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A MULTIDIMENSIONAL SOLUTION TO ADDITIVE

HOMOLOGICAL EQUATIONS

ALEKSEI BER, MATTHIJS BORST, SANDER BORST, AND FEDOR SUKOCHEV

Abstract. In this paper we prove that for a finite-dimensional real normed
space V , every bounded mean zero function f ∈ L∞([0, 1];V ) can be written
in the form f = g◦T−g for some g ∈ L∞([0, 1];V ) and some ergodic invertible
measure preserving transformation T of [0, 1]. Our method moreover allows
us to choose g, for any given ε > 0, to be such that ‖g‖∞ ≤ (SV + ε)‖f‖∞,
where SV is the Steinitz constant corresponding to V .

1. Introduction

Given a bounded function f on the unit interval, with mean zero, can we find a
measure preserving transformation T , and a bounded function g, such that

f = g ◦ T − g,(1.1)

with equality holding almost everywhere? We call this the homological equation,
and while it has been extensively studied in the scalar-valued setting, little is known
about the homological equation for vector-valued functions. These problems are
what we consider here.

We shall always assume that the interval [0, 1] is equipped with the standard
Lebesgue measure λ. The equation (1.1), also known as the coboundary equation,
was studied by Anosov for a fixed operator T in [Ano73], where it was demonstrated
that such an equation with continuous or even analytic left hand side on the torus
may have a measurable but not integrable solution. This study arose because of a
comment made by Kolmogorov in [Kol53]. We remark that by [Ano73, Theorem 1],
if f is integrable and has a measurable solution g for some T , then f must be mean
zero. Building upon this direction, it is interesting to note that Bourgain [Bou86]
considered a closely related variant of the problem, showing that for a compact
abelian group with finitely many components, any mean zero function f ∈ Lp(G),
for p ∈ (1,∞), admits a decomposition

f =

J∑

j=1

(fj − τ(aj)fj),

for fj ∈ Lp(G), aj ∈ G, and the standard translation operator τ . Moreover,
Bourgain was able to prove the sharpness of this result, providing bounds on the
index J .
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Browder [Bro58, Theorem 2] also examined when the real-valued homological
equation has a solution g ∈ L∞[0, 1], for a given function f ∈ L∞[0, 1] and a

transformation T . It was shown that it is necessary and sufficient for ‖∑k
j=0 f ◦

T j‖∞ to be uniformly bounded over all k ≥ 1.
In [AR17] it was shown that for every real-valued mean-zero f ∈ L∞[0, 1], there

is an ergodic transformation T , such that (1.1) admits a solution g ∈ L∞[0, 1]. In
[AR19] the result was strengthened, to show that for any real-valued mean zero
f ∈ Lp[0, 1], there exists a solution solution g ∈ Lp−1[0, 1] for some ergodic T .

The following result from [BBS21, Theorem 0.1] shows for real-valued mean zero
f ∈ L∞[0, 1] that we can choose g such that ‖g‖∞ ≤ (1 + ε)‖f‖∞.

Theorem 1.1. Let f ∈ L∞[0, 1] be a real-valued mean zero function. For any ε > 0
there exists a mod 0 measure preserving transformation T of [0, 1] and a function
g ∈ L∞[0, 1] with ‖g‖∞ ≤ (1 + ε)‖f‖∞ so that f = g ◦ T − g.

Throughout, a mod 0 measure preserving transformation is defined as follows.

Definition 1.2 ([BBS21]). Given two measure spaces (Ω,A, µ), and (Ω′,A′, µ′),
a mod 0 measure preserving transformation is a bijection T : Ω \ N → Ω′ \ N ′,
for null sets N ∈ A, N ′ ∈ A′, such that both T and T−1 are measurable, and
µ′(T (A)) = µ(A), for all A ∈ A, with A ⊆ Ω \N .

The result of Theorem 1.1 was announced earlier in [Kwa84], however the proof
there held only for f ∈ C[0, 1]. It provides an upper bound on ‖g‖∞, which is
important for certain applications in the theory of symmetric functionals (see e.g.
[FK02]) and singular traces (see e.g. [LSZ13]). Unlike [AR17], Theorem 1.1 states
nothing about the ergodicity of T .

A question that arises naturally is: does the result of Theorem 1.1 hold for
complex-valued mean zero functions? This question may be equivalently restated
for mean zero functions taking values in R2 and, generalizing even further, for mean
zero Rd-valued functions for an arbitrary positive integer d. Another question is
whether the transformation T can be chosen to be ergodic. In this paper, we answer
these questions affirmatively, by proving the following result:

Theorem 1.3. Let f ∈ L∞([0, 1];V ) be a V -valued mean zero function, for any
fixed real normed space V . For any ε > 0 there exists an ergodic mod 0 measure
preserving invertible transformation T of [0, 1] and a function g ∈ L∞([0, 1];V )
with ‖g‖∞ ≤ (SV + ε)‖f‖∞ (here SV is the Steinitz constant corresponding to V )
such that f = g ◦ T − g.

This theorem holds for all measure spaces which are mod 0 isomorphic to the
interval [0, 1] with respect to the Lebesgue measure. We note that if we would fix
some basis for V and apply Theorem 1.1 to the component functions of f , this
would only yield that fi = gi ◦ Ti − gi for i = 1, . . . , dim(V ). In this case we could
have Ti 6= Tj for i 6= j, so the result does not follow from the earlier theorem, but
really is more general. Additionally we also show that the resulting transformation
is ergodic.

Given previous research into the matter, it is not at all clear how to prove the
statement of Theorem 1.3, as proof techniques from [BBS21] and [AR17] can not
just be extended to the case of complex-valued functions or more general Rd-valued
functions. The proof of [AR17] for real-valued functions is split in a proof for step-
functions and a proof for functions that take infinitely many values. Therefore, it
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seems that it is not possible to extend their method to Rd-valued functions. Fur-
thermore, it is not at all clear whether their techniques would extend to Rd-valued
functions, even if we impose additional conditions on the function f . Although,
as already noted, the proof of [BBS21] for real-valued functions is also not suffi-
cient, we will show that the proof can be extended to a certain class of Rd-valued
functions, but this is not at all trivial. We combine this partial result with a new
technique to obtain the main result in full.

The constant SV mentioned in the theorem is the Steinitz constant corresponding
to the space V , which arises from Steinitz’s rearrangement lemma [KK97, Lemma
2.1.3]. It is defined to be the smallest value such that for all finite collections of
vectors v1, . . . , vn in V with sum

∑n
i=1 vi = 0, there exists a permutation π such

that ‖∑k
j=1 vπ(i)‖ ≤ SV maxi ‖vi‖ for all k = 1, . . . , n [KK97]. To show that the

Steinitz constant and the rearrangement lemma are closely related to the additive
homological equation, we will give an equivalent definition. Let Ωn be a finite set
of n elements, equipped with the counting measure. Then SV can be also defined
to be the smallest value such that for n ≥ 1, and for all mean zero f ∈ L∞(Ωn, V )
there exists an (ergodic) measure preserving transformation T of Ωn and a set of

positive measure X ⊆ Ωn, such that ‖∑k
j=0 f ◦ T k‖L∞(X;V ) ≤ SV ‖f‖∞ for all

k = 1, 2, .... As a consequence of Theorem 1.3 we have the following result, which
can be seen as a natural continuous analogue to Steinitz’s rearrangement lemma.

Theorem 1.4. Let f ∈ L∞([0, 1];V ) be a V -valued mean zero function for any
real normed space V , and ε > 0. There exists an ergodic mod 0 measure preserving
transformation T of [0, 1] and a set X ⊂ [0, 1] of positive measure such that for

k = 1, 2, ... we have ‖∑k
j=0 f ◦ T j‖L∞(X;V ) ≤ (SV + ε)‖f‖∞.

We remark that the equivalent formulation from [Bro58, Theorem 2] holds for
f ∈ L∞([0, 1];V ) as well. This is to say that for f ∈ L∞([0, 1];V ) and measure

preserving T we can find a solution g ∈ L∞([0, 1];V ) if and only if ‖∑k
j=0 f ◦T j‖∞

is uniformly bounded for k ≥ 1.
An immediate corollary of our main result is the following extension of Kwapień’s

Theorem 1.1 to the case of complex-valued mean zero functions.

Theorem 1.5. Let f ∈ L∞[0, 1] be a complex-valued mean zero function. For any
ε > 0 there exists an ergodic mod 0 measure preserving invertible transformation T

and a function g ∈ L∞[0, 1] with ‖g‖∞ ≤ (

√
5

2
+ ε)‖f‖∞ such that f = g ◦ T − g.

We now give an overview of our method of proof of Theorem 1.3, and outline
the structure of the paper. The proof of the main theorem follows three key steps.

In the next section, we will establish the basic facts, definitions, and notations
used throughout the paper. We recall the definition of the Steinitz constant SV ,
and its fundamental properties, and introduce affinely homogeneous and affinely
partially homogeneous functions.

We then can start working on the first key step towards the proof of Theorem 1.3.
The following lemma is fundamental to Kwapień’s proof [Kwa84], and is no less
fundamental in our work here.
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Lemma 1.6. If (ai,j)n×m is a matrix with real entries such that |ai,j | ≤ C, i =
1, . . . , n, j = 1, . . . ,m and

∑m
j=1 ai,j = 0 for i = 1, . . . , n, then there are permuta-

tions σ1, . . . , σn of the integers {1, . . . ,m} such that

|
k∑

i=1

ai,σi(j)| ≤ 2C, k = 1, . . . , n, j = 1, . . . ,m.

We generalize this result in Theorem 3.5 to the case when the real entries ai,j
are replaced with vectors from V . Our extension of Kwapień’s lemma is the main
result in Section 3, Theorem 1.6. This theorem is then used in Section 6 to solve
the equation for continuous functions on Cantor sets, see Theorem 6.1.

In Section 4, we show that the functions we consider may be decomposed into
affinely partially homogeneous functions. In Section 5, we prove several “Shrinking
lemmas”, which provide refinements of Lusin’s theorem, and which are necessary in
order to prove the main result when restricted to affinely homogeneous functions.

Indeed, this is the next key step in the proof, and the focus of Sections 6 and 7.
In Section 6, we prove that the main result holds for continuous mean-zero functions
over the Cantor set (Theorem 6.1). Using the result for continuous functions on the
Cantor set, we then solve in Section 7, the equation for the subclass of L∞([0, 1];V )
that we call affinely homogeneous functions. These are functions that may be un-
derstood to be “very non-constant”, with respect to linear affine subspaces. For
such functions we prove, using tools we develop in Section 5, that we can construct
subsets of the domain that are of positive measure, homeomorphic to the Cantor
set, and such that the restriction of f to this subset is mean zero and continuous.
We can then apply the result for continuous functions to solve the equation for this
class of functions. We note that the transformation constructed here is not ergodic.

Finally, in Section 8, we complete the proof of Theorems 1.3 and 1.4, building
upon the prior results. However, in order to prove these main results, we need
different tools since the method for affinely homogeneous functions can not be used
in general, and also since we want T to be ergodic. Our proof for general functions
does however use the results that we developed for affinely homogeneous functions.
Indeed, in Lemma 8.3 we use results from Section 4 and Section 7 to construct a
partition of the domain, and a measure preserving transformation satisfying certain
properties. In the final part of the proof of the theorem we apply this lemma in-
ductively to obtain transformations T (1), T (2), .... Using these transformations we
construct an ergodic transformation T and a function g that solve the equation.

1.1. Novelty and necessity of Affinely Homogeneous Function Techniques.
We feel compelled to emphasize that, although the constructions for affinely ho-
mogeneous functions and continuity on Cantor sets bear some analogy to [BBS21],
the proof for general functions is totally different. Indeed, the proof of [BBS21] is
based on splitting the case of general f into (roughly speaking) two cases, when f
is continuous and when f is simple. A quick analysis shows that such splitting is
impossible when we deal with Rd-valued functions. This fact has necessitated a new
approach which is most visible in the proof of Theorem 1.3 given in Section 8, and
in the preceding Lemma 8.3. The proof of Section 8 moreover has some connections
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to the construction done in [AR17], though the two methods are different. Let us
briefly discuss why these earlier techniques are not amenable to the general result.

As can be seen in [AR17] and [BBS21], when solving the equation for real-valued
functions, problems arise when dealing with step-functions. In [AR17] this is by-
passed by restricting to the case that f takes infinitely many values, and using
a different method for step-functions. In [BBS21] the proof divides the domain
into parts on which f is mean zero and either behaves ‘non-constant’ or is a step-
function with two steps, and solving the equation separately on these domains. In
our current work for Rd-valued functions the problem with step-functions gets more
difficult, as it becomes a problem with affine subspaces. We solve the equation by
extending methods from [BBS21] and using a new technique.

It would seem that techniques from [AR17] for real-valued functions simply can-
not be extended to Rd-valued functions, even when we would impose extra condi-
tions on the function f . It is also not clear whether techniques from [BBS21] can
be extended to Rd-valued functions, however in sections 3, 5, 6 and 7 we showed
that this is possible for Rd-valued functions that are affinely homogeneous. Indeed
fix α ∈ (0, 1) and consider the mean zero function f ∈ L∞([0, 1];R2) given by

f = (f1, f2), f1 = (1 − α)χ[0,α] − αχ(α,1], f2(t) = t− 1

2
.

A solution g, T solving the equation f = g ◦T −g, would directly provide us with
a solution for the first coordinate function f1. Now the function f takes infinitely
many values but some sort of extension of the method of [AR17] can not work as
it can not deal with the step-function f1. An extension of the method of [BBS21]
also fails as the Cantor set construction can not be carried out for f when α is
irrational. This is the reason for the need of a new approach.

The new approach is carried out in Section 8 and uses our construction for affinely
homogeneous functions. There is a connection between our approach in Section 8
and the method in [AR17], though the methods are different. The connection
exists between the partition {Ai,j : i ≥ 1, 1 ≤ j ≤ qi} that we construct in Lemma
8.3 and between the collection of disjoint sets {Ii,j : 1 ≤ j ≤ w, 1 ≤ i ≤ hj}
that was developed in [AR17], Lemma 12.4. The sets {Ii,j} were referred to as a
W − TUB(ε,M, h, w) and come together with a certain transformation τ mapping
Ii,j to Ii+1,j for i = 1, ..., hj − 1. This is different to the case at hand, in that
the collection {Ii,j} is finite, while {Ai,j} is countably infinite. Also, to construct
the collection {Ii,j}, the function f has to take infinitely many values, while the
partition {Ai,j} can always be constructed. Furthermore, the sets {Ii,j} do not
partition the entire interval like the sets {Ai,j}, though the function f is still mean

zero on their union. Some bounds that hold for the W−TUB are
∣∣∣
∑k

i=0 f(τ i(x))
∣∣∣ ≤

M‖f‖∞ for x ∈ I1,j , k < hj and
∣∣∣
∑hj−1

i=0 f(τ i(x))
∣∣∣ < ε for x ∈ I1,j . These conditions

are similar to the conditions we show in Lemma 8.3.

1.2. Failure of Theorems 1.3 and 1.4 for Infinite Dimensional Vector
Spaces. It is far from apparent that the results of Theorems 1.3 and 1.4 should
not carry through to infinite dimensional vector spaces. While the constant SV is
monotonically increasing with the dimension of V , this only forms an upper bound,
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and so the statement is not immediately sufficient to disprove any infinite dimen-
sional extension. However, a straightforward construction shows us that even in
the most simple case of a separable, infinite-dimensional Hilbert space, the main
theorems fail.

In the space Rd, d > 1 equipped with Euclidean norm, consider vertices of the
regular d− 1-dimensional simplex centered at zero:

xk = (ak,i), k = 1, . . . , d, ak,i = δki −
1

d
.

We have ‖xk‖2 =
d− 1

d2
+

(d− 1)2

d2
=

d− 1

d
< 1,

∑d
k=1 xk = 0. We shall assume

that d is even and that y is given by the sum of
d

2
such vertices (with possible

repetition!). Let us estimate the norm ‖y‖ from below. At least
d

2
of components

of y are equal to
d

2
· (−1

d
) = −1

2
. Hence, ‖y‖2 ≥ d

2
· 1

4
=

d

8
, that is

‖y‖ ≥
√

d

8
.

For every n ≥ 1 we shall set dn = 2n and choose

rn > 0,

satisfying the condition

∞∑

n=1

r2n ≤ 1, 2
n−3
2 rn −→ ∞.

Further, for every n > 1 we denote xn
1 , . . . , x

n
dn

elements of Rdn , defined as above
but multiplied by a constant factor depending on n only so that we have

‖xn
k‖ = rn.

Finally, we define the space V = ⊕∞
n=1R

dn as a Hilbertian sum. We now set

fn : [0, 1] −→ Rdn : fn([
i − 1

dn
,
i

dn
)) = xn

i , i = 1, . . . , dn, fn(1) = xn
dn

We have

fn ∈ L∞([0, 1],Rdn), ‖fn‖∞ ≤ rn,

∫
fndλ = 0.

Setting f = ⊕∞
n=1fn., we obtain

f ∈ L∞([0, 1], V ), ‖f‖∞ ≤ 1,

∫
fdλ = 0.

Assume that T is a measure preserving transformation of [0, 1], such that

sup
k

‖
k∑

i=0

f ◦ T i‖∞ = C < ∞.

Then

sup
k

‖
k∑

i=0

fn ◦ T i‖∞ ≤ C ∀n.
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We shall show that this is not so and hence we obtain a contradiction with the
assumption about existence of such T . For almost every t ∈ [0, 1] we have that the
element

dn/2−1∑

i=0

fn ◦ T i(t)

coincides with the sum of
dn
2

elements from the set

{xn
1 , . . . , x

n
dn
},

that is
t ∈ [0, 1] ⇒ T i(t) ∈ [0, 1] ⇒ fn ◦ T i(t) ∈ {xn

1 , . . . , x
n
dn
}),

whose norm cannot be less than√
dn
8

· rn = 2
n−3
2 rn.

Therefore, C ≥ 2
n−3
2 rn −→ ∞, the required contradiction. Hence, supk ‖

∑k
i=0 f ◦

T i‖∞ = ∞. Therefore there is no function g ∈ L∞([0, 1], V ), satisfying f = g◦T−g.
Indeed, otherwise

sup
k

‖
k∑

i=0

f ◦ T i‖∞ = sup
k
‖g ◦ T k+1 − g‖∞ ≤ 2‖g‖∞.

2. Preliminaries

2.1. Three fundamental theorems. The following version of Lusin’s Theorem
is stated in [Bog07a, Theorem 2.2.10].

Theorem 2.1 (Lusin’s theorem). Let D ⊆ [0, 1] be Borel-measurable and let f :
D → R be Borel-measurable. If ε > 0, then there is a compact subset K ⊆ A such
that λ(A \K) < ε and such that the restriction of f to K is continuous.

The following fundamental fact is obtained by combining Theorems 9.3.4 and
9.5.1 from [Bog07b].

Theorem 2.2. Let A,B ⊆ [0, 1] be some subsets of equal positive measure, then
there exists a mod 0 measure preserving transformation T between A and B.

We shall also crucially use Lyapunov’s theorem [LT79, Theorem 2.c.9].

Theorem 2.3. Let {µi}di=1 be a set of finite (not necessarily positive) non-atomic
measures on the measurable space (Ω,Σ). Then a set

{(µ1(X), . . . , µd(X)) : X ∈ Σ}
is convex and compact in Rd.

