks as well as ex-
perimental settings (see [14] and references therein). Re-
cently, stick-slip behavior has been investigated in lab-
oratory experiments using a simple spring-slider setup,
choosing granular matter as a substrate undergoing plas-
tic deformation [15–17]. This is thought to be a good can-
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didate to study slip planes of fragmented rocks, for exam-
ple. The setup was reported to reveal critical avalanche
dynamics under quasi-static loading conditions which
transitioned through a breakdown of scaling features to a
non-critical regime of stable sliding regime at finite driv-
ing rates. Within the former regime, essential (empirical)
features and statistical relations of tectonic seismicity
were recovered at the lab scale suggesting a (potentially)
common physical mechanism across scales. Observations
of some of these empirical relations established for tec-
tonic seismicity have also been reported for other labo-
ratory experiments, including a shearing granular exper-
iment with a cylindrical geometry [18], dislocation and
slip avalanches in (poly)crystals [19, 20] as well as macro
fracturing in brittle rocks and other heterogeneous solids
[21–23].

While such empirical observations led to the develop-
ment of commonly-used constitutive models (such as the
rate and state friction relation or viscoelastic rheology
[10]), we add the caveat that experimental set-ups are
often limited by physical constraints such that extract-
ing some of the vital information about the dynamics of
the system has remained challenging. Essential control
parameters including (but not limited to) internal dissi-
pation mechanisms [24], inter-grain friction [25], polydis-
persity [26], particle shape [27], and the surface roughness
of the slider are not easily tunable in real experimental
conditions. This motivates an interest in the develop-
ment of numerical models to not only reproduce the ob-
served experimental results but also to circumvent the
experimental limitations in order to achieve a better un-
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derstanding of the essential and controlling ingredients
of the underlying physics. At the same time, such frame-
works have the potential to be useful across scales and in
particular to allow relevant numerical measurements that
would otherwise be impossible from direct seismological
observations. In addition, they might help augment ex-
isting (often phenomenological) constitutive equations by
incorporating micromechanical aspects of the deforma-
tion and failure of granular solids [10, 14]. This, in turn,
might improve their predictive power, which ultimately
might lead to better seismic hazard assessment.
This study develops a numerical model of the afore-

mentioned spring-slider experiment on a granular sub-
strate [15–17] using discrete element modelling (DEM)
[28] to achieve the aforementioned goals. Our findings
based on this model include previous experimental ob-
servations of empirical relations from tectonic seismic-
ity such as the Gutenberg-Richter distribution of earth-
quakes magnitudes, an Omori-Utsu-like decay of seismic
activity following large events and other established rela-
tions [29]. In this context, our numerical study allows us
to address the origin of these relations and illuminate dif-
ferences between previous lab experiments and tectonic
seismicity. In particular, we show that the statistical re-
lations describing the dynamics of ”aftershocks” have a
different origin compared to tectonic seismicity. In fact,
we find an absence of pronounced temporal correlations
and clustering, which are one of the defining properties
of aftershocks in tectonic settings, such that the notion
of aftershocks in the spring-slider set-up becomes highly
questionable.
The organization of the paper is as follows: In Sec.

II, the shear setup, packing preparation, driving proto-
col, and relevant simulation details are discussed. Sec-
tion III discusses the rate effects resulting in the transi-
tion between the stable sliding and stick-slip regimes. In
Sec. IV, we quantify the statistics of avalanches including
their size distribution, duration, as well as their tempo-
ral evolution. Sec. V and Sec. VI present discussions and
conclusions, respectively.

II. NUMERICAL MODELLING

A. Slider-substrate setup

Our slider-substrate setup is created in accordance
with the experiment detailed in [16]. In our two-
dimensional simulation the substrate granular disks are
sheared using a (rigid) slider of length Lslider = 25 cm
and mass Mslider = 8.5 × 10−2 kg. A spring of stiffness
kspring = 70 N/m is attached to the slider, the free end of
the spring is pulled at constant speed c. To minimize the
rotation of the slider due to spring vibrations and uni-
formly distribute the force due to pulling along the entire
length, the spring is anchored to the middle of the slider.
A schematic drawing of this setup is shown in Fig. 1.
To model this setup numerically Discrete Elements

(DE) approach in LAMMPS [30] is chosen which con-
siders each particle in the simulation as an individual
element with a constant mass and radius. Furthermore,
elements of this setup are fixed along the z-axis hence
behaves as two dimensional. Substrate discs, total of
N = 7770, are distributed bi-dispersedly with size ra-
tio of Rb/Rs = 1.25 and number ratio Nb/Ns = 2.5.
Here Nb(s) and Rb(s) denote the number of discs and
their radii, respectively, we set Rb = 2.5 mm for the
larger disks. The density of substrate particles is con-
stant at ρ = 2.5 × 104 kg/m3, which defines the mass
of the particle m. Gravity, acceleration of 10 m/s2, is
acting downwards on the entire system. The interaction
between particles is modelled to have normal, tangential,
and rolling forces, input parameters of these interactions
are detailed in the next subsection.
As shown in Fig. 1, the rigid slider for this simula-

tion has circular grooves with radius ri = 2.5 mm on
the base to induce additional friction. To setup the
substrate, particles are initially dropped under gravity
in the simulation box of length, L = 1.5 m, filled up
to height of 0.3L, which has periodic boundaries along
x. The slider is dropped on substrate particles after
the (scaled) kinetic energy of the system is lower than

K =
∑N

i=1 mivi.vj/2N < 10−10 J . The spring is at-
tached once the slider comes to full stop above the sub-
strate. The whole system is allowed to relax, such that
particles and slider are completely at rest before shearing
begins.

