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We generalize a tensor-network algorithm to study thermodynamic properties of self-similar spin
lattices constructed on a square-lattice frame with two types of couplings, J1 and J2, chosen to
transform a regular square lattice (J1 = J2) onto a fractal lattice if decreasing J2 to zero (the
fractal fully reconstructs when J2 = 0). We modified the Higher-Order Tensor Renormalization
Group (HOTRG) algorithm for this purpose. Single-site measurements are performed by means
of so-called impurity tensors. So far, only a single local tensor and uniform extension-contraction
relations have been considered in HOTRG. We introduce ten independent local tensors, each being
extended and contracted by fifteen different recursion relations. We applied the Ising model to the
J1 − J2 planar fractal whose Hausdorff dimension at J2 = 0 is d(H) = ln 12/ ln 4 ≈ 1.792. The
generalized tensor-network algorithm is applicable to a wide range of fractal patterns and is suitable
for models without translational invariance.

I. INTRODUCTION

Understanding of phase transitions and critical phe-
nomena plays an important role in condensed-matter
physics. Much of the research on phase transitions
has been devoted to the regular lattices. The two-
dimensional classical Ising model on the square lattice
is exactly solvable; on the other hand, there are no exact
solutions for the spin models on fractals, so these must be
studied numerically, requiring significantly higher effort
than for regular lattices.

Many condensed matter systems can be character-
ized as fractal objects; for instance, percolation clusters,
aggregates obtained from diffusion-limited growth pro-
cesses, and adsorbent surfaces [14]. Earlier studies on
fractals from the viewpoint of the renormalization flow
were carried out by Gefen et al. [9–12]. One of the main
results yields the fact that the short-range classical spin
models on finitely ramified lattices exhibit no phase tran-
sition at nonzero temperature [13, 14]. The explanation
can come from the relation of the boundary length of a
finite-size fractal to its linear size, which strongly resem-
bles one-dimensional systems. However, the Ising model
on Sierpiński carpet exhibits a phase transition [15].
There have been many attempts to study the Ising model
on Sierpiński carpet numerically by Monte Carlo com-
bined with the finite-size scaling method [16–20], includ-
ing Monte Carlo renormalization group method [21]. Sig-
nificant progress has been made recently in understand-
ing the phase transition and critical phenomena on frac-
tal lattices.

Adaptation of the Higher-Order Tensor Renormaliza-
tion Group (HOTRG) for a fractal lattice with Haus-
dorff dimension d(H) = ln 12/ ln 4 ≈ 1.792 was intro-
duced in Ref. 2. Therein, the numerical calculations were
shown to be stable with respect to the bond dimension D.
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Based on the order parameter, the critical temperature
was obtained, together with the critical magnetic expo-
nent. The density matrix spectrum exhibits an exponen-
tial decay even at the critical point, which is possible to
interpret as the system being less entangled because of
the fractal geometry. The technical details of the meth-
ods used in [2] are presented in Ref. 4. The hyper-scaling
hypothesis is briefly discussed as well. Preliminary re-
sults on two separate infinite series of fractal lattices are
presented and discussed.

In Ref. 5, HOTRG was applied to the study of the
transverse-field Ising model on the Sierpiński fractal with
the Hausdorff dimension log2 3 ≈ 1.585. Ground/state
energy and magnetization were calculated and analyzed.

In Ref. 6, HOTRG was adapted to the classical Ising
model on the Sierpiński carpet with the Hausdorff di-
mension log3 8 ≈ 1.8927 using two types of local tensors.
The position dependence of local thermodynamic func-
tions was studied by employing impurity tensors, which
were inserted at different locations on the fractal lattice.
It was found that the critical exponent associated with
the local spin polarization (spontaneous magnetization)
varies by two orders of magnitude, depending on lattice
location; however, the critical temperature Tc was found
to be positionally independent.

Compared with their regular lattice counterparts, the
geometrical details, such as lacunarity and connectiv-
ity, are the distinct key features of fractal lattices. If
we embed a fractal lattice into a regular lattice and
treat the coupling on the bonds not covered by the frac-
tal differently, we can continuously interpolate between
fractal and regular lattices. In this paper, we explore
the phase transition phenomena on a particular family
of lattices we can continuously interpolate between the
planar fractal lattice [2] with the Hausdorff dimension
d(H) = ln 12/ ln 4 ≈ 1.792 and the regular square lattice
d(H) = 2. The property of self-similarity (i. e., scale in-
variance) of the lattice is preserved throughout the trans-
formation. However, only the regular square lattice is
fully translationally invariant.
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Here, we develop a numerically stable technique, which
can also be applicable to a family of fractal lattices with
partial translational non-invariance. We call this family
of lattices J1-J2 fractals, as our technique employs two
types of couplings, J1 for bonds creating the fractal (thick
bonds in black, as depicted in Fig. 1) and the remaining
couplings J2 (thin bonds in red). A pure fractal lattice is
obtained when specified bonds are cut by setting J2 = 0,
and a regular square lattice is recovered when J1 = J2 =
1.

In order to analyze the phase transitions for the spin
models on the fractal, we generalized the extension
scheme in HOTRG [1], as we have used in Refs. 2, 4.
Rather than considering only one type of the local tensor
with the uniform extension relation, we introduce several
types of local tensors (in this case ten), each one being
extended by a different recursion relation. The recursion
relations specify how to combine different tensors in or-
der to extend the size of fractal iteratively, as required
by HOTRG. The recursion relations reflect the symme-
try of the self-similar lattices at every scale (i. e., scale
invariance) and are compatible with the framework of the
renormalization group applied to tensor network states.
The computational cost scales with the bond dimension
in the same way as in the two-dimensional HOTRG with
a constant-factor overhead.

Local observables, such as magnetization and energy,
can be implemented by means of impurity tensors. For
concreteness, we focus on the Ising model on the fractal
lattice shown in Fig. 1, which was recently studied by
a different approach [2, 4] and is meant for comparison
with the current approach, which has the potential to be
applied to various types of fractals.

We expect that the critical behavior may substantially
change as the lattice transforms from the regular lattice
to a fractal one. For example, if comparing the Ising
model on the fractal and square lattices [2, 4], the nu-
merically calculated critical temperatures Tc and associ-
ated magnetic critical exponents β differed significantly,
Tc ≈ 1.31716, β ≈ 0.0137 and Tc = 2/ ln

(
1 +
√

2
)

=
2.26919..., β = 1/8 = 0.125, respectively.

Moreover, we observed no divergence of the specific
heat at the critical temperature in the fractal-lattice Ising
model, as it has to be on the regular lattice. Therefore, at
some point during the transformation from the fractal to
the regular lattice, the character of the phase transition
must change from a weakly singular to the standard be-
havior, as known for the continuous (second-order) phase
transition.

