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Madhumita Sarkar,’ Roopayan Ghosh,"*? Arnab Sen,! and K. Sengupta'

1School of Physical Sciences, Indian Association for the Cultivation of Science,
2A and 2B Raja S. C. Mullick Road, Jadavpur 700032, India
?Department of Physics, FMF, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
(Dated: January 13, 2022)

We study the many-body localization (MBL) transition of Floquet eigenstates in a driven, inter-
acting fermionic chain with an incommensurate Aubry-André potential and a time-periodic hop-
ping amplitude as a function of the drive frequency wp using exact diagonalization (ED). We find
that the nature of the Floquet eigenstates change from ergodic to Floquet-MBL with increasing
frequency; moreover, for a significant range of intermediate wp, the Floquet eigenstates exhibit
non-trivial fractal dimensions. We find a possible transition from the ergodic to this multifractal
phase followed by a gradual crossover to the MBL phase as the drive frequency is increased. We
also study the fermion auto-correlation function, entanglement entropy, normalized participation
ratio (NPR), fermion transport and the inverse participation ratio (IPR) as a function of wp. We
show that the auto-correlation, fermion transport and NPR displays qualitatively different charac-
teristics (compared to their behavior in the ergodic and MBL regions) for the range of wp which
supports multifractal eigenstates. In contrast, the entanglement growth in this frequency range
tend to have similar features as in the MBL regime; its rate of growth is controlled by wp. Our
analysis thus indicates that the multifractal nature of Floquet-MBL eigenstates can be detected
by studying auto-correlation function and fermionic transport of these driven chains. We support
our numerical results with a semi-analytic expression of the Floquet Hamiltonian obtained using
Floquet perturbation theory (FPT) and discuss possible experiments which can test our predictions.

I. INTRODUCTION

It is well-known that non-interacting fermions in one-
dimension with short range hopping exhibits localiza-
tion for arbitrary weak disorder potential':?. In contrast,
fermion chains subjected to quasiperiodic potential ex-
hibit a localization-delocalization transition at a finite
potential strength®1®. Localization in such 1D fermion
chains with quasiperiodic potentials has been studied ex-
tensively in the past>1”. In recent times, such systems
have also been experimentally realized using ultracold
atom chains?°23. The simplest of such models with
quasiperiodic potential is termed as Aubry-André (AA)
model®>®. The Hamiltonian the AA model is given by

Hyxt = Ho+ Hy

J
Hy = —Ezj:cj‘(cj-&-l +¢j-1)

Hy = Z%COS(Q?T?]']'—FQZS)C;CJ' (1)
J

where c; denotes fermionic annihilation operator at site

R S . .
J» j = ¢jc; is the corresponding fermion number opera-

tor, J is the nearest-neighbor hopping amplitude of the
fermions, 1 is an irrational number usually chosen to be
the golden ratio (v/5 — 1)/2, V; is the amplitude of the
AA potential, and ¢ is an arbitrary global phase. The
model exhibits a localization-delocalization transition at
Vo=J.

More recently, non-equilibrium dynamics of interact-
ing quantum systems has been extensively studied?*3!.
A class of such studies has concentrated on periodic drive
for which the properties of the system is controlled by

its Floquet Hamiltonian®2?. The Floquet Hamiltonian

Hp of a periodically driven system contains informa-
tion about its properties at stroboscopic times nT’, where
T = 27w /wp is the drive period, wp is the drive fre-
quency, and n is an integer. This feature stems from
the fact the evolution operator for such systems satisfy
U(nT,0) = exp[—inHpT/h], where h is the Planck’s con-
stant. It is well known that an interacting quantum sys-
tems without the presence of quasiperiodic potential or
disorder also undergoes dynamical localization3?3?, ex-
hibits dynamical freezing?® 45, and can display violation
of eigenstate thermalization hypothesis (ETH)*¢"4% due
to quantum scars®’ Y whose signature can also be found
using periodic drives®?:%!. However, the origin of such
drive controlled localization or ETH violation is quite
different from that found in traditional many-body lo-
calization (MBL)%2793,

The dynamics of non-interacting quasiperiodic sys-
tems has also been studied recently®* 6. It has been
shown that a driven non-interacting fermionic chain with
an incommensurate Aubry-André potential and a time-
periodic hopping amplitude exhibits a dynamical transi-
tion separating single-particle delocalized Floquet eigen-
states from localized and multifractal states in the Flo-
quet spectrum. These multifractal Floquet eigenstates
typically occur around the transition frequency. More-
over, the driven quasiperiodic chain with AA potential,
in contrast to its non-driven counterpart, displays a sharp
mobility edge separating the delocalized and localized or
multifractal states near the transition®®. However, the
fate of these features remain unclear for the driven AA
chain in the presence of interaction.

In the absence of a drive, an interacting fermion chain



with quasiperiodic potential or random disorder under-
goes a transition between ergodic to MBL phases. The
MBL phase, which breaks ergodicity of an interact-
ing system and hence violates ETH, has been exten-
sively studied in the recent past; it is well known that
it leads to qualitatively different long-time behavior of
correlation functions which stems from the absence of
ergodicity®6:87:92:93 Moreover, the transition between
the ergodic and MBL phases in 1D interacting systems
has also attracted recent attention. Several studies have
shown the existence of a multifractal phase®” 1% near the
critical point of MBL transition. The fate of such multi-
fractality in the thermodynamic limit remains an open
question'®?; moreover the existence of such states for
driven interacting quasiperiodic systems have not been
studied so far.

The study of dynamics in systems near MBL
transition have also been discussed extensively in
literature®3:193:104  Several such experimental and the-
oretical studies have been carried out for periodi-
cally driven MBL system both experimentally and
theoretically®>19°. Moreover, slow dynamics in the er-
godic phase of a driven MBL in a kicked spin 1/2
Ising chain have been reported'?®. Recently a many-
body critical phase in the one-dimensional interacting
AA model was also predicted; such a phase turns out
to have different properties from both ergodic and MBL
phases?™197 This seems to suggest that such quantum
system may host three different phases in the thermo-
dynamic limit">!%7, Unusual correlators have also been
reported in nonequilibrium steady states in strongly in-
teracting AA model implying several dynamical phases
between the much studied thermal and many body lo-
calized phases'’®. However, none of these works have
studied the nature of the Floquet eigenstates near the
ergodic to MBL transition point.

In this work, we study a weakly interacting AA model
whose hopping strength is driven by a square pulse pro-
tocol. We show that the Floquet Hamiltonian(Hp) for
such a driven system has extended ergodic eigenstates
at low frequencies; in contrast, they are many-body lo-
calized at large drive frequency. Moreover, Hp supports
multifractal eigenstates over a range of driving frequency
wp in the intermediate drive frequency regime. Our re-
sults, within the range of system sizes which could be
numerically accessed, seem to indicate a transition from
the ergodic to this multifractal regime at a critical drive
frequency wp = w, followed by a gradual crossover to the
MBL phase as wp is increased. The multifractal eigen-
states that we obtain possess qualitatively different char-
acteristics from their ergodic and many-body localized
counterparts as is evident from computation of their IPR
and Shannon entropies. We note that such multifractal
eigenstates have been found for disordered many-body
spin and interacting AA Hamiltonians®" 99:10%; however,
to the best of our knowledge, they have not been reported
earlier for a periodically driven interacting model. Our
study therefore provides the possibility of tuning multi-

fractality of quantum many-body states using drive fre-
quency.

