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Abstract

In this paper we present necessary and sufficient conditions to guaran-

tee the existence of invariant cones, for semigroup actions, in the space of

the k-fold exterior product. As consequence we establish a necessary and

sufficient condition for controllability of a class of bilinear control systems.
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1 Introduction

In this paper we deal with invariant cones for semigroup actions and applications
to study controllability of control systems. In our context this question is related
with the flag type of the semigroup (in particular semigroup of the control
system) and hence with the control sets of the semigroup (or of the control
system). Note that it is far from achieving global results on controllability of
bilinear control systems, that is, to find sufficient conditions for controllability
is a long term and still incomplete area of research (see e.g. Elliot [6]). But, in
the last few decades, several papers have been published showing that the Lie
theory, especially the theory of semigroups of semisimple Lie groups, provides
important tools to study controllability (see e.g. Do Rocio, San Martin and
Santana [3], Do Rocio, Santana and Verdi [4], Dos Santos and San Martin [5]
and San Martin [10]). The semigroup appears naturally in the context of control
systems, in fact, given a bilinear control system

ẋ = Ax+ uBx, x ∈ R
d \ {0}, u ∈ R, (1)

where A and B are d× d-matrices, we have that the semigroup S of the system
is given by the concatenations of solutions:

S = {etk(A+ukB)etk−1(A+uk−1B) . . . et1(A+u1B), ti ≥ 0, k ∈ N}
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and the group system has a similar definition just changing the positive times
ti by real times (see e.g Colonius and Kliemann [2] and Elliot [6]). And if we
consider A and B generating a semisimple Lie algebra g we have the possibility
to use the semisimple Lie theory to study controllability of the system, for
example in case of g = sl(d,R) we have that this system is controllable in
Rd \ {0} (Sx = Rd \ {0} for all x ∈ Rd \ {0}) if and only if S = Sl(d,R) (see [3]
and [14]).

One of the most interesting ways to prove that the above system is not
controllable is to show the existence of some S-invariant proper subset of Rd,
a trap of the system. This problem was addressed in [8], by Sachkov, but in
[3] the authors searched these invariant sets among the convex cones, since if a
set C is invariant by the system then the convex closure of C is also invariant.
In our work we follow similar approach to improve and generalize the results
contained in [3] and in particular to give a necessary and sufficient condition for
controllability of the above system when A,B ∈ sl(d,R). More specifically, we
prove that the system is controllable if and only if it does not have an invariant
proper cone in the k-fold exterior product of Rd,

∧k
Rd, for all k ∈ {1, . . . , d−1}.

In fact, this is a consequence of our following transitivity result: Let S ⊂ Sl(d,R)
be a connected semigroup with nonempty interior. Then S = Sl(d,R) if and only

if there are no S-invariant and proper cones in
∧k

Rd, for all k ∈ {1, · · · , d− 1}.
These two results are built from the theory of flag type of a semigroup.

We briefly recall the main concept or tool of this paper. Consider S ⊂
Sl(d,R) a semigroup with nonempty interior. Denote by FΘ the flag manifold
of all flags (V1 ⊂ · · · ⊂ Vk) of subspaces Vi ⊂ Rd with dim Vi = ri, i =
1, . . . , k and Θ = {r1, . . . , rk}. Take the canonical projection πΘ

Θ1
: FΘ →

FΘ1
with Θ1 ⊂ Θ and denote by F the full flag manifold with the sequence

ΘM = {1, 2, . . . , d − 1}. There is a natural (transitive) action of Sl(d,R) in
these flag manifolds, then an invariant control set, in FΘ, for the S-action is
a subset C ⊂ FΘ such that cl (Sx) = C, for all x ∈ C, and C is maximal
with this property. Recall that an invariant control set is closed and its interior
is dense on it. One important result is that in each flag manifold FΘ there
exists just one S-invariant control set. Moreover, there exist Θ ⊂ ΘM such that
π−1
Θ (CΘ) = C where πΘ : F → FΘ is the canonical projection, and CΘ, C are

the invariant control sets in F,FΘ respectively. In addition, among these flag
manifolds there is exactly one, denoted by FΘ(S), which is minimal (see [10]).
The flag manifold FΘ(S) (or Θ (S)) is called the flag (or parabolic) type of S
(for details see San Martin [9] and San Martin and Tonelli [14]). We note that
once we know the invariant control set CΘ(S) in the flag type FΘ(S) then every
invariant control set is described because for any Θ we have CΘ = πΘ (C) and
C = π−1

Θ(S)

(

CΘ(S)

)

. Given Θ = {r1, . . . , rn} with 0 < r1 < · · · < rn < d define

Θ∗ = {d− rn, . . . , d− r1}. The flag manifold FΘ∗ is said to be dual of FΘ. With
this we have that the flag type of S−1 is given by the flag manifold FΘ(S)∗ dual
to the flag type of S (see [11]).

From this semigroup theoretical development, considering S a connected
semigroup with nonempty interior and taking Θ(S) its flag type, we prove our
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main result: there exists a non-trivial S-invariant cone W ⊂ ∧k
Rd if and only if

k ∈ Θ(S). Hence, as a consequence we show the controllability and transitivity
results mentioned above.

About the structure of this paper, in Section 2 we establish the main concepts
necessary for the next sections. In the third section we study the invariance of
cones in

∧k
Rd. In Section 4 we have the main results of this paper, in special

we present necessary and sufficient conditions for the existence of these invariant
cones. In Section 5 we extend the previous results to convex set instead of cones.
And finally, in the last section we present some examples where the fundamental
conditions are verified using a computational implementation created by the
authors.

2 Preliminaries

In this section we collect some concepts and facts about flag manifolds related
with the Sl(d,R) actions. In particular we are interested in some dynamical
properties originating from the action of semigroups S ⊂ Sl(d,R) on flag mani-
folds (for details see San Martin [12] and [13]).

Now we complement the previous introduction about flag manifolds and con-
trol sets. Recall that the flag manifolds FΘ are compact and the minimal flag

manifolds are the Grassmannians FΘ = Gk(d), where Θ = {k}. A particular
case, when k = 1, is the projective space Pd−1 = G1(d).

From now on, in this section we discuss the special case Gk(d), 1 ≤ k ≤ d−1.
In this work it is convenient represent Gk(d) in the following algebraic way. Let
Bk(d) be the set of d × k matrices of rank k. Define in Bk(d) the following
equivalence relation: p ∼ q if exists a ∈ Gl(k,R) with q = pa. In other words,
p ∼ q if, and only if, the columns of p and q generate the same subspace of
Rd. Then we can see Gk(d) as Bk(d)/ ∼. Denote the elements of Gk(d) by [p].
There is a natural action ρk of the Lie group Sl(d,R) on Gk(d), which is given
by ρk(g, [p]) = [gp].