II. MODEL REPRESENTATION

First, we construct a square lattice with two types of
bonds, the thick black (J1) and the thin red (J2), con-
necting only the nearest-neighbor lattice vertices, where
the spins are located. Hence, the fractal structure (J1)
and the remaining space (J2) are comprised of black

FIG. 1: One step of the growth process of the J1-J2 frac-
tal lattice. Empty circles represent the two-state Ising spins.
The thick (black) lines and the thin (red) lines represent the
interactions with the spin-spin coupling equal to J1 and J2,
respectively. Left: The basic 4×4 spin cluster is composed of
42 vertices, where 12 of them are connected by the J1 coupling
(in black), and the remaining four spin vertices are located in
the corners only, being surrounded by the J2 couplings (in
red). Right: Extended cluster containing 162 vertices with
122 spin vertices connected via J1 (the thick bonds in black)
and the remaining 112 (= 4 ∗ 16 + 12 ∗ 4) spin vortices with
J2 coupling only (thin bonds in red).

and red bonds, respectively. The iterative structure of
HOTRG follows an extension series of how to build up
the (fractal) lattice. It starts from a unit cell made of
4 × 4 grid of spin vertices, where 12 vertices consist of
three or four bonds J1 (in black) and the remaining 4
vertices consist of four bonds J2 placed in the corners,
as in Fig. 1 (left). After the initial 16-spin unit cell was
copied 12-times, in the next iteration step, the identical
pattern needs to be formed, as depicted for the 4×4 grid.
It then becomes a 16×16 grid with the four corners, each
made of the 16-spin vertices containing J2 couplings only,
in accord with Fig. 1 (right). Notice that by disregard-
ing the four corners, the expansion reduces to the process
studied earlier [2].

Consider the J1-J2 fractal Ising model Hamiltonian

H = −J1
∑
〈ij〉1

σiσj − J2
∑
〈ij〉2

σiσj − h
∑
i

σi , (1)

where the Ising variable σ takes the value +1 or −1, the
non-negative ferromagnetic couplings J1, J2, and h being
the uniform external magnetic field. To distinguish the
summation over J1 and J2 couplings, we separate the
two sums and denote them 〈〉1 and 〈〉2, respectively. For
brevity, we do not include the magnetic-field term h in
the following. The two local Boltzmann weights (between
two adjacent spins) are given by

W(ζ)
B (σi, σj) = exp

(
Jζ
kBT

σiσj

)
, (2)
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where the superscript index ζ = {1, 2} specifies the two
types of the coupling Jζ . Here, kB is the Boltzmann con-
stant, and T is temperature. Without loss of generality,
we will set kB = 1 in what follows next. The partition
function is expressed as

Z =
∑
{σ}

∏
〈ij〉ζ

W(ζ)
B (σi, σj) , (3)

where the sum is taken over all spin configurations {σ}.
Furthermore, the bond weightsW(ζ)

B can be re-expressed
in terms of the matrix factorization

W(ζ)
B (σi, σj) =

1∑
x=0

W
(ζ)
ξix

W
(ζ)
ξjx

, (4)

where the first matrix index ξi = (1 − σi)/2 takes the
values 0 or 1 if σi = ±1. Thus, the 2 × 2 matrix W (ζ)

has the elements

W (ζ) =

( √
cosh Jζ/kBT

√
sinh Jζ/kBT√

cosh Jζ/kBT −
√

sinh Jζ/kBT

)
. (5)

Finally, we are ready to represent the partition function
as a (non-homogeneous) tensor-network state at the nth

iteration step (n = 0, 1, 2, 3, ...)

Zn = Tr
∏
ik

T [k],n
xix

′
iyi y

′
i

(6)

with the position-dependent local tensor T [k],n specified
at lattice site ik. Each local tensor also carries informa-
tion on types of couplings J1 and J2, which is sub-indexed
by integer [k] at the vertex position i. The four sur-
rounded indices keep the fixed ordering so that xi (points
to the left), x′i (right), yi (up), and y′i (down), i.e.,

T [k],n
xix

′
iyi y

′
i

=
∑
ξ

W
(ζ)
ξxi
W

(ζ)
ξx′
i
W

(ζ)
ξyi
W

(ζ)
ξy′i

, (7)

where ζ = 1, 2 specifies the coupling constant Jζ depend-
ing on the orientation (left, right, up, down), which is de-
termined by the index ordering in the position-dependent
local tensor T .

Notice that the local tensor can take up to 24 different
configurations (four indices/legs of the two states). On
the other hand, the tensor-network state of the current
fractal structure is constructed by ten types of the local
tensors T [k],n=0, where k = 1, 2, 3, . . . , 10, as in Tab. I
(upper row). We initialize the local tensors at the zeroth

iteration step (n = 0) as

T [1],n=0
x x′ y y′ =

∑
σ

W (2)
σx W

(2)
σx′W

(2)
σy W

(2)
σy′ ,

T [2],n=0
x x′ y y′ =

∑
σ

W (2)
σx W

(2)
σx′W

(1)
σy W

(2)
σy′ ,

T [3],n=0
x x′ y y′ =

∑
σ

W (2)
σx W

(1)
σx′W

(2)
σy W

(2)
σy′ ,

T [4],n=0
x x′ y y′ =

∑
σ

W (2)
σx W

(2)
σx′W

(2)
σy W

(1)
σy′ ,

T [5],n=0
x x′ y y′ =

∑
σ

W (1)
σx W

(2)
σx′W

(2)
σy W

(2)
σy′ ,

T [6],n=0
x x′ y y′ =

∑
σ

W (2)
σx W

(1)
σx′W

(1)
σy W

(2)
σy′ , (8)

T [7],n=0
x x′ y y′ =

∑
σ

W (2)
σx W

(1)
σx′W

(2)
σy W

(1)
σy′ ,

T [8],n=0
x x′ y y′ =

∑
σ

W (1)
σx W

(2)
σx′W

(2)
σy W

(1)
σy′ ,

T [9],n=0
x x′ y y′ =

∑
σ

W (1)
σx W

(2)
σx′W

(1)
σy W

(2)
σy′ ,

T [10],n=0
x x′ y y′ =

∑
σ

W (1)
σx W

(1)
σx′W

(1)
σy W

(1)
σy′ .

A. Coarse-graining procedure

To consistently define the iterative extension proce-
dure, we need to extend each of the ten local tensors
according to the specific extension relation for the next
iteration step n+1, as graphically summarized in Tab. I.
After the extension procedure of the ten extended ten-
sors T [k],n+1 is finalized, we will apply (renormalization)
transformations to reduce degrees of freedom of the ex-
panded tensors, specified later. Multiple types of the
local tensors enter the extension relation for each tensor.
Therefore, all the extensions for the next iteration step
n + 1 need to be performed by means of those from the
previous iteration step n, which have to be kept simul-
taneously, until the entire update of the tensors is com-
pleted. (The tensor T [10] is a special case and is extended
with the copies of itself.)