B. Mechanics of DE

The substrate disks are modelled as granular parti-
cles, for which the forces are updated at each timestep
based on their interaction with one another, the slider
and the walls. The parameters defined for interacting
forces within the substrate and between the slider and
the granular disks, discussed throughout this subsection,
are outlined in Table I.
The i-th and j-th particles in Fig. 2 with position

L = 1.5m

 9.5 cm

k
spring

= 70 N/m

c ∈ (0.1, 1000) mm/s

 L
slider

 = 25 cm Periodic boundary

 M
slider

 = 85 g  F, v

g = 10 m/s

x

y

r
i

FIG. 1: Granular simulation set-up (drawing not to scale).
The discs represent the bulk sample with length L and
periodicity along x.
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FIG. 2: Interaction forces due to contact of particles
(drawing not to scale).

vectors ri and rj only interact when the overlap δij =
Ri + Rj − |rij | > 0 with rij = ri − rj . The normal
contact force is modelled as Hertz interaction, with the
stiffness kn, and is calculated for each timestep as

Fn = −knR
1/2
eff δ

3/2
ij n, (1)

with the effective radius Reff = RiRj/(Ri +Rj) and the
unit normal vector n = rij/|rij |.
The tangential force Ft between substrate particles is

given by

Ft = −min( µt |Fn|, | − ktξt + F
damp
t |) t, (2)

where µt is the tangential friction coefficient, kt is tan-
gential stiffness of particles, ξt =

∫

Tcont

vrel
t (τ) dτ is the

tangential displacement accumulated during the entire
duration of the contact Tcont, and t = vrel

t /
∣

∣vrel
t

∣

∣ is the
tangential unit vector.
Damping is evaluated using a viscoelastic damping

model in LAMMPS, the normal (tangential) component
of which is calculated by

F
damp
n(t) = −ηn(t)v

rel
n(t). (3)

The normal damping coefficient ηn is given by

ηn = a ηn0 meff, (4)

with the damping prefactor ηn0, the radius of the con-
tact area a =

√

Reff δij , and the effective mass meff =
mij/(mi +mj). We have ηt ∝ ηn with the proportion-
ality factor xγt. The normal relative velocity vector is
vrel
n = (vrel · n) n where vrel = vi − vj . We define the

relative tangential velocity vrel
t as

vrel
t = vt −

(

Riθ̇i +Rj θ̇j

)

ez × n, (5)

with the angular velocity θ̇iez of the i-th particle.
Rolling force during a contact is

Fr = −min( µr|Fn|, |−krξr − γrvr|) k, (6)

where µr is the rolling friction, kr is rolling stiffness, γr

is the rolling dampness, vr = Reff

(

θ̇i − θ̇j

)

ez × n is

the relative rolling velocity, ξr =
∫

T vr(τ)dτ is rolling
displacement, and k = vr/|vr|.
Newton’s equations of motion, updated every timestep,

are

mir̈i = Fn + Fdamp
n + Ft +mig,

miR
2
i θ̈iez = Ri n× (Ft + Fr). (7)

The rate unit (inverse timescale) is set by gravity
√

g/Rs. The normal vibrational frequency is defined as

ωn =
√

keffn /meff with keffn = akn. For the example of
normal force, our choice of microscopic parameters obeys
the following separation of timescales

ωn ≫

√

g

Rs
≫

c

Rs
. (8)

This leads to an internal dynamics reasonably close to
the experimental setting. We also set the discretization
time ∆t = 0.05 ω−1

n . Furthermore, the dissipation rate
τ−1
d = aηn0, of our simulations relates to the vibrations

frequency as τ−1
d /ωn ≃ 0.2, to recover damped dynamics

where the damping rates are such that they reproduce
experimental observations.

III. STICK-SLIP DYNAMICS VS. STABLE
SLIDING

We performed a series of tests on samples with dif-
ferent pulling speeds c. The magnitude of the resulting
force F and velocity of the slider v scaled by c are plotted
against time in Fig. 3. At the slowest rate c = 0.1 mm/s,
the response is characterized by abrupt force drops pre-
ceded by longer stress build-up periods as in Fig. 3(a).
Similarly, the slider velocity exhibits a stick-slip dynam-
ics with quiescent periods that are frequently interrupted
by short-lived active phases. By contrast, Fig. 3(b), cor-
responding to c = 1000 mm/s, shows a well-established
quasi-periodic sliding regime. Both dynamical behaviors
are in agreement with experimental observations [15–17].

Parameter Symbol Type ia Type iib Units

Normal stiffness kn 1× 106 1× 106 N/m2

Normal damping ηn0 5× 105 5× 105 1/m · s
Tangential stiffness kt 1× 101 1× 100 N/m
Sliding friction µt 1× 101 1× 100 -
Damping ratio xγt 1× 101 1× 104 -
Rolling friction µr 1× 101 0 -
Rolling stiffness kr 1× 101 0 N/m
Rolling damping γr 1× 104 0 kg/s

a Substrate/Substrate
b Slider/Substrate

TABLE I: Microscopic material parameters used for the
granular model.
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FIG. 3: Force response f(t) and slider speed v(t)
(normalized to the pulling speed c) plotted against t at a)
c = 0.1 mm/s b) c = 1000 mm/s.

In frequency domain ω, the stick-slip dynamics at the
low driving rate is marked by a scale free power law be-
havior associated with the power spectral density of the
force signal |f̄(ω)|2 as displayed in Fig. 4(a). We find
|f̄(ω)|2 ∝ ω−δ with δ ≃ 2.2 over at least four decades
in ω. This is in close agreement with the measured
exponent corresponding to the experimental setup with
δ = 2.4±0.2, where the power law extended over a shorter
range of frequencies [16]. In Fig. 4(b), the power spec-
trum associated with the faster driving rate at c = 1000
mm/s develops a characteristic peak at ω ≃ 5 Hz which
is a signature of the quasi-periodic signal in the time
domain. As reported in the experimental setting [16],
this characteristic frequency should scale with the driv-
ing rate c and differ from the natural frequency set by the
slider mass Mslider and (pulling) spring constant kspring,
i.e. ω2 = kspring/Mslider. It should be noted that the
driving rate in Fig. 4(b) is a factor of 10 larger than the
fastest case reported in the experiment which leads to a
more pronounced peak in the frequency domain.
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FIG. 4: Power spectrum |f̄(ω)|2 associated with the force
timeseries at a) c = 0.1 mm/s b) c = 1000 mm/s. The inset
for b) is the same as the main plot but on the lin-lin scale.
The dashed line for a) denotes |f̄(ω)|2 ∝ ω−δ with δ = 2.2.
The solid curves correspond to the binned data.

