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We introduce an efficient nonreversible Markov chain Monte Carlo algorithm to generate self-
avoiding walks with a variable endpoint. In two dimensions, the new algorithm slightly outperforms
the two-move nonreversible Berretti-Sokal algorithm introduced by H. Hu, X. Chen, and Y. Deng
in [1], while for three-dimensional walks, it is 3–5 times faster. The new algorithm introduces
nonreversible Markov chains that obey global balance and allow for three types of elementary moves
on the existing self-avoiding walk: shorten, extend or alter conformation without changing the length
of the walk.
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I. INTRODUCTION

A Self-Avoiding Walk (SAW) is defined as a contigu-
ous sequence of moves on a lattice that does not cross
itself; it does not visit the same point more than once.
SAWs are fractals with fractal dimension 4/3 in two di-
mensions, close to 5/3 in three dimensions, and 2 in di-
mensions above four [2, 3]. In particular two-dimensional
SAWs are conjectured to be the scaling limit of a family
of random planar curves given by the Schramm-Loewner
evolution with parameter κ = 8/3 [4]. Since their in-
troduction, SAWs have been used to model linear poly-
mers [5–7]. They are essential for studies of polymer
enumeration where scaling theory, numerical approaches,
and field theory are too hard to analyse [8, 9]. SAWs are
also used in the numerical studies of finite-scaling [10]
and two-point functions [11] of Ising model and n−vector
spin model [12]. Analytical results on SAWs are scarce,
and generating long SAWs is computationally complex.

Typically one uses Monte Carlo approaches [13, 14]
to generate SAWs numerically. Many previous Markov
chain Monte Carlo (MCMC) algorithms have been de-
signed to efficiently produce different kinds of SAWs by
manipulating potential constructions that can be exe-
cuted on a walk to increase, decrease its length, or change
its conformation. For example, the pivot algorithm
samples fixed-length SAWs – it alters the walk’s shape
without changing its length [15]. While the Berretti-
Sokal algorithm and BFACF algorithm contain length-
changing moves and can generate walks with varying
lengths [16, 17].

The above described MCMC algorithms satisfy the de-
tailed balance condition – which states that the weighted
probabilities of transitions between states are equal. In
other words, these algorithms use reversible Markov
chains. The reversibility introduces a diffusion-like be-
havior in the space of states. In recent years, there
has been progress in designing nonreversible Markov
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chains that converge to the correct target distribution.
Such chains due to ”inertia” reduce the diffusive behav-
ior, sometimes leading to better convergence and mixing
properties compared to the reversible chains [18–25].

As for SAW, H. Hu, X. Chen, and Y. Deng modified
the Berretti-Sokal algorithm to allow for nonreversible
Markov chains [1]. This modification yields about a ten
times faster convergence than the original Berretti-Sokal
algorithm in two dimensions and is even more superior
in higher dimensions. Both the original and the modi-
fied Berretti-Sokal algorithm have two elementary moves
– to shorten or extend the SAW. Building upon these
algorithms, we add another move – to alter the confor-
mation of SAW and introduce a three-move nonreversible
MCMC technique to create SAWs. We discuss the ad-
vantages of this approach and compare the two nonre-
versible algorithms. The three types of moves correspond
to three types of ”atmospheres”; therefore, we start be-
low by defining an atmosphere.

II. THE ATMOSPHERES

The algorithms creating SAWs usually manipulate dif-
ferent kinds of proposed moves, often referred to as atmo-
spheres [26–29]. Atmospheres can be described as poten-
tial constructions that can be executed on a given walk
to increase or decrease the current length or change the
conformation. When generating SAWs, the algorithm
usually performs moves on either endpoint atmospheres
or generalized atmospheres where positive and negative
atmospheres are generally defined as ways of adding or
removing a fixed number of edges to the current walk. In
contrast, neutral moves are ways of altering the walk’s
shape without changing its length. For instance, the
pivot algorithm, which only acts on neutral atmospheres,
can be used to sample fixed-length walks [15]. In con-
trast, the Berretti-Sokal algorithm and BFACF algorithm
contain length-changing atmospheric moves and can gen-
erate walks of different lengths [16, 17].