As a typical example, consider the extension of the
tensor T [1] in detail. According to Tab. I, for obtaining
the new tensor T [1],n+1, we contract 16 tensors at step n
in total (four tensors of type k = 1, two of type k = 2,
two of type k = 3, two of type k = 4, two of type k = 5,
and, finally, four of type k = 10) arranged onto a 4 × 4
grid to satisfy the extended pattern k = 1 for the next



4

k 1 2 3 4 5 6 7 8 9 10

T [k],n

T [k],n+1

TABLE I: (Color online) The graphical representation of the ten local tensors T [k],n showing the way of arrangement for the

next iteration step. Upper row: Array of the local tensors at the nth iteration step T [k],n. Lower row: The respective extension
patterns specifying how the local tensors T [k],n are combined to form the extended tensors T [k],n+1 for the next iteration step.

step n+ 1

T [1],n+1

(x1x2x3x4)(x′
1x

′
2x

′
3x

′
4)(y1y2y3y4)(y′1y′2y′3y′4)

(9)

=

x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

.

Analogous extension relations hold for the remaining ten-
sors, as listed in Tab. I and more details can be found in
Appendix A.

III. RENORMALIZATION TRANSFORMATION

One step of the coarse-gaining procedure defined by
Eq. (9) increases the bond dimension as the fourth power.
It is, thus, numerically inefficient to exactly contract all
of the 16 tensors comprising one unit cell in just a single
step. A simple way of introducing an efficient approx-
imation is to perform four steps of the HOTRG-style
coarse-graining by contracting neighboring pairs of ten-
sors at each step while specifying all the adjacent pro-
jectors, being properly matched, as depicted in Fig. 2.
Notice Fig. 2, where we have introduced 15 different pro-
jectors, where six of the projectors (Ul , l = 1, 2, . . . , 6)
perform projections onto the external (renormalized) ten-

sor indices/legs, whereas nine of the projectors (Ũl ,
l = 1, 2, . . . , 9) perform internal projections inside the
4× 4 tensor grid.

Now, let us demonstrate how the internal renormal-
ization transformations Ũ1 and Ũ2 are calculated. By
contracting the tensors T [5],n and T [1],n along the y axis,
we define

M
[5,1],n
xx′yy′ =

∑
i

T [5],n
x1x

′
1y i T

[1],n
x2x

′
2i y

′ , (10)

where x = x1 ⊗ x2 and x′ = x′1 ⊗ x′2. To truncate the
tensor M [5,1],n in accord with the higher-order singular
value decomposition (HOSVD) [7], the following matrix
unfolding has to be prepared

M ′
[5,1],n
x(x′yy′) = M

[5,1],n
xx′yy′ , (11)

Ũ1U1

Ũ1

U1

U2

U3

U2

U3 U4

U4

U5

U6

U5

U6

Ũ3 Ũ4

Ũ5 Ũ6

Ũ7

Ũ8

Ũ9
Ũ2

Ũ2

Ũ3 Ũ4

Ũ5 Ũ6

Ũ7

Ũ8
Ũ9

FIG. 2: (Color online) Graphical visualization of the exten-
sion and renormalization procedures to build up the tensor
T [1],n+1 out of the appropriate tensors T [k],n. In total, 15
different projectors are introduced to perform four steps of
the coarse-graining in HOTRG. We stress the way of distin-
guishing the external projectors (Ul , l = 1, 2, . . . , 6) which
perform the projections onto the external legs from the inter-
nal projectors (Ũl , l = 1, 2, . . . , 9) which perform the internal
projections within the 4× 4 grid.

We then perform the singular-value decomposition
(SVD)

M ′
[5,1],n

= Ũ1 ω̃1Ṽ
†
1 , (12)

where Ũ1 and Ṽ †1 are unitary matrices of the respective
dimensions, and ω̃1 is a diagonal matrix with the non-
negative singular values on its diagonal ordered in the
decreasing order by convention.

To obtain the internal renormalization transformation
Ũ2, we contract the tensors T [3],n and T [1],n along the y
axis

M
[3,1],n
xx′yy′ =

∑
i

T [3],n
x1x

′
1y i T

[1],n
x2x

′
2i y

′ , (13)

where x = x1⊗x2 and x′ = x′1⊗x′2. To truncate the ten-
sor M [3,1],n by HOSVD, the following matrix unfolding
is prepared

M ′
[3,1],n
x′(yy′x) = M

[3,1],n
xx′yy′ . (14)
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Notice that this unfolding is different from Eq. (11), as we
optimize the right side of the contracted tensor M [3,1],n,
as opposed to the left side. From SVD we get

M ′
[3,1],n

= Ũ2 ω̃2Ṽ
†
2 , (15)

where Ũ2 and Ṽ †2 are unitary matrices, and ω̃2 is a diag-
onal matrix with singular values §(ordered decreasingly).
The remaining projectors are calculated similarly.

The singular values obtained by SVD in Eq. (12) or
Eq. (15) can be used to calculate the entanglement en-
tropy. Alternatively, we define the entanglement en-
tropy using the singular values obtained from SVD ap-
plied directly to the tensor T [1],n unfolded into a ma-

trix as T ′[1],nx(x′yy′) = T [1],n
xx′yy′ . Having performed the SVD

T ′
[1],n

= U ω V †, we calculate the entanglement entropy
s as follows

s = −Tr ρ ln ρ = −
D∑
ξ=1

(ωξ)
2

Ω
ln

(ωξ)
2

Ω
, (16)

where ρ is a reduced density matrix and Ω =
∑D
ξ=1(ωξ)

2

is a normalization factor such that Trρ = 1.
The projectors U and Ũ are obtained with the exten-

sion pattern (k = 1) corresponding to T [1]. However,
we can consider applying these projectors uniformly to
the remaining extension patterns with k > 1. With
such a simple setup, the projectors’ consistency at the
boundaries between all the unit cells is clearly satisfied.
If necessary, the internal projectors Ũ can be obtained
from each extension pattern separately, which can in-
crease numerical accuracy a bit, for the price of higher
computational costs (by a constant factor at most). The
external projectors U , however, have to be uniform, and
we need to decide which of the projectors to apply at the
boundaries of the unit cells.