The other results obtained from our study are as fol-
lows. First, we study the dynamics of representative ini-
tial states in different frequency regimes under the influ-
ence of the driven Hamiltonian. We show that in the in-
termediate drive frequency regime (which supports multi-
fractal Floquet eigenstates) they display non-ergodic and
non-MBL behavior. This is evident from the study of
both fermion auto-correlation function and NPR. We find
super-exponential decay of the fermion auto-correlation
functions, albeit to a non-zero value, in this regime; the
NPR also shows such intermediate behavior. Second,
we study the half-chain entanglement entropy S which
shows a S ~ alnt + b growth with a monotonically de-
creasing with wp in the intermediate frequency regime.
This growth happens at sufficiently long times; in this
time range, the fermion auto-correlation displays steady
oscillation around a constant value. Third, we find that
the half-chain entanglement of the multifractal eigenstate
states show logarithmic growth (S ~ Int) similar to their
MBL counterparts; however, the coefficient of Int is con-
trolled by average multifractal dimension of the eigen-
states and can be tuned by wp. Fourth, we discuss the
steady state behavior of such a driven system. In par-
ticular, we study the fermion auto-correlation function
and fermion density in the steady state starting from a
domain wall initial state (for which all particles are ini-
tially localized to the left half of the fermion chain). Our
results indicate that both the auto-correlation and the
steady state fermion density displays a signature of the
multifractal dimensions and thus can be used to detect
multifractal eigenstates. Fifth, we compute the steady
state number entropy starting from a fermionic prod-
uct state and discuss its behavior as a function of the
drive frequency. Sixth, we obtain a semi-analytic Flo-
quet Hamiltonian using a Floquet perturbation theory
(FPT) which reproduces the qualitative features of the
driven system obtained using exact numerics. Our results
thus constitutes an analytic Floquet Hamiltonian which
supports multifractal many-body eigenstates. Finally, we
discuss experiments that can test our theory.

The plan of this paper is as follows. In Sec. IT we dis-
cuss the drive protocol that we used throughout our work.
Next, in Sec. IIT we chart out the phase diagram demon-
strating the existence of multifractal Floquet eigenstates
for a range of wp. In Sec. IV, we study the short and in-
termediate time dynamics of the model. We also discuss
the transport properties of the fermions in the driven in-
teracting AA chain beginning from a domain wall initial
state as well as the steady state entanglement properties.
This is followed by Sec. V where we use FPT to compute
a semi-analytic, perturbative Floquet Hamiltonian. Fi-
nally in Sec. VI we discuss the main results and point
out possible experiments which can test our theory.



II. THE HAMILTONIAN

We consider a lattice model that describes 1D fermions
with Aubry-André (AA) potential and nearest-neighbor
density-density interaction. The Hamiltonian for such a
model is

H = Hyi+ Z Vint 7741 (2)
J

where Vit is the interaction strength. We consider the
half-filling case for which the ratio of the numbers of
fermions N and the lattice sites L is fixed to N/L = 1/2.
The Hilbert space dimension is denoted by N. The sys-
tem is driven by a periodic square pulse drive protocol
described by

Jt) = =T, t<T)/2
= Jo, t>T/2 (3)

where T' = 27 /wp is the time period. In this study we
shall restrict ourselves to the parameter regime Vi <
Jo- This is done to ensure that the system remains in
the ergodic phase in the quasi-static limit.

In order to study the localization properties of
the driven chain in the Hilbert space, we first need
to evaluate the time evolution operator U(T,0) =
T; exp|—i fOT dtH(t)/h]. To this end, we define Hy =
H[J = £J]; the eigenvalues and eigenvectors of Hy is
given by

Hilgn) = enlén)- (4)

In terms of these quantities and for the square pulse drive
protocol (Eq. 3) U(T,0) is given by

U(T, 0) — o tH+T/(2h) ,—iH_T/(2h) (5)
i 6+7e_ _ _
= Ze(p q)T/(Qh)C;q |£;><£q ‘
p.q
where the coefficients c;;q* = <§;|5;> denote overlap be-

tween the two many body eigenbasis. In what follows
we shall compute ¢ and |¢£) by exact diagonalization
(ED). We also use ED to obtain eigenvalues A, and
eigenvectors |¢,,) of U(T,0) . The eigenspectrum of
the Floquet Hamiltonian Hpg is found from the relation
U(T,0) = exp[—iHpT/h] . Then one can write,

UT,0) = > Aultom) (W, A = e~ n /% (6)

F
where €,

€| ¥m).

A knowledge of U(T,0) allows us to compute stro-
boscopic dynamics starting for an arbitrary initial state
|tinit). The state at time ¢, = nT', where n is an integer
is given by

[W(nT)) = UnT,0)[vinic) = > Aciit|n,)  (7)

m

are the quasienergies which satisfy Hp|,,) =

init

where ¢ = (4, |thinit). Thus the expectation value of
any operator O at stroboscopic times are given by

(w(nT)|O|z/J(nT)> _ Zc;initci]nite—in(eg—eg)T/h
prq

X(¥p|Oltg) (8)

In the steady state, only the terms corresponding to p = ¢
in the sum (Eq. 8) contribute leading to

(O)steady = Z|C;)nit‘2<wp|0‘7/}p> (9)
P

We shall use these expressions for study of Floquet dy-
namics in subsequent sections.

III. PHASE DIAGRAM AND THE
PROPERTIES OF FLOQUET EIGENSTATES

In this section, we shall use the properties of the many-
body Floquet eigenvalues and eigenvectors to study the
phase diagram of the driven chain of length L%%1%9 in the
presence of small interaction. First we shall present an
exact numerical study for L < 18 where we have used ED
to obtain the exact Floquet eigenvalues and eigenvectors.

1. Inwverse participation ratio and fractal dimension

In order to study the drive induced transition from the
ergodic to the MBL phase in the many-body Fock space
basis, we calculate the inverse participation ratio (IPR)
defined as:

N

Iw = Y lemnl*, (10)

n=1

where ¢ = (n|Ym), [¥m) is a Floquet eigenstate, and
|n) denotes Fock states in the number basis. The IPR
I ~ N7 in d = 1 for a ergodic (MBL) phase and
thus acts as a measure of localization of a many body
eigenstate in the Fock space. This property follows from
the fact that a generic many-body ergodic eigenstate of
Hp is expected to have finite overlap with a large num-
ber of Fock states; in contrast, in the MBL phase, it is
almost diagonal in the Fock basis. Thus the behavior of
I, in the Fock space mimics that inverse participation
ratio of single particle Floquet eigenfunctions function in
real space for the non-interacting driven AA Hamiltonian
studied in Ref. 96.