Suppose s is the current SAW starting from the ori-
gin with length |s| and its last vertex is v. The posi-
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tive endpoint atmospheres are the lattice edges incident
with the last vertex, which can be occupied to extend
the length by one. The negative endpoint atmosphere is
just the last occupied edge since removing it can extract
the length by one. The neutral endpoint atmospheres
are edges that can be occupied by changing the direction
of the vertex v. For any SAW with a non-zero length,
the number of negative endpoint atmospheres is one. If
the SAW has zero length, the number of negative end-
point atmospheres is set to zero, as the length can not
be further reduced.

Fig. 1 shows a SAW with a length equal to four. In
this example, three unoccupied edges are incident with
the last vertex; they are shown in red on the graph, mak-
ing three positive ending atmospheres. As we see from
the last occupied edge (black arrow), there is just one
negative endpoint atmosphere. There are two neutral
endpoint atmospheres, and the corresponding edges are
displayed with green arrows.

FIG. 1. The endpoint atmospheres on a self-avoiding walk
of length |s| = 4. For this self-avoiding walk, there are three
positive ending atmospheres (red arrows) and one endpoint
atmosphere, which is the last occupied edge (black arrow),
and the number of neutral endpoint atmospheres is two (green
arrows).

Three types of elementary moves in the algorithm exe-
cuting the endpoint atmospheres correspond to the three
kinds of endpoint atmospheres. Here we call a positive
move the one to be performed on a positive endpoint
atmosphere, resulting in occupying one empty edge in-
cident with the last vertex. Similarly, a negative move
implies executing on the negative endpoint atmosphere,
that is, deleting the last occupied edge. Finally, the neu-
tral move is changing the direction of the last occupied
edge. The three kinds of moves’ for the SAW in Fig. 1
are illustrated in Fig. 2.

III. THE BERRETTI-SOKAL ALGORITHM

The balance condition is one of the most important
factors in designing an MCMC algorithm since it ensures
that the Markov chain will converge to a target distri-
bution. The balance condition for most MCMCs is the

FIG. 2. Possible self-avoiding walks after executing one move
on the self-avoiding walk shown in Fig. 1.

so-called Detailed Balance Condition (DBC)

Pijπj = Pjiπi, ∀i, j ∈ Ω, (1)

where Pij is the transition probability from state j to
state i, Ω is the space of states, and π is the stationary
distribution, see e.g. [21, 30]. Detailed balance is a local
condition and thus easy to implement. However, for a
Markov chain to asymptotically converge to a stationary
distribution π, all we need is a weaker condition – the
Global Balance Condition (GBC):∑

j∈Ω

Pijπj =
∑
j∈Ω

Pjiπi, ∀i ∈ Ω, (2)

where Ω is a space of states. The GBC physically means
that the total probability influx at a state equals the total
probability efflux from that state [13, 20].

Note that the probability distribution of a SAW of
length |s| is

π = x|s| (3)

where x is the weight of a unit step. This is what we
want the Markov chain target distribution to be.

One of the most famous reversible MCMC algo-
rithms that manipulate the endpoint atmospheres is the
Berretti-Sokal algorithm [16]. The Berretti-Sokal algo-
rithm only considers the positive and negative endpoint
atmospheres and thus has two elementary moves: the in-
creasing and the decreasing move. In this paper, we are
using a Metropolis-Hastings style [31, 32] implementation
of the Berretti-Sokal algorithm. It works as follows:

(i) Suppose the current length of a SAW is given by
N . With equal probability, the algorithm chooses
the increasing move or the decreasing move.

(ii) If the increasing move is selected, with probability
P+ one of the empty edges incident with vN , the
last vertex, will be occupied randomly when this
leads to a valid SAW of N + 1 steps. Similarly,
for the decreasing move, the last occupied edge is
deleted with probability P−. The two probabilities
are given by

P+ = min{1, x(z − 1)}, (4)

P− = min

{
1,

1

x(z − 1)

}
, (5)
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where z is the coordination number of the system,
i.e. the number of lattice points neighboring a ver-
tex on the lattice.