We have encountered some numerical instabilities
when projecting the tensor patterns with k ≥ 2 using
the projectors obtained from T [1]. To improve the ap-
proximation scheme described above, we can introduce
multiple sets of the external projectors. As a simple yet
practical example, let us consider two sets of external
projectors U1

l , U2
l (l = 1, 2, . . . , 6), each containing six

HOTRG isometries. The projectors U1
l are obtained as

before (i. e. on T [1]); however, U2
l are obtained on the

homogeneous pattern defining T [10]. We can then use U1

when truncating a thick leg (black) and U2 when trun-
cating a thin leg (red). For instance, the renormalization
relations of the tensors T [1], T [2], T [6], and T [10] for the
external legs are straightforward

T [1],n+1
x x′ y y′ = x x'

y

y'

, (17)

T [2],n+1
x x′ y y′ = x x'

y

y'

, (18)

T [6],n+1
x x′ y y′ = x x'

y

y'

, (19)

T [10],n+1
x x′ y y′ = x x'

y

y'

, (20)

where the projectors U1 and U2 are depicted by dashed
thick (black) and thin (red) lines, respectively. The ex-
plicit form of Eqs. (17)–(20) is presented in Appendix B.
For completeness, we list all the projection patterns in
Appendix B as well.

A. Impurity tensors

Magnetization: We can define the impurity tensor T̃ n=0

by inserting a spin variable σ = 1 − 2ξ into the local
tensor with the pattern T [1],n=0 as follows (cf. Eq. (8))

T̃ n=0
xix

′
iyi y

′
i

=
∑
ξ

(1− 2ξ)W
(2)
ξx W

(2)
ξx′W

(2)
ξy W

(2)
ξy′ . (21)

The extension of the impurity tensor, T̃ n → T̃ n+1, is
performed by taking an average over four central vertices
in the extension pattern T [1],n+1 (cf. Eq. (9))

T̃ n+1

(x1x2x3x4)(x′
1x

′
2x

′
3x

′
4)(y1y2y3y4)(y′1y′2y′3y′4)

(22)

=
1

4


x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

+

x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

+

x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

+

x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

 ,
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where the full circles represent the inserted impurities.
The explicit form of Eq. 22 is presented in Appendix C 1.
Bond energy: The bond energy is proportional to the
correlation between two nearest-neighbor spins. We start
by defining an initial impurity tensor, as we have done for
the spontaneous magnetization (see Eq. (21)). Taking an
average over the four bond energies at the central spins,
as they correspond to the nearest-neighbor pairs. The
first extension step (n = 0) is performed by taking an
average over the four different neighboring pairs of the
impurity tensors in the extension pattern T [1],n+1

˜̃T
n=1

(x1x2x3x4)(x′
1x

′
2x

′
3x

′
4)(y1y2y3y4)(y′1y′2y′3y′4) (23)

=
1

4


x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

+

x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

+

x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

+

x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

 ,

When n > 0, we extend the bond-energy impurity tensor
according to Eq. (22). The explicit form of Eq. 23 is
presented in Appendix C 2.

IV. NUMERICAL RESULTS

We are interested in the critical behavior of the J1-J2
fractal lattice in the regime between the pure fractal lat-
tice (i. e. when J1 = 1 and J2 = 0) and the regular
square lattice (i. e. when J1 = J2 = 1). From now on,
we will set the fractal coupling to J1 = 1, only changing
0 ≤ J2 ≤ 1.

Let us first analyze the spontaneous magnetization (see
Fig. 3), where the phase transition (critical) temperature
Tc continuously increases as J2 increases. The power-law
decay of the spontaneous magnetization, obtained from
the impurity tensor T̃ n at T ≤ Tc and the external mag-
netic field h = 0, below the critical temperature follows
the scaling

〈T̃ n〉 ∝ (Tc − T )
β
. (24)

It is important to stress the fact that the critical exponent
β does not significantly vary within the entire interval of
0 ≤ J2 <∼ 1 (see inset of Fig. 3). It remains almost
identical to the case of the pure fractal lattice (J2 = 0)
where β ≈ 0.015 until the square lattice recovers (J2 =
1), where the exponent suddenly jumps to the expected
value (exact value is βsquare = 1/8 = 0.125).

Likewise, the other critical exponent δ associated with
the induced magnetization at T = Tc and a nonzero ex-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

J
2

1

1.5
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2.5
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T
C

0 0.2 0.4 0.6 0.8 1

J
2

0

0.025

0.05

0.075

0.1

0.125

0.15

β

β

δ

0 0.2 0.4 0.6 0.8 1

J
2

0

50

100

150

200

δ

FIG. 3: (Color online) Critical temperature Tc with respect
to J2 (for J1 = 1, D = 34). Inset: The J2 dependence of the
critical exponents β (red) and δ (blue).

ternal magnetic field 0 ≤ h <∼ 10−7

〈T̃ n〉
∣∣∣
T=Tc

∝ h1/δ , (25)

does not significantly vary within 0 ≤ J2 <∼ 1 (see inset
of Fig. 3). The value of δ does not change from the
pure fractal case δ ≈ 185 when J2 = 0 until the square
lattice recovers (J2 = 1), where δ jumps to the exact
value known for the square lattice δsquare = 15.

In the case of the pure fractal lattice (J2 = 0), it is
sufficient to employ a moderate value of the bond di-
mension D. Our numerical results do not change for
D ≥ 16. Analyzing the spontaneous magnetization, we
found the critical temperature Tc ≈ 1.31695 and the crit-
ical exponent β ≈ 0.0153951, which does not change for
D = (16, 18, 20, 22, 24)).

When comparing the current results with the previ-
ous study [4], the critical temperature is almost identical
(compare to Tc = 1.31717 (with D = 32), which yields
the relative difference of∼ 0.02%. On the other hand, the
magnetic exponent exhibits a larger difference at D = 32,
where β = 0.01388, thus yielding the relative difference
of ∼ 10%.

For J2 = 0.99, we got Tc ≈ 2.24964 and β ≈ 0.021
(with D = 34).

For J2 = 1 (being the regular square lattice), we got
Tc ≈ 2.26919 and β ≈ 0.128 (D = 34) in full agreement

with the exact solution Tc = 2/ ln
(
1 +
√

2
)
≈ 2.26919

and β = 1/8 = 0.125. To show the bond-dimension D
dependence, we plot the β exponent for J2 = 0.99 and
J2 = 1 in Fig. 4.