The analysis of I, leads to the phase diagram shown
in top left panel of Fig. 1, where I,, is plotted as a
function of eigenvector index m/AN and wp. The plot
shows that the driven AA model with interaction ex-
hibits a transition from the ergodic to the MBL phase.
For low drive frequencies hwp/(7Jp) < 0.4, all Floquet
eigenstates are ergodic with I, ~ (1/A). A transition
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FIG. 1: Top Left Panel: Plot of I, as a function of the nor-
malized many-body eigenfunction index m/N and wp/(7Jo)
showing the localized /delocalized nature of the Floquet eigen-
states |¢n,) for L = 14. Top Right panel: Plot of 7 as
a function of m/N (after sorting in increasing order of I,,)
and wp /(7 Jo) showing the presence of delocalized states for
wp/(mJo) < 0.4, multifractal states for 0.4 < wp /(7o) < 1.5
and fully localized states for wp/(7Jo) > 1.5. The system
sizes used for extracting m» are L = 10,---,18 in steps of 2.
Bottom Left panel: Plot for In I,,, vs In L used for extracting
T2 for several representative frequencies for the state corre-
sponding to m/N = 0.5. The behavior of perfectly delocal-
ized (green dots at wp /(7 Jo) = 0.025) and localized (red dots,
wp/(mJo) = 3) can be distinguished from that of a multifrac-
tal states (blue dots wp/(rJo) = 0.5). Bottom Right Panel:
Plot of Dy as a function of wp/(7Jo) for m/N = 0.5. We
have set Jo = 1, Vo/Jo = 0.05 , Vint/Jo = 0.025 , scaled all
energies and frequencies in units of Jo (with & set to unity).
See text for details.

from ergodic eigenstates to a phase where the eigenstates
states with 0 < I,,, < 1 occur around fuwp/(Jom) ~ 0.4.
These eigenstates (which have 0 < I, < 1) persists for
a wide range of frequencies 0.4 < hwp/(rJp) < 1.5. For
hwp/(mJo) > 1.5, the Floquet eigenstates become com-
pletely localized (I,;, ~ 1) signifying the onset of the MBL
phase.

To study the nature of states having 0 < I,,, < 1, we
compute

N
17(7?) = Z|Cmn|2q (11)
n=1

where I,,, = 1Y 1t is well known I\@ ~ N =74, where
the exponent 7, is related to the fractal dimension D, by
D, = 14/(¢—1). We note that for MBL states, we expect
D, = 0 whereas for ergodic states D, = 1. The interme-
diate ¢ dependent values of Dy, that is D, = 7,/(¢ — 1),
signifies multifractality while D, is independent of ¢ for
a fractal eigenstate.

To analyze the nature of the Floquet eigenstates fur-
ther, we first plot 75 as a function of eigenvector index

4

m/N and wp in the top right panel of Fig. 1. From
this plot, we find the presence of ergodic and MBL states
for low (Aiwp/(mJo) < 0.4) and high (hwp /(7o) > 1.5)
drive frequencies respectively. In between, one finds state
with 0 < 75 < 1 signifying their non-ergodic and non-
MBL nature. We note that for this plot we sort the
eigenstates in increasing value of I,,,. Thus we find that
the states which had 0 < I,,, < 1 also have 0 < 1» < 1;
these states are natural candidate for multifractal Flo-
quet eigenstates.

In what follows, we extract 7o from the plot of In I,
versus In A as shown in the bottom left panel of Fig. 1 for
m/N = 0.5. For hwp/(7Jp) = 3 the state is many-body
localized and we have 75 ~ 0 as evident from the flat red
line in the bottom left panel of Fig. 1. In contrast, at
hwp/(mJo) = 0.025 we have 75 = 1 (green line in bottom
left panel of Fig. 1) signifying the ergodicity of the state.
In between, at hwp/(rJy) = 0.5, 72 = 0.4 (blue line
in bottom left panel of Fig. 1) indicating the presence of
non-ergodic and non-MBL nature of the state.

The plot of the multifractal dimension D, is shown in
bottom right panel of Fig. 1 for states corresponding to
m/N = 1/2. For all points in these plots, D, is obtained
from values of 7, that are, in turn, extracted from the
corresponding plots of InI,,, vs In /. From the plot, we
find that for 0.35 < hwp/(nJy) < 1.5, 0 < D, < 1;
this indicates the presence of multifractal states in the
spectrum. Other states with different m /N also show
similar features. The behavior of D, shown in the bottom
right panel of Fig. 1 indicates that the driven fermion
chain exits the ergodic phase for hwp/(7Jp) ~ 0.4. We
note here that our numerical analysis shows that D, is
almost independent of ¢ for ¢ < 4; this indicates the
possibility of fractal nature of these states. However,
ascertaining this property would require computation of
74 for all ¢ and we do not attempt this in the present
work.

2. Shannon Entropy

To further establish the presence of the ergodic , multi-
fractal and MBL phases as a function of frequency and to
find out the nature of the transition between them, we
study the Shannon entropy of the Floquet eigenstates.
The Shannon entropy of the m'" Floquet eigenstate is
given by

S,, = —;|Cmn|2ln|cmn\2, S_Alfgsm
(12)

where S is the mean entropy. We note that for
hwp/(mTo) > 1, ¢mn =~ Omn leading to S, ~ 0; thus
S — 0 indicates many-body localized eigenfunctions. In
contrast for iwp /(7Jy) < 1 when all Floquet eigenstates
are ergodic, ¢y ~ 1/ VN for all m leading to maximum
entropy of S = Spax ~ In N
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FIG. 2: Left panel: Plot of S/In A as a function of wp /(7o)
showing the presence of an ergodic to MBL transition at
wp/(wJo) ~ 0.44. Right panel: Plot of b as a function
of wp/(7Jo) showing b1 < 0 in the ergodic phase whereas
b1 > 0 in the MBL phase . The plot at right panel shows
that b changes sign at wp/(7Jo) ~ 0.45 suggesting a critical
point. All other parameters are same as in Fig. 1. See text
for details.

The left panel of Fig. 2 shows the plot of Shannon en-
tropy normalized by In N as a function of hwp/Jy for
different system sizes. Note that the plot for different
system sizes cross each other around hwp/Jy ~ 0.43m;
this seems to indicate a transition between the ergodic
and multifractal phases. To understand this feature fur-
ther, we note that the functional form of .S can be written
as?8

S = D1 1nN+b1 (13)

where Dy is the fractal dimension. It is known that b is
expected to change sign at the transition from ergodic to
MBL phase. This results in a crossing point between the
curves of S of different sizes at the critical frequency®®.
The plot of by is shown in the right panel of Fig. 2. It
indicates that delocalized phase b; < 0 whereas in the
MBL phase b; > 0.

It is also instructive to study the fluctuations of entan-
glement entropy®®, as they have been shown to provide
a useful probe of the delocalization to MBL transition.
The fluctuations of S is defined as,

AS = /(5= (5)?) (14)

It is known that AS is small deep inside both the er-
godic and MBL phases. In the ergodic phase, all Floquet
eigenstates are highly entangled with S = Sp.x. Thus
the system exhibits small fluctuation around this value.
In the MBL phase S follows an area law and is hence
small (compared to that in the ergodic phase where it
follows volume law). In addition, since all states have
low S, the fluctuations are small. In contrast, at the
transition S has a broad distribution leading to maximal
value of AS. Thus, the delocalization to MBL transition
can be detected by the location of the peak in AS.

Fig. 3 shows the plot of AS as a function of 7 Jy/fuwp
and confirms that such a peak appears at (77p)/hiwp ~
2.3. We note that the peak gets sharper with increasing
system size with a slight shift towards higher T; this indi-
cates that drive may possibly induce a transition between
ergodic and non-ergodic(multifractal) states which shall
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FIG. 3: Plot of AS as a function of (7Jo)/wp showing that
the transition from ergodic to the multifractal phase takes
place at 7 Jo/wp ~ 2.3 or wp/Jo ~ 0.434x. All other param-
eters are same as in Fig. 1. See text for details.

survive for larger L. Combining the results of D, and
AS, we seem to find that within the finite system sizes
that we can access, there is possible transition around
hwp/(mJp) ~ 1/2.3 = 0.434. A more definite charac-
terization of this possible transition would require access
to larger system size which is outside the scope of the
present work.