IV. “SEIMICITY” ANALYSIS

In this section, we investigate the properties of the
stick-slip events of the slider, often denoted as avalanches.
Specifically, we probe the dissipated energy power and
its evolution with time to define the size and duration
of individual avalanches. This allows us to quantify the
avalanche size statistics along with inter-occurrence time
distributions both showing non-trivial scaling features at
low driving rates. Other statistical measures such as pro-
ductivity relation or temporal aftershock rates require a
proper identification of mainshock-aftershocks sequences
which will be discussed in subsequent sections.

A. Avalanche Statistics

We define the spontaneous rate of dissipated energy of
the slider as U̇ = F ·v during the slip period. The power
signal is shown in Fig. 5(a) with a noise floor U̇c ≃ 10−6

that is intermittently interrupted by short-lived stick-slip
events or avalanches. Figure 5(b) displays the timeseries

associated with the avalanche size S =
∫ ti+Ti

ti
{U̇(t) −
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FIG. 5: a) Definition of the avalanche size S, avalanche
duration T , avalanche inter-occurrence time τ , and slider
rest time τw at c = 0.1 mm/s. The main plot is a magnified
view of the power time series shown in the inset. b)
Magnitude time series.

U̇c} dt which has dimensions of energy and corresponds
to an avalanche initiated at ti with duration Ti.

Figure 6 displays the scatter plot of the avalanche size
S and event duration T along with the avalanche size
distributions P (S). The scatter plot in Fig. 6(a) demon-
strates that, statistically speaking, larger avalanches tend
to have longer duration with a scaling behavior that may
be described on average as T ∝ S1/γ with γ ≃ 1.2,
in agreement with the experimental observation [15].
The scaling regime spans almost three decades in S be-
fore reaching a plateau at large avalanche sizes. The
avalanche size distribution in Fig. 6(b) decays as a power-
law P (S) ∝ S−β over at least three decades above a
(lower) cut-off size Smin ≃ 10−6 with β ≃ 1.5 which is
within the range of measured exponents in experiments
1.2 − 1.7 [15, 18] and matches the mean-field estimate
β = 3/2 [31]. In all of the subsequent avalanche anal-
yses, we use Smin = 10−6 as a lower bound for event
size thresholds, e.g. Sc ≥ Smin, to ensure a meaningful
(power-law) scaling regime associated with S.

The avalanche size distribution can be expressed in
an accumulated form as P (size > S) = (Smin/S)

β−1.
This distribution may also be transformed into the

classical Gutenberg-Richter magnitude-frequency rela-
tion P (mag. > m) = 10−b(m−mc) with magnitude of
completeness mc and b−value that controls the exponen-
tial decay rate. The magnitude m is empirically related
to seismic moment M via m = c0log10M − c1 with non-
universal parameters c0 and c1 [29]. From this relation-
ship, it follows that b = (βM − 1)/c0 with exponent βM

describing the power-law decay of seismic moments dis-
tributions [14]. It should be noted that we measure the
dissipated energy S, not the seismic moment M with the
latter typically evaluated based on the shear modulus,
slip size, and associated stress drop. Provided that S is
proportional to M (see [14, 32] and references therein for
a discussion of this assumption), one obtains β = βM .
Using c0 = 2

3 established for large earthquakes [14], we
obtain b ≃ 0.75 which is smaller than the commonly ob-
served b ≈ 1 in tectonic settings, though there is some
variability across different settings [33–36]. One could,
however, dispute the conversion of β to b-value for our
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FIG. 6: a) Scatter plot of the avalanche duration T vs.
avalanche size S, b) avalanche size distributions, both at
c = 0.1 mm/s. The symbols in a) indicate the mean
duration T̄ over prescribed bins in S. The dashdotted line in
a) indicates a power law T ∝ S1/γ with γ = 1.2. The
dashdotted line in b) is a guide to the power law
P (S) ∝ S−β with β = 1.5. The error bars denote one
standard error. The inset is the same as the main plot but
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FIG. 7: Avalanche statistics at multiple inter-particle sliding
friction µt and rolling friction µr. a) Avalanche duration T
plotted against event size S. b) (non-normalized) avalanche
size distribution P (S). The first pair of parameters
correspond to inter-particle friction and second one relates
to the slider-substrate friction.

small avalanche sizes here [32, 37], such that a direct
comparison with tectonic seismicity might not be appro-
priate.

1. Robustness Analysis

Figure 7 and 8 examine the overall robustness of our
findings with respect to changes in the inter-particle (slid-
ing and rolling) friction coefficient as well as the (nor-
mal and rolling) dissipation time scales. Displayed in
Fig. 7(a), the scaling relation between avalanche size
and duration remains almost insensitive to variations in
the microscopic friction. The avalanche size exponent
β seems to be also a robust scaling feature at larger S
values as shown in Fig. 7(b). Higher damping rates in
Fig. 8(a) lead to an overall shift in the avalanche dura-
tion but has no discernible effect on exponent γ within
the scaling regime at small and intermediate S. This is
also true for size distributions in Fig. 8(b) where β ≃ 1.5
seems to be a robust scaling exponent.
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FIG. 8: Avalanche statistics at multiple damping rates for
both normal and rolling components ηn0, γr. a) Avalanche
duration T versus event size S b) (non-normalized)
avalanche size distribution P (S).

In order to probe potential effects of the surface rough-
ness of the slider on the avalanche statistics, we consid-
ered different cases of depths of the grooves at the base
of the slider on the granular substrate. We find that
there are no considerable effect on the overall avalanche
statistics (see Fig. A3 ). In particular, the power-law ex-
ponents are unaltered indicating that the variation in the
interaction between the slider and the substrate do not
affect the universality class. Similarly, changes in poly-
dispersity (see Fig. A2) do not lead to any quantitative
changes between the different sets of avalanche size and
duration distributions.