For J2 = 1.01 (i. e., inverse fractal lattice), we got
Tc ≈ 2.28875 and β ≈ 0.5 (D = 34). The critical temper-
ature Tc continues to rise, as we further increase J2 > 1.
However, the critical exponent β seems to be stabilized
around the (mean-field) value β ≈ 0.5 in the inverse frac-
tal regime when J2 > 1 (not shown, but confirmed up to
J2 = 1.1 at D = 32).
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24 26 28 30 32 34
D

0

0.05

0.1

0.15

β

J2 = 1
J2 = 0.99

β(1, 1) = 0.125

β(1, 0) ≈ 0.0154

FIG. 4: Critical exponent β as a function of the bond di-
mension D. The numerical results obtained for J2 = 1 remain
close to the exact value β = 0.125 (dashed line). If setting
J2 = 0.99, the numerical results remain close to the numer-
ical value obtained for the pure fractal case associated with
J2 = 0, where β ≈ 0.0154 (dotted line).

If studying the magnetic-field response, we introduce
a small h into the system at the critical point. For the
regular square lattice (J2 = 1), the HOTRG method re-
sults in the critical exponent δ with the relative error of
less than one percent (with D = 34). For the pure fractal
lattice, we obtained δ ≈ 185 (with D = 34). Comparing
them with the previous results [4], we found a relative
difference of ∼ 11% (the previous study yielded δ ≈ 206
at D = 12). Interestingly, close to the regular square lat-
tice from the pure fractal side (J2 = 0.99), we obtained
δ ≈ 129 (with D = 34), whereas, from the inverse fractal
side (J2 = 1.01), we found δ ≈ 5.1 (with D = 34).

In order to observe phase transition, we evaluate the
specific heat c(T ) = d

dT u(T ) by derivating the bond en-

ergy u(T ) = 〈 ˜̃T
n

〉 in accord with Eq. (23). The specific
heat c(T ) does not diverge at any value of J2 < 1, see
Fig. 5. We observe the divergence only in the case of the
regular square lattice, i.e., when J2 = 1. If 0 ≤ J2 < 1,
the maximum of the specific heat c(T ) does not corre-
spond to the critical point. Instead, we have confirmed
and numerically verified (see Refs. 2 and 4) that the max-
imum of the first numerical derivative with respect to T
corresponds to the critical point for all values of J2 < 1,
i.e.,

Tc = max
T

{
d

dT
c(T )

}
. (26)

We have also explored the vicinity of J2 = 1 and con-
sidered the cases when J2 = 0.99 and J2 = 1.01. There,
the singularity of c(T ) at Tc appears only if J2 = 1, as
depicted in Fig. 6.

In order to determine the phase phase transition cor-
rectly, we analyze entanglement entropy s(T ) introduced

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
T

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

c(
T)

J2 = 0
J2 = 0.1
J2 = 0.2
J2 = 0.3
J2 = 0.4
J2 = 0.5
J2 = 0.6
J2 = 0.7
J2 = 0.8
J2 = 0.9
J2 = 1.0

FIG. 5: Temperature dependence of the specific heat c(T )
for various J2 at D = 16. Notice a weak divergence of c(T )
for J2 < 1 in the inflection point, which refers to the correct
phase-transition temperature [2, 6].
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1.8
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49
66
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FIG. 6: The specific heat c(T ) around phase transition Tc if
J2 = 0.99, J2 = 1 and J2 = 1.01 (at D = 24).

in Eq. (16), which usually achieves full numerical con-
vergence after n ≈ 18 iteration steps. We select two
vales J2 = 0.3 and J2 = 0.5 (at D = 16) to observe
how the iteration steps n affect the entanglement entropy
s(T ), as plotted in Fig. 7 and Fig. 8, respectively. Sur-
prisingly, the converged entanglement entropy exhibits
a divergence at temperatures T ≈ 0.68 (J2 = 0.3) and
T ≈ 1.13 (J2 = 0.5) which substantially differs from
the expected fractal critical temperatures Tc ≈ 1.40405
and Tc ≈ 1.5777, respectively. We have numerically con-
firmed for additional values of 0 < J2 < 1 that the sharp
maxima of the converged entanglement entropy n > 18,
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n = 5
n = 6
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n = 12
n = 18

1.4037 1.404 1.4043
T

1.1

1.15

1.2

1.25

1.3

s(
T)

FIG. 7: Entanglement entropy s(T ) for J2 = 0.3 (D = 16)
measured at various iteration steps n. The left peak in s(T )
is converged after six iterations (n ≥ 6) and is located at

T = J2T
(J2=1)
c ≈ 0.68. The entanglement entropy is invariant

at 3 ≤ n ≤ 9 resulting in the critical point of the fractal at

T
(J2=0.3)
c ≈ 1.40405. The values of s(T ) denoted by stars

are not shown in the main plot for better visibility (for n =
7, 8, 9). Inset: the zoomed-in view, where the entropy has the

fixed point at T
(J2=0.3)
c .

typically associated with the phase transition, occurs at

T = J2T
(J2=1)
c =

2J2

ln
(
1 +
√

2
) , (27)

which corresponds to the critical temperature of the

regular-square lattice Ising model T
(J2=1)
c multiplied by

the coupling J2. The entanglement entropy s(T ) at
J2 = 0.5 exhibits an interesting behavior, see Fig. 8, after
six iterations s(T ) yields two peaks: the left peak around
T ≈ 1.13 and the right peak around the correct fractal
critical temperature T ≈ 1.5777 at J2 = 0.5. If zooming-
in around the fractal critical temperature, the entangle-
ment entropy becomes invariant in between n = 3 and
n = 9. Such fixed-point behavior captures the correct
phase transition of the fractal.

V. CONCLUSIONS AND DISCUSSIONS

We have investigated the Ising model on a continuous
family of planar self-similar lattices with two types of
coupling strengths, J1 and J2. For this purpose, we have
developed a modified HOTRG technique with multiple
types of local tensors; each one being extended with spe-
cific coarse-graining patterns. We focused on the way of
how critical behavior of the Ising model on the self-similar
lattices changes while transforming the lattice from the
fractal pattern into the regular square lattice by the con-
tinuous change of the value of J2 from zero to one (if

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
T

0.5

1

1.5

2

2.5

3

s(
T)

n = 2
n = 3
n = 4
n = 5
n = 6
n = 7*
n = 8*
n = 9*
n = 13
n = 18

1.5774 1.5777 1.578
T

1.45

1.5

1.55

1.6

s(
T)

FIG. 8: Entanglement entropy s(T ) for J2 = 0.5 (D =

16). The left peak in s(T ) appears at T = J2T
(J2=1)
c ≈ 0.68.

The entanglement entropy is invariant at T
(J2=0.5)
c ≈ 1.5777.