IV. QUANTUM DYNAMICS

In this section we discuss dynamical signatures for the
multifractal states in the region of intermediate frequen-
cies. We divide this section to study three different
timescales, namely, short, intermediate and long time
steady state. We analyze the behavior of different corre-
lation functions and entropies in different regimes. This
analysis is expected to be useful from an experimental
standpoint since achieving short-time coherent dynamics
is easier in experiments. Thus the signatures of multi-
fractal states visible in those time-scales, if any, is much
easier to detect experimentally.

A. Short-time Dynamics

In this section we shall study the evolution of a product
initial state in the basis of H in the short time regime,
ng < 10% cycles. We look for possible signatures of
multifractal eigenstates of Hpr in dynamics which are
different from the dynamics induced by either ergodic
and MBL eigenstates. Unless otherwise mentioned, all
the quantities in this section are calculated by averag-
ing over Ny product initial states. We choose Ny = 500
for sizes L = 12,14, Ny = 100 for sizes L = 16,18, and
Ny = 18[20] for L = 20[22]. We have chosen Ny such
that the error bars are smaller than the size of points.
To evolve the system, we have used standard Krylov sub-
space techniques.!?.



We show several features which appear to be inter-
mediate between ergodicity and MBL in the range of
frequencies where multifractality appears in the Floquet
spectrum. These features are present for all L studied
here and their presence is therefore expected to be inde-
pendent of L at least for the range of system sizes studied
in this work. It is important to note that while the eigen-
state properties are calculated for size L = 10 — 18, the
absence of significant deviation in results for all L < 22
seems to justify our claim of the presence of a non-ergodic
multifractal regime for larger system sizes than what can
be accessed by ED.

1. Auto-correlation function

In order to distinguish between ergodic, multifractal
and MBL phases, we resort to the measurement of tempo-
ral auto-correlation function. The auto-correlation func-
tion is a measure of retention of memory of system’s ini-
tial state®* and is given by

A (1) = (2(7; (1)) — 1) (2(7;(0)) — 1) (15)

where A;(t) is the temporal auto-correlator at site j and
time ¢t = noT and (n;(t)) = (UT(noT,0)n;(0)U(neT,0))
is the expectation value of fermion number operator at
site 7 and time t = nyT. We average this single site
operator over different sites and over different random
product initial states

At =1 |3 40 (16)

where the square brackets indicate initial state averaging.
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FIG. 4: Plot of the temporal auto-correlation function as a
function of number of cycles ng. Left panel: Solid lines cor-
respond to wp/(7Jo) = 0.1 (ergodic phase) while the dashed
lines pertains to wp/(rJo) = 2.5 (MBL phase). Right panel:
Solid lines correspond to wp/(7Jo) = 0.4 near the transition
from the ergodic to the multifractal regime while the dashed
lines pertains to wp/(7Jo) = 0.7 (multifractal regime). All
other parameters are same as in Fig. 1. See text for details.

We can distinguish between the three phases using the
A versus ng plot as indicated in Fig. 4 where ng denotes
the number of drive cycles. It is known that for short
range systems that A displays exponential decay in the
ergodic phase. This behavior is seen at low frequencies

hwp /() = 0.1, as shown in the left panel of Fig. 4
(solid lines). The temporal auto-correlation function re-
duces to 1/L rapidly over a short interval of time. Due
to the long range nature of the Floquet Hamiltonian, the
decay deviates a bit from the usual exponential decay. In
contrast, in the MBL phase at hwp /(7Jp) > 1.5, the sys-
tem is supposed to retain the memory of it’s initial state
for a very long time. For short timescales (ng < 100)
studied in this section the auto-correlation does not de-
cay significantly. This feature is seen at a high frequency
of hwp/(mJy) = 2.5 in the left panel of Fig. 4 (dashed
lines).

For the region of multifractal frequencies, it is not im-
mediately clear how A should behave as the wavefunc-
tions are extended but the system cannot be called er-
godic. Our numerical result in the right panel of Fig.
4 shows that for hwp/(7Jy) = 0.4 (solid line) and 0.7
(dashed line), A shows a decay initially but then oscil-
lates around a value which is intermediate to 1/L and
1. The value of wp which controls the multifractal di-
mensions of the eigenstates of Hp has effect on both the
rate of the decay of A and its final value. This will be
analyzed in details in subsequent sections. We note that
for all L considered,there is no significant finite size effect
as can be seen from Fig. 5. Thus the behavior of A(ng)
shown by Figs. 4 and 5 definitely points to the presence
of a non-ergodic and non-MBL phase in the region of in-
termediate drive frequencies which supports multifractal
eigenfunctions of Hp.
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FIG. 5: Plot of the temporal auto-correlation function as a
function of wp/(wJo) after a fixed number of cycles no = 80
for different L. All other parameters are same as in Fig. 1.
See text for details.

2. Normalized Participation Ratio

One of the most common quantity to characterize
delocalization-MBL transition is the measurement of the
normalized participation ratio (NPR) which provides in-
formation about the volume of phase space explored by
the system during dynamics®. The NPR is defined as

1
NM™@) = ———, (™) =InN™(t) (17
0 = e (MO=mNT@) (1)
where N is the Hilbert space dimension, ¢t € ngT, and
Pn(t) =, |dn(t)]*™ is the dynamical IPR. In Eq. 17,

dn(t) = (xnl¢') where [¢) = U(noT, 0)[¢imir) and [xn)



are the computational basis states. Here we choose sev-
eral initial states |¢)ini) and average ¢(™)(t) over all such
initial states. Also, for the rest of this section, we shall
denote ((t) = [¢®)(t)] for clarity.

We note that ((t) denotes the fraction of the configu-
ration space that the system explores. In the delocalized
phase we expect ((t) to be independent of L and to reach
the maximum value of zero when the system is uniformly
ergodic. In the high frequency regime, when the system
is in a MBL phase ((t) varies with L.
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FIG. 6: Plot of ¢ as a function of ng for wp/(vJo) = 0.1
corresponding to the ergodic regime (top left panel) and
wp/(rJo) = 0.4 near the transition from the ergodic to the
multifractal regime (top right panel). The bottom left panel
corresponds to wp /(7 Jo) = 0.7 (multifractal regime) and the
bottom right panel pertains to wp /(7 Jo) = 2.5 (MBL phase).
All other parameters are same as in Fig. 1. See text for de-
tails.

Fig. 6 shows the plot of ( as a function of num-
ber of drive cycles ngy for different frequencies. For
hwp/(mJo) = 0.1, in the delocalized region, as shown in
the top left panel of Fig. 6, P,,, — 1/A and hence ¢ — 0.
The plots for various system sizes therefore converges to-
gether to a L-independent near-zero value signifying er-
godicity. In contrast, in the localized region I,,, — 1 and
hence ¢ — —InN. Thus ¢ varies with L as shown in the
bottom right panel of Fig. 6 for hiwp/(7Jy) = 2.5.