B. Avalanche Inter-occurrence Time and Slider
Rest Time Statistics

For a homogeneous Poisson process with indepen-
dent events of constant rate λ, the inter-occurrence time
statistics should obey an exponential distribution P (τ) =
λe−λτ with τi = ti − ti−1 denoting the time interval be-
tween two consecutive avalanches, i.e., the time interval
between the onset of avalanche i − 1 and the onset of
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avalanche i (see Fig. 5(a)). Deviations from this expo-
nential distribution are demonstrated in Fig. 9(a) where
the rescaled distributions τ̄P (τ) are plotted against τ/τ̄
for avalanches of sizes S > Sc. Here τ̄−1 denotes the
occurrence frequency of events with sizes larger than Sc.
The rescaled distributions in the main plot are charac-
terized by a power-law decay extending for almost two
decades up to a slight hump at τ > τ̄ that tends to be-
come more pronounced with increasing Sc. As shown in
the inset of Fig. 9(a), we find P (τ) ∝ τ−1.1 for the power-
law decay which is consistent with the observed behavior
in the spring-slider experiment with P (τ) ∝ τ−(1.1±0.08)

[15].
We also probed the statistics of slider rest times τwi =

τi − Ti−1 indicating the rest period of the slider be-
tween the end time of avalanche i− 1 and start time
of avalanche i (see Fig. 5(a)). Here Ti−1 denotes the
avalanche duration associated with event i − 1. In the
context of a dynamical point process, a typical assump-
tion is that Ti−1 ≪ τi and, therefore, differences between
P (τ) and P (τw) shall be statistically insignificant. In
the present set-up, however, the time-scale separation
is not directly applicable since large avalanches have a
duration significantly longer than the shortest observed
inter-occurrence time as a comparison of Fig. 6(a) and
Fig. 9(a) shows. Nevertheless, Fig. 9(b) and the inset
illustrate that the rest time distributions decay almost
identical to the inter-occurrence time distribution, e.g.
P (τw) ∝ τ−1.1

w .

C. Correlation Analysis

To understand the similarities between the distribu-
tions of inter-occurrence times and rest times, a cor-
relation analysis is helpful. First, we analyze tempo-
ral auto-correlations of these quantities separately by

probing fluctuations in R(w)
.
= τ

(w)
i+1/(τ

(w)
i+1 + τ

(w)
i ) de-

fined as the ratio between successive time lags within
the respective sequence [38]. For both homogeneous and
non-homogeneous Poisson processes, P{R(w)} ≡ 1 for
0 < R(w) < 1 such that a uniform distribution would
indicate an absence of correlations. Instead, the two dis-
tributions of R and Rw shown in Fig. 10(a), (b) exhibit
strong deviations from a uniform distribution with two
distinct peaks at R(w) ≃ 0 and 1. Thus, we can also
rule out that the temporal behavior is following a non-
homogeneous Poisson process — we had already estab-
lished that both inter-occurrence times and rest times
do not obey a homogeneous Poisson process since they
exhibit broad distributions (see Fig. 9). Yet, it is possi-
ble that the behavior of P{R(w)} is solely determined
by these broad distributions. If indeed true, the ob-
served behavior would not be indicative of correlations
but rather of a renewal process. To test this alter-
native hypothesis, Fig. 10 also shows P{R(w)} for the
shuffled magnitude timeseries, where the order of the
inter-occurrence times is randomized such that all auto-
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FIG. 9: Distribution of avalanche inter-occurrence time, τ ,
and slider rest time, τw at multiple threshold sizes, Sc at
c = 0.1 mm/s. a) Event inter-occurrence time distribution,
P (τ )τ̄ versus τ/τ̄ with τ̄ denoting the mean inter-occurrence
time with S > Sc. b) Slider rest time distribution, P (τw)τ̄w
versus τw/τ̄w, similar to the previous case, τ̄w denotes the
mean rest time. The dash-dotted line on both the plots
indicates a power-law decay P{τ(w)} ∝ τ−1.1

(w) . The insets

show P{τ(w)} × τ 1.1
(w). The error bars denote one standard

error.

correlations are destroyed. The same is true for the as-
sociated rest times — note that each inter-occurrence
time is the sum of the event duration T and the rest
time τw. In both cases, Fig. 10 shows that there are no
pronounced differences between the original case and the
shuffled case. Thus, the abundance of low and high R(w)

values is not indicative of correlations in this case but
consistent with a renewal process.
We also carried out a cross-correlation analysis be-

tween avalanche sizes Si and rest times τwi+1 as displayed
in the scatter plot of Fig. 11(a). The plot exhibits a large
scatter in the data but the observed trend indicates dis-
cernable anti-correlations between the logarithm of the
two observables x = log10S and y = log10τw with the cor-
relation coefficient 〈 x̂i.ŷi+1 〉i ≃ −0.3. Here 〈.〉i denotes
averaging over the avalanche index i and x̂ indicates the
fluctuating part (with the mean value subtracted) nor-
malized by the standard deviation associated with each
variable. A negative correlation implies that high-energy
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events — typically corresponding to events of long dura-
tion (see Fig. 6(a)) — tend to be followed by short rest
times potentially indicative of main shock-aftershock dy-
namics [39]. These negative correlations might also ex-
plain why the distributions of inter-occurrence times and
rest times in Fig. 9 are very similar. It is noteworthy that
these negative correlations are not present in the shuffled
catalog (data not shown).

We repeated the above analysis for multiple index
shifts n represented by the cross correlation function
c(±n) = 〈 x̂i.ŷ(i+1)±n 〉i with n ∈ (0, 1, 2, ...). As shown
in Fig. 11(b), c(n) corresponding to the actual cata-
logs is basically indistinguishable from the noise floor
(as indicated by the shuffled sequences) for n 6= 0.
This suggests very localized “memory” indicating that if
main shock-aftershock dynamics is indeed present, larger
events might only induce very few aftershocks, which is
opposed to tectonic seismicity, where strong clustering is
a hallmark of aftershock activity [34, 36, 40, 41]. The ob-
served anti-correlation for n = 0 in the simulation seems
to be a robust feature of the stick-slip dynamics show-
ing insignificant variations with the slider roughness (see
Fig. A5). With increasing smoothness, however, a pos-
itive peak appears at n = −1 implying that there is a
tendency that long (short) resting times are followed by
large (small) avalanche sizes (see Fig. A5). This might
be indicative of the transition to the quasi-periodic (sta-
ble) sliding behavior but within the quasi-static regime.
These positive correlations tend to persist at finite driv-
ing rates on rough sliders (data not shown) suggesting
that both rate effects and roughness features control this
transitional behavior.