Inset: the detail of the entropy fixed point.

fixing J1 = 1). The critical temperature Tc , as captured
by the local order parameter (the spontaneous magne-
tization) as well as the local bond energy (the internal

energy), grows continuously from T
(J2=0)
c ≈ 1.317 (cor-

rect value for the fractal lattice as shown in Ref. [2, 4]) to

T
(J2=1)
c ≈ 2.269 (known exactly). Having analyzed the

magnetic critical exponent β when tuning 0 ≤ J2 ≤ 1,
we did not observe a continuous change of the exponent
in the interval 0.015 <∼ β ≤ 1

8 , as one would have nat-
urally expected. Instead, we determined almost a con-
stant value of β ≈ 0.015 on the entire interval 0 ≤ J2 < 1
followed by a significant discontinuous jump if J2 = 1,
where β = 1

8 . The other magnetic critical exponent
δ exhibited similar singular behavior. We measured a
constant value of δ ≈ 185 on the interval 0 ≤ J2 < 1
followed by a significant discontinuous jump if J2 = 1,
where δ = 15.

The specific heat c(T ) also followed qualitatively sim-
ilar behavior as the magnetic exponent β. A sharp sin-
gularity appeared at J2 = 1 only, whereas broadened
maxima of c(T ) did not coincide with the correct Tc de-
termined from the spontaneous magnetization in Fig. 3.
Instead, the sharp peaks of d

dT c(T ) referred to the correct
Tc (in accord with Ref. 2).

To address the question of why we observed the discon-
tinuity in β when J2 = 1 (including analogous behavior
in the specific heat), we relate the answer to the fact
that the J1-J2 model on the lattice becomes fully trans-
lationally invariant only if J1 = J2. Otherwise, the J1-J2
fractals possess a weaker type of symmetry, i. e. the
scale invariance. Based on our numerical observations,
we conjecture that there are three classes of the behavior
of the J1-J2 fractals: (i) fractal-like when J1 < J2 (with
β ≈ 0.02), (ii) regular square lattice when J1 = J2 (with
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β = 1/8), and (iii) inverse fractal when J1 > J2 (with
the mean-field value of β ≈ 0.5).

The entanglement entropy s(T ) calculated from the
singular values obtained as a byproduct of the SVD dur-
ing the renormalization of the tensors captures the global
behavior of the system. The entanglement entropy after
around n = 18 iteration steps corresponds to the regu-
lar square lattice, whose critical point uniformly scales
with the prefactor J2 and information on the fractal
structure is suppressed. However, when the number of
the iteration step in HOTRG does not reach the full
numerical convergence with spontaneously broken sym-
metry, s(T ) can capture two phase transitions: (i) the
one occurring inside the fractal structure which is in an
agreement with the local quantities such as the sponta-
neous magnetization and (ii) the phase transition taking
place on the homogeneous part at the critical temper-

ature T = J2T
(J2=1)
c , cf. Eq. (27). The former case

corresponds to the fixed-point-like behavior of the entan-
glement entropy s(T ) with respect to the iteration steps
n.

Another interesting question arises: How to think
about the dimensionality of the lattice, between the frac-
tal and the regular square lattice. We propose that it
might be meaningful to define an appropriate dimen-
sion, in this case, being a combination of both coupling
strengths J1 and J2. A generalized Hausdorff dimension
might have been defined

d1 =
ln(12J1 + 4J2)

ln 4
. (28)

If considering the scaling of the boundary bonds, the

other dimension could follow the expression

d2 = 1 +
ln(2J1 + 2J2)

ln 4
. (29)

Both formulas need to be adapted to the case when
J2 = 0. Then, irrespective of J1, we need to recover
d1 = ln 12/ ln 4 and d2 = 1.5 (see Ref. 2), provided that
J1 6= 0.

The current study opens the door to many exciting di-
rections of the research. HOTRG can be applied to the
study of the quantum Ising model on the J1-J2 fractals.
Also, the extension to three dimensions of the correct
classical spin model is possible, although computation-
ally very complex and requiring more extensive compu-
tational resources. Moreover, the technique presented in
this work is applicable to a variety of non-homogeneous
lattices, including the Sierpiński carpet. In some cases,
it might be desirable to employ different optimization
schema of the local tensors than used here; however, the
basic idea of extending multiple types of the local tensors
remains valid. Apart from the typical condensed-matter
applications, our technique might inspire new data com-
pression approaches, for example, in image processing.
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Appendix A: Extension Patterns

Each of the ten tensor types can be extended by means
of a different extension relation (see Table I). For in-
stance, the extension formula for the tensor type T [k=1]

is shown in Eq. (9).

Consider the extension of the tensor T [1] in detail. As
seen from Table I, to obtain the new tensor T [1],n+1, one
needs to contract 16 tensors in total (four tensors of type
1, two of type 2, two of type 3, two of type 4, two of type
5, and finally four of type 10) arranged on a 4 × 4 grid
according to the specified pattern

T [1],n+1

(x1x2x3x4)(x′
1x

′
2x

′
3x

′
4)(y1y2y3y4)(y′1y′2y′3y′4)

= (A1)

=
∑

abcdefghi
jklmn′opq
rstuvwx

T [10],n
x1a y1d

T [5],n
a b y2e

T [3],n
b c y3f

T [10],n

c x′1y4g

T [2],n
x2h d k T

[1],n
h i e l T

[1],n
i j f m T

[2],n

j x′2g n′

T [4],n
x3o k r T

[1],n
o p l s T

[1],n
p q m t T

[4],n

q x′3n
′ u

T [10],n

x4v r y′1
T [5],n

v w s y′2
T [3],n

w x t y′3
T [10],n

x x′4u y′4

,

Here, we list all ten extension relations in an abbrevi-
ated form where we omitted all the tensor indices except
for the tensor-type index (in square brackets) and the
iteration step n (the omitted tensor indices are identi-
cal to those in Eq. (A1) in all the remaining formulas).
The new tensors T [k],n+1 have been obtained from the
preceding iteration step, out of the tensors T [k],n, where
k = 1, 2, . . . , 10. Each extension relation specifies the
pattern of the 16 previously prepared tensors T n on a
4×4 grid (on the right-hand side of the formulas below),
which are needed to obtain the extended T n+1 tensors of
each type (on the left-hand side).