Special attention is needed for the ”null” walk, |s| =
0, in such case only an increasing mode is allowed and
the number of empty edges is z, rather than z − 1. For
simplicity we permanently set P+ = min{1, x(z − 1)}.

To prove that the DBC holds in the Berretti-Sokal
algorithm, let us for example consider the case where
x(z − 1) < 1. From Eqs. (4) and (5) we conclude that
the choice implies P+ < 1 and P− = 1. Thus we have
x|s|P+(z − 1)−1 = x|s+1| = x|s+1|P−, which satisfies the
DBC, given in Eq. (1). The proof is analogous in the case
x(z − 1) > 1.

IV. NONREVERSIBLE BERRETTI-SOKAL
ALGORITHMS

One possible way to set up a nonreversible algorithm
is to increase the phase space by introducing repli-
cas [1, 20, 21] and work on the extended space with
nonzero probability fluxes. Here we follow an analogous
approach. As mentioned above, there has been a success-
ful two-move nonreversible Berretti-Sokal algorithm [1].
The authors achieved an important improvement in the
speed of the algorithm. The speedup is about tenfold in
two-dimensional systems and is even more pronounced in
higher-dimensional systems. They set up two modes in
the algorithm, which we call the increasing mode and the
decreasing mode.

A. Three-move Nonreversible Berretti-Sokal
Algorithm

The new algorithm has a third type of move – be-
sides shortening and extending the SAW, we also allow
the SAW to change its conformation. Namely, in the
increasing mode, the algorithm can perform either an
increasing move or a neutral move; in this mode, the
decreasing move is not allowed. Analogously, in the de-
creasing mode, the algorithm will only execute either a
decreasing move or a neutral move. A diagram describing
the algorithm is shown in Fig. 3. It works as follows:

i) In the increasing mode, with equal probability, per-
form either the positive move or the neutral move.
For the positive move, the algorithm will randomly
occupy one of the empty edges incident to the last
vertex with probability P+. While for the neutral
move, the algorithm will change the direction of its
last occupied edge randomly. If the chosen move
does not lead to a valid SAW, the algorithm will
change to the decreasing mode.

ii) In the decreasing mode, with equal probability, per-
form either the negative move or the neutral move.

FIG. 3. (a) Diagram of probability flows in the three-move
nonreversible Berretti-Sokal algorithm. Each rectangle spec-
ifies a SAW of length |s|. Each realization of the algorithm
is different because of the neutral moves, allowing to alter
the configuration of the walk. The top row represents the
increasing mode in which the algorithm can produce either a
positive or neutral move, while the bottom row represents the
decreasing mode where the algorithm produces either negative
or neutral moves. The circular arrow represents the execution
of a neutral move, leading to a SAW with the same length
but a different shape as the last occupied edge’s direction is
changed. The ’null’ walk, |s| = 0, requires special attention;
in this case, we do not allow neutral and decreasing moves.
(b) Example of the incoming fluxes for SAW of length |s| = 2
in 2D on a square lattice.

For the negative move, the algorithm will delete
the last occupied edge with probability P−. For
the neutral move, the algorithm will change the di-
rection of its last occupied edge randomly. If the
chosen move does not lead to a valid SAW, the al-
gorithm will change into the increasing mode.

iii) When the length is 0, the algorithm will be changed
into the increasing mode, and a positive move will
be performed.