2.2. The space L∞(D;V ). Throughout, (V, ‖ · ‖) will denote a finite-dimensional
normed vector space over R. Let D be a Lebesgue measurable subset of [0, 1]
equipped with Lebesgue measure λ, and let f : D −→ V be a measurable mapping.
A vector r ∈ V is said to be an essential value of the function f , if λ(f−1(U)) > 0
for an arbitrary neighbourhood U of the vector r. The symbol σ(f) stands for
the set of all essential values of f (the usage of this symbol is justified by the fact
that for a function f ∈ L∞[0, 1] the set of all its essential values coincides with the
spectrum of the element f in the C∗-algebra L∞[0, 1]).
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By L∞(D;V ) we denote the linear space of all measurable mappings f : D −→ V ,
for which the set σ(f) is bounded. As usual, we will identify any two mappings if
they are equal almost everywhere (that is the space L∞(D;V ) consists of classes
of measurable mappings equal almost everywhere).

We will say that a function f ∈ L∞(D;V ) is simple if f =
∑∞

i=1 riχXi
, where

ri ∈ V, i = 1, 2, . . . , {Xi}∞i=1 is a splitting of D into measurable subsets.
Define a norm on L∞(D;V ), by setting for f ∈ L∞(D;V )

‖f‖∞ = sup{‖r‖ : r ∈ σ(f)}.
For every f ∈ L∞(D;V ) the integral

∫
fdλ ∈ V is defined in a standard way. If∫

fdλ = 0, then the function f is said to be mean zero.
We shall frequently use the notation

-

∫

X

fdλ =

∫
X fdλ

λ(X)
,

i.e. -
∫
X
fdλ is the mean value of f on the set X . Furthermore, we shall sometimes

use Euclidian norm, in which case we denote (·, ·) for the Euclidean inner products.

2.3. Affinely homogeneous functions. For an arbitrary set X ⊂ V , the symbol
Aff(X) denotes the affine subspace in V generated by X , that is

Aff(X) = {
k∑

i=1

aixi : xi ∈ X, ai ∈ R,

k∑

i=1

ai = 1}.

Recall that any affine subspace in V may be viewed as the set {x + V0} where x
is some point in V and V0 is a linear subspace in V . The dimension of such affine
subspace is defined to be the dimension of the subspace V0. In particular, every
point in V is an affine subspace of dimension 0.

We will say that a function f ∈ L∞(D;V ) is affinely homogeneous if for every
proper affine subspace W ( Aff(σ(f)) we have λ(f−1(W )) = 0. This is to say that
every subset of positive measure has a full-dimensional image.

We note moreover that a real-valued function is affinely homogeneous if and only
if it is either constant, or satisfies λ(f−1({y})) = 0 for all y ∈ R.

It is easy to see that any affinely homogeneous simple function is constant.
Indeed, if a simple function has two distinct essential values, say a and b, then
λ(f−1(a)) > 0 and λ(f−1(b)) > 0 and since a ( Aff(σ(f)) and b ( Aff(σ(f)) are
proper affine subspaces of Aff(σ(f)) we arrive at a contradiction.

More generally, for any affinely homogeneous function f it holds that we have
Aff(σ(f |A)) = Aff(σ(f)) for every subset A ⊆ D of positive measure.

We will say that a function f ∈ L∞(D;V ) is said to be affinely partially homoge-
neous, if D can be split into at most d + 1 measurable subsets, where d = dim(V ),
such that (the reduction of) f is affinely homogeneous on each of this subsets. For
example, a function f = (1 − a)χ[0,a) − aχ[a,1] ∈ L∞([0, 1];R) is affinely partially
homogeneous for any a ∈ (0, 1).

2.4. The Steinitz constant. For every given finite-dimensional normed space V
(over R) there exists a smallest number SV (called the Steinitz constant), such that
for every collection r1, · · · , rn ∈ V,

∑n
i=1 ri = 0, the following inequalities hold

‖
k∑

i=1

rπ(i)‖ ≤ SV max{‖ri‖ : i = 1, . . . , n}, k = 1, . . . , n,
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for some permutation π of the set {1, . . . , n} [Ste13]. This constant, generally
speaking, does not only depends on the dimension of V , but also on the norm.

It is shown in [GS80] that SV ≤ dim(V ) (see detailed proof in [KK97, Lemma
2.1.3]). Trivially, we have SR = 1. In [Ban87, Remark 3] it is stated that “Applying
the same method as in the proof of Lemma 2, one can show that the Steinitz

constant of an n-dimensional space is not greater than n − 1 +
1

n
”, however, this

assertion is not supplied with a proof. If we equip Rd with Euclidian norm then

it holds that SRd ≥
√
d+3
2 [GS80], SR2 = SC =

√
5
2 [Ban87, Theorem 2],[Ban90a].

For other estimates for SRd for Euclidean norm when d > 2 see [Ban90b, Remark
8, Added in proof].

Let us explain the appearance of Steinitz constant, by proving that the main
result holds for mean zero functions f ∈ L∞(Ωn;V ) for any finite measure space
Ωn equipped with counting measure. Indeed, as

∑n
i=1 f(i) = 0 it follows from the

definition of the Steinitz constant that there exists a permutation π of {1, ..., n} s.t.

‖
m∑

i=1

f(π(i))‖ ≤ SV ‖f‖∞, m = 1, . . . , n.

We can then define a cyclic permutation σ of Ωn as σ(π(j)) = π(j + 1) for j =

1, ..., n−1 and σ(π(n)) = π(1). We then put g(π(k)) =
∑k−1

i=1 f(π(i)) for k = 2, ..., n
and g(π(1)) = 0. Then g ◦σ− g = f and ‖g‖∞ ≤ SV ‖f‖∞, which shows the result.
It can be seen that this proof method can also be applied to simple functions
f ∈ L∞([0, 1];V ) of the form

f =

n∑

k=1

rkχIk ; Ik = [
k − 1

n
,
k

n
), rk ∈ V, k = 1, . . . , d;

n∑

k=1

rk = 0.

as they can be identified with a mean zero function f̃ in L∞(Ωn;V ) given by

f̃(k) = rk. Solving the equation for this function and consequently defining the
transformation T to map T (Ik) = Iσ(k), and defining the simple function g by

setting g|Iπ(k)
=
∑k−1

i=1 rπ(i) for k = 2, ..., n and g|Iπ(1)
= 0 gives us the result.

3. A Multidimensional Version of Kwapień’s Lemma

The main result of this section is Theorem 3.5. Its proof is based on the following
known results. The notation Conv(X) stands for the convex hull of a set X ⊂ V .

Theorem 3.1. [BG81, Theorem 3] Let V be a d-dimensional real normed space,
with the unit ball Bd, let Ci ⊂ Bd and let 0 ∈ Conv(Ci), i = 1, 2, . . . . Under these
assumptions, there exist elements ci ∈ Ci, i = 1, 2, . . . , such that

∥∥∥∥∥

p∑

i=1

ci

∥∥∥∥∥ ≤ 2d, p = 1, 2, . . . .

Theorem 3.2. [GS80, Theorem 1], [KK97, Lemma 2.1.3]. Let V be a d-dimensional
real normed space, ‖xi‖ ≤ 1, i = 1, . . . , n and x1 + · · ·+ xn = x. Then there exists
such enumeration π, that for all natural indices k ≤ n we have

∥∥∥∥∥

k∑

i=1

xπ(i) −
k − d

n
x

∥∥∥∥∥ ≤ d.
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Now we are well equipped to prove the following lemma.

Lemma 3.3. Let V be a d-dimensional real normed space. Let {ai,j}n,mi,j=1 be vectors

in V with ‖ai,j‖ ≤ 1, i = 1, . . . , n, j = 1, . . . ,m,

m∑

j=1

ai,j = 0, i = 1, . . . , n.

Let p ≤ m be a natural number. Then the set {1, . . . ,m} contains such subsets
I1, . . . , In, that

|I1| = · · · = |In| = p

and

‖
k∑

i=1

∑

j∈Ii

ai,j‖ ≤ 4d2, k = 1, . . . , n.

Proof. For every fixed i = 1, . . . , n, we have
∑m

j=1 aij = 0 by the assumption.
By Theorem 3.2 , replacing the collection of vectors x1, . . . , xn with the collection
ai,1, . . . , ai,m, we infer the existence of a permutation π of the set {1, 2, . . . ,m} such

that
∥∥∥
∑k

j=1 ai,π(j)

∥∥∥ ≤ d, k = 1, . . . ,m. Relabelling vectors aij , j = 1, . . . ,m, we

may assume without loss of generality that for every i = 1, . . . , n we have

‖
l∑

j=1

ai,j‖ ≤ d, l = 1, . . . ,m.

Let m1 be the least common multiple of the numbers m and p, and let m2 =
m1/p. Let us consider the mapping α from {1, . . . ,m1} onto {1, . . . ,m}, which
maps a number j to the remainder of the division on m, provided that j is not a
scalar multiple of m, and into m otherwise.

We now replace the matrix {aij}n,mi,j=1 with the matrix {a′i,j}n,m1

i,j=1, where a′i,j =

ai,α(j). In other words, any column of the matrix {ai,j}mj=1 is repeated m1/m times.
Observe that the matrix

{a′i,j}n,m1

i,j=1

continues to satisfy the same assumptions as the original matrix {ai,j}n,mi,j=1.

We now set bi,j =
∑jp

r=(j−1)p+1 a
′
i,r, j = 1, . . . ,m2, i = 1, . . . , n. Let us show

that

‖bi,j‖ ≤ 2d

for all i, j.
If the sequence α((j− 1)p+ 1), α((j− 1)p+ 2), . . . , α(jp) increases, then we have

‖bi,j‖ = ‖
α(jp)∑

r=1

air −
α((j−1)p)∑

r=1

air‖ ≤ 2d.

Otherwise, m ∈ {α((j − 1)p+ 1), α((j − 1)p+ 2), . . . , α(jp)}. That is {α((j − 1)p+
1), α((j − 1)p + 2), . . . , α(jp)} consists of two sets: {m− k + 1,m− k + 2, . . . ,m}
and {1, 2, . . . , p− k} whose intersection is empty.

Then, we obtain

‖bi,j‖ = ‖
m∑

r=m−k+1

ai,r +

p−k∑

r=1

ai,r‖ = ‖ −
m−k∑

r=1

ai,r +

p−k∑

r=1

ai,r‖ ≤ 2d.
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Also, for all i ∈ {1, . . . , n}, ∑m2

j=1 bi,j =
∑m1

r=1 a
′
i,r = m1

m

∑m
j=1 ai,j = 0, so

0 ∈ Conv{bi,j : j ∈ {1, . . . ,m2}} for all i ∈ {1, . . . , n}.
Theorem 3.1 yields that there exists such indices ji, that

‖
k∑

i=1

bi,ji‖ ≤ 4d2

for all k = 1, . . . , n. Since bi,ji =
∑jip

r=(ji−1)p+1 a
′
i,r =

∑jip
r=(ji−1)p+1 ai,α(r) =∑

j∈Ii
ai,j , where Ii = α({(ji − 1)p + 1, (ji − 1)p + 2, . . . , jip}), the estimate above

yields the assertion and completes the proof. �

We now use the result of Lemma 3.3 to obtain a similar result for non-mean-zero
vectors.

Lemma 3.4. Let V be a d-dimensional real normed space. Let (vi,j)1≤i≤n,1≤j≤m

be vectors in V with ‖vi,j‖ ≤ 1 and p ∈ {1, . . . ,m}, let xk =
∑k

i=1

∑m
j=1

1
mvi,j we

can find sets Ii ⊆ {1, . . . ,m} for i = 1, . . . , n such that

|Ik| = p ∀k ∈ {1, . . . , n},
∣∣∣∣∣∣

∣∣∣∣∣∣

k∑

i=1

∑

j∈Ii

vi,j − pxk

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ 8d2 ∀k ∈ {1, . . . , n}.

Proof. Define (v′i,j)1≤i≤n,1≤j≤m by setting v′i,j = 1
2vi,j − 1

2m

∑m
k=1 vi,k. Note that

we now have
∑m

j=1 v
′
i,j = 0 for all i ∈ {1, . . . , n} and that ‖v′i,j‖ ≤ 1

2‖vi,j‖ +
1
2m

∑m
k=1 ‖vi,k‖ ≤ 1

2 + m
2m = 1. Using Lemma 3.3 we can find sets Ii for i = 1, . . . , n

such that

|Ik| = p ∀k ∈ {1, . . . , n},
∣∣∣∣∣∣

∣∣∣∣∣∣

k∑

i=1

∑

j∈Ii

v′i,j

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ 4d2 ∀k ∈ {1, . . . , n}.

Appealing to the preceding inequality, we obtain∣∣∣∣∣∣

∣∣∣∣∣∣

k∑

i=1

∑

j∈Ii

vi,j − pxk

∣∣∣∣∣∣

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∣∣∣∣∣∣

k∑

i=1

∑

j∈Ii

vi,j −
k∑

i=1

|Ik|
m

m∑

j=1

vi,j

∣∣∣∣∣∣

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∣∣∣∣∣∣

k∑

i=1

∑

j∈Ii

(
vi,j −

1

m

m∑

t=1

vi,t

)∣∣∣∣∣∣

∣∣∣∣∣∣

= 2

∣∣∣∣∣∣

∣∣∣∣∣∣

k∑

i=1

∑

j∈Ii

v′i,j

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ 2 · 4d2 = 8d2

for all k ∈ {1, . . . , n}. �

Finally, we are prepared to generalize Lemma 1.6 for entries in V .

Theorem 3.5. Let V be a d-dimensional real normed space. Let (vi,j)1≤i≤n,1≤j≤m

be vectors in V with ‖vi,j‖ ≤ 1 and xk = 1
m

∑k
i=1

∑m
j=1 vi,j for all k ∈ {1, . . . , n},

there exist permutations (πi)1≤i≤n of {1, . . . ,m} with ‖∑k
i=1 vi,πi(j) − xk‖ ≤ 8d2

log 1.5

for all k and all j.
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Proof. We will show that we can construct suitable permutations by partitioning
the input vectors into two almost equally sized sets using Lemma 3.4 and then
recursively constructing suitable permutations for both parts of the partition. We
then combine these two permutations into one permutation and we show that this
permutation satisfies the required properties.

When m = 1 the assertion follows trivially, as in this case
∑k

i=1 vi,1 −xk = 0 for
all k.

Let m = 2. Then (vi,1 − vi,1 + vi,2
2

) + (vi,2 − vi,1 + vi,2
2

) = 0 for all i =

1, 2 . . . , n. It follows from Theorem 3.1 that there exists indices ji ∈ {1, 2}, such

that ‖∑k
i=1(vi,ji − vi,1 + vi,2

2
)‖ ≤ 4d. Let us set πi(1) = ji, πi(2) = 3 − ji.

Then ‖∑k
i=1 vi,πi(1) − xk‖ ≤ 4d for all k and vi,πi(2) −

vi,1 + vi,2
2

= −(vi,πi(1) −
vi,1 + vi,2

2
), therefore ‖∑k

i=1 vi,πi(2) − xk‖ ≤ 4d for all k. Since we know that

∫ log1.5(2)−1

0

(
2
3

)x
dx =

1

4(log 3 − log 2)
>

1

2
, we obtain 4d < 8d2

∫ log1.5(2)−1

0

(
2
3

)x
dx,

and so

‖
k∑

i=1

vi,πi(j) − xk‖ ≤ 8d2
∫ log1.5(2)−1

0

(
2

3

)x

dx.

Next, we will prove via induction on m that for a given set of input vectors
(vi,j)1≤i≤n,1≤j≤m with ‖vi,j‖ ≤ 1, there exist permutations (πi)1≤i≤n of {1, . . . ,m}
with

‖
k∑

i=1

vi,πi(j) − xk‖ ≤ 8d2
∫ log1.5(m)−1

0

(
2

3

)x

dx.

The assertion of Theorem 3.5 would then follow by replacing the integral above
with the integral from 0 to ∞, which has value 1/ log 1.5.

For m = 2 the inequality was established above. For m > 2, assume that the
statement holds up to m− 1 inclusive. By Lemma 3.4, there exist sets (Ii)1≤i≤n in
{1, . . . ,m} such that for all i ∈ {1, . . . , n}, |Ii| = p := ⌈m

2 ⌉ that satisfy the assertion

from this lemma. For all k ∈ {1, . . . , n}, let δk :=
∑k

i=1

∑
j∈Ii

vi,j . Lemma 3.4 now
implies that

‖δk − pxk‖ ≤ 8d2.(3.1)

Let δ′k :=
∑k

i=1

∑
j∈{1,...,m}\Ii vi,j . We claim that δk + δ′k = mxk. Indeed,

δk + δ′k =
k∑

i=1

∑

j∈Ii

vi,j +
k∑

i=1

∑

j∈{1,...,m}\Ii

vi,j =
k∑

i=1

m∑

j=1

vi,j = mxk,

and so

‖δ′k − (m− p)xk‖ = ‖mxk − δk − (m− p)xk‖ = ‖δk − pxk‖ ≤ 8d2.(3.2)

For each i ∈ {1, . . . , n}, let π′
i be a permutation of {1, . . . ,m} that maps the set

{1, . . . , p} to Ii. Now define (v
(1)
i,j )1≤i≤n,1≤j≤p by setting v

(1)
i,j = vi,π′

i
(j). Using our

induction hypothesis we can find permutations π
(1)
i of {1, . . . , p} such that for all
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k ∈ {1, . . . , n} and all j ∈ {1, . . . , p},
∣∣∣∣∣

∣∣∣∣∣

k∑

i=1

v
(1)

i,π
(1)
i

(j)
− 1

p
δk

∣∣∣∣∣

∣∣∣∣∣ ≤ 8d2
∫ log1.5(p)−1

0

(
2

3

)x

dx.

Similarly we define (v
(2)
i,j )1≤i≤n,1≤j≤m−p by setting v

(2)
i,j = vi,π′

i
(j+p) and using the

induction hypothesis we can find permutations π
(2)
i of {1, . . . ,m− p} such that for

all k ∈ {1, . . . , n} and all j ∈ {1, . . . ,m− p},
∣∣∣∣∣

∣∣∣∣∣

k∑

i=1

v
(2)

i,π
(2)
i (j)

− 1

m− p
δ′k

∣∣∣∣∣

∣∣∣∣∣ ≤ 8d2
∫ log1.5(m−p)−1

0

(
2

3

)x

dx.

Now we define

πi(j) =

{
π′
i(π

(1)
i (j)) j ≤ p

π′
i(π

(2)
i (j − p) + p) j > p

.

Define

pj =

{
p j ≤ p

m− p j > p
.

and

∆i(j) =

{
1
pj
δi j ≤ p

1
pj
δ′i j > p

.

Considering two cases, when j ≤ p and when j > p and applying (3.1) and (3.2),
respectively, we obtain ‖∆i(j) − xi‖ ≤ 8d2/pj for all i ∈ {1, . . . , n} and all j ∈
{1, . . . ,m}.

For j ∈ {1, . . . , p} we have for all k ∈ {1, . . . , n} that
∣∣∣∣∣

∣∣∣∣∣

k∑

i=1

vi,πi(j) − ∆k(j)

∣∣∣∣∣

∣∣∣∣∣ =

∣∣∣∣∣

∣∣∣∣∣

k∑

i=1

v
(1)

i,π
(1)
i

(j)
− 1

p
δk

∣∣∣∣∣

∣∣∣∣∣

≤ 8d2
∫ log1.5(p)−1

0

(
2

3

)x

dx

= 8d2
∫ log1.5(pj)−1

0

(
2

3

)x

dx.