In the intermediate frequency regime, as shown for
hwp /(o) = 0.4(0.7) in top right(bottom left) panel
of Fig. 6, we find —InN < ¢ < 0. This behavior, seen
throughout the intermediate frequency range, shows that
the phase space exploration originating from multifrac-
tal eigenstates of Hp is faster than that due MBL eigen-
states but slower than the ergodic ones. If the frequency
is closer to the ergodic region where 75 is closer to unity,
¢ for different L converge with increasing wp. However,
this behavior is different from the complete convergence
found for ergodic Floquet eigenstates. As the drive fre-
quency is increased, 7o obtained from eigenstates of Hp
decreases. This leads to an increased separation (at the
time scales studied here) of ¢ for different L; moreover,

the magnitude of change of { becomes smaller compared
to the initial value. This intermediate behavior of ¢
also points to the presence of non-ergodic and non-MBL
states in agreement that seen from analysis of A.

3. Entanglement Entropy

In this section, we introduce half-chain von-Neumann
entanglement entropy''?, denoted by S,y for the driven
chain. S,y can be defined in terms of the reduced den-
sity matrix p4 of the chain after ny drive cycles. This
is computed by tracing out the density matrix p =
Y (noT))(¥(noT)| (where [1(noT)) = U(noT,0)[tinic))
over half the chain. In terms of this reduced density ma-
trix p4, one then obtains

Son (noT) = =Tr[pa(noT) In pa(neT)]. (18)
For MBL states, S,n(noT) ~ Inng if one starts from
a homogeneous initial state!'®; in contrast S,x ~ ng

for ergodic states. For systems that support multifractal
states there have some studies of how multifractal dimen-
sions of states determine the entanglement entropy!'!'!.
For the present case, we note that the driven interacting
fermion chain supports Floquet eigenstates of different
multifractal dimensions controlled by wp. Moreover, for
a fixed wp, it supports a spectrum of 7o (Fig. 2). This
suggests that the behavior of S,y for such eigenstates
may be unconventional. However, one requires to probe
into much larger time scales than that discussed in this
subsection to probe the precise ng dependence of S, .
This will be addressed in the next subsection where we
discuss intermediate time behavior. Moreover, the mea-
surement of S,y in experiments is a difficult task. In
contrast, very recently, a different kind of entropy called
number entropy has been shown to be experimentally
measurable!'*. We shall therefore study the short time
behavior of the number entropy in the rest of this sub-
section.

In systems where the total particle number is conserved
(which holds for the present case), the von-Neumann En-
tropy can be split into two parts'!4:

SoN =S, + SN (19)
where S, is the configuration entropy and Sy is the num-
ber entropy. Sy characterizes particle number fluctua-

tion in the subsystem under consideration and is defined
as,

Sy == p(n) p(n) (20)

where p(n) is the probability of finding n fermions within
the subsystem (half chain for our case).



FIG. 7: Plot of Sy as a function of ng. The solid lines in
the left panel correspond to the ergodic phase (wp/(wJo) =
0.1) while the dashed lines pertains to the MBL phase
(wp/(mJo) = 2.5). The solid lines in the right panel cor-
respond to wp/(mJo) = 0.4 (near the transition from the
ergodic to the multifractal regime) and the dashed lines per-
tains to the multifractal phase (wp/(wJo) = 0.7). All other
parameters are same as in Fig. 1. See text for details.

It is expected that in ergodic phase, Sy ~ Int. More-
over, it has been numerically shown recently that in MBL
phase (in contrast to the previously prediction of system
size independent saturation), Sy ~ Inlnt.!13. The study
of the temporal dependence of Sy to confirm such Int
(or Inlnt) behavior will be taken up in the next subsec-
tion. Here, we plot Sy as a function of number of drive
cycles ng for different representative drive frequencies at
short-times and discuss whether there are any markers of
the multifractal phase. The solid lines in the left panel
of Fig. 7 shows the behavior of Sy for fiwp/(mJy) = 0.1
(ergodic regime); here Sy seems to display a fast log-
arithmic growth before it saturates to an L dependent
value. The dashed lines in the left panel of Fig. 7 shows
that for fwp/(nJp) = 2.5 (MBL phase) Sy is almost a
constant.

In the multifractal region , for fuwp /(7 Jp) = 0.4 (solid
line) and 0.7 (dashed line) as shown in the right panel
of Fig. 7, Sy displays a sub-logarithmic growth followed
by oscillations around a constant value. The amplitude
of these oscillations increases with L within the range of
system sizes studied here. These features distinguish the
multifractal phase from both the ergodic and the MBL
phases and shows that Sy carries signature of the multi-
fractal phase realized at intermediate drive frequencies.
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FIG. 8: Left Panel: Plot of the temporal auto-correlation
function for different frequencies within the range 0.1 <
wp/(mJo) < 2.5 (shown by the legend on the right panel)
as a function of number of drive cycles ng. Right Panel: Sim-
ilar plot of the number entropy Sy as a function of ng. All
other parameters are same as in Fig. 1. See text for details.

We conclude this section by reinforcing how the short-
time behavior of A and Sy show differences in different
regions of the drive frequency. To this end, in the left
panel of Fig. 8, we plot A for L = 22 and several repre-
sentative wp. The plot displays the nature of the decay of
A in different drive frequency regimes. The slope of the
decay gradually decreases with increasing frequency. The
position of the first dip also slowly shifts towards higher
ng with increasing wp. Thus we find that for sufficiently
large ng, A settles to a frequency dependent value. The
right panel shows a plot of S for the same set of parame-
ters and paints a similar qualitative picture. However, in
contrast to the behavior of A, here the change of growth
is much sharper. This can be attributed to the fact that
Sn changes from logarithmic to sub-logarithmic growth
with variation of wp and grows very slowly in the non-
ergodic phase which is achieved at higher wp. We note
that growth rate is frequency independent and we shall
discuss this feature in detail in the next section.

B. Intermediate-time Dynamics

In this section, we discuss the dynamics of the driven
interacting AA chain at intermediate stroboscopic time,
i.e., for ng ~ 103. This corresponds to a time scale which
is an order of magnitude higher than that of the last sec-
tion. We shall mainly concentrate on .S, , which shows
scaling laws in this time regime and also briefly discuss
the behavior of Sy. Other quantities, such as A, do not
show any additional features and shall not be addressed
here.

For this subsection, we start from the Neel or CDW
initial state given by |ig) = [1010...). Such a choice
is motivated by the results of Ref. 115, where it has
been shown that the inhomogeneities in the initial state
cause changes in the Int growth of S,y. In fermionic
systems the most homogeneous state is expected to be
the |000..) or |111...). However such initial states does not
show any time evolution since the Floquet Hamiltonian
conserves total particle number. Thus in the particle
sector N/2, which constitutes the largest fraction of the
Hilbert space, the most homogeneous product state is the
CDW state.
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FIG. 9: Top left panel: Plot of S,n as a function of ngo for
wp/(rJo) = 0.1 (ergodic regime). Top right panel: Plot of
Sun as a function of Inng for wp/(7Jo) = 0.4 near the tran-
sition from the ergodic to the multifractal regime. Bottom
left panel: Same as top right panel but for wp/(7Jo) = 0.55
(multifractal regime). Bottom right panel: Same as top right
panel but for wp/(wJo) = 1.0 (MBL phase). All other pa-
rameters are same as in Fig. 1. See text for details.