Now take an arbitrary basis B of Rd and NB the nilpotent group of lower
triangular matrices (with respect to B) with ones on the main diagonal. The
decomposition of Gk(d) into NB-orbits is called Bruhat decomposition of
Gk(d), moreover if we change the basis the decomposition also changes. There
is just a finite number of these orbits, NB[p] with [p] ∈ Gk(d). It is well known
that exists only one open and dense orbit, NB[p0], where [p0] is the subspace
spanned by the first k basic vectors (see [12]). We have that NB[p0] can be
written as

[

Ik
X

]

with Ik the k × k identity and X an arbitrary (d− k)× k matrix. Taking

η =

[

A1 0
Y A2

]

∈ NB
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with A1 and A2 invertible, it follows that

ρk(η, [p0]) = [ηp0] =

[

A1 0
Y A2

] [

Ik
0

]

=

[

A1

Y

]

=

[

Ik
Y A−1

1

]

.

Note that this orbit is diffeomorphic to euclidean spaces.
Another important concept here is the split regular or just regular ele-

ment, that is the h ∈ Sl(d,R) with positive and distinct eigenvalues, where in
some basis (denoted by B(h)), h = diag{λ1, . . . , λd} with λ1 > · · · > λd > 0.
Considering the action onGk(d), the fixed points for h are the subspaces spanned
by k basic vectors. Moreover, these fixed points are hyperbolic and with respect
to B(h), the stable manifolds are the NB-orbits. One interesting dynamical
property is that the stable manifold of the subspace [p0] is open and dense so
that it is the unique attractor for h and hm[q]→ [p0] for generic [q]. Now taking
h−1 instead of h and reverting the order of the basis, it follows that h has also
just one repeller, and it is the subspace spanned by the last k basic vectors
{ed−k+1, . . . , ed}.

We recall other dynamical facts. Let S ⊂ Sl(d,R) be a semigroup with
nonempty interior and denote by reg(S) the set of regular elements in intS. As
before take Ck the S-invariant control set in Gk(d), its uniqueness implies that

Ck =
⋂

[p]∈Gk(d)

cl(S[p]).

According to the above comments, for h ∈ reg(S) we have that b{k}(h) = [p0]
and Ck ⊂ NB(h)[p0] if k ∈ Θ(S). The set of transitivity of an invariant control
set Ck is the set C0

k of the fixed points which are the attractors for elements in
reg(S) (see [10]). Specifically, we have that for any [p] ∈ C0

k , there exists a basis
B(h) = {e1, . . . , ed} of Rd and h = diag{λ1, . . . , λd} with λ1 > · · · > λd > 0 (in
this basis), such that h ∈ intS and [p] = 〈e1, . . . , ek〉, i.e., [p] is the attractor of h.
From this fact it follows that the set of attractors of elements in reg(S) coincides
with C0

k and this set is dense in Ck. Hence reg(S) is dense in intS and Ck is
formed, in some sense, by attractors for these regular elements. This is a kind of
converse to the fact that [p] ∈ Ck if [p] is the attractor of a element h ∈ reg(S).
Therefore Ck is contained in the open Bruhat component corresponding to B(h).
Another interesting result in this context is that Ck = Gk(d) for some k if and
only if S is transitive on Gk(d). On the other hand, we have that if S is a proper
semigroup of Sl(d,R), then Ck 6= Gk(d) for any k ∈ {1, . . . , d− 1} and S is not
transitive on Gk(d) (see [14]).

We finish this section recalling some necessary facts about tensorial product
and Grassmanianns.

For k ∈ {1, . . . , d}, denote by
∧k

Rd the k-fold exterior product of Rd and
let Fk(d) be the set of all k multi-index I = {i1, . . . , ik} ⊂ {1, . . . , d} with
1 ≤ i1 < · · · < ik ≤ d. It is well known that if we fix a basis B = {e1, . . . , ed},
then {eI := ei1 ∧ · · · ∧ eik ; I = {i1, . . . , ik} ∈ Fk(d)} is a basis of

∧k
R

d. Along
the text, we use the notation D to designate the set of all decomposable elements
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of
∧k

Rd, that is, the set of elements that can be written as u1 ∧ · · · ∧ uk with
ui ∈ Rd.

The manifoldGk(d), k ∈ {1, . . . , d−1}, can be seen as a compact submanifold

of the projective space P
(

∧k
Rd
)

of
∧k

Rd via Plücker embedding ϕ : Gk(d)→
P

(

∧k
R

d
)

, ϕ([p]) = [u1 ∧ · · · ∧ uk], where p = [u1 . . . uk] is a d × k matrix

and [u1 ∧ · · · ∧ uk] ∈ P

(

∧k
Rd
)

denotes the class of all non-zero multiples of

u1 ∧ · · · ∧ uk ∈
∧k

Rd.

Identifying the Grassmaniann Gk(d) as a subset of P
(

∧k
Rd
)

, we can write

the action ρk of Sl(d,R) on Gk(d) as

ρk(g, [u1 ∧ · · · ∧ uk]) = [gu1 ∧ · · · ∧ guk]

and denote ρk(g, [p]) simply by g[p] .

In the next sections π :
(

∧k
R

d
)

\{0} → P

(

∧k
R

d
)

represents the canonical

projection.

3 Cones in k-fold exterior product

From now on we consider a connected semigroup S ⊂ Sl(d,R) with nonempty
interior. In this work a cone means a closed convex cone in a finite dimensional
vector space V and if not otherwise specified the cones are proper and non-
trivial. Remember that a cone W is pointed ifW ∩−W = {0} and generating

if intW 6= ∅. Our main interest is to study the S-invariance of this kind of cones
in
∧k

Rd, with 1 ≤ k ≤ d− 1.
In this section we present some technical and useful results about cones. In

particular, we show that any S-invariant cone W ⊂ ∧k
Rd contains a decom-

posable element and it is pointed and generating (see the following Propositions
4 and 5). To obtain these results we need some lemmas.

Lemma 1 Let F : V1 → V2 be an analytic map where V1 and V2 are finite
dimensional vector spaces. Assume that for a nonempty open set U ⊂ V1 there
is a subspace V ⊂ V2 such that F (U) ⊂ V . Then F (V1) ⊂ V .

Proof. The canonical projection p : V2 → V2/V is linear and then analytic.
Therefore, p ◦ F is an analytic function, and p ◦ F (U) = 0 + V , since p(x) ∈ V
for all x ∈ U . Therefore, p ◦F (x) = 0+V , for every x ∈ V1, because the unique
analytic map between finite dimensional vector spaces which vanishes on an
open subset of the domain is the null map. Hence, F (x) ∈ V , for all x ∈ V1.