Similarly for j ∈ {p + 1, . . . ,m} we have that
∣∣∣∣∣

∣∣∣∣∣

k∑

i=1

vi,πi(j) − ∆k(j)

∣∣∣∣∣

∣∣∣∣∣ =

∣∣∣∣∣

∣∣∣∣∣

k∑

i=1

v
(2)

i,π
(2)
i

(j−p)
− 1

p
δ′k

∣∣∣∣∣

∣∣∣∣∣

≤ 8d2
∫ log1.5(m−p)−1

0

(
2

3

)x

dx

= 8d2
∫ log1.5(pj)−1

0

(
2

3

)x

dx.

Combining these yields that for all k ∈ {1, . . . , n} and all j ∈ {1, . . . ,m}
∣∣∣∣∣

∣∣∣∣∣

k∑

i=1

vi,πi(j) − xk

∣∣∣∣∣

∣∣∣∣∣ ≤
∣∣∣∣∣

∣∣∣∣∣

k∑

i=1

vi,πi(j) − ∆k(j)

∣∣∣∣∣

∣∣∣∣∣+ ||∆k(j) − xk||
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≤ 8d2
∫ log1.5(pj)−1

0

(
2

3

)x

dx + 8d2
1

pj

= 8d2
∫ log1.5(pj)−1

0

(
2

3

)x

dx + 8d2 ·
(

2

3

)log1.5 pj

≤ 8d2
∫ log1.5(pj)

0

(
2

3

)x

dx

≤ 8d2
∫ log1.5(m)−1

0

(
2

3

)x

dx

Note that the last inequality follows from the fact that m/pj ≥ 3/2, so log1.5(m)−
log1.5(pj) = log1.5(m/pj) ≥ 1.

�

4. Decomposition for Bounded Functions into Affinely Partially

Homogeneous Functions

We will need several well-known results due to Caratheodory. The first lemma
below can be found in [Sim11, Theorem 8.11].

Lemma 4.1. Let B ⊂ Rd, d < ∞. Then any element ξ ∈ Conv(B) can be
decomposed as a convex span of at most d + 1 elements from B.

For the following two results we refer to [Con90, Corollary IV.1.13] and [Con90,
Corollary IV.3.11] respectively.

Theorem 4.2. A convex span of the closure of a bounded subset in Rd, d < ∞
coincides with the closure of the convex span of this subset.

Theorem 4.3. The closed convex hull of a set A ⊆ Rd equals the intersection of
all closed half-spaces containing it.

We begin with the following general (and probably well-known) result.

Proposition 4.4. Let {ξi}i∈I ⊂ Rd, d < ∞, {αi}i∈I ⊂ R+ \ {0}, card(I) ≤ ℵ0,
0 < ‖ξi‖ ≤ 1 (here, ‖ · ‖ is Euclidian norm),

∑
i αi ≤ 1,

∑
i αiξi = 0. Then there

exist indices i1, . . . , im ∈ I, 1 ≤ m ≤ d+ 1, and scalars 0 < βk ≤ αik , k = 1, . . . ,m
such that

∑m
k=1 βkξik = 0.

Proof. Without loss of generality, we may assume that

dim(Span{ξi : i ∈ I}) = d, and
∑

i

αi = 1.

Let B = {ξi}i∈I , C = Conv(B). By Theorem 4.2, C = Conv(B). Therefore,
0 ∈ C = Conv(B).

For any set X ⊂ Rd its support function hX is defined by

hX(η) = sup{(η, ξ) : ξ ∈ X}.
Let Sd−1 = {η ∈ Rd : ‖η‖ = 1}, that is Sd−1 is a sphere in Rd centered at zero

with radius 1.
Since for η ∈ Sd−1 the closed half-space Hη := {ξ : (η, ξ) ≤ hX(η)} contains X ,

and since every closed half-space H that contains X is contained in Hη for some
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η ∈ Sd−1, it follows from 4.3 that

Conv(X) =
⋂

η∈Sd−1

{ξ : (η, ξ) ≤ hX(η)}.

We show that C contains a ball with radius r0 > 0 centered at 0. Indeed,
the function hC is continuous on the unit sphere Sd−1. Since Sd−1 is compact, it

follows that there exists a point η0 ∈ Sd−1, at which hC reaches the minimum.
Assume that hC(η0) ≤ 0. Then, (η0, ξ) ≤ 0 for any ξ ∈ B. From the equality∑

i αiξi = 0 it follows that
∑

i αi(η, ξi) = 0, and, thus, (η0, ξ) = 0 for any ξ ∈ B.
This contradicts the fact that dim(Span(B)) = d. Therefore, r0 := hC(η0) > 0.

Since C =
⋂

η∈Sd−1{ξ : (η, ξ) ≤ hC(η)}, it follows that C contains a ball with a
radius r0 centered at zero 0.

Since B is compact, then there exists n ∈ N such that Bn := {ξi}ni=1 is a r0/3-net
in B.

Let η ∈ Sd−1. There exists a vector ξ ∈ B such that

(η, ξ) = hB(η) = hC(η) ≥ r0.

Let now ξ′ ∈ Bn be such that ‖ξ − ξ′‖ < r0/3. We have

|(η, ξ′) − (η, ξ)| ≤ ‖ξ − ξ′‖ < r0/3, (η, ξ) ≥ r0.

It follows that |(η, ξ′)| = (η, ξ′) and therefore

(η, ξ′) ≥ (η, ξ) − |(η, ξ′) − (η, ξ)| > r0 − r0/3 > r0/2.

Thus, hBn
(η) ≥ r0/2. Therefore, Conv(Bn) contains the ball with radius r0/2

centered at 0. In particular, the point 0 is a convex combination of the vectors
{ξi}ni=1.

By Lemma 4.1, there exist ξi1 , . . . , ξim ∈ Bn, m ≤ d + 1 such that 0 =∑m
k=1 β

′
kξik , β′

k ∈ R+,
∑m

k=1 β
′
k = 1. Finally, setting

βk = β′
kγ, γ := min{αik : k = 1, . . . ,m},

we complete the proof. �

In the following lemma we partition the domain of a function f , so that on each
partition subset P , the function f |P is affinely homogeneous.

Lemma 4.5. Let f ∈ L∞(D;Rd). Then there exists a finite or countable partition
{Pi}i∈I of D of measurable subsets of non-zero measure, so that every f |Pi

is affinely
homogeneous.

Proof. Consider the collection A of all families {Di}i∈I of disjoint measurable sub-
sets of D, of positive measure, for which f |Di

is affinely homogeneous. We order
this collection by inclusion. Then, by Zorn’s lemma we can find a maximal element
{Pi}i∈I ∈ A. We show that this is a partition. Let X = D \⋃i∈I Pi. Suppose that
λ(X) > 0. Since the set {0, 1, . . . , d} is finite, it follows that there exists a minimal
k such that there exists an affine linear subspace W ⊆ Aff(σ(f |X)), dim(W ) = k
and λ(f−1(W ) ∩ X) > 0. Setting P0 = f−1(W ) ∩ X , we obtain that f |P0 is
affinely homogeneous. However, this contradicts with the maximality of {Pi}i∈I .
We conclude that λ(X) = 0, hence {Pi}i∈I is a partition. �
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Theorem 4.6. Let f ∈ L∞([0, 1];Rd),
∫
fdλ = 0. Then there exists a finite or

countable partition of the interval [0, 1] into measurable subsets X1, X2, . . . such
that

(i).
∫
Xn

fdλ = 0, n = 1, 2, . . . ;

(ii). For any n = 1, 2, . . . , the function f |Xn
is affinely partially homogeneous.

Proof. Let {Xi}i∈I be a maximal collection of disjoint subsets of [0, 1] of positive
measure, satisfying (i) and (ii). Such collection exists by application of Zorn’s
lemma. Let D = [0, 1] \⋃i∈I Xi. We show that λ(D) = 0. Namely, suppose that
λ(D) > 0. Then let {Di}i∈I be a decomposition established in Lemma 4.5. Then

0 =
∑

i∈I

λ(Di) -

∫

Di

fdλ.

Now, by Proposition 4.4 we have that for some 1 ≤ m ≤ d+1 we can find i1, ...im ∈ I
and 0 < λj ≤ λ(Dij ) with

0 =
m∑

j=1

λj -

∫

Dij

fdλ

Set λ′
j =

λj

λ(Dij
) so that 0 =

∑m
j=1 λ

′
j

∫
Dij

fdλ. Now, we can define non-atomic

measures {µi}di=1 as µi(E) =
∫
E
fidλ for every Lebesgue measurable set E ⊂ [0, 1]

and apply Theorem 2.3, so that we obtain measurable subsets D′
ij ⊂ Dij of non-zero

measure with
∫
D′

ij

fdλ = λ′
j

∫
Dij

fdλ. Now set X =
⋃m

j=1 D
′
ij so that

∫
X fdλ = 0.

Furthermore, by the properties of Dij and the fact that m ≤ d + 1 we have that
f |X is affinely partially homogeneous. However, then the collection {Xi}i∈I ∪ {X}
would contradict the maximality of {Xi}i∈I . We thus conclude that λ(D) = 0, and
hence {Xi}i∈I partitions [0, 1]. �

5. Shrinking Lemmas

5.1. Obtaining positive constants. We will need the following lemma for prov-
ing Lemma 5.2. We shall prove this lemma for general mean zero integrable func-
tions.

In the following lemma, ‖ · ‖ will be used for the Euclidian norm on Rk and (·, ·)
for the inner product. Likewise ‖ · ‖1 on L1(D;Rk) is defined using the Euclidian
norm ‖·‖. For v ∈ Rd and f ∈ L1(D;Rd) we moreover denote (v, f) for the function
t 7→ (v, f(t)), i.e. the composition of f with the inner product. We will furthermore
simply write |f | to denote the function t 7→ ‖f(t)‖.
Lemma 5.1. Let D ⊆ [0, 1] be of positive measure and let f ∈ L1(D;Rd) be
satisfying

∫
D
fdλ = 0. We can find α, βmin, βmax, τ > 0 s.t. for all non-zero

v ∈ Span(σ(f)) we have λ({ (v,f)
‖v‖·|f | > α} ∩ {βmin < |f | < βmax}) > τ

Proof. We will prove the lemma by induction to the dimension d. The statement
holds trivially for d = 0 since then there are no non-zero vectors. Let us fix d ≥ 1
and assume that we have already proven it for 0 ≤ j ≤ d− 1. Let f ∈ L1([0, 1];Rd)
be mean zero. Suppose first that Span(σ(f)) 6= Rd. By choosing an orthonormal
basis for Span(σ(f)), we can consider f as a mean zero function in L1(D;Rk) where

k = dim Span(σ(f)).
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By the induction hypothesis, we then obtain values α, βmin, βmax, τ > 0 so that for
every v ∈ Span(σ(f)) the stated property holds. The statement then also holds
with the same constants when we consider f again as function in L1([0, 1];Rd) and
this proves the statement for this case.

We can thus assume that Span(σ(f)) = Rd. Now, with this assumption we have
that for any non-zero v ∈ Rd it holds that (v, f) 6= 0.

We will now work toward defining the scalars α, βmin, βmax, τ .
We set

D0 := D \ {f = 0}.
Then we have λ(D0) > 0 and

∫
D0

fdλ = 0 and for non-zero v ∈ Rd we have

(v, f |D0) 6= 0.

Let Sd−1 denote the d−1-dimensional unit sphere. For v ∈ Sd−1 define a bounded

function hv : D0 → R as hv = (v,f)
|f | . By Cauchy-Schwartz we have for v, w ∈ Sd−1

that |h+
v − h+

w | = 1
|f | |(v, f)+ − (w, f)+| ≤ 1

|f | |(v−w, f)| ≤ ‖v−w‖. Hence the map

v 7→ ‖h+
v ‖L∞(D0) is continuous. Define

α =
1

2
min

v∈Sd−1
‖h+

v ‖L∞(D0)

which is possible due to compactness of Sd−1. We claim that the inequality

‖h+
v ‖L∞(D0) > 0

holds for every v ∈ Sd−1. Indeed, suppose for a moment that this is not so. Then
(v, f |D0) ≤ 0 almost everywhere. Now, since

∫
D0

fdλ = 0 we have that
∫

D0

(v, f)dλ = (v,

∫

D0

fdλ) = 0

and this implies that (v, f |D0) = 0 a.e., which is a contradiction with the inequal-
ity (v, f |D0) 6= 0 above. Thus, we must have ‖h+

v ‖L∞(D0) > 0. This immediately
implies that α > 0.

Now for v ∈ Sd−1 define

τv = λ({hv > α}), τ =
1

2
inf

v∈Sd−1
τv

We note for v ∈ Sd−1 that τv > 0 as ‖h+
v ‖ L∞(D0)

> α. We show that also τ > 0.

Suppose that (vn) is a sequence in Sd−1 such that τvn → 0. By compactness of
Sd−1 we can assume that vn converges to some v ∈ Sd−1. Choose ε > 0. Since

{hv > α +
1

j
} increases to {hv > α} as j → ∞

and since D0 has finite measure, we can choose δ > 0 small s.t

λ({hv > α} \ {hv > α + δ}) < ε

Now, since hvn → hv in L∞(D0) by Cauchy-Schwarz, we can find N s.t. for n ≥ N
we have

‖hv − hvn‖∞ < δ

Now for n ≥ N we have

τv − τvn ≤ λ(({hv > α} \ ({hvn > α}))
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≤ λ({hv > α} \ {hv > α + δ}) + λ({hv > α + δ} \ {hvn > α})

< ε + 0 = ε

As τvn → 0, it follows that τv ≤ ε. Since ε was arbitrary this means that τv = 0
which is a contradiction. Hence, we infer that such a sequence (vn) does not exist.
Therefore, we have τ > 0.

We now choose βmin > 0 small and βmax > 0 large such that

λ(D0 \ {βmin < |f | < βmax}) <
1

2
τ

Note that this is possible as λ(D0 ∩ {f = 0}) = 0 and as D0 has finite measure.

Now for non-zero v ∈ Rd = Span(σ(f)) we find

λ({ (v, f)

‖v‖ · |f | > α} ∩ {βmin < |f | < βmax}) =

= λ({h v
‖v‖

> α} ∩ {βmin < |f | < βmax})

≥ λ({h v
‖v‖

> α}) − λ(D0 \ {βmin < |f | < βmax})

≥ τ v
‖v‖

− 1

2
τ

≥ 2τ − 1

2
τ

> τ

which proves the statement. �

5.2. Changing the mean zero condition for subsets. We will now deal with a
domain D ⊆ [0, 1] with positive measure, and a mean zero function f ∈ L1(D;V ).
The following lemma allows us to obtain a slightly smaller, compact subset E ⊆ D
for which f |E is continuous and mean zero. The lemma can also be used to obtain,
for vectors u in a certain neighborhood of 0, a subset E ⊆ D so that

∫
E(f+u)dλ = 0.

This last result will be needed for proving Lemma 5.4.

Lemma 5.2. Let V be a finite-dimensional normed real space. Let D ⊆ [0, 1] be
of positive measure and let f ∈ L1(D;V ) be mean zero. Then, for ε > 0 there is
a scalar δ > 0 such that for every measurable subset D′ ⊆ D with λ(D \D′) < δ
and every vector u ∈ Span(σ(f)) with ‖u‖ ≤ δ we can find a compact subset E ⊆
D′ ∩ (inf D, supD) with λ(D \ E) < ε, such that

∫
E

(f + u)dλ = 0, and moreover
such that f |E is continuous.

Proof. As norms on finite-dimensional vector spaces are equivalent, we can w.l.o.g.
assume that V is the vector space Rd with Euclidian norm.

Let D, f and ε be as stated. We apply Lemma 5.1 to D and f and select
positive constants α, βmin, βmax and τ from that lemma. In particular, we have

βmin ∈ (0, βmax) and α ∈ (0, 1), hence we can set γ :=
√

1 − α2βmin

4βmax
∈ (0, 1) and

ρ := α
2βmax(1−γ) > 0.
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We introduce a continuous, non-decreasing function Isup : [0, λ(D)] → [0, ‖f‖1]
as

Isup(s) = sup
U⊆D,λ(U)=s

∫

U

|f |dλ

Further, we set

δ′ :=
1

2
min{ τ

4(1 + ρ)
,
τβmax

2
,
τ

2ρ
,

ε

2(1 + ρ)
, βmax,

αβmin

8
} > 0(5.1)

δ :=
1

2
min{δ′, I−1

sup(δ′)} > 0(5.2)

Now, choose a measurable subset D′ ⊆ D with λ(D \ D′) < δ and choose
u ∈ Span(σ(f)) with ‖u‖ ≤ δ. For i = 1, ...d, let fi denote the coordinate functions
of f w.r.t. the standard basis. By Theorem 2.1, there exist compact subsets
Ki ⊆ D′ ∩ (inf D, supD) with λ(D′ \ Ki) < δ

d and such that fi|Ki
is continuous,

i = 1, ...d. Now set K :=
⋂d

i=1 Ki so that f |K is continuous and moreover bounded
as K is compact. We obtain that

λ(D \K) = λ(D \D′) + λ(D′ \K) ≤ δ + d · δ
d

= 2δ.

We now set E0 := K and

v0 :=

∫

E0

(f + u)dλ.

Since f is mean zero on D we have that

‖v0‖ ≤ ‖
∫

E0

udλ‖ + ‖
∫

D\E0

fdλ‖

≤ λ(E0)‖u‖ + Isup(λ(D \ E0))

≤ δ + Isup(2δ)

≤ 2δ′

We will now inductively define compact sets (Ej)j≥1 and mutually disjoint sets
(Aj)j≥1 in D and define the vectors vj :=

∫
Ej

(f + u)dλ such that for j ≥ 1 the

following holds:

(1) Ej = Ej−1 \Aj

(2) Aj ⊆ Ej−1 ∩ {βmin < |f | < βmax} ∩ { (vj−1,f)
‖vj−1‖·|f | > α}

(3) λ(Aj) =
α‖vj−1‖
2βmax

(4) ‖vj‖ ≤ γj‖v0‖
(5) λ(E0 \ Ej) ≤ ρ‖v0‖

Assume El and vl are defined for l < j and Al are defined for 0 < l < j so that they
satisfy the above. We construct Ej , Aj and vj and show that the stated properties
hold. Suppose first that vj−1 = 0. We then define Aj := ∅ and Ej := Ej−1 so
that vj = vj−1 = 0 and λ(E0 \ Ej) = λ(E0 \ Ej−1) ≤ ρ‖v0‖. Then all conditions
are satisfied and we are done. We can thus assume that vj−1 6= 0. Then, since
vj−1 ∈ Span(σ(f)) is non-zero, we have that

λ(Ej−1 ∩ {βmin < |f | < βmax} ∩ { (vj−1, f)

‖vj−1‖ · |f |
> α})
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> λ({βmin < |f | < βmax} ∩ { (vj−1, f)

‖vj−1‖ · |f |
> α}) − λ(D \ Ej−1)

≥ τ − λ(D \ E0) − λ(E0 \ Ej−1)

≥ τ − 2δ − ρ‖v0‖

≥ τ − (2 + 2ρ)δ′ ≥ 1

2
τ

Now for r ∈ [0, 1], we set

Br = (0, r) ∩ Ej−1 ∩ {βmin < |f | < βmax} ∩ { (vj−1, f)

‖vj−1‖ · |f |
> α}.