Therefore, in each step, the algorithm will either execute
one of the elementary moves successfully or change to
the other mode. The global balance condition implies
that the total influx probability flow equals the efflux
probability flow; that is, we have

φ
(±)
± + φ

(±)
0 + φ

(±)
∓ = x|s|, (6)

where x|s| is the distribution of SAWs of length |s| and
φ−s describe the incoming probability fluxes, where the
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superscript denotes the mode and the subscripts denote
the move. The three terms on LHS are the incoming

flow of executing a ± move in mode (±), φ
(±)
± , the in-

coming flow of executing one neutral move in mode (±),

φ
(±)
0 , and the incoming flow from switching the mode

from (∓) to (±), φ
(±)
∓ . To clarify the third term in the

LHS by example: φ
(+)
− is the incoming flux from switch-

ing from (−) mode to the (+) mode. Let us show that
global balance condition holds for the increasing mode
when x(z − 1) < 1. Proofs for the other cases follow
analogously. In this case the three fluxes are:

• The incoming flux from a positive move is

φ
(+)
+ = x|s|−1P+

1

2(z − 1)
=
x|s|

2
, (7)

where in the second equality we used Eq. (4). The
factor 1/2 is the result of selecting either a positive
move or a neutral move and the term (z − 1)−1

is from occupying one of the z − 1 empty edges
incident to the last vertex.

• The incoming flux from a neutral move is

φ
(+)
0 =

x|s|z′′

2(z − 1)
, (8)

where z′′ is the number of possible edges which will
lead to a valid SAW for the last occupied edge when
changing its direction.

• The incoming flux from the decreasing mode, φ
(+)
− ,

since P− = 1, as we assume that x(z − 1) < 1, the
only possible reason of changing from another mode
is that when the last occupied changes it direction,
it does not lead to a valid SAW, thus

φ
(+)
− =

1

2
x|s|

(
1− z′′

z − 1

)
. (9)

Summing over the incoming flows, given in Eqs. (7 -
9), we verify that the global balance condition, Eq. (6),
holds. Note that we do not assume that a particular SAW
configuration of length |s| is achieved with the same fre-
quency in the increasing and the decreasing mode – it
comes out as a corollary of the global balance condition.

To test the efficiency of the new algorithm, we used the
integrated autocorrelation time τ . For a given observable
O, it is defined as

τ =
m

2

σ2
O
σ2
O
, (10)

where m is the number of steps, O is the estimator of the
average O, and σ2 denotes a variance, c.f. [33]. Here we
choose the length of the walk, |s|, for the observable as it
is a common choice for SAWs. We tested the efficiency as
a function of the linear system size by generating SAWs

FIG. 4. The ratio of integrated autocorrelation times of the
three-move nonreversible Berretti-Sokal algorithm, τ , and the
two-move nonreversible Berretti-Sokal algorithm, τ0, for 2D
and 3D systems as a function of the linear system size n.
The three-move nonreversible Berretti-Sokal algorithm’s per-
formance is slightly better in 2D systems while it is 3 − 5
times faster in most 3D systems.

in a square lattice with n × n points and in a cubic lat-
tice with n×n×n points. The boundary conditions were
fixed. With τ0 we denote the integrated autocorrelation
time of the two-move nonreversible Berretti-Sokal algo-
rithm (algorithm from [1]). The comparison of the two
algorithms is on Fig. 4.

Note, that there are two different scenarios based on
the value of weight of a unit step x. For example, for a
2D square lattice, when x = 0.4, P+ = 1 and P− < 1,
while for x = 0.2, P− = 1 and P+ < 1. To study both
scenarios present the results under initial setting where
x = 0.2 and x = 0.4 in a 2D system and correspondingly
x = 0.12 and x = 0.24 in a 3D system. From Fig. 4 we
conclude that the ratio of the autocorrelation times for
large systems is weakly dependent on the value of x.

In 2D, the ratio of the autocorrelation time of the new
algorithm over the previous one is always less than one,
which means that the new algorithm has a slightly bet-
ter performance. We further tested the new algorithm
in a three-dimensional cubic system. The new algorithm
tends to have better performance in large systems, and
the difference is more significant than the 2D situation.
When the length of the cube is less than 20, the previ-
ous algorithm is more efficient with less autocorrelation
time. However, as the system’s scale increases, the ra-
tio τ/τ0 becomes less than one, and the value is between
0.2 and 0.3, indicating that the new algorithm is 3 to 5
times faster in these larger 3D systems. We have also
tested our algorithm in 4D and 5D systems where no
general improvements are found compared to the two-
move nonreversible Berretti-Sokal algorithm. We show
the detailed findings in Appendix VII. The fact that the
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addition of neutral moves does not improve the efficiency
in generating SAWs in 4D and 5D, could be explained
by the fact that as dimension gets higher, it will be much
more likely for the algorithm to make a successful, pos-
itive move, which results in less benefit from adding the
neutral move.