Lemma 2 Let V be a d-dimensional vector space and take the cone W ⊂ V .
Then W is generating if, and only if, W is not contained in any proper subspace
of V .

5



Proof. If W has nonempty interior, then W is not contained in a proper
subspace of V . For the converse, observe that convex cones spanned by any
basis of V have nonempty interior. In fact, let {e1, . . . , ed} be a basis of V . The
convex cone spanned by this basis is the set

{

d
∑

i=1

αiei; α1, . . . , αd ≥ 0

}

.

Then the interior of this set is nonempty. Now, assuming thatW is not contained
in a proper subspace of V , we have that W contains a basis B. Since W is a
convex cone it follows that W also contains the convex cone spanned by B.
Therefore, intW 6= ∅.
Lemma 3 If U is open in the set of decomposable elements D (in the relative

topology), then U contains a basis of
∧k

Rd.

Proof. First note that we can write the set of decomposable elements as the
image of a polynomial function. In fact, let F : (Rd)k → ∧k

Rd be the map
given by F (u1, u2, · · · , uk) = u1 ∧ u2 ∧ · · · ∧ uk. Clearly, F ((Rd)k) = D. On the
other hand, F is polynomial due to the multi-linearity of the wedges, hence it
is analytic.

Since F is continuous, the set F−1(U) is open in (Rd)k. In fact, since U

is open in D, there is an open U ′ ⊂ ∧k
Rd with U = U ′ ∩ D. So F−1(U) =

F−1(U ′) ∩ (Rd)k = F−1(U ′).

Now, suppose that U does not contain a basis of
∧k

R
d, then S is contained in

a proper subspace Z, so F (F−1(U)) ⊂ U ⊂ Z, and by Lemma 1, F ((Rd)k) ⊂ Z.

Hence D is contained in a proper subspace of
∧k

Rd. This is a contradiction,

because D spans
∧k

Rd. Therefore U contains a basis of
∧k

Rd.
In the next two propositions we consider the representation δ : Sl(d,R) →

Gl(
∧k

Rd) where

δ(g)(u1 ∧ · · · ∧ uk) := gu1 ∧ · · · ∧ guk.

To abbreviate, we denote δ(g) simply by g.
Now we can prove that an invariant cone contains a decomposable element.

Proposition 4 Take S ⊂ Sl(d,R) a semigroup with nonempty interior. Let

{0} 6= W ⊂ ∧k
Rd be an S-invariant cone. Then W intercepts a non-null

decomposable element of
∧k

Rd.

Proof. Take h ∈ reg(S) and consider as before the basis B = {e1, · · · , ed}
of Rd such that h = diag(λ1, · · · , λd) with λ1 > · · · > λd > 0. Note that for

I = {i1, . . . , ik} ∈ Fk(d), the vectors eI = ei1∧· · ·∧eik ∈
∧k

Rd are eigenvectors

of h, with eigenvalues λi1 · · ·λik . Moreover, they form a basis of
∧k

Rd.
Define the following order relation on Fk(d): given I = {i1, . . . , ik} and

J = {j1, . . . , jk} in Fk(d),

I ≺ J if λi1 · · ·λik < λj1 · · ·λjk .
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If necessary, we take a perturbation of h = diag(λ1, . . . , λd) ∈ intS such that
≺ become a total order. Consider 0 6= v ∈ W with v =

∑

I∈Fk(d)
αIeI and

define
J0 = {j1, . . . , jk} = max{I ∈ Fk(d); αI 6= 0}.

As W is S-invariant, we have that W is invariant under h. Hence,
(

hm(v)

(λj1 · · ·λjk)
m

)

m∈N

is a sequence in W and

hm(v)

(λj1 · · ·λjk)
m

=
∑

I∈Fk(d)

αI

hm(eI)

(λj1 · · ·λjk)
m

=
∑

I∈Fk(d)

αI

(λi1 · · ·λik )
m

(λj1 · · ·λjk )
m
eI ,

for all m ∈ N. Note that if I = {i1, · · · , ik} /∈ {I ∈ Fk(d); αI 6= 0}, then
αI

(λi1 · · ·λik )
m

(λj1 · · ·λjk )
m

= 0, for all m ∈ N. Moreover λj1 · · ·λjk > λi1 · · ·λik for all

{i1, . . . , ik} in {I ∈ Fk(d); αI 6= 0}\{J0}. Hence,

lim
m→∞

(λi1 · · ·λik)
m

(λj1 · · ·λjk)
m

= 0.

Therefore

lim
m→∞

hm(v)

(λj1 · · ·λjk)
m

= lim
m→∞

∑

I∈Fk(d)

αI

(λi1 · · ·λik)
m

(λj1 · · ·λjk)
m
eI = αJ0

eJ0

The closeness of W implies that the decomposable element αJ0
eJ0

belongs
to W , and moreover, this element is non-null.

Hence we have the main result of this section.

Proposition 5 Let S ⊂ Sl(d,R) be a semigroup with non empty interior. If

{0} 6= W ⊂ ∧k
Rd is a S-invariant cone, then W is pointed and generating.

Proof. First recall that the representation of Sl(d,R) on
∧k

Rd is irreducible.
Now, define H = W ∩ −W . Then H is an S-invariant vector subspace.

We have also that H is S−1-invariant, because if g ∈ S, then gH ⊂ H . Since
g is invertible, gH is a subspace of H with dim gH = dimH , i.e., gH = H .
Consequently, H = g−1H . The fact that intS 6= ∅ implies that Sl(d,R) is
generated by S ∪ S−1. Hence H is Sl(d,R)-invariant, now knowing that W is
proper and Sl(d,R) is irreducible we have that H = {0}. Hence W is pointed.

Finally, assume that intW = ∅. By Lemma 2, W ∪ −W is contained in a
proper subspace V of

∧k
Rd. Consider a decomposable element x ∈ W and take

ρqk : Sl(d,R) → Gk(d) the open map ρqk(g) = [gq] where [q] := ϕ−1(π(x)) and
ϕ is the Plücker embedding defined in the second section. Then ϕ(ρqk(intS)) is

open in ϕ(Gk(d)), that is, there exists an open set B ⊂ P

(

∧k
Rd
)

such that

ϕ(ρqk(intS)) = B ∩ ϕ(Gk(d)).
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Knowing that

π−1(ϕ(φ(intS))) = π−1(B ∩ ϕ(Gk(d))) = π−1(B) ∩ D,

we have that π−1(ϕ(φ(intS))) is open in D. By Lemma 3, π−1(ϕ(φ(intS)))

contains a basis of
∧k

Rd. Note also that

π−1(ϕ(φ(intS))) = π−1(ϕ((intS)[q])) = π−1(π((intS)x)) = π−1((intS)π(x)).