Since f |K is continuous, it follows that Ej−1 ∩ {βmin < |f | < βmax} is open in
Ej−1. Furthermore, on this set we have that f stays away from zero, in particular
(vj−1,f)
‖vj−1‖·|f | is continuous when considered as a function on this set. Thus

Ej−1 ∩ {βmin < |f | < βmax} ∩ { (vj−1, f)

‖vj−1‖ · |f |
> α}

is open in Ej−1 ∩ {βmin < |f | < βmax}, and therefore it is also open in Ej−1. So,
the sets Br are open in Ej−1 for every r ∈ [0, 1].

By induction step (4), the fact that α, γ ∈ (0, 1), the bound on ‖v0‖ and the
definition of δ′ we have that

α‖vj−1‖
2βmax

≤ αγj−1‖v0‖
2βmax

≤ ‖v0‖
2βmax

≤ 2δ′

2βmax
<

1

2
τ

Now, since λ(B0) = 0 and λ(B1) ≥ 1
2τ , we can find r0 ∈ [0, 1) such that

λ(Br0) =
α‖vj−1‖
2βmax

Now, we set Aj := Br0 and Ej := Ej−1 \Aj so that Ej is compact and so that (1),
(2) and (3) are satisfied.

Now set vj :=
∫
Ej

(f+u)dλ = vj−1−
∫
Aj

(f+u)dλ. Now write w :=
∫
Aj

(f+u)dλ.

We have that

‖w‖ ≤
∫

Aj

(|f | + δ)dλ ≤ λ(Aj)(βmax + δ) ≤ 2βmaxλ(Aj) = α‖vj−1‖(5.3)

Also, by definition of Aj (step (2) in the induction) we have
∫

Aj

(vj−1, f)dλ > α‖vj−1‖
∫

Aj

|f |dλ(5.4)

∫

Aj

|f |dλ > βminλ(Aj)(5.5)

We now have the following.

‖vj‖2 = ‖vj−1 − w‖2 = ‖vj−1‖2 + ‖w‖2 − 2(vj−1, w)

= ‖vj−1‖2 + ‖w‖2 − 2

∫

Aj

(vj−1, f)dλ− 2

∫

Aj

(vj−1, u)dλ

(5.4)

≤ ‖vj−1‖2 + ‖w‖2 − 2α‖vj−1‖
∫

Aj

|f |dλ + 2δ‖vj−1‖λ(Aj)
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= ‖vj−1‖2 + ‖w‖2 − 2α‖vj−1‖
∫

Aj

(|f | + δ)dλ + 4δ‖vj−1‖λ(Aj)

≤ ‖vj−1‖2 + (‖w‖ − 2α‖vj−1‖)

∫

Aj

(|f | + δ)dλ + 4δ‖vj−1‖λ(Aj)

(5.3)

≤ ‖vj−1‖2 − α‖vj−1‖
∫

Aj

(|f | + δ)dλ + 4δ‖vj−1‖λ(Aj)

≤ ‖vj−1‖2 − α‖vj−1‖
∫

Aj

|f |dλ + 4δ‖vj−1‖λ(Aj)

(5.5)

≤ ‖vj−1‖2 − α‖vj−1‖ · βminλ(Aj) + 4δ‖vj−1‖λ(Aj)

= ‖vj−1‖2(1 − (αβmin − 4δ) · λ(Aj)

‖vj−1‖
)

(5.1),(5.2)

≤ ‖vj−1‖2(1 − αβmin

2
· λ(Aj)

‖vj−1‖
) = ‖vj−1‖2(1 − αβmin

2
· α

2βmax
)

= γ2‖vj−1‖2

Hence, we obtain that ‖vj‖ ≤ γ‖vj−1‖ ≤ γj‖v0‖, which shows (4).
Lastly, we have

λ(E0 \ Ej) =

j∑

n=1

λ(An) =
α

2βmax

j∑

n=1

‖vn−1‖ ≤ α

2βmax

j∑

n=1

γn−1‖v0‖

≤ α‖v0‖
2βmax

∞∑

n=0

γn =
α‖v0‖

2βmax(1 − γ)
= ρ‖v0‖

and the inductive construction is completed. Setting E =
⋂∞

j=0 Ej , we obtain

a compact subset of D′ ∩ (inf D, supD) such that
∫
E(f + u)dλ = lim

j→∞
vj = 0.

Furthermore, λ(D\E) = λ(D\E0)+supj≥1 λ(E0\Ej) ≤ 2δ+ρ‖v0‖ ≤ (2+2ρ)δ′ < ε.
Moreover, E ⊆ K which implies that f |E is continuous. The proof is completed. �

5.3. Arbitrary shrinking and rational splitting. In the following lemma, for
a set K and a mean zero function f ∈ L∞(K;V ) we find a compact subset E ⊆ K
of specified measure such that

∫
E fdλ = 0.

Lemma 5.3 (Arbitrary shrinking). Let K ⊆ [0, 1] be compact and of positive mea-
sure, and let f ∈ L∞(K;V ) be mean zero. Then, for r ∈ (0, λ(K)) there is a
compact set E ⊆ K ∩ (inf K, supK) with λ(K \ E) = r and such that

∫
E
fdλ = 0.

Proof. Consider the collection A of compact subsets E of K ∩ (inf K, supK) with∫
E
fdλ = 0 and λ(K \ E) ≤ r. Note that this collection is non-empty by Lemma

5.2. We will consider this collection under the equivalence relation of sets having a
symmetric difference of zero measure and will furthermore order the sets by reverse
inclusion. Now, for a chain {Ei}i∈I in A (note that I will either be finite or
countable), the set E′ :=

⋂
i∈I Ei is a compact subset of K ∩ (inf K, supK) with

λ(K \ E′) = supi∈I λ(K \ Ei) ≤ r, and
∫
E′ fdλ = 0. Thus E′ ∈ A is an upper

bound for the chain. Therefore, by Zorn’s lemma, there exists a maximal element
E in A. Suppose that λ(K \E) < r then, setting ε = r−λ(K \E) > 0 and applying

Lemma 5.2, we obtain a compact subset Ẽ ⊆ E with λ(E \ Ẽ) < ε and such that
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∫
Ẽ
fdλ = 0. We thus have λ(K \ Ẽ) < λ(K \E) + ε = r. However, this contradicts

the maximality of E. We thus conclude that λ(K \ E) = r. �

We now prove the following lemma that finds a subset like Lemma 5.3 such that
certain ratios are moreover dyadic rationals.

Lemma 5.4 (Rational splitting). Let V be a finite-dimensional vector real space.
Let N ∈ N and let K = K1 ∪ ...∪KN ⊆ [0, 1] be of positive measure, where the sets
Ki ⊆ [0, 1] are such that λ(Ki∩Kj) = 0 whenever i 6= j. Let f ∈ L∞(K;V ) be mean
zero and such that for i ≥ 2 there exists some subset Bi ⊆ Ki of positive measure
so that we have λ(f |−1

Bi
(W )) = 0 for every proper affine subspace W ( Aff(σ(f)).

Then, for any R ∈ (0, λ(K)), there exists a set E = E1 ∪ · · · ∪ EN , where each set
Ei ⊆ Ki ∩ (inf Ki, supKi) is compact and such that λ(E) = R,

∫
E fdλ = 0 and

such that λ(Ei)
λ(E) ∈ Q2 for all 1 ≤ i ≤ N . Here, Q2 is the set of all dyadic rationals.

Proof. We will prove this with induction on N . For N = 1 we have K = K1

and we can simply apply Lemma 5.3. We trivially have λ(E1)
λ(E) = 1 ∈ Q2 and this

proves the assertion for N = 1. Thus, let N ≥ 2 and assume that the assertion
holds for N − 1. We show that it also holds for N . Let K = K1 ∪ ... ∪ KN

as stated. Let f ∈ L∞(K;V ) be mean zero and such that for i ≥ 2 the set
Bi ⊆ Ki exists as stated. Furthermore, let r > 0 be such that r < λ(K) − R and
r < min{λ(Ki) : 1 ≤ i ≤ N} \ {0}. We will assume that λ(Ki) > 0 for every
i = 1, .., N since otherwise we can set Ei = ∅ and apply the induction hypothesis to

K \Ki which then yields the result. For convenience, we set K̃ := K1 ∪ ...∪KN−1.
We denote v = -

∫
KN

fdλ and set

h1 = f |K̃ − -

∫

K̃

fdλ = f |K̃ +
λ(KN )

λ(K̃)
v, h2 = f |KN

− -

∫

KN

fdλ = f |KN
− v

so that h1 ∈ L∞(K̃;V ) and h2 ∈ L∞(KN ;V ) are mean zero. Now, let us observe
that for every A ⊂ V, x ∈ V , we have Aff(A + x) = Aff(A) + x. Therefore,

Aff(σ(h2)) = Aff(σ(f |KN
− -

∫

KN

fdλ)) = Aff(σ(f |KN
)) − -

∫

KN

fdλ.

Thus, W := Aff(σ(h2)) + -
∫
KN

fdλ = Aff(σ(f |KN
)) ⊂ Aff(σ(f)), in particular, W

is an affine subspace of Aff(σ(f)).
Since we have f |BN

= h2|BN
+ -
∫
KN

fdλ, it follows that λ(f |−1
BN

(W )) = λ(BN ) >

0. Therefore, by the assumption on BN we must have the equality W = Aff(σ(f))
(as W cannot be its proper subspace).

Now since f, h2 are mean zero, we also have Span(σ(f)) = Aff(σ(f)) and
Span(σ(h2)) = Aff(σ(h2)). Hence Span(σ(h2)) = Span(σ(f)).

Now, by Lemma 5.2 we can find δ > 0 such that for u ∈ Span(σ(h2)) with

‖u‖ ≤ δ we can find compact ẼN ⊆ KN with λ(KN \ ẼN ) < 1
4λ(KN )r and∫

E2
(h2 + u)dλ = 0.

Now choose 0 < δ′ < min{1, r4 ,
δ

‖v‖+1} such that ( λ(K̃)
λ(KN ) (1− δ′)+1)−1 ∈ Q2. Set

u = δ′v

so that u ∈ Span(σ(f)) = Span(σ(h2)) and ‖u‖ ≤ δ. Then, due to selection

of δ, there exists a compact set ẼN ⊆ KN with λ(KN \ ẼN ) < 1
4λ(KN )r and
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∫
ẼN

(h2 + u)dλ = 0. Now, set

r̃ := λ(K̃) − λ(K̃)

λ(KN )
λ(ẼN )(1 − δ′)

= λ(K̃) − λ(K̃)

λ(KN )

(
λ(KN ) − λ(KN \ ẼN )

)
(1 − δ′)

= δ′λ(K̃) +
λ(K̃)

λ(KN )
λ(KN \ ẼN )(1 − δ′)

So 0 < r̃ ≤ δ′ + 1
λ(KN )λ(KN \ ẼN ) < r

4 + r
4 = r

2 , thus, in particular, r̃ < λ(Ki)

for i = 1, .., N − 1. We now apply the induction hypothesis, to obtain a set Ẽ =

Ẽ1 ∪ .... ∪ ẼN−1 ⊆ K̃ where Ẽi ⊆ Ki is compact, so that λ(K̃ \ Ẽ) = r̃, so that∫
Ẽ
h1dλ = 0 and so that λ(Ẽi)

λ(Ẽ)
∈ Q2 for i = 1, ..., N − 1.

Now
∫

Ẽ∪ẼN

fdλ =

∫

Ẽ

h1 −
λ(KN )

λ(K̃)
vdλ +

∫

ẼN

(h2 + v)dλ

= −λ(KN )

λ(K̃)
λ(Ẽ)v + λ(ẼN )v +

∫

Ẽ

h1dλ +

∫

ẼN

h2dλ

= −λ(KN )

λ(K̃)
λ(Ẽ)v + λ(ẼN )v − λ(ẼN )u

=

(
−λ(KN )

λ(K̃)
λ(Ẽ) + λ(ẼN ) − λ(ẼN )δ′

)
v

=

(
−λ(KN )

λ(K̃)
(λ(K̃) − r̃) + λ(ẼN )(1 − δ′)

)
v = 0

Now, for the ratio we have

λ(ẼN )

λ(Ẽ ∪ ẼN )
=

λ(ẼN )

λ(K̃) − r̃ + λ(ẼN )

=
λ(ẼN )

λ(K̃)
λ(KN )λ(ẼN )(1 − δ′) + λ(ẼN )

=
1

λ(K̃)
λ(KN ) (1 − δ′) + 1

∈ Q2

Now, also for i = 1, ..., N − 1 we have λ(Ẽi)

λ(Ẽ∪ẼN )
= λ(Ẽi)

λ(Ẽ)
· λ(Ẽ)

λ(Ẽ∪ẼN)
∈ Q2. Last, we

have λ(K \ (Ẽ ∪ ẼN )) = λ(K̃ \ Ẽ) + λ(KN \ ẼN ) ≤ r̃ + 1
4r < r.

We set E′ = Ẽ ∪ ẼN =
⋃N

i=1 Ẽi so that λ(E′) > R. Indeed, the scalar r
was chosen to satisfy 0 < r < λ(K) − R, and we obtained that λ(K) − λ(E′) =

λ(K \ E′) ≤ r < λ(K) − R. All we need to do now is to shrink the sets Ẽi for
i = 1, ..., N by a fixed ratio so that the measure of their union is exactly R. The
rationality condition will then be preserved. We will do this construction now.
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Lemma 5.3 guarantees that in each set Ẽi there exists a compact subset Ei

satisfying λ(Ei) =
λ(Ẽi)R

λ(E′)
, and such that -

∫
Ei

fdλ = -
∫
Ẽi

fdλ and moreover such

that inf Ẽi, sup Ẽi 6∈ Ei. Then putting E =
⋃N

i=1 Ei we have that f |E is mean zero,

λ(E) = R and λ(Ei)
λ(E) = λ(Ẽi)

λ(E′) ∈ Q2 for i = 1, ..., N . This proves the statement for

N , and finishes the induction. �

6. Solutions for the Homological Equation over the Cantor Set

Let q ∈ N, r ∈ R and let the set

C(q, r) = {1, . . . , q} × {1, 2}N,
be equipped with Tikhonov topology and with such product measure

µ = µ1 × µN

2 ,

satisfying µ1({i}) =
r

q
, i = 1, . . . , q; µ2({j}) =

1

2
, j = 1, 2.

The set C(q, r) is thus a Cantor type set with µ(C(q, r)) = r. Let V be a finite-
dimensional vector space. Denote by C(C(q, r);V ) the Banach space of continuous
V -valued functions on C(q, r).

Denote by p0 the mapping from C(q, r) onto {1, . . . , q}, given by p0(i; i1, i2, . . . ) =

i and set C(q, r, i) = p−1
0 (i), i = 1, . . . , q. For brevity, let CV = 8 dim(V )2

log 1.5 (SV + 1).

Finally, recall that for a subset X ⊆ V , its diameter is defined by Diam(X) =
supx,y∈X ‖x− y‖.
Theorem 6.1. Let V be a finite-dimensional normed vector real space. Let 0 6=
f ∈ C(C(q, r);V ) be mean zero, set

a =
maxi{Diam(f(C(q, r, i)))}

‖f‖ ,

Then there exists g ∈ C(C(q, r);V ) with ‖g‖ ≤ (SV +a(1 +CV ))‖f‖ and a measure
preserving continuous invertible transformation T of C(q, r) such that f = g ◦T −g.

Furthermore, the system of sets Γ = {C(q, r, i), i = 1, . . . , q}, can be labelled in
such a way that

Γ = {X1, . . . , Xq}, T (Xi) = Xi+1, i < q, T (Xq) = X1.

and such that ‖g|X1‖ ≤ (1 + CV )a‖f‖.
Proof. For every n ∈ N, we denote by pn the mapping from C(q, r) onto {1, . . . , q}×
{1, 2}n, given by setting

pn(i; i1, i2, . . . , in, in+1, . . . ) = (i; i1, i2, . . . , in).

We now let for n ≥ 0

vn : {1, . . . , q} × {1, 2}n → {1, . . . , 2nq}
be the function that arranges the elements in {1, . . . , q}×{1, 2}n in lexicographical
order. Further, for i ∈ {1, .., 2nq}, denote

Ini = (p−1
n (v−1

n (i)).
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The sets Ini , i ∈ {1, .., 2nq}, n ∈ N are clopen and form the base of topology in
C(q, r). Clearly, we have

{I0i : i = 1, . . . , q} = {C(q, r, i) : i = 1, . . . , q}.
Let fn =

∑2nq
i=1 χIn

i
-
∫
In
i

fdµ. Then fn ∈ C(C(q, r);V ), ‖fn − f‖ → 0 as n → ∞,

it follows that there exists a sequence (nk)k≥1 of natural numbers such that for
n ≥ nk we have

‖fn − f‖ ≤ 2−k−2C−1
d a‖f‖.

Setting,

h0 = f0,

h1 = fn1 − f0, ‖h1‖ ≤ a‖f‖,
hk = fnk

− fnk−1
, so that ‖hk‖ ≤ 2−kC−1

V a‖f‖, k > 1

we have

f =

∞∑

k=0

hk.

Now, for h0 let us denote by ai the value of h0 taken on I0i for 1 ≤ i ≤ q.
As
∫
fdµ = 0 we have

∑q
i=1 ai = 0 so that there is a permutation π of {1, .., q}

so that ‖∑m
i=1 aπ(i)‖ ≤ Sd‖h0‖ for 0 ≤ m ≤ q. Now, denote by T0 the measure

preserving continuous cyclic transformation of C(q, r) sending I0π(i) to I0π(i+1) for

1 ≤ i ≤ q − 1 and sending I0π(q) to I0π(1). We now denote by g0 : C(q, r) → V

the continuous function, taking on I0π(l) the value
∑l−1

i=1 aπ(i) for l = 2, ..., q and

taking value 0 on the set I0π(1). Then ‖g0‖ ≤ Sd‖f0‖ ≤ Sd‖f‖ and for l = 2, ..., q

and t ∈ I0π(l) we have g0(T0(t)) − g0(t) =
∑l

i=1 aπ(i) −
∑l−1

i=1 aπ(i) = aπ(l) = f0(t).

When l = 1 and t ∈ Iπ(1), we have g0(T0(t))−g0(t) =
∑1

i=1 aπ(i)−0 = aπ(1) = h0(t).

Using the same argument as in [Kwa84], for each k ≥ 0, we denote Jk = {Ink

i :
1 ≤ i ≤ 2nkq}, and define a sequence {Tk}∞k=0 of measure preserving continuous
transformations Tk of C(q, r) and functions {gk}∞k=1 with gk ∈ C(C(q, r);V ) satis-
fying the following:

(i) Tk is a cyclic rearrangement of the sets of Jk.
(ii) Tk+1 extends Tk in the sense that if I ∈ Jk, I ′ ∈ Jk+1 and I ′ ⊆ I then

Tk+1(I ′) ⊆ Tk(I).
(iii) ‖gk‖ ≤ CV ‖hk‖.
(iv) gk is constant on all the sets I ∈ Jk.
(v) hk = gk ◦ Tk − gk on C(q, r).