Starting from |¢g), Fig. 9 shows the growth of S,x
with ng for two different system sizes L = 16 and 24. As
seen from the top left panel for hiwp/(7Jp) = 0.1, Syn,
in the ergodic phase, shows the expected initial linear
growth followed by saturation to a L dependent value.
In contrast in the MBL phase, as shown in the bottom
right panel for hwp/(7Jp) = 1.0, we find a Int growth
of the entanglement, albeit with a very small slope. We
note that in the high frequency regime each cycle repre-
sents a much smaller time step; in addition, the higher
frequency also causes inherent dynamical localization??
which stretches the time the system requires to reach
the steady state than that expected from an equilibrium
MBL setup. This shows up as large oscillations in the
plot. We also find that L = 16 shows slightly faster
growth in late times than L = 24 for higher frequen-
cies. This can be attributed to local effects of the Aubré
Andre potential which become prominent due to local-
ization(both dynamical and many-body) as frequency is
increased.

For the multifractal region as seen from the top Right
and the bottom left panels of Fig. 9(fiwp /(7 Jp) = 0.45
and hwp/(7Jy) = 0.55 respectively), S, is still found
to follow a Inng growth. We note that the Inny growth
of S,n at these frequencies shows up approximately at
times after A has decayed towards its long-time value.
In this regime, A oscillates around a non-zero frequency
dependent steady-state value. This signifies presence of
two different timescales in the problem and shows that
the logarithmic growth of S,y need not be a feature just
of MBL states for which the auto-correlation does not
decay. Instead, it can also be feature of systems which
are intermediate between ergodic and MBL. This points
to a behavior S,y ~ alnng + b with a and b dependent

on wp.
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FIG. 10: Left Panel: Plot of Sy as a function of ng for
hwp/(mJo) = 0.1 (ergodic regime) showing In¢ behavior.
Right Panel: Plot of Sy as a function of Inng for wp /(7 Jo) =
0.55 (multifractal regime) showing that the number entropy
grows slower than Int¢ in this regime. All other parameters
are same as in Fig. 1. See text for details.

Next, in Fig. 10, we address the behavior of Sy as a
function of ng. The left panel of Fig. 10, for hwp /(7 Jp) =
0.1 (ergodic regime), we find a logarithmic increase in Sy
in the same timescales where S,y increases linearly with
no(Fig. 9). We find that Sy = 1.46 + 0.03Inng provides
an accurate description of the behavior of Sy in the er-
godic regime. It is to be noted that the initial sharp rise
in both S, and Sy is due to local effects and is not the
long-time behavior we intend to study. In this long time
regime, the growth is expected to be ~ InIn ¢ as discussed
in some recent MBL studies''®. However, with the nu-
merically accessible system sizes that we have, while we
can confirm that the entanglement growth appears to be
sub-logarithmic (the black line in the right panel of Fig.
10 shows a logarithmic fit), much larger system sizes and
time scales are required to determine the exact form of
the growth.
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FIG. 11: Left Panel: Plot of S,n/L averaged over
Int[9000/7] — Int[10000/T] cycles as a function of wp /(7 Jo)
for different L. The plots indicate crossing at wp/(mJo) ~
0.45 for different L which may signify a transition from the
ergodic to multifractal regime. Right Panel: Plot of Syn/L
averaged over Int[9000/7] — Int[10000/77] cycles as a function
of L for representative frequencies. All other parameters are
same as in Fig. 1. See text for details.

As seen from Fig. 9 the evolution of entropy can be
fit to Syn(ng) ~ alnng + b where a and b are frequency
dependent constants. We found that a decreases as the
frequency wp is increased for 0.45 < hwp/(7Jo) < 0.8
(in the multifractal regime). a decreases sharply after
the transition (around hwp/(7Jy) = 0.43) from ergodic



to the multifractal regime. For fuwp/(nJp) > 0.7 a ap-
proaches zero and becomes almost independent of wp
signifying the onset of MBL region.

Finally, we study the plot of S®¥, which is average
of Syn/L over Int[9000/T] < ng < Int[10000/T] cycles
(where Int[z] denotes nearest integer to x), as a function
of frequency. The corresponding plot is shown in the left
panel of Fig. 11. Here, instead of looking at equal number
cycles ng, we study the behavior of the quantities aver-
aged over equal span of stroboscopic time ngT. This is
done in the regime where ngT is large compared to other
time scales in the model. As seen from the plot, we find
a crossing around fiwp /(7 Jo) ~ 0.4. This is indicative of
the transition from the ergodic to the multifractal regime
as also seen earlier from the behavior of the Shannon en-
tropy. The presence of such a crossing may be understood
as follows. In this MBL regime, the system takes an ex-
ponentially long time to reach the steady state where the
average S (S*V) obeys a volume law. Thus, for a fixed
time, S,, decreases with system size since it stays closer
to its steady state value for smaller L. In contrast, for
the ergodic regime S* reaches its steady state value at
relatively short times. Hence S?V yields the steady state
value which increases with L in this regime. The fact
that one finds a crossing between S?V for different L is
indicative of a length-scale independent transition point
between the ergodic and the multifractal regimes. Fi-
nally, we note that S* ~ agL in the steady state which
indicates that it follows volume law in this regime. How-
ever, ag depends on the drive frequency and approaches
zero as we enter the MBL regime. This is indicative of
the large time scale required to approach the steady state
as discussed earlier.

C. Steady state

In this section we study the steady state properties
of the system directly from the eigenfunctions of Hp.
While in MBL regime it is extraordinarily difficult to
experimentally reach this state due to the enormous
timescales, it is still an important aspect to look at as
features embedded in Hr show up most prominently in
this regime. In what follows, we shall study fermionic
transport, auto-correlation function and the number en-
tropy in the steady state.

1. Transport

To study transport in the system, we start from a do-
main wall initial state defined in the fermion number ba-
sis by,

[Yinit) = |n1 = 1,..n0/2 = 1,np 041 = 0,..np = 0)(21)

where the system size L was considered to be an even
integer (chain with even number of sites) and n; = (72;)
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FIG. 12: Left: Plot of Ny as a function of j/L and wp /(7 Jo)
showing fermion density profile at all sites of the chain in the
steady state as a function of wp /(7w Jo). Right: Plot of Nav(T)
as a function of wp/(7wJp) in the steady state showing 0 <
Naw(T) <1 for 0.3 < wp/(nJo) < 1.5. All other parameters
are same as in Fig. 1. See text for details.

denotes fermion occupation number on the j** site. The
wavefunction after n drive cycles is then given by

W) = UnT,0) i) = Y ciite=inenT/My, ) (22)

where [¢y,) denotes Floquet eigenstates with L/2
fermions and ¢ = (1), [1ini¢). Using this state we study
the following quantities in order to further establish the

MBL transition.
Noj(T) = (2(r; —1/2))
Nu(T) = ((h;—1/2)"  (23)

o~

j=1..L

where the average is taken with respect to the steady
state reached under a Floquet drive starting from |t)init ).
In terms of the Floquet eigenfunctions |t,,) and the over-

lap coefficients ci2it (Eq. 22) these can be expressed as

Dl P ml2(y — 1/2)|¢m) (24)

Noj (T)

Nu(T) = 5 3 (I Pl (2 — 1/2)m))?

j=1..L m

We note that for the initial state |(tini|2(2; —
1/2)|'(/Jinit>|2 = —1 for j < L/2 and |<"/Jinit|2(ﬁj —
1/2)|¥imie)|? = 1 for j > L/2, while for free fermions,
the ground state with Jp > Vj, (2(7; — 1/2)) = 0. Thus
Naw(T') provides a measure of degree of delocalization of
the driven chain. A similar reasoning shows that No; — 0
for all sites in the delocalized regime and Ny; = 1[—1]
for j < [>]L/2 in the localized regime; in contrast, in the
presence of a mobility edge, Ny; takes values between 0
and 1 at different sites.