So, if y ∈ π−1(ϕ(φ(intS))), then π(y) ∈ (intS)π(x), hence there is g ∈ intS
with π(y) = gπ(x) = π(gx), that is, y = αgx for some α 6= 0. If α > 0, then
y ∈ αSx ⊂ αW = W and if α < 0, then y ∈ αSx ⊂ αW = −W . Anyway
y ∈ W ∪ −W and we conclude that π−1(ϕ(φ(intS))) ⊂ W ∪ −W . But it is a
contradiction, because π−1(ϕ(φ(intS))) is contained in the proper subspace V

of
∧k

Rd and contains a basis of
∧k

Rd. Therefore, intW 6= ∅.

4 Cones, flag type and controllability

In this section we prove that there exists an S-invariant cone in
∧k

Rd if and
only if the flag type of S contains k. Consequently we have the main result of
this section, Theorem 10, that gives a necessary and sufficient condition for the
equality S = Sl(d,R) in terms of the existence of S-invariant cones in the spaces
∧k

Rd, k ∈ {1, . . . , d−1}. As application, we determine necessary and sufficient
conditions for the controllability of a bilinear control system.

Theorem 6 Let S ⊂ Sl(d,R) be a connected semigroup with flag type given by

Θ(S). If k ∈ Θ(S), then there exists an S-invariant cone {0} 6= W ⊂ ∧k
Rd.

Proof. Take h ∈ reg(S) and consider B(h) = {e1, . . . , ed} the special basis of
Rd. We saw in the second section that b{k}(h) = (span{e1, . . . , ek}) and the
orbit

NB(h)b{k}(h) =

{[

Ik
X

]

; X ∈ R
(d−k)×k

}

contains Ck. Note that ϕ(NB(h)b{k}(h)) ⊂ π(M), whereM is the affine subspace

M =
{

(1, x2, · · · , x(dk)); x2, · · · , x(dk) ∈ R

}

⊂
k
∧

R
d

in the basis {eI ; I ∈ Fk(d)}. Since the invariant control set Ck ⊂ Gk(d) is
contained in NB(h)b{k}(h), we have

ϕ(Ck) ⊂ ϕ(NB(h)b{k}(h)) ⊂ π(M).

Define M1 := π−1(ϕ(Ck)) ∩M . Let W be the cone generated by M1, W is
clearly non-null.

Now, we show that W is S-invariant. Since Ck is S-invariant, it follows that
ϕ(Ck) is S-invariant. We claim that (R\{0})M1 is S-invariant. In fact, given

8



α ∈ R\{0}, u1 ∧ · · · ∧ uk ∈ M1 and g ∈ S, we have that π(g(α u1 ∧ · · · ∧ uk))
= π(g(u1 ∧ · · · ∧ uk)) is contained in π(gM1) = gπ(M1) = gϕ(Ck) ⊂ ϕ(Ck), due
to the equality π(M1) = ϕ(Ck) and the S-invariance of ϕ(Ck). Hence knowing
that π|M is injective, we conclude the claim. As S is connected this implies that
Ck, ϕ(Ck) and M1 are connected.

Furthermore, since for every x ∈
(

∧k
Rd
)

\{0} the mapping g ∈ S 7→ gx ∈
∧k

Rd is continuous, we conclude that S leaves invariant the connected com-
ponents of (R\{0})M1. As (R+)M1 is one of these components, (R+)M1 is
invariant, implying that its convex closure W is S-invariant.

Remark 7 Our result generalizes Theorem 4.2 in [3] and also improves its
hypotheses in the sense that we do not need to have the identity in clS. In [3]
the authors assume 1 ∈ S to guarantee that S leaves invariant the connected
components of (R\{0})M1, but we can show that this is not necessary. In fact,
let g ∈ S, then g leaves (R\{0})M1 invariant. So g is a bijection between the
connected components of (R\{0})M1. Denote by M+

1 = (R+)M1 and M−
1 =

(R−)M1 these connected components. Suppose that there is an element g ∈ S
which does not leave M+

1 invariant. Then g(M+
1 ) = M−

1 and g(M−
1 ) = M+

1 .
Hence we have another element in S, g2, that leaves invariant the components,
but this contradicts the connectedness of S.

We also note that by Proposition 5, the cone W , in the above theorem is
pointed and generating.

The following results prove that the existence of a pointed invariant cone in
∧k

R
d implies that the flag type of the semigroup contains k.

Lemma 8 Assume that k /∈ Θ(S). Let Ck be the invariant control set for the

action of S on Gk(d). Then there is a two-dimensional subspace V ⊂ ∧k
Rd

such that π(V ) ⊂ ϕ(Ck).

Proof. Denote by πk : F → Gk(d) the natural projection and consider [p] ∈
Ck. Let f be an element of the invariant control set C of the full flag F with
πk(f) = [p]. Such element exists because Ck = πk(C). Let Θ(S) = {r1, . . . , rn}
be the flag type of S and observe that π−1

Θ(S)(πΘ(S)(f)) is a subset of C, where

πΘ(S) : F→ FΘ(S) . Therefore, πk(π
−1
Θ(S)(πΘ(S)(f))) ⊂ Ck. Since k /∈ Θ(S) then

πΘ(S)(f) = (V1 ⊂ · · · ⊂ Vn) with dimVi = ri, 1 ≤ i ≤ n. We have the following
cases:
Case 1: Assume that r1 < k < rn. In this case, there exists l ∈ {1, . . . , n− 1}
such that the elements of πk(π

−1
Θ(S)(πΘ(S)(f))) are the k-subspaces that contain

Vl and are contained in Vl+1. Let {v1, · · · , vrl} be a basis of Vl, and complete
it to an ordered basis {v1, · · · , vrl , vrl+1, · · · , vrl+1

} of Vl+1. Since rl < k and
rl+1 > k, consider the element vk in this basis of Vl+1 and, moreover, there is a
basic element vj with k < j ≤ rl+1. In this way, define the subspace

V = {v1 ∧ · · · ∧ vrl ∧ · · · ∧ vk−1 ∧ (αvk + βvj); α, β ∈ R}.
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Case 2: Now, suppose that k < r1. Here, the elements of πk(π
−1
Θ(S)(πΘ(S)(f)))

are the k-subspaces contained in V1. Since k ≥ 1, then r1 ≥ 2. Hence, given
an ordered basis {v1, · · · , vr1} of V1, we can find vk, vj ∈ {v1, · · · , vr1} where j
satisfies k < j ≤ r1. Consider the subspace

V = {v1 ∧ · · · ∧ vk−1 ∧ (αvk + βvj); α, β ∈ R}. (2)

Case 3: Finally, assume k > rn. Hence, πk(π
−1
Θ(S)(πΘ(S)(f))) is the set formed

by the k-subspaces which contains Vn. Since k ≤ d− 1, we can consider a basis
{v1, . . . , vrn} of Vrn and complete it to obtain the ordered basis {v1, . . . , vrn , vrn+1, . . . , vd}
of Rd. In this case, we can also take vk and vj in this basis, with k < j ≤ d and
consider the subspace defined as in (2).