Now, we suppose that the transformations T0, ..., Tk and functions g0, ..., gk with
given properties have been already defined. For convenience we set n = |Jk| and

m =
|Jk+1|
|Jk| . Let I1, I2, . . . , In be the sets from Jk, enumerated so that Tk(Ii) = Ii+1

when i < n and Tk(In) = I1, which can be done since Tk is a cyclic rearrangement
of the sets of Jk. Furthermore, for i = 1, 2, . . . , n let us denote by Ii,j for j =
1, 2, . . . ,m all sets from Jk+1 which are contained in Ii. Denote by ai,j the value of
the function hk+1 on Ii,j . Since

∫

Ii

hk+1dλ =

m∑

j=1

∫

Ii,j

fnk+1
− fnk

dλ = 0, ∀Ii ∈ Jk,
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it follows that
∑m

j=1 ai,j = 0 for all i = 1, . . . , n. In addition, ‖ai,j‖ ≤ ‖hk+1‖ for
all i = 1, . . . , n, j = 1, . . . ,m. Therefore, by Theorem 3.5 it follows that there exist
such rearrangements π1, . . . , πn of the numbers {1, . . . ,m} that

‖
l∑

i=1

ai,πi(j)‖ ≤ M‖hk+1‖

for l = 1, . . . , n and j = 1, . . . ,m, where M = 8d2

log 1.5 . Define a measure preserving

homeomorphism Tk+1 : C(q, r) −→ C(q, r), by setting

Tk+1(Ii,πi(j)) = Ii+1,πi+1(j), i = 1, . . . , n− 1, j = 1, . . . ,m.

We set

bj =

n∑

i=1

ai,πi(j), j = 1, . . . ,m.

Since
∑m

j=1 bj =
∑n

i=1

∑m
j=1 ai,j = 0 and ‖bj‖ ≤ M‖hk+1‖, there exists the re-

arrangement π0 of the numbers 1, . . . ,m such that

‖
l∑

j=1

bπ0(j)‖ ≤ MSV ‖hk+1‖, ∀l = 1, . . . ,m.

Set
Tk+1(In,πn(π0(j))) = I1,π1(π0(j+1)), ∀j = 1, . . . ,m− 1

and set
Tk+1(In,πn(π0(m))) = I1,π1(π0(1)).

Next, we have

‖
l∑

r=0

hk+1(T r
k+1(t))‖ = ‖

p−1∑

j=1

bπ0(j) +

z∑

i=1

ai,πi(π0(p))‖ ≤ CV ‖hk+1‖,

where l + 1 = (p − 1)n + z for some p ∈ {1, ..,m} and z ∈ {1, . . . , n}, for every
t ∈ I1,π1(π0(1)) and every l = 0, . . . , nm− 1.

Now, let us define the function gk+1 by setting its value on T l
k+1(I1,π1(π0(1)))

equal to
∑l−1

r=0 hk+1(T r
k+1(t)), where t ∈ I1,π1(π0(1)) for l = 1, ..., nm− 1 and setting

gk+1(I1,π1(π0(1))) = 0. Then we have

‖gk+1‖ ≤ CV ‖hk+1‖.
Let t ∈ I1,π1(π0(1)). If 0 < l < nm− 1, then we have

gk+1(Tk+1(T l
k+1(t))) − gk+1(T l

k+1(t)) =

l∑

r=0

hk+1(T r
k+1(t)) −

l−1∑

r=0

hk+1(T r
k+1(t))

= hk+1(T l
k+1(t)),

and further
gk+1(Tk+1(t)) − gk+1(t) = hk+1(t) − 0 = hk+1(t)

finally yielding

gk+1(Tk+1(T nm−1
k+1 (t))) − gk+1(T nm−1

k+1 (t)) = 0 −
nm−2∑

r=0

hk+1(T r
k+1(t))

= hk+1(T nm−1
k+1 (t)).
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Thus, for every t ∈ C(q, r) we have

gk+1(Tk+1(t)) − gk+1(t) = hk+1(t).

This completes the construction of the functions {gk}∞k=0 and transformations
{Tk}∞k=0 with required properties.

It follows from the construction that Tk+1 satisfies the condition (ii). Hence
the sequences Tk and gk satisfy the conditions (i) − (v). Observe that the inverse
mappings T−1

k also satisfy the condition (ii).
It follows from condition (iii) that the series

∑∞
k=0 gk converges in C(C(q, r);V )

to some function g satisfying

‖g‖ ≤ ‖g0‖ + ‖g1‖ +
∞∑

k=2

‖gk‖ ≤ SV ‖f‖ + CV a‖f‖ + a‖f‖

= (SV + (1 + Cd)a)‖f‖.
Next, it follows from (ii) that for all t ∈ C(q, r) the sequence Tk(t) converges.

We then set T (t) = limk→∞ Tk(t) ∈ C(q, r). In addition, T−1(t) = limk→∞ T−1
k (t).

Suppose that n ∈ N, I ∈ Jn. Then, we have Tn(I) = I ′ ∈ Jn. It follows
from (ii) that Tm(I) = I ′,m > n. Since I ′ is closed, it follows that T (I) = I ′.
Hence, T permutes elements of Jn for every n. Since

⋃
n Jn is the base of topology

in C(q, r) and generates the σ-algebra of measurable sets, it follows that T is a
measure preserving continuous transformation of C(q, r)

Now, we have for k ≥ 0 that

gk(T (x)) − gk(x) = gk(Tk(x)) − gk(x) = hk(x).

Hence,

g(T (x)) − g(x) =

∞∑

k=0

(gk(T (x)) − gk(x)) =

∞∑

k=0

hk = f.

The final assertion of the theorem follows from the fact that on J0, T is equal to
T0, and the fact that g0 equals 0 on I0π(1). �

Proposition 6.2. Let q ∈ N, r ∈ R, and {mn} be a sequence from N. On the
set E = {1, . . . , q} ×∏∞

n=1{1, . . . , 2mn} we define the product topology and product
measure

ν = ν0 ×
∞∏

n=1

νn, ν0({i}) =
r

q
, νn({jn}) =

1

2mn
, 1 ≤ i ≤ q, 1 ≤ jn ≤ 2mn .

Then there exists a measure preserving homeomorphism ϕ : C(q, r) −→ E, such that
ϕ(C(q, r, i)) = {i} ×∏∞

n=1{1, . . . , 2mn}, i = 1, . . . , q.

Proof. Let ϕ0 be an identity mapping of {1, . . . , q} onto itself,

ϕn : {1, 2}mn −→ {1, . . . , 2mn}
be a bijection such that

ϕn(i1, . . . , i2mn ) = 1 +

mn∑

k=1

2k−1(ik − 1), n ≥ 1.
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The compact C(q, r) can be represented as

C(q, r) = {1, . . . , q} ×
∞∏

n=1

{1, 2}mn.

Define the bijection ϕ : C(q, r) −→ E as the product ϕ =
∏∞

n=0 ϕn. Since every ϕn

is measure preserving, it follows that ϕ is also measure preserving.

Let k ∈ N, x ∈ {1, . . . , q} ×∏k
n=1{1, 2}mn, P (x) = x ×∏∞

n=k+1{1, 2}mn. We

have ϕ(P (x)) = (
∏k

n=0 ϕn)(x) ×∏∞
n=k+1{1, . . . , 2mn}.

Recalling that the sets P (x) form the base of topology in C(q, r), and the sets
ϕ(P (x)) form the base of topology in E , we that conclude ϕ is homeomorphism. �

7. Solutions to the Homological Equation – The Affinely

Homogeneous Setting

In this section we show that for a mean zero affinely homogeneous function
f ∈ L∞(D;V ) we can solve the equation f = g ◦ T − g. The transformation T we
construct here is not ergodic. We will resolve the issue of ergodicity in the next
section.

Note that if a function f is affinely homogeneous, then for any v ∈ V and any
measurable subset D′ ⊆ D also f |D′ + v is affinely homogeneous. Moreover, note
that the conditions of Lemma 5.4 on the function f ∈ L∞(D;V ) are satisfied when
f is mean zero and affinely homogeneous.

Let D ⊂ [0, 1] be a measurable set, f ∈ L∞(D;V ) be a mean zero function,
q ∈ N, R ∈ (0, λ(D)), F : C(q, R) −→ D. The system (q,F , R) is said to be a
Cantor tower for f , if F is a measure preserving continuous injection, the function
f |F(C(q,R)) is continuous and

∫
F(C(q,R))

fdλ = 0.

Proposition 7.1. Let V be a finite-dimensional real normed space. Let D ⊂ [0, 1]
be a measurable set, f ∈ L∞(D;V ) be a mean zero affinely homogeneous function,
R ∈ (0, λ(D)).

(i). For every q ∈ N there exists a Cantor tower (q,F , R) for f .
(ii). For every ε > 0 there exists a Cantor tower (q,F , R) for f such that

Diam(f(F(C(q, R, i)))) < ε, i = 1, . . . , q.(7.1)

Proof. The assertion of (ii) is different from that of (i) since the scalar q is not given
in advance there, but needs to be determined so as to satisfy the assumption (7.1).

Having located the sought for value of q in the case (ii) the construction of the
Cantor tower is done for both cases (i) and (ii) simultaneously.

By Lemma 5.2, we know that there exists a compact set K ′ ⊂ D, with λ(K ′) > R
such that f is continuous and mean zero on K ′.

For every ε > 0 there are points x0 = inf K ′ < x1 < · · · < xn = supK ′, such
that Diam(f([xi−1, xi] ∩K ′)) < ε, i = 1, . . . , n. Let {K ′

1, . . . ,K
′
m} be a subfamily

of {[xi−1, xi] ∩K ′ : i = 1, . . . , n}, consisting of all sets of non-zero measure.
By Lemma 5.4, there exist such compact sets K ′′

1 ⊂ K ′
1, . . . ,K

′′
m ⊂ K ′

m, that
∫
K fdλ = 0, λ(K) > R, where K = K ′′

1 ∪ · · · ∪K ′′
m, and

λ(K ′′
i )

λ(K)
∈ Q, i = 1, . . . ,m.

Hence the compact set K admits a splitting {K1, . . . ,Kq} inscribed into the
splitting {K ′′

1 , . . . ,K
′′
m}, so that λ(K1) = · · · = λ(Kq), where q is the common

denominator of the ratios
λ(K ′′

i )

λ(K)
, i = 1, . . . ,m; supKi ≤ inf Ki+1, i = 1, . . . ,m.
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Thus, for the case (ii), we have located the scalar q and have constructed the
compacts K1, . . . ,Kq so that Diam(f(Ki)) < ε, i = 1, . . . , q.

In the case (i), we set K = K ′ and for a q given in advance, we locate the points
x0 = inf K < x1 < · · · < xq = supK, so that

λ([xi−1, xi] ∩K) =
λ(K)

q
, i = 1, . . . , q.

We set
Ki = [xi−1, xi] ∩K, i = 1, . . . , q.

Now, all we need is to build a Cantor tower (q,F , R), so that F(C(q, R, i)) ⊂
Ki, i = 1, . . . , q.

Let us fix a decreasing sequence

R0 = λ(K) > R1 > R2 > · · · > Rn > . . . , lim
n

Rn = R.

We shall build a sequence (mn) of positive integers and the sets Ka, a ∈ En,
where

En = {1, . . . , q} ×
n∏

i=1

{1, . . . , 2mn}, n ≥ 0.

Below, throughout this proof, the notation |En| stands for Card{En}.
For m ≤ n, we define projection pn,m : En −→ Em, by setting

pn,m(i0; i1, . . . , im, . . . , in) = (i0; i1, . . . , im).

We set

Cn =
⋃

a∈En

Ka, C =

∞⋂

n=0

Cn.

Clearly, we have C0 = K.
The sets Ka should satisfy the following conditions:

(1) For a ∈ En the set Ka is a compact subset of [0, 1]. For a1, a2 ∈ En, a1 6= a2
we have either supKa1 ≤ infKa2 or else supKa2 ≤ infKa1 .

(2) If a ∈ En−1 and b ∈ En are such that pn,n−1(b) = a, then Kb ⊆ Ka and

Diam(Kb) ≤
1

2
Diam(Ka).

(3) λ(Ka) = Mn :=
Rn

|En|
for all a ∈ En.

(4)
∫
Cn

fdλ = 0 for all n ≥ 0.

(5) The sets Ka∩Cn+1 and Kb∩Cn+1 are disjoint for a, b ∈ En whenever a 6= b.

(6) λ(Ka ∩ Cn) =
Rn

|Ek|
for any k < n, a ∈ Ek.

The construction of the sequence (mn) and of compact sets Ka will be done via
induction on n.

If n = 0, the set E0 = {1, . . . , q} and the compacts K1, . . . ,Kq are already
determined.

Let n ≥ 0 and assume that the set {m1, . . . ,mn} (when n = 0 this set is empty)
and the compacts Ka, a ∈ Ek, k ≤ n have been determined. We define mn+1 and
Ka for all a ∈ En+1.

Fix a ∈ En and set

KL
a := Ka ∩

[
inf Ka,

inf Ka + supKa

2

]
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and

KR
a := Ka ∩

[
inf Ka + supKa

2
, supKa

]
.

Observe that Diam(KL
a ) ≤ 1

2Diam(Ka) and Diam(KR
a ) ≤ 1

2Diam(Ka). We set

ha = f |Ka
− 1

λ(Ka)

∫

Ka

fdλ

Then ha ∈ L∞(Ka;V ) is such that
∫
Ka

hadλ = 0. We will now show that we

can apply Lemma 5.4 to the set Ka = KL
a ∪ KR

a , the mean zero function ha and

the scalar Rn+1

|En| . First of all 0 < Rn+1

|En| < Rn

|En| = λ(Ka) and λ(KL
a ∩ KR

a ) = 0.

Furthermore, ha is mean zero and as f is affinely homogeneous this is also true for
ha. This shows that we can indeed apply Lemma 5.4 to obtain a subset

K̃a = K̃L
a ∪K̃R

a ⊂ Ka ∩ (inf Ka, supKa)

(we emphasize the importance of the preceding inclusion for the validity of condition

(5) above!) with K̃L
a ⊂ KL

a and K̃R
a ⊂ KR

a both compact and of positive measure,

so that λ(K̃a) =
Rn+1

|En|
and

∫
K̃a

ha = 0 and so that
λ(K̃L

a )

λ(K̃a)
= pa

2qa for some integer

pa ≥ 0 and positive integer qa.
Now, set

mn+1 = 1 +
∑

a∈En

qa, ka = 2mn+1−qapa.

We now select points

x0
a < x1

a < · · · < xka
a =

inf Ka + supKa

2
< · · · < x2mn+1

a

in Ka so that for 1 ≤ i ≤ 2mn+1 the sets

Ki
a := K̃a ∩ [xi−1

a , xi
a]

all have equal measure

λ(Ki
a) =

λ(K̃a)

2mn+1
=

Rn+1

|En|2mn+1

and moreover
Ki

a ⊂ K̃L
a , ∀i ≤ ka

and
Ki

a ⊂ K̃R
a , ∀ka < i ≤ 2mn+1.

Now if b = a× i ∈ En+1 with 1 ≤ i ≤ 2mn+1 then we define Kb = Ki
a.

By the construction, conditions (1)-(3) hold for Kc, c ∈ En+1, and for a, b ∈ En
condition (5) is also satisfied.

Now, we verify that condition (4) holds.
∫

Cn+1

fdλ =
∑

a∈En

∫

K̃a

fdλ

=
∑

a∈En

λ(K̃a)

λ(Ka)

∫

Ka

fdλdλ

=
∑

a∈En

Rn+1

|En|λ(Ka)

∫

Ka

fdλdλ
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=
Rn+1

|En|Mn

∑

a∈En

∫

Ka

fdλdλ =
Rn+1

|En|Mn

∫

Cn

fdλdλ = 0

Now, we verify that condition (6) holds. To this end, we observe that the number of

compacts Kx, x ∈ En+1, contained inside of the set Ka, a ∈ En is equal to
|En+1|
|En|

.

Hence, for k < n, a ∈ Ek the number of Kx, x ∈ En, contained inside of the set Ka

is equal to
|En|

|En−1|
· |En−1|
|En−2|

· · · · · |Ek+1|
|Ek|

=
|En|
|Ek|

.

Therefore, we have λ(Ka ∩ Cn) =
|En|
|Ek|

· Rn

|En|
=

Rn

|Ek|
.

This completes the construction of compacts Ka.
Now, we show that

λ(C) = R,

∫

C

fdλ = 0.

Indeed, we have Cn+1 ⊂ Cn, n ≥ 0, λ(C) = limn λ(Cn) = limn Rn = R and
‖
∫
C
fdλ‖ ≤ ‖

∫
Cn

fdλ‖ + λ(Cn \C)‖f‖∞ = λ(Cn \C)‖f‖∞ = (Rn −R)‖f‖∞ → 0
as n → ∞.

Further, by Proposition 6.2, we may identify C(q, R) with E∞ = {1, . . . , q} ×∏∞
i=1{1, . . . , 2mn} with the measure ν introduced there.
For every n ≥ 0, we define the mapping pn : E∞ −→ En, by setting

pn(i0; i1, . . . , in, in+1, . . . ) = (i0; i1, . . . , in).

For every a ∈ E∞, we set F(a) =
⋂∞

n=0 Kpn(a). Combining the equality pn+1,n ◦
pn+1 = pn and condition (2), we infer that |F(a)| = Card(F(a)) = 1. Therefore,
the mapping F : E∞ −→ C is correctly defined.

Let a, b ∈ E∞, a 6= b. Then, there exists n, such that pn(a) 6= pn(b). Due to (5),
we have F(a) 6= F(b), i.e. the mapping F is injective.

Let x ∈ C. It follows from the construction of C that for every n there exists a
unique an ∈ En, such that x ∈ Kan

. Appealing to conditions (1) and (2), we infer
that pn,n−1(an) = an−1, n > 1. Hence, there exists a ∈ E∞, such that pn(a) = an.
This guarantees F(a) = x, and so the mapping F is surjective.

Suppose that the sequence {a(n)} ⊂ E∞ converges to a ∈ E∞. This means that
for every n there exists the index kn, such that pn(a(m)) = pn(a) when m > kn,

that is. F(a(m)) ∈ Kpn(a). Due to (2),we have |F(a(m))−F(a)| ≤ 1

2n
. This implies

that the mapping F is continuous.
Recalling that the set E∞ is compact, we infer that the mapping F−1 is also

continuous.
Appealing to (6), we see that

λ(Ka ∩ C) =
R

|En|
, ∀n ≥ 0, a ∈ En.

However, Ka ∩ C = F(p−1
n (a)), µ(p−1

n (a)) =
R

|En|
, that is

λ(F(p−1
n (a))) = µ(p−1

n (a)).



32 A. BER, M.J. BORST, S.J. BORST, AND F. SUKOCHEV

Taking into account that the sets p−1
n (a), n ≥ 0, a ∈ En, generate the σ-algebra of

measurable subsets in E∞, we conclude that the mapping F is measure preserving.
�

Proposition 7.2. Let V be a finite-dimensional real normed space. Let D ⊆ [0, 1]
be of positive measure and let f ∈ L∞(D;V ) be mean zero and affinely homogeneous.
Then for any ε > 0 and R ∈ (0, λ(D)) there exists measurable set C ⊂ D, λ(C) =
R, g ∈ L∞(C;V ) with ‖g‖ ≤ (SV + ε)‖f‖∞ and a mod 0 measure preserving
invertible transformation T of C such that f = g ◦ T − g.