T [1],n+1 ←


T [10] T [5] T [3] T [10]

T
[2]

T
[1]

T
[1]

T
[2]

T
[4]

T
[1]

T
[1]

T
[4]

T
[10]

T
[5]

T
[3]

T
[10]


,n

,

T [2],n+1 ←


T [10] T [9] T [6] T [10]

T
[2]

T
[1]

T
[1]

T
[2]

T
[4]

T
[1]

T
[1]

T
[4]

T
[10]

T
[5]

T
[3]

T
[10]


,n

,

T [3],n+1 ←


T [10] T [5] T [3] T [10]

T
[2]

T
[1]

T
[1]

T
[6]

T
[4]

T
[1]

T
[1]

T
[7]

T
[10]

T
[5]

T
[3]

T
[10]


,n

,

T [4],n+1 ←


T [10] T [5] T [3] T [10]

T
[2]

T
[1]

T
[1]

T
[2]

T
[4]

T
[1]

T
[1]

T
[4]

T
[10]

T
[8]

T
[7]

T
[10]


,n

,

T [5],n+1 ←


T [10] T [5] T [3] T [10]

T
[9]

T
[1]

T
[1]

T
[2]

T
[8]

T
[1]

T
[1]

T
[4]

T
[10]

T
[5]

T
[3]

T
[10]


,n

,

T [6],n+1 ←


T [10] T [9] T [6] T [10]

T
[2]

T
[1]

T
[1]

T
[6]

T
[4]

T
[1]

T
[1]

T
[7]

T
[10]

T
[5]

T
[3]

T
[10]


,n

,

T [7],n+1 ←


T [10] T [5] T [3] T [10]

T
[2]

T
[1]

T
[1]

T
[6]

T
[4]

T
[1]

T
[1]

T
[7]

T
[10]

T
[8]

T
[7]

T
[10]


,n

,

T [8],n+1 ←


T [10] T [5] T [3] T [10]

T
[9]

T
[1]

T
[1]

T
[2]

T
[8]

T
[1]

T
[1]

T
[4]

T
[10]

T
[8]

T
[7]

T
[10]


,n

,

T [9],n+1 ←


T [10] T [9] T [6] T [10]

T
[9]

T
[1]

T
[1]

T
[2]

T
[8]

T
[1]

T
[1]

T
[4]

T
[10]

T
[5]

T
[3]

T
[10]


,n

,

T [10],n+1 ←


T [10] T [10] T [10] T [10]

T
[10]

T
[10]

T
[10]

T
[10]

T
[10]

T
[10]

T
[10]

T
[10]

T
[10]

T
[10]

T
[10]

T
[10]


,n

.

Appendix B: Projection Patterns

After the extension process, the external legs are pro-
jected by the two sets of the external projectors U1

l , U2
l

(l = 1, 2, . . . , 6). We use U1 when projecting thick legs
(in black) and U2 when projecting thin legs (in red).
For example, the projections for the tensor types T [k=1],
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T [k=2], T [k=6], and T [k=10] are performed as follows

T [1],n+1
x x′ y y′ = (B1)

=
∑

x1x2x3x4x5x6

x′
1x

′
2x

′
3x

′
4x

′
5x

′
6

y1y2y3y4y5y6
y′1y

′
2y

′
3y

′
4y

′
5y

′
6

T [1],n+1

(x1x2x3x4)(x
′
1x

′
2x

′
3x

′
4)(y1y2y3y4)(y

′
1y

′
2y

′
3y

′
4)

U1
1,(x1x2)x5

U1
2,(x3x4)x6

U1
5,(x5x6)x

U1
1,(x′1x

′
2)x′5

U1
2,(x′3x

′
4)x′6

U1
5,(x′5x

′
6)x′

U1
3,(y1y2)y5

U1
4,(y3y4)y6

U1
6,(y5y6)y

U1
3,(y′1y

′
2)y′5

U1
4,(y′3y

′
4)y′6

U1
6,(y′5y

′
6)y′

,

T [2],n+1
x x′ y y′ = (B2)

=
∑

x1x2x3x4x5x6

x′
1x

′
2x

′
3x

′
4x

′
5x

′
6

y1y2y3y4y5y6
y′1y

′
2y

′
3y

′
4y

′
5y

′
6

T [2],n+1

(x1x2x3x4)(x
′
1x

′
2x

′
3x

′
4)(y1y2y3y4)(y

′
1y

′
2y

′
3y

′
4)

U1
1,(x1x2)x5

U1
2,(x3x4)x6

U1
5,(x5x6)x

U1
1,(x′1x

′
2)x′5

U1
2,(x′3x

′
4)x′6

U1
5,(x′5x

′
6)x′

U2
3,(y1y2)y5

U2
4,(y3y4)y6

U2
6,(y5y6)y

U1
3,(y′1y

′
2)y′5

U1
4,(y′3y

′
4)y′6

U1
6,(y′5y

′
6)y′

,

T [6],n+1
x x′ y y′ = (B3)

=
∑

x1x2x3x4x5x6

x′
1x

′
2x

′
3x

′
4x

′
5x

′
6

y1y2y3y4y5y6
y′1y

′
2y

′
3y

′
4y

′
5y

′
6

T [6],n+1

(x1x2x3x4)(x
′
1x

′
2x

′
3x

′
4)(y1y2y3y4)(y

′
1y

′
2y

′
3y

′
4)

U1
1,(x1x2)x5

U1
2,(x3x4)x6

U1
5,(x5x6)x

U2
1,(x′1x

′
2)x′5

U2
2,(x′3x

′
4)x′6

U2
5,(x′5x

′
6)x′

U2
3,(y1y2)y5

U2
4,(y3y4)y6

U2
6,(y5y6)y

U1
3,(y′1y

′
2)y′5

U1
4,(y′3y

′
4)y′6

U1
6,(y′5y

′
6)y′

,

T [10],n+1
x x′ y y′ = (B4)

=
∑

x1x2x3x4x5x6

x′
1x

′
2x

′
3x

′
4x

′
5x

′
6

y1y2y3y4y5y6
y′1y

′
2y

′
3y

′
4y

′
5y

′
6

T [10],n+1

(x1x2x3x4)(x
′
1x

′
2x

′
3x

′
4)(y1y2y3y4)(y

′
1y

′
2y

′
3y

′
4)

U2
1,(x1x2)x5

U2
2,(x3x4)x6

U2
5,(x5x6)x

U2
1,(x′1x

′
2)x′5

U2
2,(x′3x

′
4)x′6

U2
5,(x′5x

′
6)x′

U2
3,(y1y2)y5

U2
4,(y3y4)y6

U2
6,(y5y6)y

U2
3,(y′1y

′
2)y′5

U2
4,(y′3y

′
4)y′6

U2
6,(y′5y

′
6)y′

.

Next, we abbreviate the notation by omitting all the ten-
sor indices except for the tensor-type index (in square
brackets) and the iteration step n (the omitted tensor
indices are the same as in Eq. (B1) in each of the formu-
las). For brevity, we also omit the repeated U and list the
corresponding indices in the form of the 4 × 3 matrices
instead.