In the three cases, the subspace V ⊂ ∧k
Rd is two-dimensional and satisfies

π(V ) ⊂ ϕ(πk(π
−1
Θ(S)(πΘ(S)(f)))) ⊂ ϕ(Ck).

The following theorem is a reciprocal of Theorem 6.

Theorem 9 If {0} 6= W ⊂ ∧k
Rd is an S-invariant cone, then k ∈ Θ(S).

Proof. Assume that k /∈ Θ(S) and denote by L the intersection of W with the

set D of the decomposable elements of
∧k

Rd. By Proposition 4 we have that L
is nonempty. Moreover, L is S-invariant, since the set of decomposable elements
is also S-invariant. Therefore, ϕ−1(π(L)) is also invariant. As W is a closed set
then L is closed in D and hence ϕ−1(π(L)) is a closed set in Gk(d). Since Gk(d)
is compact, ϕ−1(π(L)) is also compact, then there is an invariant control set
contained in ϕ−1(π(L)). But there is only one invariant control set Ck ⊂ Gk(d)
implying that Ck ⊂ ϕ−1(π(L)) and hence π−1(ϕ(Ck)) ⊂ L ⊂ W . As proved in
Lemma 8, there is a two-dimensional subspace V such that π(V ) ⊂ ϕ(Ck). But
this means that V ⊂ π−1(ϕ(Ck)) ⊂ W , which is a contradiction because W is
pointed (see Proposition 5).

Recall that if S ⊂ Sl(d,R) is a nonempty semigroup, then S is transitive on
Rd\{0} if and only if S = Sl(d,R) (see [3]). In this context, the next theorem
gives a necessary and sufficient condition in terms of the existence of invariant
cones.

Theorem 10 Let S ⊂ Sl(d,R) be a semigroup with nonempty interior. Then

S = Sl(d,R) if and only if there are no S-invariant cones in
∧k

Rd, for all
k ∈ {1, . . . , d− 1}.

Proof. Let W ⊂ ∧k
Rd be a proper S-invariant cone, for some k ∈ {1, . . . , d−

1}. Note that W does not contain D, otherwise the convexity of W would imply

that the convex closure of D, ∧k
R

d, would be contained in W , which would
contradicts the fact that W is proper.
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By Proposition 4 we can consider an element v1 ∈ W ∩D. Take v2 ∈ D\W .
If S = Sl(d,R) and knowing that D is S-invariant then there exists g ∈ S
such that gv1 = v2 /∈ W , but this contradicts the S-invariance of W . Hence
S 6= Sl(d,R).

On the other hand, assume that S ⊂ Sl(d,R) is proper. Then Θ(S) 6= ∅,
hence there exists k ∈ Θ(S), for some k ∈ {1, . . . , d− 1}. Therefore, Theorem 6
implies the existence of a such cone.

Remark 11 This theorem complement and improve Section 7 of [3].

The next example shows that, as we commented before, the connectedness
of S is fundamental in the previous results.

Example 12 Let S+ ⊂ Sl(2,R) be the set of matrices with positive entries. It is
not difficult to show that that S+ is a proper semigroup with nonempty interior
in Sl(2,R), the positive orthant Q+ = {(a, b) ∈ R

;a, b ≥ 0} is S+-invariant and
S+ is a open set. Now take the following proper semigroup

S = S+ ∪ (−S+) = (−1)ZS+ = {(−1)kA; k ∈ Z, A ∈ S+}.

Note that S has nonempty interior. Moreover, S is not transitive on R
2 because

it leaves invariant the double cone Q+ ∪−Q+ = (−1)NQ+:

S((−1)NQ+) = (−1)NS+(−1)NQ+ = (−1)N+NS+Q+ = (−1)NQ+.

However, S does not leave invariant proper cones in R2 =
∧1

R2. In fact, we
have that −I ∈ S, therefore, if C is a proper S invariant cone then −I(C) =
−C ⊂ C. This implies that C is a subspace, which is a contradiction.

As a consequence of the above results, we get a necessary and sufficient
condition for controllability of

ẋ = Ax+ uBx, x ∈ R
d \ {0}, u ∈ R,

with A,B ∈ sl(d,R).
Recall that the system semigroup

S = {et1(A+u1B) · · · etn(A+unB); t1, . . . , tn ≥ 0, u1, . . . , un ∈ R, n ∈ N}

is a semigroup of Sl(d,R). Moreover, if the Lie algebra, generated by A and B,
coincides with sl(d,R), then intS 6= ∅. Furthermore, S is path connected. It
is well know that this system is controllable if, and only if, S = Sl(d,R) (see
e.g. [3]). Hence, as a result of Theorem 10 we have the necessary and sufficient
condition for controllability of this bilinear system.

Theorem 13 The above system is controllable if and only if it does not leave
invariant a cone in

∧k
R

d, for all k ∈ {1, . . . , d− 1}.

11



5 Flag type and invariance of convex sets

In this section, we generalize the previous one. Or rather, instead of proper
cones, we study the existence of proper convex sets in

∧k
R which are invariant

by the action of a semigroup S ⊂ Sl(d,R). We also relate the existence of this
convex sets with the flag type Θ(S) of S.

Initially, given h ∈ reg(S), take as before the basis B(h) = {e1, . . . , ed} of
Rd. Since 1 = det(h) = λ1 · · ·λd, then for all k ∈ {1, . . . , d − 1}, we can prove
that λ1 · · ·λk > 1.

The following lemma gives an expression for the closed convex cone generated
by a convex set in

∧k
Rd.

Lemma 14 If the set K ⊂ ∧k
Rd is convex, then the closed convex cone W

generated by K is

W := cl(
⋃

α>0

αK).

Proof. Let {Wl}l∈Λ be the family of all closed cones that contains K and

consider V :=
⋂

l∈Λ

Wl the closed convex cone generated by K.