Proof. It follows from Proposition 7.1(ii) that for f there exists a Cantor tower
(q,F , R), such that

Diam(f(F(C(q, R, i)))) <
ε

(1 + CV )
, i = 1, . . . , q.

The proof is completed by appealing to Theorem 6.1. �

Theorem 7.3. Let V be a finite-dimensional real normed space. Let D ⊆ [0, 1] be
of positive measure and let f ∈ L∞(D;V ) be mean zero and affinely homogeneous.
Then for any ε > 0 there is a g ∈ L∞(D;V ) with ‖g‖ ≤ (SV +ε)‖f‖∞ and there is a
mod 0 measure preserving invertible transformation T of D such that f = g ◦T −g.

Proof. By Zorn’s lemma, there exists a maximal family {Ki}i∈I of pairwise dis-
joint compact subsets of D with positive measure, such that there exists gi ∈
L∞(Ki;V ), ‖gi‖∞ ≤ (SV + ε)‖f‖∞ and a mod 0 measure preserving transforma-
tion Ti of Ki such that f |Ki

= gi ◦ Ti − gi. Clearly, the set of indices I is, at most,
countable.

It suffices to show that λ(D \⋃i∈I Ki) = 0. Indeed, in this case we define g and
T so that g|Ki

= gi, T |Ki
= Ti for any i ∈ I.

Suppose that the set D0 := D \⋃i∈I Ki has a non-zero measure.
By Proposition 7.2, in D0 then there exists a compact subset K0, such that

f |K0 = g0 ◦T0−g0 for some function g0 ∈ L∞(K0;V ), ‖g0‖∞ ≤ (SV +ε)‖f‖∞, and
a mod 0 measure preserving transformation T0 of K0. This is a contradiction with
the assumption concerning maximality of the family {Ki}i∈I . Hence λ(D0) = 0.

�

8. Proof of main results for general mean zero functions

We begin this section with the two lemmas, which are based on classical results.

Lemma 8.1. Given x ∈ Rn with 1, x1, ...., xn rationally independent, and let ε > 0.
Then for any given non-zero vector v ∈ Rn there are integers q ≥ 1, p1, ..., pn ∈ Z

so that for the vector w ∈ Rn with wl = pl

q − xl we have ‖w‖∞ < ε
q and so that we

have (w, v) > 0.

Proof. Let us denote αl = sign(vl)
ε
2 .

Since 1, x1, ..., xn are rationally independent, we can by [HW08, Theorem 442]
find integers q ≥ 1 and p1, ..., pn ∈ Z such that

|qxl − pl + αl| <
ε

2

Now since |qxl − pl| < ε
2 + |αl| = ε we have for the vector w ∈ Rn given by

wl = pl

q − xl that ‖w‖∞ < ε
q . Moreover, since |αl| = ε

2 we have that sign(wl) =

sign(pl − xlq) = sign(αl) = sign(vl). Note furthermore that, since xl is irrational
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for all l, we have that |wl| = |pl

q − xl| > 0. Now, since also v 6= 0 we have that

(w, v) > 0.
�

Lemma 8.2. Let {Tn} be a sequence of mod 0 measure preserving automorphisms
of the interval [0, 1] and let Tn −→ T, T−1

n −→ S in measure. Then T, S are also
mod 0 measure preserving automorphisms of the interval [0, 1], and S = T−1 a.e.

Proof. The fact that T S are measure preserving follows from [Bog07b, Prop.
9.9.10]. The fact that the equality S = T−1 holds a.e. follows from [Bog07b, Coroll.
9.9.11]. �

The following lemma plays a crucial role in the proof of our main result.

Lemma 8.3. Let V be a finite-dimensional real normed space. Let f ∈ L∞([0, 1];V )
be mean zero and ε > 0. There exists a sequence (qi)i≥1 in N with qi ≥ 2, and a
partition {Ai,j : i ≥ 1, 1 ≤ j ≤ qi} of [0, 1] into the sets of positive measure, together
with a measure preserving invertible transformation T on [0, 1] such that

T (Ai,j) = Ai,j+1, ∀i ≥ 1, 1 ≤ j < qi.

Moreover, this can be done so that if we denote A =
⋃∞

i=1 Ai,1 and define h : A → V
by h|Ai,1 =

∑qi
j=1 f ◦ T j−1, then we have that h is mean zero and has ‖h‖∞ < ε.

Also we ensure for i ≥ 1 that

‖
l−1∑

j=1

f ◦ T j−1‖L∞(Ai,1;V ) < SV ‖f‖∞ + ε, l = 1, ..., qi.

Proof. By Theorem 4.6, we can find a subset D ⊆ [0, 1] of positive measure on
which f is mean zero, and an integer n ≥ 1 and a partition {D1, ..., Dn} of D s.t.
f |Dl

is affinely homogeneous for l = 1, ..., n.
Let ε > 0. We will set

ε′ =
1

2
min{1,

ε

3
,min

i
(λ(Di))} > 0.

Every function f(l) = f |Dl
− -
∫
Dl

fdλ is mean zero and affinely homogeneous on

Dl, l = 1, . . . , n.
By Proposition 7.1(ii), we know that for every l = 1, . . . , n for the function f(l)

there exists a Cantor tower (q(l),F(l),
1
2λ(Dl)), satisfying

Kl := F(l)(C(q(l),
1

2
λ(Dl)))) ⊂ Dl,

Kl,m := F(l)(C(q(l),
1

2
λ(Dl),m)),

Diam(f(Kl,m)) <
ε′

(1 + CV )(‖f‖∞ + 1)
, m = 1, . . . , q(l)

(recall that CV = 8 dim(V )2

log 1.5 · (SV + 1)).

Then λ(Kl) = 1
2λ(Dl), -

∫
Kl

fdλ = -
∫
Dl

fdλ for any l. Define K =
⋃n

l=1 Kl.

Then ∫

K

fdλ =

n∑

l=1

∫

Kl

fdλ =

n∑

l=1

λ(Kl)

λ(Dl)

∫

Dl

fdλ =
1

2

∫

D

fdλ = 0.



34 A. BER, M.J. BORST, S.J. BORST, AND F. SUKOCHEV

Then {Kl,1, ...,Kl,q(l)} is a partition of Kl, such that λ(Kl,m) = λ(Kl)
q(l)

for all l,m.

Let x ∈ Rn be the vector given by xl = λ(Kl)
q(l)λ(K) > 0. We can find a maximal

subset J ⊆ {1, ..., n} of indexes s.t. {1} ∪ {xj : j ∈ J } are rationally independent.
Then blxl = al,0 +

∑
j∈J al,jxj for l = 1, ..., n for some integers al,j and non-zero

integers bl. We set M = 2 |∏n
l=1 bl| · max{|al,j| : j ∈ J ∪ {0}, l = 1, ..., n}. We

will denote q(0) = maxl q(l) and ρ = minl λ(Kl) > 0 and x0 = minl xl > 0 and

N = nM2 max{ q(0)
ρ , 2nq(0),

2
x0
,
nq(0)‖f‖∞

ε′ }.

If J is empty, we set q̃i = 1 for i ∈ N. Now suppose J is non-empty. We will
denote RJ for the vector space of functions J → R equipped with the Euclidean
norm and we denote S(J ) for the set of all unit vectors in RJ . For every v ∈ S(J )
we can by Lemma 8.1 find integers q̃v ≥ 1 and p̃v,j ∈ Z for j ∈ J s.t. for the vector

w̃v ∈ RJ given by (w̃v)j =
p̃v,j

q̃v
−xj we have ‖w̃v‖∞ < 1

q̃vN
and so that (w̃v, v) > 0.

We can now find a sequence (ξi)i≥1 in S(J ) such that {w̃ξi : i ∈ N} is dense in
{w̃v : v ∈ S(J )}. Now, by the density we have for v ∈ S(J ) that we can find i ≥ 1
such that ‖w̃ξi − w̃v‖2 < (w̃v, v), and hence

(w̃ξi , v) = (w̃v, v) + (w̃ξi − w̃v, v) ≥ (w̃v, v) − ‖w̃ξi − w̃v‖2 > 0.

For i ≥ 1 we will now denote the integers q̃i := q̃ξi and p̃i,j := p̃ξi,j for j ∈ J and
furthermore denote the vector w̃i := w̃ξi for which we have the bound

‖w̃i‖∞ = ‖w̃ξi‖∞ ≤ 1

q̃ξiN
=

1

q̃iN
.

Moreover, by what we just showed we have that for every non-zero v ∈ RJ we can
find i ≥ 1 such that (w̃i, v) > 0.

Regardless on whether J is empty or non-empty, we now fix i ≥ 1 and set
qi = Mq̃i ≥ 2 and for l = 1, ..., n we denote

pi,l =
qi
blq̃i


al,0q̃i +

∑

j∈J
al,j p̃i,j


 =

qi
bl


al,0 +

∑

j∈J
al,j

p̃i,j
q̃i


 ,

which is an integer since qi
blq̃i

= M
bl

∈ N. We now define the vector wi ∈ Rn as

(wi)l :=
pi,l
qi

− xl =
∑

j∈J

al,j
bl

(
p̃i,j
q̃i

− xj

)

If J is empty, this is the empty sum so that wi = 0. If J is non-empty we have
the bound

‖wi‖∞ ≤
∑

j∈J
M · ‖w̃i‖∞ ≤ nM

q̃iN
=

1

qi
· nM

2

N

For i ≥ 1 we now choose ci > 0 with
∑∞

i=1 ci = 1
3λ(K). For 1 ≤ l ≤ n and

1 ≤ m ≤ q(l) we then have

∞∑

i=1

ci
pi,l
qi

=

∞∑

i=1

ci

(
λ(Kl)

q(l)λ(K)
+ (wi)l

)
≤

∞∑

i=1

ci
λ(K)

(
λ(Kl)

q(l)
+

ρ

q(0)

)
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≤ 2
λ(Kl)

q(l)

∞∑

i=1

ci
λ(K)

< λ(Kl,m)

Now, for i ≥ 1 let {I(i)l,m : 1 ≤ l ≤ n, 1 ≤ m ≤ q(l)} be a partition of {1, ..., qi} so

that I
(i)
l,m has size |I(i)l,m| = pi,l. Let us fix the bijections

α
(i)
l,m : I

(i)
l,m −→ {1, . . . , pi,l}, β

(i)
l,m : I

(i)
l,m × {1, 2}N −→ {1, . . . , pi,l} × {1, 2}N

by setting

β
(i)
l,m(i0; i1, . . . ) = (α

(i)
l,m(i0); i1, . . . ).

We note that such a partition actually exists. Namely, qi =
∑n

l=1 q(l)pi,l because
of the fact that the difference

|qi −
n∑

l=1

q(l)pi,l| ≤
n∑

l=1

|qi
λ(Kl)

λ(K)
− q(l)pi,l| ≤ qi

n∑

l=1

q(l)|xl −
pi,l
qi

|

≤ qinq(0)‖wi‖∞ ≤ n2M2κ

N
≤ 1

2

is an integer. Also, importantly pi,l is an integer with pi,l ≥ qixl − |qixl − pi,l| >
xl − qi‖wi‖∞ ≥ xl − x0

2 > 0, which shows that pi,l ∈ N.

We shall now do the following for all 1 ≤ l ≤ n and 1 ≤ m ≤ q(l). By

Proposition 7.1(i) we can find a Cantor tower (p1,l,F (1)
l,m, c1

p1,l

q1
) for the function

f |Kl,m
− -
∫
Kl,m

fdλ. We have

E
(1)
l,m :=F (1)

l,m(C(p1,l, c1
p1,l
q1

)) ⊂ Kl,m, λ(E
(1)
l,m) = c1

p1,l
q1

,

-

∫

E
(1)
l,m

fdλ = -

∫

Kl,m

fdλ.

Now, since λ(Kl,m \ E(1)
l,m) >

∑∞
i=2 ci

pi,l

qi
> c2

p2,l

q2
and arguing as above, we can

find a measure preserving homeomorphism

F (2)
l,m : C(p2,l, c2

p2,l
q2

) −→ E
(2)
l,m ⊆ Kl,m \ E(1)

l,m,

such that

-

∫

E
(2)
l,m

fdλ = -

∫

Kl,m\E(1)
l,m

fdλ = -

∫

Kl,m

fdλ.

Repeating the same arguments further, for every i ≥ 1, we can find a measure
preserving homeomorphism

F (i)
l,m : C(pi,l, ci

pi,l
qi

) −→ E
(i)
l,m ⊆ Kl,m \ (E

(1)
l,m ∪ · · · ∪ E

(i−1)
l,m ),

such that -
∫
E

(i)
l,m

fdλ = -
∫
Kl,m

fdλ.

Now that we have defined the sets E
(i)
l,m for i ≥ 1, 1 ≤ l ≤ n and 1 ≤ m ≤

q(l) that are all pairwise disjoint, we define the sets E(i) =
⋃n

l=1

⋃q(l)
m=1 E

(i)
l,m for

i ≥ 1. These sets for i ≥ 1 are then also pairwise disjoint and have measure
λ(E(i)) =

∑n
l=1

∑q(l)
m=1 ci

pi,l

qi
= ci

qi

∑n
l=1 q(l)pi,l = ci. Furthermore, for every i,
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gluing homeomorphisms F (i)
l,m, we obtain a measure preserving homeomorphism

Fi : C(qi, ci) −→ E(i) defined by setting Fi|I(i)
l,m

×{1,2}N
= F (i)

l,m ◦ β(i)
l,m.

We then also have for the sets Ãi,j := Fi(C(qi, ci, j)) for j = 1, ..., qi that Ãi,j ⊆
E

(i)
l,m ⊆ Kl,m where l,m are such that j ∈ I

(i)
l,m. This means that for j = 1, ..., qi

we have Diam(f(Ãi,j)) < (1 + CV )−1(‖f‖∞ + 1)−1ε′ as we have this bound for

Diam(f(Kl,m)) for all 1 ≤ l ≤ n and 1 ≤ m ≤ q(l). Furthermore, since E(i) ⊆ K
we have that f |E(i) is continuous. Also, we have

∫

E(i)

fdλ =

n∑

l=1

q(l)∑

m=1

∫

E
(i)
l,m

fdλ

=

n∑

l=1

q(l)∑

m=1

λ(E
(i)
l,m)

λ(Kl,m)

∫

Kl,m

fdλ

= ci

n∑

l=1

pi,l
qi

· q(l)
λ(Kl)

∫

Kl

fdλ

= ci

n∑

l=1

(
pi,l
qi

− λ(Kl)

q(l)λ(K)

)
· q(l)

λ(Kl)

∫

Kl

fdλ

= λ(E(i))
n∑

l=1

(wi)lq(l) -

∫

Kl

fdλ

Therefore we have that
∫
E(i) fdλ = 0 whenever wi = 0 and in general we have the

bound

‖ -

∫

E(i)

fdλ‖ ≤
n∑

l=1

‖(wi)lq(l) -

∫

Kl

fdλ‖ ≤ nq(0)‖wi‖∞‖f‖∞

≤ 1

qi
· n

2M2q(0)‖f‖∞
N

≤ ε′

qi
.

Now, define a function f (i) : E(i) → V by

f (i) := f |E(i) − -

∫

E(i)

fdλ,

which is mean zero and continuous. Moreover, we have for j ∈ {1, ..., qi} that

Diam(f (i)(Ãi,j)) = Diam(f(Ãi,j)) <
ε′

(1 + CV )(‖f‖∞ + 1)
.

Therefore, it follows from Theorem 6.1 that when f (i) 6= 0 there exists a rearrange-

ment {Ai,j}nj=1 of the sets {Ãi,j}nj=1, a measure preserving invertible transformation

T (i) of E(i) such that T (i)(Ai,j) = Ai,j+1 for j = 1, .., qi − 1 and T (i)(Ai,qi ) = Ai,1,

and we obtain a function g(i) ∈ L∞(E(i);V ) with ‖g(i)‖∞ ≤ SV ‖f (i)‖∞ + ε′ and
‖g(i)|Ai,1‖∞ ≤ ε′ and so that f = g(i) ◦ T (i) − g(i). When f (i) = 0 this can also be

done by simply taking g(i) = 0 and taking T (i) in the given form.

We will now define a transformation T :
⋃

i≥1 E
(i) → ⋃

i≥1 E
(i) as T |Ai,j

:=

T (i)|Ai,j
. We now set A =

⋃
i≥1 Ai,1 and h : A → V as h|Ai,1 =

∑qi
j=1 f ◦T j−1. We



A MULTIDIMENSIONAL SOLUTION TO ADDITIVE HOMOLOGICAL EQUATIONS 37

then have

‖h|Ai,1‖∞ ≤ ‖
qi∑

j=1

f (i) ◦ T j−1‖L∞(Ai,1;V ) + qi‖ -

∫

E(i)

fdλ‖

≤ ‖
qi∑

j=1

f (i) ◦ (T (i))j−1‖L∞(Ai,1;V ) + ε′

≤ ‖g(i) ◦ (T (i))qi − g(i)‖L∞(Ai,1;V ) + ε′

≤ ‖g(i) ◦ (T (i))qi‖L∞(Ai,1;V ) + ‖g(i)‖L∞(Ai,1;V ) + ε′

≤ 2‖g(i)|Ai,1‖∞ + ε′

≤ 3ε′

and hence ‖h‖∞ < ε. Furthermore, we have for l = 1, ..., qi that

‖
l−1∑

j=1

f ◦ T j−1‖L∞(Ai,1;V ) ≤ ‖
l−1∑

j=1

f (i) ◦ T j−1‖L∞(Ai,1;V ) + qi‖ -

∫

E(i)

fdλ‖

≤ ‖g(i) ◦ T l − g(i)‖L∞(Ai,1;V ) + ε′

≤ ‖g(i) ◦ T l‖L∞(Ai,1;V ) + ‖g(i)‖L∞(Ai,1;V ) + ε′

≤ ‖g(i)‖∞ + ‖g(i)|Ai,1‖∞ + ε′

≤ (SV ‖f (i)‖∞ + ε′) + ε′ + ε′

≤ SV ‖f‖∞ + 3ε′

< SV ‖f‖∞ + ε

We will now show that there exists a subset A′ ⊆ A of positive measure for which
h|A′ is mean zero. If J is empty, then wi = 0 for i ≥ 1, so that we already have

∫

A

hdλ =

∞∑

i=1

∫

Ai,1

hdλ =

∞∑

i=1

∫

E(i)

fdλ = 0

and can therefore take A′ = A. Now assume that J is non-empty. Let u ∈ V and
define v ∈ RJ as vj =

∑n
l=1

al,j

bl
q(l)(u, -

∫
Kl

fdλ). Now for i ≥ 1 we have

(u, -

∫

Ai,1

hdλ) =
qi

λ(E(i))
(u,

∫

E(i)

fdλ)

= qi(u,

n∑

l=1

(wi)lq(l) -

∫

Kl

fdλ)

= qi

n∑

l=1

(wi)lq(l)(u, -

∫

Kl

fdλ)

= qi

n∑

l=1


∑

j∈J

al,j
bl

(w̃i)j


 q(l)(u, -

∫

Kl

fdλ)

= qi
∑

j∈J
(w̃i)j

n∑

l=1

al,j
bl

q(l)(u, -

∫

Kl

fdλ)

= qi(w̃i, v)
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Now, if v = 0 then this expression is zero for all i. That is u is orthogonal to
the subspace spanned by { -

∫
Ai,1

hdλ : i ≥ 1}. If v 6= 0, then by what we have

established before, there exists i ≥ 1 such that

(u, -

∫

Ai,1

hdλ) = qi(w̃i, v) > 0.