T [1],n+1 ←
∑
T [1],n+1U


1, 1, 1

1, 1, 1

1, 1, 1

1, 1, 1


,

T [2],n+1 ←
∑
T [2],n+1U


1, 1, 1

1, 1, 1

2, 2, 2

1, 1, 1


,

T [3],n+1 ←
∑
T [3],n+1U


1, 1, 1

2, 2, 2

1, 1, 1

1, 1, 1


,

T [4],n+1 ←
∑
T [4],n+1U


1, 1, 1

1, 1, 1

1, 1, 1

2, 2, 2


,

T [5],n+1 ←
∑
T [5],n+1U


2, 2, 2

1, 1, 1

1, 1, 1

1, 1, 1


,

T [6],n+1 ←
∑
T [6],n+1U


1, 1, 1

2, 2, 2

2, 2, 2

1, 1, 1


,

T [7],n+1 ←
∑
T [7],n+1U


1, 1, 1

2, 2, 2

1, 1, 1

2, 2, 2


,

T [8],n+1 ←
∑
T [8],n+1U


2, 2, 2

1, 1, 1

1, 1, 1

2, 2, 2


,

T [9],n+1 ←
∑
T [9],n+1U


2, 2, 2

1, 1, 1

2, 2, 2

1, 1, 1


,

T [10],n+1 ←
∑
T [10],n+1U


2, 2, 2

2, 2, 2

2, 2, 2

2, 2, 2


.

Appendix C: Extensions of impurity tensors

1. Magnetization

The extension of the impurity tensor T̃ n is performed
by taking an average over four central spins of the impu-
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rity in the extension pattern T [1] (cf. Eq. (A1))

T̃ n+1

(x1x2x3x4)(x′
1x

′
2x

′
3x

′
4)(y1y2y3y4)(y′1y′2y′3y′4)

=

1

4

∑
abcdefghi
jklmn′opq
rstuvwx



T [10],n
x1a y1d

T [5],n
a b y2e

T [3],n
b c y3f

T [10],n

c x′1y4g

T [2],n
x2h d k T̃

n
h i e l T

[1],n
i j f m T

[2],n

j x′2g n′

T [4],n
x3o k r T

[1],n
o p l s T

[1],n
p q m t T

[4],n

q x′3n
′ u

T [10],n

x4v r y′1
T [5],n

v w s y′2
T [3],n

w x t y′3
T [10],n

x x′4u y′4

 +


T [10],n
x1a y1d

T [5],n
a b y2e

T [3],n
b c y3f

T [10],n

c x′1y4g

T [2],n
x2h d k T

[1],n
h i e l T̃

n
i j f m T

[2],n

j x′2g n′

T [4],n
x3o k r T

[1],n
o p l s T

[1],n
p q m t T

[4],n

q x′3n
′ u

T [10],n

x4v r y′1
T [5],n

v w s y′2
T [3],n

w x t y′3
T [10],n

x x′4u y′4

+


T [10],n
x1a y1d

T [5],n
a b y2e

T [3],n
b c y3f

T [10],n

c x′1y4g

T [2],n
x2h d k T

[1],n
h i e l T

[1],n
i j f m T

[2],n

j x′2g n′

T [4],n
x3o k r T

[1],n
o p l s T̃

n
p q m t T

[4],n

q x′3n
′ u

T [10],n

x4v r y′1
T [5],n

v w s y′2
T [3],n

w x t y′3
T [10],n

x x′4u y′4

+


T [10],n
x1a y1d

T [5],n
a b y2e

T [3],n
b c y3f

T [10],n

c x′1y4g

T [2],n
x2h d k T

[1],n
h i e l T

[1],n
i j f m T

[2],n

j x′2g n′

T [4],n
x3o k r T̃

n
o p l s T

[1],n
p q m t T

[4],n

q x′3n
′ u

T [10],n

x4v r y′1
T [5],n

v w s y′2
T [3],n

w x t y′3
T [10],n

x x′4u y′4


 ,

where the letter T̃ in bold is meant to stress the read-
ability of the above formula.

2. Bond energy

The expression for the bond energy begins with the
identical initial impurity tensor, as we used in the spon-

taneous magnetization (see Eq. (21)). However, the av-
eraging over the bond energy, corresponding to the spin-
spin pairs, is necessary to be performed. Therefore, the
first extension takes an average over the four different
neighboring pairs of the impurities in the extension pat-
tern T [1]

˜̃T
n=1

(x1x2x3x4)(x′
1x

′
2x

′
3x

′
4)(y1y2y3y4)(y′1y′2y′3y′4) =

1

4

∑
abcdefghi
jklmn′opq
rstuvwx



T [10],n=0
x1a y1d

T [5],n=0
a b y2e

T [3],n=0
b c y3f

T [10],n=0

c x′1y4g

T [2],n=0
x2h d k T̃

n=0
h i e l T̃

n=0
i j f m T

[2],n=0

j x′2g n′

T [4],n=0
x3o k r T

[1],n=0
o p l s T

[1],n=0
p q m t T

[4],n=0

q x′3n
′ u

T [10],n=0

x4v r y′1
T [5],n=0

v w s y′2
T [3],n=0

w x t y′3
T [10],n=0

x x′4u y′4

 +


T [10],n=0
x1a y1d

T [5],n=0
a b y2e

T [3],n=0
b c y3f

T [10],n=0

c x′1y4g

T [2],n=0
x2h d k T

[1],n=0
h i e l T̃

n=0
i j f m T

[2],n=0

j x′2g n′

T [4],n=0
x3o k r T

[1],n=0
o p l s T̃

n=0
p q m t T

[4],n=0

q x′3n
′ u

T [10],n=0

x4v r y′1
T [5],n=0

v w s y′2
T [3],n=0

w x t y′3
T [10],n=0

x x′4u y′4

+


T [10],n=0
x1a y1d

T [5],n=0
a b y2e

T [3],n=0
b c y3f

T [10],n=0

c x′1y4g

T [2],n=0
x2h d k T

[1],n=0
h i e l T

[1],n=0
i j f m T

[2],n=0

j x′2g n′

T [4],n=0
x3o k r T̃

n=0
o p l s T̃

n=0
p q m t T

[4],n=0

q x′3n
′ u

T [10],n=0

x4v r y′1
T [5],n=0

v w s y′2
T [3],n=0

w x t y′3
T [10],n=0

x x′4u y′4

+


T [10],n=0
x1a y1d

T [5],n=0
a b y2e

T [3],n=0
b c y3f

T [10],n=0

c x′1y4g

T [2],n=0
x2h d k T̃

n=0
h i e l T

[1],n=0
i j f m T

[2],n=0

j x′2g n′

T [4],n=0
x3o k r T̃

n=0
o p l s T

[1],n=0
p q m t T

[4],n=0

q x′3n
′ u

T [10],n=0

x4v r y′1
T [5],n=0

v w s y′2
T [3],n=0

w x t y′3
T [10],n=0

x x′4u y′4


 ,

If n > 0, we proceed in the bond-energy extension of
the impurity tensor according to the relation defined for
magnetization in Appendix C 1.
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