Note that W is a closed cone which contains K. To show that W is convex,

take x, y ∈ W . There are sequences (γnxn), (δnyn) in
⋃

α>0

αK with γn, δn > 0

and xn, yn ∈ K (for all n ∈ N) converging to x and y respectively. Take t ∈ [0, 1]
and define

zn =

(

(1 − t)γn
(1 − t)γn + tδn

)

xn +

(

tδn
(1− t)γn + tδn

)

yn, n ∈ N.

Note that (zn) is a sequence in K, then (((1 − t)γn + tδn) zn) is a sequence in
⋃

α>0
αK, since (1−t)γn+tδn > 0. But ((1 − t)γn + tδn) zn = (1−t)γnxn+tδnyn

converges to (1− t)x + ty, hence (1− t)x+ ty ∈W . Therefore V ⊂W .
On the other hand, for each γ > 0 we have γK ⊂ Wl, for all l ∈ Λ, then

⋃

γ>0

γK ⊂Wl, for all l ∈ Λ. Hence the closeness of eachWl implies thatW ⊂Wl,

for all l ∈ Λ, so W ⊂ V .

Proposition 15 Let K ⊂ ∧k
Rd be a proper S-invariant convex set. Then the

closed cone generated by K is S-invariant.

Proof. Denote by W the closed cone generated by K. Since K is S-invariant,
for each g ∈ S it holds that gK ⊂ K. Hence

gW = g

(

cl(
⋃

α>0

αK)

)

⊂ cl(g

(

⋃

α>0

αK

)

) = cl(
⋃

α>0

αgK) ⊂ cl(
⋃

α>0

αK) = W,

that is, W is S-invariant.
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Proposition 16 If K ⊂ ∧k
Rd is a proper S-invariant convex set, then 0 /∈

intK.

Proof. For each h ∈ reg(S) denote by bk(h) the attractor of h in Gk. The set
of transitivity of Ck, C

0
k , satisfies

C0
k = {bk(h);h ∈ reg(S)},

and has nonempty interior. In particular, there is an open set V ⊂ C0
k =

{bk(h);h ∈ reg(S)}. As a consequence, φ(V ) is an open set in D, and there-
fore, by Lemma 3, π−1(φ(V )) contains a basis {b1, b2, . . . , bn} of the exterior
space. Since bi ∈ π−1(φ(V )) and V is a subset of C0

k = {bk(h);h ∈ reg(S)},
then, for each bi exists hi ∈ reg(S) such that bi ∈ π−1(φ(bk(hi))) or, equiv-
alently, there is a basis {e1(hi), e2(hi), . . . , ed(hi)} of R

d where hi is written
as diag(λ1i, λ2i, . . . , λdi) and bi = e1(hi) ∧ e2(hi) ∧ · · · ∧ ek(hi) = eI(hi) with
I = {1, . . . , k}. So, if we suppose that 0 ∈ intK, then there are α 6= 0 and

h1, . . . , hr ∈ reg(S) with r =
(

d
k

)

, such that αeI(hi) is a basis of
∧k

Rd with
±αeI(hi) contained in intK, i = 1, . . . , r.

But for all m ∈ N and i ∈ {1, . . . , r} we have hm
i (±αeI(hi)) ∈ K due to

S-invariance of K. Moreover,

‖hm
i (±αeI(hi))‖ = |α|(λ1i · · ·λki)

m‖eI(hi)‖ → +∞,

then the convexity of K implies that K =
∧k

Rd.
The above proposition has the following consequence.

Corollary 17 Let K ⊂ ∧k
Rd be an S-invariant convex set and denote by W

the closed cone generated by K. The following statements are equivalents:

i) W is proper;

ii) K is proper.

iii) 0 /∈ intK.

Proof. The implication (i)⇒ (ii) holds becauseK ⊂W . Moreover, (ii)⇒ (iii)
follows by Proposition 16. Finally, to prove that (iii) ⇒ (i) we first note that

if W =
∧k

Rd then intK 6= ∅. In fact, if intK = ∅ then K is contained in a

proper affine subspace V + u0, where V ⊂ ∧k
Rd is a proper vector subspace

and u0 ∈
∧k

Rd. Hence

k
∧

R
d = W = cl(

⋃

α>0

αK) ⊂ cl(
⋃

α>0

α(V + u0)) = cl(
⋃

α>0

(V + αu0))

= V + [0,+∞)u0 6⊆
k
∧

R
d.

which is a contradiction. Hence, given the open set −intK, there are α > 0
and k ∈ K with αk ∈ −intK, that is, −αk ∈ intK. Since K is convex, the line
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[−αk, k) := {(t− 1)αk+ tk; t ∈ [0, 1)} is contained in intK, therefore 0 ∈ intK.

The next result presents a synthesis of this section, the relation among in-
variant convex set, invariant cone and flag type.

Theorem 18 Let S ⊂ Sl(d,R) a semigroup with nonempty interior. Then the
following statements are equivalents:

i) There exists an S-invariant proper convex set in
∧k

Rd;

ii) There exists an S-invariant proper closed cone in
∧k

Rd;

iii) k ∈ Θ(S).

Proof. By Proposition 15 and Corollary 17 we have that (i) ⇒ (ii). By
Theorem 9 it follows that (ii) implies (iii). Moreover, since a cone is a convex
set, the implication (iii)⇒ (i) follows by Theorem 6.

6 Examples

In order to present examples to illustrate our results, we create a computational
implementation in Julia Language [1] called LieAlgebraRankCondition.jl1.
The basic idea of this implementation is the following: given the bilinear control
system

ẋ = Ax + uBx, x ∈ R
4 \ {0}, u ∈ R and A,B ∈ sl(4,R)

put the Lie brackets in a convenient way and analyse all the possibilities until
get, if possible, a linearly independent (L.I.) set for sl(4,R). In the following we

1Available in https://github.com/evcastelani/LieAlgebraRankCondition.jl
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describe a conceptual algorithm.

Algorithm 1: Lie Algebra Rank Condition Algorithm.

Data: A: Array, B: Array, dim: dimension of sl(4,R)
Result: True: a set of L. I. arrays were found; False: Does not exists

an L. I. set of arrays.
C ← {A,B, [A,B]};
if C is L. I. then

k ← 3;
else

return False;
end

while k ≤ dim do

j ← k − 1;
Ctrial ← Cj ;
while (C ∪ [Ctrial, Ck] is not L.I) and (j > 3) do

j ← j − 1 ;
Ctrial ← Cj ;

end

if j=3 then

remove Ck from C ;
k ← k − 1;

else

add [Ctrial, Ck] to C;
k ← k + 1;

end

if k=3 then

return False;
end

end

return True;

Remark 19 The parameter dim can be changed in order to find solutions for
higher order spaces.