A plot of Ny as a function of j/L and wp, shown in
the left panel Fig. 12, indicates that the transition from
the ergodic to the multifractal and MBL regions leaves it
signature in fermion transport. We find that the steady
state value of Ny in the MBL (high frequency) regime is
~ =1 for the left and right halves of the chain respec-
tively. This indicates that the steady state is close to the
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FIG. 13: Left: Plot of A as a function of j/L and wp /(7 Jo)
showing the auto-correlation at all sites of the chain in the
steady state as a function of wp/(wJo). Right: Plot of A3"®
as a function of wp /(7w Jo). All other parameters are same as
in Fig. 1. See text for details.

initial state as expected in the MBL regime. In contrast,
Ny =0 for all j/L in the ergodic (low frequency) regime
which indicates that the system has reached the infinite
temperature steady state as expected for a driven ergodic
many-body system. In between, the system displays a
range values of Ny for different j which indicates the in-
termediate behavior in the multifractal regime. This is
also reflected in the plot of N,, which shows a kink in the
multifractal regime and indicates a transition between
the localized and delocalized regimes. We note here that
the steady state localization here happens due to both
MBL nature of the Floquet eigenstates and dynamical
localization due to the drive; thus fermion transport may
not solely reflect MBL properties in the high frequency
regime.

2. Auto-correlation function

We define the steady state auto correlation function at
site j as,

Al = (2n3 — 1)(2n9 — 1) (25)

where ,
n =Y lem P (Wl |Ym)
m

the steady state value of (n;) and n? = (Vinit |7 Vinit)
is the initial value. We average this single site operator
over different sites to compute A2 = £ 3 A7

The left panel of Fig. 13 shows the plot of steady state
value of the auto-correlation function as a function of
7 and wp. This value is computed by averaging over
Ny = 50 product initial states in the basis of H for
L =10 — 14 and Ny = 10 such states for L = 16. Below
hwp/(mJ) ~ 0.25, the value of autocorrelator remains

zero indicating nj =1 /2 for all j in the steady state. In

contrast at high drive frequencies, one expects n$ ~ n?

leading to A* ~ 1. In between 0.25 < hwp/(7Jp) < 1,
the behavior is intermediate to that of delocalized or
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FIG. 14: Left: Plot of (S%) as a function of wp /(7 Jo) showing
the decrease in number entropy with increasing frequency For
sizes L = 10,12, 14 we have averaged over all possible product
initial states, for L = 16 we have averaged over several random
product states such that the error bar is smaller than line
width. Right: Plot of Sy vs wp/(7wJo) for |tinit) being the
Neel state. All other parameters are same as in Fig. 1. See
text for details.

MBL phase. Thus 0 < Ay < 1 indicates that the sys-
tem is in a multifractal phase. As the frequency is in-
creased beyond that, A4; — 1 indicating the onset of lo-
calization. As before, we point out that this localization
receives contribution from both the MBL nature of the
Floquet eigenstates and the dynamical localization due
to the drive.

3. Number entropy

In this subsection we shall show the steady state be-
havior of Sy denoted by S3,. We divide the system into
two subsystems A and B and we integrate over subsys-
tem B. To compute the number entropy, we first denote
the states in the fermion number basis as |yj). Since
these are eigenstates of the number operator, for each
of them, one can compute the total number of fermions
n in subsystem A: nap = 3,4 (Xk|Rj[xk). Using the
notation of Eq. 22, we can write in the steady state

dil* = 1Owldm) P = D 1 PlOclvm)® - (26)

Using Eq. 26, we can then obtain

ps(n) = D |dif? (27)

k=k'
N
Sk = =Y m ), (85 = 5 D2 S40)

where k' denotes all states with na, = n. Here (S%)
denotes averaged number entropy where the average is
taken over IV product states. For an initial Neel state, we
denote the entropy by S3; since no averaging is involved.

Fig. 14 shows the steady state behavior of Sy for dif-
ferent drive frequencies. The left panel shows the average
behavior when we take ¢ product states: [init) = |xe)-
We compute (S%) by averaging over these states. In the



low frequency regime where ergodicity is expected, (S%)
is large and monotonically increases with L. However
with increasing frequency as the system becomes non-
ergodic, it decreases and there is no clear monotonicity
with L. This is similar to the behavior seen in Ref. 116.
A similar behavior is also seen on the right panel where
[thinit) is taken to be the Neel state. For these plots, we
have chosen the AA potential to be V; = V{ cos(2mnj+¢)
and have averaged over ¢ to smoothen out possible local
fluctuations. These local fluctuations tend to arise in Sy
at high frequencies as the steady state values heavily de-
pend on the local potentials near the half-chain cut. To
prevent this from affecting our overall result we perform
the averaging in this scenario. From the plot, we find that
at large drive frequencies (i.e., in the localized regime),
the steady state curves for different L almost overlap. In
contrast, in the ergodic regime there is a clear increase of
Sn with system size. The plot confirms that the system
is localized at high frequencies but not at intermediate
frequencies.

V. FLOQUET PERTURBATION THEORY

In this section, we aim to obtain a semi-analytic, al-
beit perturbative, understanding of several features of the
driven interacting AA model found via exact numerics us-
ing a Floquet perturbation theory which is known to pro-
vide accurate results at intermediate frequencies provided

J

<ni|H1(c‘1)|1’Lf> 2h(1 — eiTJDal(kl,q)/h)

Vo>

12

that the term in H(t) with largest amplitude is treated
exactly®?3?. In the present case, since Jy > Vo, Vine, one
needs to treat the drive term exactly. Thus one obtains

Up(t,0) = e otXwcnn/h 4 < T/9
= Tty extn/h 4 > T/2 (28)

where Ujy is the exact evolution operator corresponding
to H = Hy = Joy ,e€xu and €, = —2cosk for the
fermion chain with nearest-neighbor hopping. From Eq.
28, we find that Up(T,0) = I indicating HI(;)) = 0.

Next, we compute the first order Floquet Hamiltonian
H g). To this end, we note that within first order pertur-
bation theory, the correction to the evolution operator is
given by3?

UL(T,0) = % / AU (t,0)(Hy + Ha)Uo(t,0)
0

Y = %Ul(T, 0) (29)

The computation of HI(}) can be done in a straightfor-
ward manner following the method discussed in Refs.

32,39. The matrix elements of H}l) between Fock states

in momentum space, denoted by |ng) = \ngl) ..... n,i?), is

given by

= f(@)o,: 5
0.k T Joon(k1,q) (@) My My +q 1
s
2h(1 — el TToaz (ki kz.a)/h)
. E —igq )
+Vint A T Jocz (k1. ko, q) 5nf1,n’;l_15nf2,n’;2_15n’;zfq,71(;2*Q+157l’;1+4,n1§1+q+1
1,/%2,9

aq(k1,q) = cosky — cos(k1 + q),

where f(q) = >_, exp[—ijq] cos(2mnj). We note that for
T — 0, the Floquet Hamiltonian reduces to that ob-
tained from the first order Magnus expansion H}l) (T —
0) ~ Hp*™ = Hy + H;. However at intermediate

frequencies, the frequency dependence of HI(,U is much
more complicated. Moreover, a similar calculation shows
that Uy(T,0) = Uy(T,0)2/2; thus H? = 0 and H
represents the sole contribution to Hr to O(T?). These
features allow one to expect that it shall provide at least
qualitatively accurate description of the dynamics of the
system at intermediate drive frequencies.