To summarize, we have created a new nonreversible al-
gorithm manipulating the endpoint atmospheres to gen-
erate SAWs. By introducing all three kinds of endpoint
atmospheres’ moves, the new algorithm has greater flexi-
bility than the two-move nonreversible Berretti-Sokal al-
gorithm, from [1]. For instance, when occupied lengths
surround the endpoint of a given SAW, the algorithm
will change into the negative mode since neither a neu-
tral move nor a positive move will lead to a valid SAW.
Assume that P+ < 1, for an algorithm with only posi-
tive and negative moves, it will return to the origin and
start from the beginning again. On the other hand, with
a neutral move, the SAW does not have to start from
the origin again. When a neutral move in the negative
mode is not possible, the algorithm will change into the
positive mode. The addition of neutral moves gives the
algorithm greater flexibility in finding valid SAWs.

V. CONCLUSION

We have created a new nonreversible algorithm ma-
nipulating the endpoint atmospheres to generate SAWs.
The previous two-move nonreversible Berretti-Sokal al-
gorithm has already improved the efficiency greatly as
its speed is ten times faster than the original Berretti-
Sokal algorithm in 2D systems and is even more superior
in higher-dimensional systems. By introducing all three
kinds of endpoint atmospheres’ moves, the three-move
nonreversible Berretti-Sokal algorithm has greater flexi-
bility and higher efficiency than the two-move algorithm.
By comparing the autocorrelation time, the new algo-
rithm is slightly faster in 2D systems and is 3 to 5 times
faster in most 3D systems.

The three-move nonreversible Beretti-Sokal algorithm
is designed to create SAWs with a fixed beginning
point and variant ending points. There are also algo-
rithms manipulating general atmospheres instead of end-
point atmospheres. Algorithms like the BFACF algo-
rithm can create SAWs with a fixed beginning and end-
ing point [17]. Meanwhile, other algorithms generating
SAWs like the PERM, GARM, and pivot algorithm have
no nonreversible versions yet [15, 28, 34, 35]. Previ-
ous research has improved the efficiency of PERM al-
gorithm without implementing the nonreversible MCMC
techniques [36]. These algorithms might serve as aspects

for future research.

Finally, here we manually found a way with three at-
mospheres on how to fulfill the global balance. Looking
into the future, one might delegate this task to a neural
network alike in [37]. Optimizing the transition opera-
tor with more than three types of endpoint atmospheres
might further increase the efficacy.
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VII. APPENDIX

We investigated the performance of the three-move
nonreversible Berretti-Sokal algorithm in 4D and 5D. We
did not find it to be efficient, when compared to the
two-move nonreversible Berretti-Sokal algorithm. The
detailed findings are in the table.

dimension d = 4

system size n x = 6/35 x = 3/35

25 0.714± 0.069 2.970± 0.356

51 1.081± 0.050 2.216± 0.229

75 0.994± 0.033 2.812± 0.658

101 0.945± 0.028 2.349± 0.190

dimension d = 5

system size n x = 1/5 x = 1/10

21 0.920± 0.002 4.214± 1.108

25 0.961± 0.001 4.451± 0.571

31 0.992± 0.002 4.992± 0.696

35 0.995± 0.002 3.261± 0.513

TABLE I. The ratio of integrated autocorrelation times of the
three-move nonreversible Berretti-Sokal algorithm, τ , and the
two-move nonreversible Berretti-Sokal algorithm, τ0, for 4D
and 5D systems as a function of the linear system size n, the
SAW unit length weight x. The ratio about 1 for (x = 6/35,
d = 4) and (x = 1/5, d = 5), however for (x = 3/35, d =
4) and (x = 1/10, d = 5) it is above unity, which indicates
that two-mode nonreversible Berretti-Sokal algorithm is more
efficient there.
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