D. Aftershocks Analysis

To directly analyze if main shock-aftershock dynamics
is present, we follow a simple methodology to identify af-
tershocks [21], which also has been used to analyze the
related lab experiments [15, 16]. In this framework, an
aftershock sequence triggered by the i-th avalanche (or

main shock) of magnitude S
(i)
ms with N subsequent after-

shocks is defined as

{Si
ms; Si+1 < Si

ms, ..., Si+N < Si
ms, Si+N+1 > Si

ms}.
(9)

Furthermore, we repeat the aftershock analysis for the
shuffled timeseries — generated by a random permuta-
tion of the order of avalanche sizes S, event duration T ,
and rest times τw. The latter two quantities are shuffled
in phase with each other in order to maintain the actual
inter-occurrence times τ since τi = Ti−1 + τ iw with i be-
ing the avalanche index. This allows us to evaluate the
role of inter-event correlations and serves as a simple null
model of trivial “aftershocks”.
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FIG. 10: Statistical distribution a) P (R) of the
inter-occurrence time ratio R for actual and shuffled
catalogs, b) P (Rw) of the rest time ratio Rw for actual and
shuffled catalogs, both at threshold size Sc = 1.0e − 6, and
c = 0.1 m/s. The flat dashed lines denote a (potentially
non-homogeneous) Poisson process. The error bars denote
one standard error.

1. Aftershock productivity relation

We first turn to the variation in the number of trig-
gered aftershock events Nas associated with the triggers
of size Sms as displayed in Fig. 12. The scatter plot also
includes the mainshocks that have no aftershocks. In
Fig. 12(a), the average number of aftershocks N̄as fea-
tures a power-law scaling with size, i.e. N̄as ∝ Sα

ms with
α ≃ 0.7, shown as the (black) dashed line style, known as
the productivity exponent in the context of the tectonic
seismicity [42].
Figure. 12(b) compares the productivity data associ-

ated with the shuffled sequences leading to similar scaling
features as observed in Fig. 12(a). This strongly suggests
that the observed behavior including the value of α can
be derived under the assumption of independent events.
In fact, based on the used methodology to identify after-
shocks and the assumption of independent events, the
productivity relation may be uniquely determined by
the accumulated distribution of the avalanche size as re-
ported in [43]. In this context, N̄as = F (S)/[1 − F (S)]
where F (S) = P (size < S). The theoretical rela-
tion is shown in Fig. 12(a) (dashed red curve) which
closely predicts the mean aftershock number. Further-
more, assuming a pure power law form for P (S) with
F (S) = 1 − (Smin/S)

β−1, it follows that N̄as ∝ Sβ−1
ms or
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FIG. 11: Cross-correlation analysis between avalanche sizes
Si and rest times τw

i+1. a) Scatter plot of Si and τw
i+1 with i

being the avalanche index. b) Cross correlation function
c(n) with index shift n evaluated for the actual and
randomized catalogs. The (blue) curve in a) indicates a
binning average. The (black) base line in b) indicates zero
correlations. The error bars indicate one standard error.

α = β−1 as illustrated by the (black) dashed-dotted line
style in Fig. 12(a). The deviation of this scaling relation
α ≈ 0.5 from the observed behavior α ≈ 0.7 is due to
the fact that P (S) (see the inset of Fig. 6(b)) includes all
small avalanches that do not follow a power law behavior.
It should be noted that both the shuffled and the actual

data sets have the exact same accumulative size distribu-
tion F (S), which leads to the identical prediction for the
magnitude scaling of N̄as. The above observations vali-
date the independence assumption which is based upon
the absence of notable (magnitude) correlations between
events. Moreover, they indicate that the “productivity”
relation is fully determined by the avalanche size dis-
tribution P (S), which is in sharp contrast to (tectonic)
seismicity [42–45].

2. Temporal aftershock rates

In the context of tectonic seismicity, an earthquake
typically leads to an immediate increase in local seismic
activity. The activity then decays algebraically with the
delay time t in accordance with the Omori-Utsu after-
shock rate λ(t) ∝ t−p [46] with scaling exponent p typi-

.
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FIG. 12: Number of aftershocks Nas plotted against the
trigger size Sms corresponding to the a) actual b) shuffled
time series with Sc = 10−6. The blue curves indicate the
mean value N̄as over prescribed magnitude bins. The
straight lines indicate the productivity relation N̄as ∝ Sα

ms

with α = 0.7 (dashed lines below the curves) and α = β − 1
(dashed-dotted lines above the curves). Here β denotes the
avalanche size exponent. The data points at the base of
both panels indicate those events that did not trigger any
aftershocks. The red curves on both panels indicate the
theoretical prediction based on the accumulative event size
distribution (see the main text).

cally estimated to be around unity [10]. The aftershock
rates conditioned on the trigger size Sms and rescaled by
N̄as are plotted in Fig. 13(a). It should be noted that
∫

t λ(t) dt = N̄as such that the rescaling of the aftershock
rates amounts to a separation of the productivity rela-
tion from the Omori-Utsu relation. As the data collapse
shows, the rescaled aftershock rates are largely indepen-
dent of the trigger size. We find p ≃ 0.65 which seems to
capture a robust scaling regime over at least two decades
in time. Figure 13(b) shows the aftershock triggering rate
of the shuffled data. They are largely indistinguishable
from the unshuffled actual data in Figure 13(a), and the
decrease in the rate can still be scaled as λ(t) ∝ t−p, with
p ≃ 0.65 holding true as a good scaling exponent. This
implies that the temporal ”aftershock” rates including
the value of p are fully determined by the inter-occurrence
time statistics, which is the same for both the shuffled
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and the actual catalog. This is again in sharp contrast
to tectonic seismicity, where aftershocks are a reflection
of strong space-time-magnitude correlations [36, 40, 47].