Next, we use Eq. 30 to numerically compute matrix el-

ements of Hl(,l) between Fock states in the position basis.
A numerical diagonalization of the matrix thus obtained
yields the eigenvalues and eigenvectors (in the real space

g (k1,ka,q) = cosky + cosky — cos(ky + q) — cos(kz2 — q) (30)

(

Fock basis) for comparison with our exact results.

The results obtained from the above-mentioned proce-
dure is depicted in Fig. 15. From Fig. 15 we find that the
results obtained from FPT agrees with those from exact
numerics discussed in Sec. III. The top left panel of Fig.
15 shows the plot of I,,,, obtained from eigenvectors of
Hg) using Eq. 10, as a function of wp. The top right
panel shows the corresponding plot for 5. We find that
both the plots show similar multifractal behavior as seen
in Figs. 1 and 2 within similar range of wp/(7Jp). In

particular, we find that the eigenvectors of Hl(pl) exhibits
delocalized eigenstates for wp/(7Jo) < 0.45, multifrac-
tal eigenstates states for 0.45 < wp/(7Jp) < 1.5 and
localized eigenstates for wp/(wJy) > 1.5. The plot of
D, as a function of wp, shown in the bottom left panel
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FIG. 15: Top Left: Plot of I,,, as a function of the normalized
many-body eigenfunction index m/AN and wp/(7rJo) show-
ing the localized/delocalized nature of the Floquet eigenstates
[t)m) for L = 14. Top Right: Plot of 7> as a function of m/N
(after sorting in increasing order of I,,,) and wp /(7w Jo) show-
ing the presence of delocalized states for wp /(7o) < 0.45,
multifractal states for 0.45 < wp/(7Jo) < 1.5 and localized
states for wp/(7Jo) > 1.5 . The system sizes used for ex-
tracting 7 are L = 10,---,16 in steps of 2. Bottom Left :
Plot of Dy as a function of wp /(7 Jo) for m/N = 0.5. Bottom
Right: Plot of AS as a function of (7Jo)/wp. All these plots
has been done using FPT and parameters are same as in Fig.
1. See text for details.

of Fig. 15, also shows qualitatively similar behavior to
that obtained from ED shown in bottom right panel of
Fig. 1; however, we note that the change in D, signify-
ing the transition to multifractal phase is seen around
hwp/(7Jo) =~ 0.6. Thus the position of the transition is

not accurately captured by Hl(g,l). Nevertheless, H;,l) does
predict the transition to the multifractal phase as seen in
the bottom right panel of Fig. 15, where a plot of AS as a
function of wp shows a distinct peak. The peak becomes
sharper with increasing L which is consistent with the
result obtained from ED. Thus we conclude that Hg),
computed using FPT, constitutes a semi-analytic Flo-
quet Hamiltonian which shows a transition from ergodic
to multifractal regime at intermediate frequencies.

VI. DISCUSSION

In this work, we have studied a driven fermionic chain
with an AA potential and nearest neighbor density-
density interaction between the fermions. Our analysis
constitutes a detailed study, both numerical and semi-
analytic, of the Floquet Hamiltonian of such a system as
a function of drive frequency in the limit of large drive
amplitude.

We have shown that such a driven system supports
multifractal many-body Floquet eigenstates for a range
of drive frequencies in the intermediate drive frequency
regime. We find that the eigenstates are ergodic in
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the low frequency and many-body localized in the high
drive frequency regime. In between, for system sizes
accessible in our numerics, results indicate a possible
transition from ergodic to multifractal phase at wp =
we ~ 0.437/h. Upon further increasing the drive fre-
quency, the eigenstates become many-body localized via
a smooth crossover. The presence of the transition from
ergodic to the multifractal phase seems likely due to two
reasons. First, the plot of entropy fluctuation AS as a
function of T shows a peak at the transition which gets
sharper with increasing system size. Second, b; (Eq. 13)
changes sign at this point which is indicative of a transi-
tion from the ergodic phase. However, we need that one
needs finite size numerics with larger system size to settle
this issue; this has not been attempted in this work.

Our analysis indicates that several dynamic quantities
that we study can distinguish between the multifractal
ergodic and MBL phases. These include the fermion
auto-correlation function and the short time behavior of
the normalized participation ratio. The former quantity
decays sharply to zero in the ergodic phase due to spread-
ing of the system in the Hilbert space. In the MBL phase,
it remains close to its initial value since the system re-
tains its initial memory. In the multifractal phase, we
find an initial sharp decay of the auto-correlation func-
tion, followed by oscillation around a steady state value
which is intermediate between its ergodic (zero) and the
MBL (unity) counterparts. The latter quantity shows
system-size independent behavior as a function of num-
ber of drive cycles in the ergodic phase and displays a
clear L dependence in the MBL phase. In contrast, it
shows intermediate behavior with oscillations as a func-
tion of ng in the multifractal phase. We note that in
contrast, the entanglement entropy and the number en-
tropy do not distinguish between the multifractal and the
MBL eigenstates.

We have also studied steady state properties of
the driven system, starting from a domain wall ini-
tial state, by computing transport properties, auto-
correlation function and the number entropy. We find
all of these quantities reflect a change from localized
to delocalized regime as a function of drive frequency.
However, the localization seen in transport also receives
contribution from dynamical localization at high drive
frequencies®®.  We also find that near the transition
frequency, the distribution of the number density of
fermions in the steady state acquires a large width; this
suggests a possible signature of the multifractal regime
in fermion transport. A similar feature is seen in the
steady state value of auto-correlation function which sat-
isfies 0 < Ay < 1 in the multifractal phase; this is in
sharp contrast to its values zero and unity in the ergodic
and MBL phases respectively. The plot of steady state
number entropy also show a sharp drop at the transition
which becomes sharper with increasing L.

We have also obtained similar qualitative features for
the driven fermionic chain from a semi-analytic, albeit
perturbative, Floquet Hamiltonian computed using FPT.



Remarkably, this perturbative Floquet Hamiltonian re-
produces multifractality of the Floquet eigenstates and
also points towards a transition from the ergodic to the
multifractal regime. Our results thus constitutes an an-
alytic Floquet Hamiltonian which support ergodic, mul-
tifractal and MBL eigenstates depending on the drive
frequency.

Our results could be relevant for ultracold interact-
ing fermions in the presence of an 1D optical lattice®!.
The realization of the AA potential can be done using
techniques discussed in Refs. 22 and 23. The drive can
be implemented by appropriate tuning of the strength
of the laser used to create the optical lattice. We sug-
gest measurement of density-density auto-correlation of
the fermions. Our results suggest that the short time
behavior of this auto-correlation function would be suf-
ficient to distinguish between the ergodic, MBL and the
multifractal phases. In particular, in the intermediate
drive frequency regime, we expect the auto-correlation
function to exhibit a sharp drop followed by oscillations

14

around a finite non-zero value.

The fate of the multifractal phase that we obtain in
the thermodynamic limit remains an open question. The
phase remains stable within the system sizes that we
could access within ED; however, it is possible that it
might either shrink for large L leading to a direct ergodic-
MBL quantum phase transition. An investigation of the
stability of the multifractal phase in the thermodynamic
limit is beyond the scope of the present paper. We note
however, that the finite-sized chains that we study in this
paper may possibly be experimentally realized using ul-
tracold atoms in optical lattices.
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