This means that necessarily 0 ∈ Conv({ -
∫
Ai,1

hdλ : i ≥ 1}). Indeed, suppose that

0 /∈ Conv({ -
∫
Ai,1

hdλ : i ≥ 1}). Then, by the Hahn-Banach theorem, there exists

u ∈ RJ such that (u,
∫
Ai,1

hdλ) < 0 for all i’s. However, this would contradict the

fact that for every non-zero v there exists w̃i such that (w̃i, v) > 0. We conclude
that 0 ∈ Conv({ -

∫
Ai,1

hdλ : i ≥ 1}), and therefore we can find (appealing to Theo-

rem 2.3) a subset A′ ⊆ A of positive measure on which h is mean zero.

We now set A′
i,j := T j−1(Ai,1 ∩ A′) for i ≥ 1 and 1 ≤ j ≤ qi. Furthermore we

set A′
0 :=

⋃
i≥1

⋃qi
j=1 A

′
i,j and define T ′ : A′

0 → A′
0 as T ′|A′

i,j
= T |A′

i,j
for j < qi and

as T ′|A′
i,qi

= T |−qi+1
A′

i,qi

. Last we set h′ = h|A′
0
. Now all properties of the partition

{A′
i,j : i ≥ 1, 1 ≤ j ≤ qi} of A′

0, the function h′ on A′ and the transformation T ′ of

A′
0 are satisfied, except for the fact that A′

0 6= [0, 1]. However, by Zorn’s lemma we
can iterate this argument to obtain a partition of the entire interval [0, 1] and this
completes the proof. �

Now, we are fully prepared to start the proof of our main result. We explain
the main idea of the proof. Intuitively, in order to solve the equation for the func-

tion f , we build another bounded mean zero function h̃(1) on a smaller domain.

We then solve the equation for the function h̃(1), and from this we will obtain a
solution for the function f itself. However, the way that we solve the equation for

the function h̃(1) is done by building yet another bounded mean zero function h̃(2),
on an even smaller domain, and solving the equation for this function. It follows
inductively that we first have to build an entire sequence of bounded mean zero

functions (h̃(k))k≥0 on nested domains A(0) ⊇ A(1) ⊇ .... Once we have done that
we can in fact solve the equation for all these functions simultaneously. In particu-
lar we find a solution for the function f . Moreover, by adding coordinate functions

to the function h̃(k) in every layer of the construction, we can ensure that the final
transformation is also ergodic.

We now prove the following result that gives us Theorem 1.3 and Theorem 1.4
simultaneously.

Theorem 8.4. Let V be a finite dimensional normed vector real space. Let f ∈
L∞([0, 1];V ) be a mean zero function and let ε > 0. Then there exists a function
g ∈ L∞([0, 1];V ) with ‖g‖∞ ≤ (SV + ε)‖f‖∞, and an ergodic mod 0 measure
preserving invertible transformation T of [0, 1] such that f = g ◦ T − g.

Furthermore, there exists a set X ⊆ [0, 1] of positive measure such that we have

for k ≥ 0 the bound on the partial sums ‖∑k
j=0 f ◦ T j‖L∞(X;V ) ≤ (SV + ε)‖f‖∞.

Proof. Let (V, ‖ · ‖V ), f and ε be given as stated. Denote d = dim(V ). We shall
for k ≥ 0 write Vk = V × Rk for the (d + k)-dimensional vector space with norm
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‖(v, w)‖Vk
= ‖v‖V + ‖w‖1. Let {Dl}l≥1 be an enumeration of all the sets

{
N⋃

i=1

(ai, bi) : N ∈ N, ai, bi ∈ Q with 0 ≤ ai ≤ bi ≤ 1}.

We define corresponding mean zero functions Z
(0)
l : A(0) → R given by

Z
(0)
l = χDl

− λ(Dl)

We can assume that f 6= 0 since otherwise the statement is trivial. We first set

ε′ = ε‖f‖∞

2(SV +1) > 0 and for k ≥ 0 set

ε′k =
ε′

2k+2(d + k + 1)
> 0(8.1)

We now define h̃(0) := f and A(0) := [0, 1]. Since h̃(0) is mean zero we can by

Lemma 8.3 find a sequence (q
(0)
i )i≥1 in N with q

(0)
i ≥ 2, a partition {A(0)

i,j : i ≥
1, 1 ≤ j ≤ q

(0)
i } of A(0) and a measure preserving invertible transformation T (0) of

A(0) for which T (0)(A
(0)
i,j ) = A

(0)
i,j+1 for j = 1, ..., q

(1)
i − 1 and T (0)(A

(0)

i,q
(0)
i

) = A
(0)
i,1 .

Furthermore, this can be done so that, if we denote A(1) =
⋃

i≥1 A
(1)
i,1 and define

the function h(1) : A(1) → V0 by h(1)|
A

(1)
i,1

=
∑q

(0)
i

j=1 h̃
(0) ◦ (T (0))j−1, we have that

h(1) is mean zero and ‖h(1)‖∞ ≤ ε′1. Moreover Lemma 8.3 gives us for i ≥ 1 and

1 ≤ l ≤ qi the bound ‖∑l−1
j=1 h̃

(0) ◦ (T (0))j−1‖
L∞(A

(0)
i,1 ;V )

≤ SV ‖h̃(0)‖∞ + ε′1.

For l ≥ 1 define a function Z
(1)
l : A(1) → R as Z

(1)
l |

A
(0)
i,1

=
∑q

(0)
i

j=1 Z
(0)
l ◦ (T (0))j−1.

We note that

‖Z(1)
l ‖1 =

∑

i≥1

∫

A
(0)
i,1

|Z(1)
l |dλ

≤
∑

i≥1

q
(0)
i∑

j=1

∫

A
(0)
i,1

|Z(0)
l | ◦ (T (0))j−1dλ

=
∑

i≥1

q
(0)
i∑

j=1

∫

A
(0)
i,j

|Z(0)
l |dλ

=

∫

A(0)

|Z(0)
l |dλ

= ‖Z(0)
l ‖1

which shows that Z
(1)
l ∈ L1(A

(1);R). Furthermore, in fact

∫

A(1)

Z
(1)
l dλ =

∑

i≥1

∫

A
(0)
i,1

Z
(1)
l dλ

=
∑

i≥1

q
(0)
i∑

j=1

∫

A
(0)
i,1

Z
(0)
l ◦ (T (0))j−1dλ
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=
∑

i≥1

q
(0)
i∑

j=1

∫

A
(0)
i,j

Z
(0)
l dλ

=

∫

A(0)

Z
(0)
l dλ

= 0

which shows that Z
(1)
l is mean zero. As the bounded functions are dense in

L1(A
(1);R), we can find a Ẑ

(1)
1 ∈ L∞(A(1);R) with ‖Z(1)

1 − Ẑ
(1)
1 ‖1 ≤ ε′1

2 . As

Z
(1)
1 is mean zero, we then moreover have |

∫
A(1) Ẑ

(1)
1 dλ| ≤ ‖Z(1)

1 − Ẑ
(1)
1 ‖1 ≤ ε′1

2 . We

now define a mean zero function Z̃
(1)
1 in L∞(A(1);R) as Z̃

(1)
1 = Ẑ

(1)
1 − -

∫
A(1) Ẑ

(1)
1 dλ.

We obtain that

‖Z(1)
1 − Z̃

(1)
1 ‖1 ≤ ‖Z(1)

1 − Ẑ
(1)
1 ‖1 + |

∫

A(1)

Ẑ
(1)
1 dλ| ≤ ε′1

2
+

ε′1
2

= ε′1

Now define h̃(1) ∈ L∞([0, 1];V1) as h̃(1) = (h(1),
ε′1Z̃

(1)
1

‖Z̃(1)
1 ‖∞+1

). We then have

‖h̃(1)‖∞ = ‖h(1)‖∞ +
ε′1‖Z̃(1)

1 ‖∞
‖Z̃(1)

1 ‖∞ + 1
≤ 2ε′1

As h̃(1) is mean zero we can apply the same construction as for h̃(0) to this func-
tion.

We thus see that inductively for k ≥ 0 we can find

• A sequence (q
(k)
i )i≥1 in N with q

(k)
i ≥ 2.

• A partition {A(k)
i,j : i ≥ 1, 1 ≤ j ≤ q

(k)
i } of A(k) of sets of positive measure.

• A measure preserving invertible map T (k) : A(k) → A(k) defined with

T (k)(A
(k)
i,j ) = A

(k)
i,j+1 for j < q

(k)
i and T (k)(A

(k)
i,qi

) = A
(k)
i,1 .

• A set A(k+1) =
⋃

i≥1 A
(k)
i,1 .

• A mean zero function h(k+1) : A(k+1) → Vk given by

h(k+1)|
A

(k)
i,1

=

q
(k)
i∑

j=1

h̃(k) ◦ (T (k))j−1.(8.2)

• For l ≥ 1 mean zero functions Z
(k+1)
l ∈ L1(A(k+1),R) given by

Z
(k+1)
l |

A
(k)
i,1

=

q
(k)
i∑

j=1

Z
(k)
l ◦ (T (k))j−1.(8.3)

• A mean zero function Z̃
(k+1)
k+1 ∈ L∞(A(k+1);R) with

‖Z(k+1)
k+1 − Z̃

(k+1)
k+1 ‖1 ≤ ε′k+1.(8.4)

• A mean zero function h̃(k+1) ∈ L∞(A(k+1);Vk+1) given by

h̃(k+1) = (h(k+1),
ε′kZ̃

(k+1)
k+1

‖Z̃(k+1)
k+1 ‖∞ + 1

).(8.5)
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Furthermore, for k ≥ 0 the construction gives the bounds

‖h(k+1)‖∞ ≤ ε′k+1,

‖h̃(k+1)‖∞ ≤ 2ε′k+1

and the bounds for i ≥ 1 and j = 1, ..., q
(k)
i

‖
j−1∑

l=1

h̃(k) ◦ (T (k))l−1‖
L∞(A

(k)
i,1 ;SVk

)
≤ SVk

‖h̃(k)‖∞ + ε′k.(8.6)

We will now turn to defining the transformation T , the function g and the set
X . For k ≥ 0 define a mapping P (k) : A(k) → A(k+1) as

P (k)|
A

(k)
i,j

:= (T (k))1−j(8.7)

which ‘projects’ a point in A(k) to a point in A(k+1). We now define measure
preserving invertible transformations Tk : [0, 1] → [0, 1] for k ≥ 0 as follows. We

define Tk|A(k)
i,j

:= T (k) for i ≥ 1 and 1 ≤ j < q
(k)
i , define Tk|A(k)

i,q
(k)
i

:= P (k)|
A

(k)

i,q
(k)
i

for i ≥ 1, and we define Tk|[0,1]\A(k) = Id[0,1]\A(k) . We now define, for k0 ≥ 0

transformations Rk0 : A(k0) → A(k0) as

Rk0 := lim
N→∞

TN ◦ TN−1 ◦ ... ◦ Tk0 |A(k0)(8.8)

where convergence is taken with respect to the measure topology. Indeed the limit
exists due to the fact that A(k+1) ⊆ A(k) for k ≥ 1 and lim

k→∞
λ(A(k)) = 0, and

Tk′ |[0,1]\A(k) = Id[0,1]\A(k) for all k′ ≥ k. Likewise the limit of the inverses exists.
Now, since the maps Tk for k ≥ 0 are all measure preserving we have by by Lemma
8.2, that Rk0 is a mod 0 measure preserving invertible transformation. We define
our final transformation as T := R0.

Furthermore, define gk : A(k) → Vk as

gk|A(k)
i,j

:=

(
j−1∑

l=1

h̃(k) ◦ (T (k))l−1

)
◦ P (k)(8.9)

Note here that on A(k+1) =
⋃

i≥1 A
(k)
i,1 the function gk is defined as gk|A(k+1) = 0.

We now define for integers k1 ≥ k2 coordinate projections pk1,k2 : Vk1 → Vk2 as

pk1,k2(v, w1, ...wk1) := (v, w1, ..., wk2)(8.10)

We now define for k0 ≥ 0 functions rk0 : A(k0) → Vk0 as

rk0 :=

∞∑

j=k0

pj,k0 ◦ gj ◦ P (j−1) ◦ ... ◦ P (k0)(8.11)

We show that these series converge. Namely, for k ≥ 0 we have that SVk
≤

dim(Vk) = d + k [GS80], and so we obtain for k0 ≥ 0 that
∞∑

j=k0

‖pj,k0 ◦ gj‖∞ ≤
∞∑

k=0

‖pk,k0 ◦ gk‖∞

≤
∞∑

k=0

‖gk‖∞
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≤ ‖g0‖∞ +
∑

k≥1

max
i≥1

1≤j≤q
(k)
i

‖gk|A(k)
i,j

‖∞

(8.6)

≤ ‖g0‖∞ +
∑

k≥1

(
SVk

‖h̃(k)‖∞ + ε′k

)

≤ ‖g0‖∞ +
∑

k≥1

(2SVk
+ 1)ε′k

(8.1)

≤ ‖g0‖∞ +
∑

k≥1

ε′

2k+1

≤ ‖g0‖∞ + ε′ < ∞,

which shows that the series from (8.11) converge absolutely, and shows that rk0 ∈
L∞(A(k0);Vk0) is well-defined.

We now define our function g as g := r0 and the set X as X := A(1). We may
now prove the statements from the theorem.

1) We start by proving the bound on ‖g‖∞. For this, it follows from the previous
calculation that

‖g‖∞ ≤
∑

k≥0

‖pk,0 ◦ gk‖∞

≤ ‖g0‖∞ + ε′

≤


 max

i≥1

1≤j≤q
(0)
i

‖g0|A(0)
i,j


+ ε′

(8.6)

≤ (SV0‖h̃(0)‖∞ + ε′0) + ε′

≤ SV ‖f‖∞ + 2ε′

≤ (SV + ε)‖f‖∞,

which gives us the bound on g.

2) We shall now turn to show that h̃(k0) = rk0 ◦ Rk0 − rk0 holds for k0 ≥ 0. In
particular this will show the equation f = g ◦ T − g.

For x ∈ A(k0) and k ≥ k0 define

xk := P (k−1) ◦ ... ◦ P (k0)(x) ∈ A(k)(8.12)

Note here that xk0 is simply defined as xk0 = x. Further, for k ≥ k0 denote

B(k) :=
⋃

i≥1

A
(k)

i,q
(k)
i

If xk ∈ B(k) for some k ≥ k0, we have Tk(xk) = xk+1. Therefore, in the case that
xk ∈ B(k) for all k ≥ k0, we have that Rk0(x) ∈ ⋂k≥1 A

(k). Since Rk0 is measure

preserving and lim
k→∞

λ(A(k)) = 0 we thus have for almost all x ∈ A(k0) that there

is a N ≥ k0 with xN 6∈ B(N). Let us denote N(x) for the minimal integer (greater



A MULTIDIMENSIONAL SOLUTION TO ADDITIVE HOMOLOGICAL EQUATIONS 43

or equal to k0) with this property. We let x ∈ A(k0) be s.t. N(x) is finite. For
k = k0, ..., N(x) − 1, we have xk ∈ B(k), and so Tk(xk) = xk+1. This means that

xN(x) = TN(x)−1 ◦ ... ◦ Tk0(x)(8.13)

Next, by (8.12) and by definition of N(x), we have that xN(x) ∈ A(N(x)) \B(N(x)),

and therefore xN(x) ∈ A
(N(x))
i,j for some i ≥ 1 and 1 ≤ j ≤ q

(N(x))
i − 1. This

guarantees that

TN(x)(xN(x)) = T (N(x))(xN(x)) ∈ A
(N(x))
i,j+1(8.14)

and hence

P (N(x)) ◦ TN(x)(xN(x)) = (T (N(x)))1−(j+1)(T (N(x))(xN(x)))

= (T (N(x)))1−j(xN(x))

= P (N(x))(xN(x))

(8.15)

From (8.14) it follows moreover that TN(x)(xN(x)) ∈ A(N(x)) \A(N(x)+1). Using this
we obtain

Rk0(x)
(8.8)
= lim

M→∞
TM ◦ ... ◦ Tk0(x)

(8.13)
= lim

M→∞
TM ◦ ... ◦ TN(x)(xN(x))

= TN(x)(xN(x)) ∈ A(N(x))

(8.16)

From (8.15) and (8.16) it follows that

P (N(x)) ◦Rk0(x) = P (N(x)) ◦ TN(x)(xN(x)) = P (N(x))(xN(x))(8.17)

We note that for k ≥ k0 we have by definition that P (k) acts as the identity on
A(k+1). From this and the fact from (8.16) that Rk0(x) ∈ A(N(x)) ⊆ ... ⊆ A(k0), it
follows for k = k0, ..., N(x) − 1 that

P (k) ◦ ... ◦ P (k0) ◦Rk0(x) = Rk0(x)(8.18)

We now obtain

P (N(x)) ◦ ... ◦ P (k0) ◦Rk0(x)
(8.18)

= P (N(x)) ◦Rk0(x)

(8.17)
= P (N(x))(xN(x))

(8.12)
= P (N(x)) ◦ ... ◦ P (k0)(x)

More generally, we now find for M ≥ N(x) that

P (M) ◦ ... ◦ P (k0) ◦Rk0(x) = P (M) ◦ ... ◦ P (k0)(x)(8.19)

We now calculate

(rk0 ◦Rk0 − rk0 )(x) =

(8.11)
=

∞∑

k=k0

pk,k0 ◦ gk ◦ P (k−1) ◦ ... ◦ P (k0) ◦Rk0(x)

−
∞∑

k=1

pk,k0 ◦ gk ◦ P (k−1) ◦ ... ◦ P (k0)(x)
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(8.19)
=

N(x)∑

k=k0

pk,k0 ◦ gk ◦ P (k−1) ◦ ... ◦ P (k0) ◦Rk0(x)

−
N(x)∑

k=k0

pk,k0 ◦ gk ◦ P (k−1) ◦ ... ◦ P (k0)(x)

(8.12), (8.18)
=

N(x)∑

k=k0

pk,k0 ◦ gk ◦Rk0(x) −
N(x)∑

k=k0

pk,k0 ◦ gk(xk)

We thus find

(rk0 ◦Rk0 − rk0)(x) =

N(x)∑

k=k0

pk,k0 ◦ (gk ◦Rk0(x) − gk(xk))(8.20)

We shall now inspect the summands on the right hand side to show that this

expression equals h̃(k0)(x).