Example 20 Consider the bilinear system

(Σ) ẋ = Ax+ uBx, with x ∈ R
4 \ {0}, u ∈ R,

A =









0 2 0 −1
2 0 2 0
0 2 0 2
−1 0 2 0









and B = diag(4, 1,−2,−3) ∈ sl(4,R).

The matrix A has the distinct eigenvalues, 3, 2,−2,−3, with the following
eigenvectors v1 = (1, 2, 2, 1), v2 = (−2,−1, 1, 2), v3 = (2,−1,−1, 2) and v4 =
(−1, 2,−2, 1), respectively. Let S be the semigroup of (Σ), that is,

S = {et1(A+u1B) · · · etk(A+unB); t1, . . . , tn ≥ 0, n ∈ N}.
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Using the implementation of Algorithm 1, we can show that this system satis-
fies the Lie algebra rank condition, hence S has nonempty interior in Sl(4,R).
Moreover, S is a proper semigroup. In fact, by [13, Proposition 2], we have

A+ uB ∈ L(S2) = {X ∈ sl(4,R); exp(X) ∈ S2},

where S2 = {g ∈ Sl(4,R); gO2 ⊂ O2} is the the compression semigroup of

the positive orthant O2 =







∑

I={i1<i2}⊂{1,2,3,4}
αIeI ; αI ≥ 0







⊂ ∧2
R4. This

semigroup coincides with the set of all matrix in Sl(4,R) such that the minors
of order 2 have non-negative determinant. Note that S ⊂ S2. Since S2 leaves
invariant the cone O2, then SO2 ⊂ O2. Hence (Σ) is not controllable and
therefore S is proper, in particular S leaves invariant the positive orthant of
∧2

R4.
On the other hand, neither ±A nor ±(A+uB) leave invariant an orthant of

R4. In fact, by [8, Lemma 1], a matrix X = (xij) leaves invariant the orthant
with signs (σ1, . . . , σd) if and only if σiσjxij > 0. Applying this condition to
±A, ±(A+uB), we get the contradictory fact that σ1σ4 must be simultaneously

1 and −1, so that there are no invariant orthants in R
4 =

∧1
R

4. The system
(Σ) is a counter-example for the following conjecture proposed by Sachkov in [8].
Consider a bilinear control system with A symmetric and B = diag(b1, . . . , bn)
where bi 6= bj for i 6= j. Is it true that if this system has no invariant orthants
and everywhere satisfies the necessary Lie algebra rank controllability condition,
then it is controllable in Rd \ {0}?

Now we prove that, although (Σ) is not controllable, there are no S-invariant

cones in R
4 =

∧1
R

4 neither in
∧3

R
4. Suppose that W ⊂ R

4 is an S-invariant
cone. Then W has nonempty interior and it is not contained in the plane
generated by {e2, e3, e4}. Therefore there is a vector w = (w1, w2, w3, w4) ∈ W
such that w1 6= 0. Since etB ∈ cl(S) for all t ∈ R, then if w1 > 0 we have that

lim
t→+∞

etBw

‖etBw‖ = e1 ∈W.

If w1 < 0 then

lim
t→+∞

etBw

‖etBw‖ = −e1 ∈W.

Without loss of generality, assume that e1 ∈W . Knowing that v1 is the attractor
eigenvalue of A and considering the basis {v1, v2, v3, v4}, a similar argument
assures that either v1 ∈ V or −v1 ∈ V .

Let H := {(x1, x2, x3, x4) ∈ R4 : x4 < 0}, then, for all x ∈ H,

lim
t→+∞

et(−B)x

||et(−B)x|| = −e4.

In particular, note that if W ∩ H 6= ∅, then −e4 ∈ W . Now we show that
W ∩ H 6= ∅. Since the inner product between Ae1 and e4 is negative, then the
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curve t 7→ etAe1 intersects H for t > 0. By S-invariance and knowing that
e1 ∈W , we have eR+Ae1 ⊂W , then W ∩H 6= ∅.

As stated early, either v1 ∈ W or −v1 ∈ W . As v1 has a positive fourth
coordinate, then

lim
t→+∞

et(−B)v1
||et(−B)v1||

= e4,

and as −v1 has a negative first coordinate, we have

lim
t→+∞

etB(−v1)
||etB(−v1)||

= −e1.

Hence if v1 ∈ W then e4 ∈W . But −e4 is also in W , then W is not pointed.
On the other hand, if −v1 ∈ W , then −e1 ∈ W . Analogously, since e1 is also in
W , then W is not pointed also in his case. Anyway W is not pointed, but this
contradicts Proposition 5.

Since W is arbitrary, we conclude that (Σ) does not have invariant cones in

R4 =
∧1

R.

Now in the case of
∧3

R4, we recall that S has invariant cones in
∧3

R4 if,
and only if, S−1 has invariant cones in R4, and the linear isomorphism from
R

4 to
∧3

R
4 (that preserves basis) is also a one to one correspondence between

the respective invariant cones (see e.g. [13]).
Therefore, it is enough to prove that S−1 does not leave invariant cones in

R
4. Since S is generated by the exponential of the elements of {A + uB; u ∈

R} ⊂ sl(4,R), then S−1 is generated by the exponential of the elements −A+uB
with u ∈ R}. Then S−1 is also the semigroup of the bilinear control system
ẋ = −Ax+ uBx with x ∈ R4 \ {0} and u ∈ R.

Let W 6= {0} be an S−1-invariant cone. Note that S−1 has nonempty inte-
rior in Sl(4,R). Therefore, e1 ∈W or −e1 ∈ W . Without loss of generality, we
assume e1 ∈ W . Since the highest eigenvalue of −A is 3 and the corresponding
eigenvector is v4, then v4 ∈ W or −v4 ∈ W . Furthermore, the inner product
between −Ae1 and e4 is positive, and, therefore, e4 ∈ W . If v4 ∈ W , then

lim
t→+∞

etBv4
||etBv4||

= −e1 ∈W and W is not pointed, because e1,−e1 ∈W . Other-

wise, if −v4 ∈ W , then lim
t→+∞

et(−B)(−v4)
||et(−B)(−v4)||

= −e4 and W is still not pointed,

because e4,−e4 ∈ W . Since W is not pointed in both cases, by Proposition 5
we have a contradiction. We conclude that the proper semigroup S does not
leave invariant a proper cone in

∧1
R4 neither in

∧3
R4 but S has an invariant

cone in
∧2

R
4 (in fact, we showed that it leaves invariant the positive orthant

of that space). Then by Theorem 10, the system (Σ) is not controllable. More-
over, Theorem 9 implies that S has parabolic type Θ(S) = {2}, in other words,
FΘ(S) = G2(4).
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Example 21 Consider the above bilinear control system, but with