3. B̊ath’s relation

B̊ath’s relation describes the relative magnitude of af-
tershocks based on empirical observations that the mag-
nitude difference between a mainshock and its largest
aftershock is approximately constant, independent of the
main shock magnitude [48]. Using the energy scale, this
implies a constant ratio between the main shock size Sms

and the maximum energy within the associated after-
shock sequence Smax

as . The scatter plot corresponding to
these two quantities is given in Fig. 14(a) and shows that
B̊ath’s relation holds quite well. Shuffling the magnitude
time series does not seem to result in any qualitative
change in B̊ath’s relation (see Fig. 14(b)), similar to the
other main relations related to aftershocks discussed in
the preceding sections. This indicates that the origin of
B̊ath’s relation here can be understood based on inde-
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FIG. 13: Conditional triggering rate λ(t) normalized by the
mean number of aftershocks N̄as, versus delay time t for
multiple trigger sizes Sms corresponding to the a) actual b)
shuffled time series. The (black) dashed line indicates t−p

with p = 0.65. The insets are the same as the main plots but
rescaled by t−p.
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FIG. 14: Scatter plot of the normalized mainshock energy
Sms/S

max
as and mainshock size Sms corresponding to a)

actual b) randomized sequences. The insets plot the
maximum aftershock size Smax

as within a
mainshock-aftershock sequence against the corresponding
mainshock energy Sms. The curves denote the bin-averaged
data. The dashed lines in the insets indicate the B̊ath’s
relation Smax

as ∝ Sms.

pendent events. In this framework, one can derive that
Sms/S

max
as = e1/(β−1) (see the appendix for further de-

tails). Yet, this simple argument tends to overestimate
the actual (numerical) ratio between Sms and Smax

as by a
factor of almost two. It is likely that the presence of the
lower and upper cut-offs in the avalanche size distribu-
tions (Fig. 6(b)) may lead to this discrepancy similar to
Fig. 12, where the theoretical exponent slightly under-
estimates the actual productivity relationship which is,
otherwise, predicted accurately based on the full cumu-
lative distribution of avalanche sizes.

V. DISCUSSIONS

Our numerical setup has closely replicated the empir-
ical observations on the relevance of stick-slip dynam-
ics and principal tectonic seismicity relations in the con-
text of a spring-slider experiment carried out on a gran-
ular substrate [15, 16]. The observed critical features
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(under quasi-static loading) may be closely described by
the Gutenberg-Richter frequency-magnitude distribution
and the aftershock productivity relation as well as the
Omori-Utsu aftershock rate and B̊ath’s relation. We find
that the associated scaling exponents closely match the
experimental estimates in [15, 16] with the avalanche
size exponent that is fairly consistent with mean-field
predictions (β = 3

2 ) interpreting the avalanche or stick-
slip dynamics of the slider as a critical branching pro-
cess [31]. Our analysis also indicates the robustness of
the estimated exponents over a wide range of relevant
model parameters including the grain-level damping ra-
tio, (sliding and/or rolling) friction, surface roughness,
and polydispersity. Instead, another numerical shearing
study (with a significantly different setup) found that the
degree of polydispersity controls the decay of the distri-
bution of avalanche size — as measured by the stress
drop — with the strongest degree of polydispersity lead-
ing to a mean-field exponent [26]. It is likely that surface
effects and roughness features (as opposed to polydis-
persity as a bulk property) dominate stick-slip dynamics
within our spring-slider experiment. Indeed, both sur-
face effects and roughness features are missing or are sec-
ondary features in the aforementioned simulations [26].
This is in line with observations in [49] where avalanche
sizes, depending on their notion as a surface or bulk prop-
erty, were shown to follow different sets of statistics in a
driven solid. We note that none of the above features are
easily tunable in real experimental settings which in turn
restricts investigation of the universality and generality of
empirical findings and/or identification of essential con-
trol parameters.

Regarding the underlying origin of the aftershock pro-
ductivity relation, the Omori-Utsu aftershock rate and
B̊ath’s relation in the spring-slider system, our compar-
ison with the shuffled data or null model shows that
these are simply consequences of the first -order statis-
tics, namely the avalanche size distribution and the inter-
occurrence time distribution. This is because the null
model, by construction, fully retains first-order statistics
but disregards inherent correlations beyond a renewal
process as captured by higher order statistics. Never-
theless, the null model is able to capture all the scaling
features corresponding to the actual dynamical response.
All these findings are robust over a wide range of rele-
vant model parameters including the grain-level damping
ratio, (sliding and/or rolling) friction, surface roughness,
and polydispersity (see Appendix). Moreover, our di-
rect correlation analysis indicates a minimal presence of
extremely short-ranged aftershocks at best in our sys-
tem. As a result, we do not find any direct relevance of
these correlations on the dynamics of avalanche sequences
which are otherwise well-characterized by the produc-
tivity relationship, Omori-like temporal evolution, and
B̊ath’s relation. This is at odds with natural seismicity,
which exhibits strong (spatio-temporal) clustering effects
commonly associated with aftershock dynamics. Instead,
our observations are consistent with the spring-slider ex-

periment [15] where shuffling of the experimental data did
not alter the productivity relationship, the Omori-Utsu
relation, and B̊ath’s relation either. This absence of af-
tershocks has also been observed in another experimental
system [43], where individual acoustic events — produced
by a propagating tensile crack — were fully described by
the main (tectonic) seismicity relations without any cor-
relations associated with the ordering of avalanches. No
evidence for aftershocks including no detectable tempo-
ral clustering was also found in fracturing experiments of
intact rock samples [23, 50].