Again, by the definition of N(x) we have that xN(x) ∈ A
(N(x))
i,j for some i ≥ 1

and 1 ≤ j ≤ q
N(x)
i − 1, and by (8.14) we then have TN(x)(xN(x)) ∈ A

(N(x))
i,j+1 . Using

this fact together with the definition of gN(x) we obtain that

gN(x) ◦ TN(x)(xN(x)) − gN(x)(xN(x)) =

(8.9)
=

(
j∑

l=1

h̃(N(x)) ◦ (T (N(x)))l−1 ◦ P (N(x)) ◦ TN(x)(xN(x))

)

−
(

j−1∑

l=1

h̃(N(x)) ◦ (T (N(x)))l−1 ◦ P (N(x))(xN(x))

)

(8.15)
=

(
j∑

l=1

h̃(N(x)) ◦ (T (N(x)))l−1 ◦ P (N(x))(xN(x))

)

−
(

j−1∑

l=1

h̃(N(x)) ◦ (T (N(x)))l−1 ◦ P (N(x))(xN(x))

)

= h̃(N(x)) ◦ (TN(x))j−1 ◦ P (N(x))(xN(x))

(8.7)
= h̃(N(x)) ◦ (TN(x))j−1 ◦ (TN(x))1−j(xN(x))

= h̃(N(x))(xN(x))

Combining this calculation with (8.16) we find

h̃(N(x))(xN(x)) = gN(x) ◦Rk0(x) − gN(x)(xN(x))(8.21)

Now fix k0 ≤ k ≤ N(x)−1. Then since by definition of N(x) we have xk ∈ B(k),

we find that for some i ≥ 1 we have xk ∈ A
(k)

i,q
(k)
i

. Also we then have P (k)(xk) ∈ A
(k)

i,1

by definition of P (k). We now calculate

gk(xk)
(8.9)
=

q
(k)
i

−1∑

j=1

h̃(k) ◦ (T (k))j−1 ◦ P (k)(xk)
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=




q
(k)
i∑

j=1

h̃(k) ◦ (T (k))j−1 ◦ P (k)(xk)


−

(
h̃(k) ◦ (T (k))q

(k)
i

−1 ◦ P (k)(xk)
)

(8.2)
= h(k+1)(P (k)(xk)) −

(
h̃(k) ◦ (T (k))q

(k)
i

−1 ◦ P (k)(xk)
)

(8.7)
= h(k+1)(P (k)(xk)) −

(
h̃(k) ◦ (T (k))q

(k)
i

−1 ◦ (T (k))1−q
(k)
i (xk)

)

= h(k+1)(P (k)(xk)) − h̃(k)(xk)

(8.5), (8.12)
= pk+1,k ◦ h̃(k+1)(xk+1) − h̃(k)(xk)

We note that for k ≥ k0 we have by definition of gk that gk|A(k+1) = 0. Hence, as by
(8.16) we have that Rk0(x) ∈ A(N(x)) ⊆ .... ⊆ A(k0), we find for k = k0, ...., N(x)−1
that gk(Rk0(x)) = 0. By previous calculation we conclude for k = k0, ..., N(x) − 1
that

gk ◦Rk0(x) − gk(xk) = −gk(xk) = h̃(k)(xk) − pk+1,k ◦ h̃(k+1)(xk+1)(8.22)

Finally, we obtain

(rk0 ◦Rk0 − rk0)(x)
(8.20)

=

N(x)∑

k=k0

pk,k0 ◦ [gk ◦Rk0(x) − gk(xk)]

(8.21)
=




N(x)−1∑

k=k0

pk,k0 ◦ [gk ◦Rk0(x) − gk(xk)]




+ pN(x),k0
◦ h̃N(x)(xN(x))

(8.22)
=




N(x)−1∑

k=k0

pk,k0 ◦
[
h̃(k)(xk) − pk+1,k ◦ h̃(k+1)(xk+1)

]



+ pN(x),k0
◦ h̃N(x)(xN(x))

(8.10)
=




N(x)−1∑

k=k0

pk,k0(h̃(k)(xk)) − pk+1,k0(h̃(k+1)(xk+1))




+ pN(x),k0
(h̃N(x)(xN(x)))

= pk0,k0(h̃(k0)(xk0))

(8.10)
= h̃(k0)(xk0 )

(8.12)
= h̃(k0)(x)

This shows that for k ≥ 0 the equation h̃(k0) = rk0 ◦Rk0 − rk0 holds. As f = h̃(0),
g = r0 and T = R0 this gives in particular that f = g ◦ T − g.

3) We shall prove ergodicity of the map T . Fix k ≥ 0 and i ≥ 1. We shall first
show that the equation

R
q
(k)
i

k |
A

(k)
i,1

= Rk+1|A(k)
i,1

(8.23)
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holds. Let x ∈ A
(k)
i,j for some j = 1, .., q

(k)
i − 1 Then by definition

Tk(x) = T (k)(x) ∈ A
(k)
i,j+1(8.24)

In particular Tk(x) 6∈ A(k+1) ⊇ A(k+2) ⊇ .... Now as for M ≥ k + 1 we have that
TM is the identity on A(M−1) \A(M), we find inductively for M ≥ k that

TM ◦ ... ◦ Tk(x) = Tk(x)(8.25)

This shows us that

Rk(x)
(8.8)
= lim

M→∞
TM ◦ ...Tk(x)

(8.25)
= Tk(x)

(8.24)
= T (k)(x) ∈ A

(k)
i,j+1

Now if y ∈ A
(k)
i,1 , then it follows inductively that for j = 1, ..., q

(k)
i we have

Rj−1
k (y) = (T (k))j−1(y) ∈ A

(k)
i,j(8.26)

Now put z := R
q
(k)
i

−1

k (y), then since z ∈ A
(k)

i,q
(k)
i

we have by definition of Tk and

P (k) that

Tk(z) = P (k)(z) = (T (k))1−q
(k)
i (z)

(8.26)
= y ∈ A

(k)
i,1 ⊆ A(k+1)(8.27)

We now obtain

R
q
(k)
i

k (y) = Rk(z)

(8.8)
= lim

M→∞
TM ◦ ... ◦ Tk(z)

=
(

lim
M→∞

TM ◦ ... ◦ Tk+1

)
|A(k+1) ◦ Tk(z)

(8.8)
= Rk+1 ◦ Tk(z)

(8.27)
= Rk+1(y)

We conclude that indeed

R
q
(k)
i

k |Ai,1 = Rk+1|Ai,1(8.28)

Also we note that for j = 1, .., q
(k)
i we obtained from (8.26) that

Rj−1
k |

A
(k)
i,1

= (T (k))j−1|
A

(k)
i,1

,

Rj−1
k (A

(k)
i,1 ) = A

(k)
i,j

(8.29)

Let k ≥ 0 and let F ⊆ A(k) be a set of positive measure that is Rk-invariant.
Now since

Rk+1(F ∩ A(k+1)) =
⋃

i≥1

Rk+1(F ∩ A
(k)
i,1 )

(8.28)
=

⋃

i≥1

R
q
(k)
i

k (F ∩ A
(k)
i,1 ) ⊆ F
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and since we also know that Rk+1(A(k+1)) ⊆ A(k+1), by definition of the map Rk+1,
we find that Rk+1(F ∩ A(k+1)) ⊆ F ∩ A(k+1), which is to say that F ∩ A(k+1) is
Rk+1-invariant.

Now, we shall fix a T -invariant set D ⊆ [0, 1] of positive measure and we show
that such set must have measure λ(D) = 1. By what we just showed, it follows
inductively for k ≥ 0 that D ∩ A(k) is Rk-invariant. Now fix k ≥ 1. Using that

D ∩ A(k−1) is Rk−1-invariant we then find for i ≥ 1 and j = 1, ...., q
(k−1)
i that

Rj−1
k−1(D ∩ A

(k−1)
i,1 ) = Rj−1

k−1(D ∩ A(k−1)) ∩Rj−1
k−1(A

(k−1)
i,1 )

(8.29)
= (D ∩A(k−1)) ∩ A

(k−1)
i,j

= D ∩ A
(k−1)
i,j

(8.30)

Now for l ≥ 1 we find
∫

D∩A(k)

Z
(k)
l dλ =

∞∑

i=1

∫

D∩A
(k−1)
i,1

Z
(k)
l dλ

(8.3)
=

∞∑

i=1

∫

D∩A
(k−1)
i,1

q
(k−1)
i∑

j=1

Z
(k−1)
l ◦ (T (k−1))j−1dλ

(8.29)
=

∞∑

i=1

q
(k−1)
i∑

j=1

∫

D∩A
(k−1)
i,1

Z
(k−1)
l ◦Rj−1

k−1dλ

(8.30)
=

∞∑

i=1

q
(k−1)
i∑

j=1

∫

D∩A
(k−1)
i,j

Z
(k−1)
l dλ

=

∫

D∩A(k−1)

Z
(k−1)
l dλ

This shows for k ≥ 0 and l ≥ 1 that
∫

D∩A(k)

Z
(k)
l dλ =

∫

D∩A(0)

Z
(0)
l dλ = λ(D ∩Dl) − λ(D)λ(Dl).

We note that by step (2) of the proof we have for k ≥ 0 that h̃(k) = rk ◦Rk − rk.

Now, by (8.5) we have for k ≥ 1 that the function Z̃
(k)
k can be written as an Rk-

coboundary, since
ε′k

‖Z̃(k)
k

‖∞+1
Z̃

(k)
k = Yk ◦ Rk − Yk where Yk is the last coordinate

function of rk. From this and the fact that D∩A(k) is Rk-invariant, it follows that∫
D∩A(k) Z̃

(k)
k dλ = 0. Now as ‖Z(k)

k − Z̃
(k)
k ‖1 ≤ ε′k (see (8.4)) this gives for k ≥ 1

that

|λ(D ∩Dk) − λ(D)λ(Dk)| ≤ ǫ′k.

We shall now show that λ(D) = λ(D)2. Let ρ > 0. By regularity of the Lebesgue
measure, there exists an open U s.t. D ⊆ U and λ(U \ D) < ρ. Now U can
essentially be written as a countable union of disjoint open intervals, that is

U =

∞⋃

i=1

(ai, bi)
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with ai, bi ∈ Q. Hence, there is an integer l ≥ 1 s.t. Dl ⊆ U and λ(U \Dl) ≤ ρ. We
can moreover choose l large enough so that ε′l ≤ ρ. From the bounds on λ(U \D)
and λ(U \ Dl), we find for the symmetric difference D∆Dl that λ(D∆Dl) ≤ 2ρ.
Hence |λ(D) − λ(D ∩Dl)| ≤ 2ρ and |λ(Dl) − λ(D)| ≤ 2ρ and we find that

|λ(D) − λ(D)2| ≤ |λ(D) − λ(D ∩Dl)|
+ |λ(D ∩Dl) − λ(D)λ(Dl)|
+ |λ(D)λ(Dl) − λ(D)2|
≤ 2ρ + ε′l + 2ρλ(D)

≤ 5ρ

As ρ > 0 was arbitrary, it now follows that λ(D) = λ(D)2. This gives us λ(D) = 1
and proves the ergodicity.

4) We now prove the statement for the set X . As X = A(1) it is clear that X
has positive measure. Now to obtain the stated bound, we note that the function

g0 is such that g0|A(0)
i,1

= 0 for i ≥ 1. Since X = A(1) =
⋃

i≥1 A
(0)
i,1 this means that

g0|X = 0. Analogues to the bound ‖g‖∞ ≤ (SV + ε
2 )‖f‖∞, we now obtain

‖g‖L∞(X;V ) ≤
∑

k≥1

‖gk‖∞

≤ ε′

≤ ε

2
‖f‖∞

This gives us for k = 0, 1, 2, ... that

‖
k∑

j=0

f ◦ T j‖L∞(X;V ) ≤ ‖g ◦ T k+1 − g‖L∞(X;V )

≤ ‖g ◦ T k+1‖∞ + ‖g‖L∞(X;V )

≤ (SV + ε)‖f‖∞
which proves the statement. �

Lemma 8.5. Let f : [0, 1] −→ Rd, f1, . . . , fd be components of f . Denote by
Pi : Rd −→ R the projection onto i-th coordinate. We have

(i). f−1(X1 × · · · ×Xd) =
⋂d

i=1 f
−1
i (Xi) for any X1, . . . , Xd ⊂ R;

(ii). if f be a measurable function, then σ(f) ⊂ σ(f1) × · · · × σ(fd);
(iii). if f ∈ L∞([0, 1];Rd), then σ(f) is compact in Rd and σ(fi) ⊂ Pi(σ(f)), i =

1, . . . , d;
(iv). f ∈ L∞([0, 1];Rd) ⇔ f1, . . . , fd ∈ L∞[0, 1];
(v). if f ∈ L∞([0, 1];Rd) and the norm on Rd be such, that |Pi(·)| ≤ ‖ · ‖, then

‖fi‖∞ ≤ ‖f‖∞, i = 1, . . . , d.

Proof. First of all, let us observe that functions f1, . . . , fd are measurable if and
only if f is measurable [Bog07a, Lemma 2.12.5].

(i). Indeed, t ∈ f−1(X1 × · · · ×Xd) ⇔ f(t) ∈ X1 × · · · ×Xd ⇔ fi(t) ∈ Xi, i =

1, . . . , d ⇔ t ∈ ⋂d
i=1 f

−1
i (Xi).
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(ii). Let v ∈ σ(f), Ui be neighbourhoods of Pi(v) in R. Then U := U1×· · ·×Ud

is a neighbourhood of v. By (i), we have f−1(U) ⊂ f−1
i (Ui), i = 1, . . . , d. Therefore

λ(f−1
i (Ui)) > 0, i.e Pi(v) ∈ σ(fi), i = 1, . . . , d. Hence,

σ(f) ⊂ σ(f1) × · · · × σ(fd).

(iii). Since f ∈ L∞([0, 1];Rd), it follows that σ(f) is bounded in Rd. Thus, it
remains only prove that σ(f) is closed. Assume that σ(f) ∋ vn → v. Then for
every neighbourhood U of the point v, there exists an index n, so that vn ∈ U . In
this case, λ(f−1(U)) > 0. Hence, v ∈ σ(f), in other words σ(f) is a compact.

Let 1 ≤ i ≤ d, t ∈ σ(fi). By (i), we have

λ(f−1(Ri−1 × [t− 1

n
, t +

1

n
] × Rd−i)) = λ(f−1

i ([t− 1

n
, t +

1

n
])) > 0

for every n ∈ N. So, we have that

Kn := (Ri−1 × [t− 1

n
, t +

1

n
] × Rd−i) ∩ σ(f)

is a non-empty compact set in Rd for every n ∈ N. Observing that {Kn}∞n=1 is a
centered system of compacts, we infer that

σ(f) ∩ (Ri−1 × {t} × Rd−i) =

∞⋂

n=1

Kn 6= ∅.

In particular, t ∈ Pi(σ(f)) and therefore σ(fi) ⊂ Pi(σ(f)), i = 1, . . . , d.
(iv) follows from a combination of (ii) and (iii).
(v). There exists r ∈ σ(fi), such that ‖fi‖∞ = |r|. Due to (iii), we know that

r = Pi(v) for some v ∈ σ(f). Then ‖fi‖∞ = |r| = |Pi(v)| ≤ ‖v‖ ≤ sup{‖w‖ : w ∈
σ(f)} = ‖f‖∞. �

Proof of Theorem 1.5. Let f ∈ L∞([0, 1]) be a complex-valued mean zero function,

f1 := ℜ(f), f2 := ℑ(f) ∈ L∞[0, 1]. Then f̃ := (f1, f2) ∈ L∞([0, 1];R2) (Lemma
8.5(iv)), (on R2 we consider the Euclidean norm ‖ · ‖).

Theorem 1.3 guarantees that there exist g̃ ∈ L∞([0, 1];R2) and an ergodic mod
0 measure preserving invertible transformation T of [0, 1] that

f̃ = g̃ ◦ T − g̃, ‖g̃‖∞ ≤ (SR2 + ε)‖f̃‖∞ = ‖f‖∞.

Let g̃ = (g1, g2), then g := g1 + ig2 ∈ L∞[0, 1] (see Lemma 8.5(iv)), ‖g‖∞ = ‖g̃‖∞
and

f = g ◦ T − g, ‖g‖∞ ≤ (

√
5

2
+ ε)‖f‖∞,

since SR2 =
√
5
2 [Ban87, Theorem 2],[Ban90a]. �

Another interesting extension of Theorem 1.1 may be stated for an arbitrary
finite collection of real valued mean zero functions.

Theorem 8.6. Let f1, . . . , fn ∈ L∞[0, 1] be mean zero real-valued functions. For
any ε > 0 there exists an ergodic mod 0 measure preserving invertible transforma-
tion T and real-valued functions g1, . . . , gn ∈ L∞[0, 1] with ‖gi‖∞ ≤ (n + ε)‖fi‖∞
such that fi = gi ◦ T − gi, i = 1, . . . , n.
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Proof. Without loss of generality, we may assume that ‖fi‖∞ 6= 0, i = 1, . . . , n.
On Rn we consider the norm

‖v‖ = max
i

(|vi|), where v = (v1, . . . , vn).

Consider the function

f̃ = (f̃1, . . . , f̃n) : [0, 1] −→ Rn,

where f̃i =
fi

‖fi‖∞
, i = 1, . . . , n. It follows from Lemma 8.5(iv),(ii) that

f̃ ∈ L∞([0, 1];Rn), ‖f̃‖∞ ≤ 1.

It is straightforward that f̃ is a mean zero function.
By Theorem 1.3, there exists g̃ ∈ L∞([0, 1];Rn) and an ergodic mod 0 measure

preserving invertible transformation T of [0, 1] that

f̃ = g̃ ◦ T − g̃, ‖g̃‖∞ ≤ n + ε,

since SRn ≤ n [GS80].
Let g̃ = (g̃1, . . . , g̃n), then g̃1, . . . , g̃n ∈ L∞[0, 1] and ‖g̃i‖∞ ≤ ‖g̃‖∞, i = 1, . . . , d

(Lemma 8.5(iv),(v)). Therefore

‖g̃i‖∞ ≤ n + ε, f̃i = g̃i ◦ T − g̃i, i = 1, . . . , n.

It remains to set gi = ‖fi‖∞g̃i, i = 1, . . . , n. �
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[BG81] I. Bárány and V. S. Grinberg, On some combinatorial questions in finite-dimensional
spaces, Linear Algebra Appl. 41 (1981), 1–9. MR649713

[Bog07a] V. I. Bogachev, Measure theory. Vol. I, Springer-Verlag, Berlin, 2007. MR2267655
[Bog07b] V. I. Bogachev, Measure theory. Vol. II, Springer-Verlag, Berlin, 2007. MR2267655
[Bou86] Jean Bourgain, Translation invariant forms on lp(g) (1 < p < ∞), Ann. Inst. Fourier

(Grenoble) 36 (1986), no. 1, 97–104. MR840715
[Bro58] Felix E. Browder, On the iteration of transformations in noncompact minimal dynam-

ical systems, Proc. Amer. Math. Soc. 9 (May 1958), no. 5, 773–773 (en).
[Con90] John B. Conway, A course in functional analysis, Second, Graduate Texts in Mathe-

matics, vol. 96, Springer-Verlag, New York, 1990. MR1070713
[FK02] Tadeusz Figiel and Nigel Kalton, Symmetric linear functionals on function spaces, Func-

tion spaces, interpolation theory and related topics (Lund, 2000), 2002, pp. 311–332.
MR1943290

1902.09045


A MULTIDIMENSIONAL SOLUTION TO ADDITIVE HOMOLOGICAL EQUATIONS 51

[GS80] V. S. Grinberg and S. V. Sevast’yanov, Value of the Steinitz constant, Functional Anal-
ysis and Its Applications 14 (1980), no. 2, 125–126 (en).

[HW08] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Sixth, Oxford
University Press, Oxford, 2008. MR2445243

[KK97] M. I. Kadets and V. M. Kadets, Series in Banach spaces: Conditional and unconditional
convergence, Operator Theory, Advances and Applications, Birkhäuser Verlag, Basel ;
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