A :=









1 1 0 0
−1 1 0 0
0 0 −1 1

2
0 0 − 1

2 −1









, B :=









2 0 0 0
0 − 3

2 − 1
10 0

0 1
10 − 3

2 0
0 0 0 1









and denote the system semigroup by S. Using again the implementation of
Algorithm 1, we can see that S satisfies the Lie algebra rank condition, so intS 6=
∅. Now we show that S does not have invariant cones in

∧1
R4,

∧2
R4 or

∧3
R4

and therefore S = Sl(4,R).
First note that

e
π

2
A =









0 d 0 0
−d 0 0 0

0 0 1
d

√
2
2

1
d

√
2
2

0 0 − 1
d

√
2
2

1
d

√
2
2









with e
π

2 = d.
Now we compute e

π

2
A in the canonical basis of

∧3
R4.

e
π

2
A(e1 ∧ e2 ∧ e3) = d

√
2

2
e1 ∧ e2 ∧ e3 − d

√
2

2
e1 ∧ e2 ∧ e4,

e
π

2
A(e1 ∧ e2 ∧ e4) = d

√
2

2
e1 ∧ e2 ∧ e3 + d

√
2

2
e1 ∧ e2 ∧ e4,

e
π

2
A(e1 ∧ e3 ∧ e4) = −

1

d
e2 ∧ e3 ∧ e4

and

e
π

2
A(e2 ∧ e3 ∧ e4) =

1

d
e1 ∧ e3 ∧ e4.

Then e
π

2
A can be written, with respect to the canonical basis of

∧3
R4, as









d
√
2
2 d

√
2
2 0 0

−d
√
2
2 d

√
2
2 0 0

0 0 0 1
d

0 0 − 1
d

0









=

[

dI 0
0 1

d
I

] [

R1 0
0 R2

]

with R1, R2 rotations by angles different from 0 and π.
In the next lemma we prove that the cones in R4, which are invariant by

above matrix, are subspaces.

Lemma 22 Let T ∈ Sl(4,R) be the matrix

T =

[

dI 0
0 1

d
I

] [

R1 0
0 R2

]

where R1, R2 ∈ SO(2,R) \ {I,−I}, I is (2× 2)-identity matrix and d ∈ R \ {0}.
If W is a T -invariant cone in R4 then W is a subspace.
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Proof. Note that 〈e1, e2〉 and 〈e3, e4〉 are T -invariant spaces, and the restric-
tions of T to these spaces are αR where α > 0 and R is the rotation different
from I and −I. The only cones in a two-dimensional space that are invariant by
these maps are (0, 0) or the whole space, hence if W ⊂ 〈e1, e2〉 then W = {0} or
W = 〈e1, e2〉. If W ⊂ 〈e3, e4〉 then W = {0} or W = 〈e3, e4〉. Suppose that W
is not contained in these spaces. Then there exists v ∈ W such that v 6= 〈e1, e2〉
and v 6= 〈e3, e4〉. As R4 is a direct sum of these two spaces, then v has the
unique decomposition v = u + w, with 0 6= u ∈ 〈e1, e2〉 and 0 6= w ∈ 〈e3, e4〉.
Knowing the eigenvalues of the restriction of A to 〈e1, e2〉 we can show that

‖T nu‖ = ‖dRn
1u‖ → +∞ and ‖T nw| = ‖(1/d)Rn

2w‖ → 0.

In particular, the distance of Tnv
‖Tnv‖ to 〈e1, e2〉 converges to zero, this sequence

is contained in a compact set and has a subsequence that converges to p. Note
that p ∈ 〈e1, e2〉 and ‖p‖ = 1. As W is a T -invariant cone then p ∈ cl(W ) = W .

We have also that W ∩〈e1, e2〉 is a T -invariant cone which contains p. Then
W ∩ 〈e1, e2〉 = 〈e1, e2〉 and so 〈e1, e2〉 ⊂ W . It implies that −u ∈ W , then
w = v + (−u) ∈ W and therefore W has a non-null element of 〈e3, e4〉. In
a similar way we can see that 〈e3, e4〉 ⊂ W . Hence W contains 〈e1, e2〉 and
〈e3, e4〉, that is, W = R4. In all cases, W is a subspace of R4.

By the above lemma, any e
π

2
A-invariant cone in

∧1
R

4 or in
∧3

R
4, is a

subspace. Therefore there are no S-invariant cones in
∧1

R4 neither in
∧3

R4.

Now it remains to prove that in
∧2

R4 there are no S-invariant cones. First
note that the following submatrix of B,

B2 =

[

− 3
2 − 1

10
1
10 − 3

2

]

satisfies lim
t→+∞

etB2 = 0 implying that lim
t→+∞

etBv = 0 for all v ∈ 〈e2, e3〉. More-

over etBe1 = e2te1 and etBe4 = ete4.
Note that when t→ +∞ we have that

etB(e1 ∧ e4)

e2tet
=

e2te1 ∧ ete4
e2tet

= e1 ∧ e4 → e1 ∧ e4

and moreover
etB(ei ∧ ej)

e2tet
→ 0 for (i, j) 6= (1, 4).

Hence, for any vector v ∈ ∧2
R4 we have

v = α1e1 ∧ e4 + α2e1 ∧ e2 + α3e1 ∧ e3 + α4e4 ∧ e2 + α5e4 ∧ e3 + α6e2 ∧ e3, (3)

for some v1, . . . , v4 ∈ R and we have lim
t→+∞

etB(v)

e2tet
= α1e1 ∧ e4. Now, suppose

that exists an S-invariant cone W . Then, there is v ∈ W of the form (3) such
that

lim
t→+∞

etB(v)

e2tet
= αe1 ∧ e4
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with α 6= 0, because intW 6= ∅.
As αe1 ∧ e4 ∈ W and

e2πA =









d4 0 0 0
0 d4 0 0
0 0 − 1

d4 0
0 0 0 − 1

d4









we have that e2πA(αe1 ∧ e4) = αe1 ∧−e4 = −αe1∧ e4. As W is invariant by the
e2πA-action, then −αe1 ∧ e4 ∈W , hence any straight line generated by αe1 ∧ e4
is contained in W , that is, W is not pointed. Consequently,

∧2
R4 does not have

S-invariant cones. Therefore, by Theorem 10, S = Sl(4,R), that is, the system
is controllable.

Acknowledgments: The authors are greatly indebted to Prof. L.A.B. San
Martin for suggesting the problem and for many stimulating conversations.
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