With both processes governed by the regular stick-
slip dynamics, our findings indicate an important dif-
ference between (tectonic) earthquakes and (plastic) slip
avalanches in terms of the underlying relaxation mech-
anism. This includes differing origins of the observed
scale-free behavior associated with the interevent time
distributions in these two systems. In this context,
Omori-type correlations associated with the earthquake
dynamics largely determine the interevent time distri-
butions as evidenced by the scaling relation P (τ) ∝
τ−(2−1/p) with p being the Omori exponent [47]. How-
ever, due to the absence of pronounced correlations as-
sociated with (tectonic) aftershocks in our set-up, the
proposed scaling relation is not applicable and we can
in fact rule out such a (one-way) dependency between
activity rates and P (τ).

It is noteworthy that we have only probed the slider
motion in this study, not the internal dynamics of the
rearranging grains, which lead to corresponding (acous-
tic) events during slip periods. Whether these internal
events exhibit pronounced spatio-temporal correlations
and aftershock sequences — similar to some shearing
experiments [18] — remains a challenge for the future.
Yet, with the granular substrate continually rearranging
(and healing!) and in the absence of any memory ef-
fects (such as damage mechanism and/or frictional weak-
ening), there is no obvious potential source of (spatio-
)temporal clustering expected for (tectonic) aftershocks.

Within the framework of earthquake modeling, several
treatments have been proposed in the literature which
aim to incorporate physical relations leading to the gen-
eration of aftershock sequences (see [14] and references
therein). Common mechanisms such as the rate effects on
solid friction [10] and visco-elastic relaxations [51, 52] are
conventionally implemented via basic phenomenological
relations that typically involve a characteristic timescale
in order to describe the dynamics of aftershocks. As
an essential feature associated with aftershock activities,
(structural) heterogeneities have been also incorporated
in several earthquake models involving inhomogeneous
material parameters [14, 53]. These ingredients are at
best mesoscopic and the underlying micro-structural pro-
cesses that describe them are usually complex and not
yet well understood. Incorporating such microscopic fea-
tures into spring-slider systems, either experimentally or
in simulation, and/or fine-tuning the existing parameters
may help recover the true dynamics of earthquakes.
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VI. CONCLUSIONS

As a summary, we have identified common features
as well as differences between the dynamics of “micro”
earthquakes, generated by a slowly-driven slider on a
granular sublayer, and that of tectonic earthquakes at
geological scales. The former includes the Gutenberg-
Richter relation, while the differences are largely related
to the absence of aftershocks in our granular model. In
particular, we established that the temporal correlations
and clustering features associated with (tectonic) after-
shocks are missing in the spring-slider setup and, there-
fore, the emerging Omori-Utsu relation, the aftershock
productivity relation, and B̊ath’s relation in the simula-
tions have a fundamentally different origin from that of
tectonic seismicity. Specifically, a lack of temporal cor-
relations in the experiment allows the derivation of the
productivity relationship and (to some extent) B̊ath’s re-
lation entirely based on the Gutenberg-Richter statistics
and without any further knowledge about the actual or-
dering of events in time. This contrasts with the case
of tectonic seismicity where the relevance of the produc-
tivity statistics is a direct consequence of aftershock dy-
namics. In the context of statistical seismology, to our
knowledge, there is no established connection between
the aftershocks productivity exponent α and the b-value
describing the Gutenberg-Richter distribution, which in-
dicates a main dissimilarity between natural earthquakes
and slip avalanches in our slider system.
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APPENDIX

Robustness Analysis

Figure A1 shows the avalanche statistics for multiple
thresholds U̇c, which is varied by more than an order of
magnitude. Avalanche size distributions in Fig. A1(b)
display robust power-law regimes with respect to varia-
tions in the chosen threshold, which only affects the lower
cut-off corresponding to small avalanches. In terms of the
avalanche duration shown in Fig. A1(a), higher thresh-
olds result in shorter time scales (see Fig. 5) but leave the
scaling relation between the avalanche size and duration
basically unchanged. We also checked that other rele-
vant statistics (e.g. productivity relation or aftershock

rates) are robust; varying U̇c led to rather small statis-
tical fluctuations of the relevant scaling exponents (i.e.
productivity exponent α or p exponent associated with
the Omori-Utsu relation) around their mean values.
In Fig. A2, we investigate potential effects of poly-

dispersity on the statistics of avalanches. The parti-
cle size distributions include i) monodisperse distribu-
tion with particle size of radius of R = 2.5, ii) bidis-
perse (as in the experiment) with Rb/Rs = 1.25 and
number ratio Nb/Ns = 2.5, and iii) two polydisperse
cases, where particles are uniformly distributed between
Ri ∈ (Rmin, Rmax) with Ri = Rmin + i × ∆R denoting
the radius for each species i = 0, 1, 2, .... Specifically, we
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FIG. A1: Avalanche statistics at multiple thresholds U̇c. a)
Avalanche duration T plotted against event size S b)
(non-normalized) avalanche size distribution P (S).
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FIG. A2: Avalanche statistics for different size distribution
of substrate particles, sized denoted on the figure are in mm.
a) Avalanche duration T versus event size S b)
(non-normalized) avalanche size distribution P (S).

chose here Ri ∈ (3.5, 5.5) and ∆R = 0.2 for the first
polydisperse case and Ri ∈ (3.0, 7.0) and ∆R = 0.2 for
the second one. The total number of particles, N , is
roughly kept similar to the base case with N = 7770.
Moreover, for each case the slider surface is kept the
same. Fig. A2 indicates that polydisperse particle size
distributions have no statistically significant effects on
the avalanche statistics. In particular, the power law de-
cay in the avalanche size distribution is found to be a
robust feature across all cases. Other statistics including
the productivity relation, Omori-Utsu relationship, and
B̊ath’s relation are not significantly affected by variations
in polydispersity (data not shown).
Furthermore, we explore the effect of changing the

slider topology, i.e. the surface of the slider in contact
with the granular matter. Specifically, we focus on re-
ducing the depth of the grooves ri where the substrate
disks stick, keeping all other parameters comparable to
the regular case. This reduction is such that the indenta-
tion left in the groove is a segment (measured in fraction)
of the semicircle. The reduction in heights (measured up-
wards from the base of the slider) of the grooves, hr, is
chosen such that, hr/ri = 0.6, 0.4 and 0.2; for example,
the last case here is only the top segment of the semicir-
cle. The regular slider is the same as the base case with a
complete arch of the semicircle with radius ri = 2.5 mm,
see Fig. 1).
Figure A3 shows the results of these different hr/ri on
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FIG. A3: Avalanche statistics for different groove depth at
the base of the slider, measured as a fraction, hr/ri. a)
Avalanche duration T versus event size S b)
(non-normalized) avalanche size distribution P (S).

avalanche duration and size. As the slider roughness is
decreased (from hr/ri = 1.0 to 0.2), the scaling range
associated with the power-law regimes becomes narrower
in S. Smoother sliders tend to have smaller upper cut-
offs in the avalanche size distributions as well as larger
lower cut-offs as indicated by an initial plateau regimes
in Fig. A3(b). This feature, however, does not seem to
have any significant effects on the scaling exponents γ
and β, particularly for hr/ri = 1.0, 0.6, 0.4. These ob-
servations can be understood on the basis that sliders
with smoother topology have a less pronounced stick-slip
dynamics, similar to the case of higher pulling speeds.
Thus, we speculate that if one uses even smoother slid-
ers, one might need to use slower pulling speeds in order
to recover stick-slip dynamics and relevant scaling prop-
erties.
Figure A4 displays potential changes associated with

distributions of inter-occurrence times τ and rest times
τw for sliders with varying surface smoothness. While
P (τ)’s are almost insensitive to variations in hr/ri, show-
ing only an overall shift in both the lower and upper cut-
offs, P (τw)’s associated with the smoothest sliders seem
to indicate a shallower power-law decay. This might in-
deed be related to the observed change of temporal cor-
relations shown in Fig. A5 likely due to the emerging
quasi-periodic sliding regime.
Figure A5 examines the dependence of temporal corre-

lations (cf. Fig. 11) on the slider smoothness which seems

to control the existence and height of the positive peak
at n = −1. A positive correlation (at negative n val-
ues) implies that big events are, on average, preceded by
long rest times as expected for quasi-periodic behavior.
These positive correlations become quite insignificant at
the two roughest slider surfaces, i.e. hr/ri = 0.6, 1.0. In
contrast, the negative peak at n = 0 is a rather robust
feature with respect to variations in hr/ri.

Figure A6 illustrates the robustness of the productivity
relationship against variations in hr/ri. Likewise, tem-
poral aftershock rates shown in Fig. A7 indicate a robust
scaling regime with respect to the changes of the slider
surface. We also show robust features associated with
the B̊ath’s relation in Fig. A8.

Revisiting B̊ath’s Relation and Productivity
Relationship

We provide a formal theoretical framework to estab-
lish Bath’s relation. Let P (m) = λe−λm and F (m) =
1−e−λm be the probability distribution and the accumu-
lated distribution function of magnitude m, respectively.
Here λ controls the rate of exponential decay. For a given
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FIG. A4: a) Inter-occurrence time distribution τ̄P (τ ) and
b) rest time distribution, τ̄wP (τw), at different slider
roughness, hr/ri. Here τ̄ and τ̄w indicate the corresponding
mean times. Energy threshold, Sc, chosen for these analyses
is 10−6.
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main shock-aftershock sequence

{mms; m1 < mms, ..., mN < mms, mN+1 > mms},
(A1)

let the largest aftershock magnitude be M =
max{m1, ..., mN}. Assuming that events are indepen-
dent, it follows that

F (M |mms, N) = (1− e−λM )N ,

P (M |mms, N) = ∂MF (M |mms, N)

= Nλe−λM (1− e−λM )N−1. (A2)

We note that, for large N and mms → ∞, the (cumula-
tive) distribution for the scaled magnitude z = (M−a)/b
will asymptotically converge to the Gumbel distribution

F (z) = e−e−z

. Here a = 1/λ and b = loge(N)/λ. Given
that 〈z〉 ≃ 0.5772, the conditional mean is

〈M |mms → ∞, N〉 ≃ {〈z〉+ loge(N)}/λ, (A3)

which grows logarithmically with N .
One could subsequently derive the B̊ath’s relation by

performing the following summation

〈M |mms〉 =
∞
∑

N=1

〈M |mms, N〉 P (N |mms), (A4)

where

P (N |mms) = (1 − e−λmms)N e−λmms , (A5)

is the probability of having the main shock-aftershock se-
quence in Eq. A1. We performed the numerical integra-
tion using Eqs. A2, A4, and A5 and obtained 〈M |mms〉 =
mms−1/λ. Rewriting this relation using the energy scale,
e.g. m = log10S, we have Sms/S

max
as = e1/(β−1) with β

denoting the avalanche size exponent.
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FIG. A5: Cross correlation function c(n) with index shift n
evaluated for different groove depth at the base of the slider,
measured as a fraction, hr/ri. The (black) base line in
indicates zero correlations. The error bars indicate one
standard error.
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FIG. A6: Number of aftershocks Nas for a mainshock size
Sms shown for different sliders. The solid lines show the
unshuffled cases and dotted lines show the shuffled cases.

In terms of the productivity relation, we may also eval-
uate the mean aftershock number conditioned on the
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FIG. A7: Triggering rates, λ (t), normalized by average
number of after-shocks N̄as for different sliders topologies.
Rows labeled (a), (b) and (c) show results for sliders cases
hr/ri = 0.6, 0.4 and 0.2 respectively. Left column
sub-labeled ( - i) are unshuffled (original) cases and right
column sub-labeled ( - ii) are results for shuffled cases.
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FIG. A8: Mainshock energies normalized by the maximum
aftershock energies in a given mainshock-aftershock
sequences for different sliders. The solid lines show the
unshuffled cases and dotted lines show the shuffled cases.

main shock magnitude as

〈N |mms〉 =

∞
∑

N=0

N P (N |mms)

= (1 − e−λmms) eλmms . (A6)

For large mms, it follows that 〈N |mms〉 ∝ eλmms . There-
fore, N̄as ∝ Sβ−1

ms .
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