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Trajectories of endosomes inside living eukaryotic cells are highly heterogeneous in space and time
and diffuse anomalously due to a combination of viscoelasticity, caging, aggregation and active trans-
port. Some of the trajectories display switching between persistent and anti-persistent motion while
others jiggle around in one position for the whole measurement time. By splitting the ensemble of
endosome trajectories into slow moving sub-diffusive and fast moving super-diffusive endosomes, we
analyzed them separately. The mean squared displacements and velocity auto-correlation functions
confirm the effectiveness of the splitting methods. Applying the local analysis, we show that both en-
sembles are characterized by a spectrum of local anomalous exponents and local generalized diffusion
coefficients. Slow and fast endsomes have exponential distributions of local anomalous exponents
and power law distributions of generalized diffusion coefficients. This suggests that heterogeneous
fractional Brownian motion is an appropriate model for both fast and slow moving endosomes. This
article is part of a Special Issue entitled: ”Recent Advances In Single-Particle Tracking: Experiment
and Analysis” edited by Janusz Szwabiński and Aleksander Weron.

I. INTRODUCTION

Intracellular transport of organelles, such as endo-
somes, has been described by anomalous diffusion caused
by different mechanisms [1, 2]. Various models have been
proposed to describe it, such as Fractional Brownian mo-
tion (FBM), continuous time random walks and frac-
tional Langevin equations [3]. However, which of these
models is the best is a current topic of much debate.

To decipher which mechanism is at work and deter-
mine the appropriate mathematical model to describe it,
a large ensemble of trajectories is necessary. Modern ex-
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perimental techniques facilitate the tracking of large en-
sembles of intracellular objects for considerable amounts
of time. Therefore, the extraction of meaningful statisti-
cal information from trajectories is becoming an impor-
tant issue. The traditional statistical analysis of trajecto-
ries includes quantification of ensemble evolution in time
and space using the ensemble-averaged mean squared dis-
placements (EMSD), time-averaged MSD (TMSD), prob-
ability density functions of displacements and correlation
functions. As the accessible measurement time in exper-
iments increases with better live-cell microscopy tech-
niques, the accurate analysis of single trajectories has
become possible [4]. New methods of trajectory analy-
sis were developed, such as local time-averaged MSD [5],
first passage probability analysis [6] and time-averaged
diffusion coefficients [7].
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Improved microscopy imaging, tracking and analysis
methods revealed the intrinsic spatial and temporal het-
erogeneity within individual trajectories of numerous bi-
ological processes [5, 8, 10–17]. Significant progress has
been made also in analysis and interpretation of superres-
olution single particle trajectories [18–22]. Recently, in-
dividual trajectories of quantum dots in the cytoplasm of
living cultured cells were found to perform sub-diffusive
motion of the fractional Brownian FBM type with switch-
ing between two distinct mobility states [23]. In contrast
to homogeneous systems, heterogeneous trajectories are
most prominently described by broad distributions of dif-
fusivities and anomalous exponents, an exponential prob-
ability distribution of diffusivities and a Laplace proba-
bility distribution of displacements [24]. These obser-
vations led to the development of various heterogeneous
diffusion models [25–38].

Recently, the intracellular transport of endosomes
in eukaryotic cells was shown to be described by
spatio-temporal heterogeneous fractional Brownian mo-
tion (hFBM) with non-constant Hurst exponents [39]. By
analysing the local motion of endosomes, we found that it
is characterized by power-law probability distributions of
displacements and displacement increments, exponential
probability distributions of local anomalous exponents
and power-law probability distributions of local gener-
alized diffusion coefficients. In this paper, we split the
ensemble of endosomes into slow and fast moving vesi-
cles which is the main difference between this study and
Ref. [39]. This splitting allows us to study sub-ensembles
separately in addition to studying of the ATP driven ac-
tive transport of endosomes. In particular, there is the
central question: What is the appropriate mathemati-
cal model to describe the subdiffusive transport of slow
moving endosomes? By analysing locally the slow and
fast endosomal trajectories, we find that both are char-
acterised by exponential distributions of anomalous expo-
nents and power-law distributions of generalized diffusion
coefficients. This suggests that hFBM is an appropriate
model for both slow and fast endosomes.

Endosome trajectories are composed of segments of
active and passive motion and therefore they could be
further decomposed into directed runs and random mo-
tion. We segmented endosomal trajectories in this way in
Ref. [8]. In this manuscript, we separated endosome tra-
jectories into superdiffusive trajectories and subdiffusive
trajectories for their whole duration. Subdiffusive tra-
jectories do not contain segments of directed movement
and cannot be segmented further into active and passive
motion. In contrast, fast superdiffusive trajectories can
be further segmented. We leave the segmentation of fast
trajectories into directed runs and random motion for
future work.

II. MATERIALS AND METHODS

A. Experimental trajectories

We studied a large ensemble of two dimensional exper-
imental trajectories, r(t) = {x(t), y(t)}, of early endo-
somes in a stable MRC5 cell line expressing GFP-Rab5.
Trajectories were obtained from tracking wide-field fluo-
rescence microscopy videos (see [8] for experimental de-
tails). We studied 103,361 experimental trajectories of
early endosomes, the same data which was acquired in
[8]. An example of experimental trajectories is shown in
Fig. S1. The endosomes were tracked using an auto-
mated tracking software (AITracker, based on a convolu-
tional neural network)[9]. Currently it is not yet feasible
to determine the diameter of endosomes in these experi-
ments, because they are diffraction limited. Thus, it was
possible to track the centres of endosomes with sub-pixel
accuracy, but not the sizes of the smaller endosomes (less
than 200 nm). The duration of all trajectories, T , has a
good fit to a power law distribution, T−1.85 [39], which
is a manifestation of the heterogeneity of the trajecto-
ries. Slow moving endosomes stay longer within the ob-
servation volume and therefore have longer trajectories
than fast moving endosomes, leading to the emergence
of the power-law probability distribution for the trajec-
toriesâ€™ duration.

B. Splitting of ensemble into slow and fast moving
endosomes

We split ensemble of trajectories into slow and fast
moving endosomes using the distance traveled by endo-
somes:

R(t) =
√

(x(t)− x(0))2 + (y(t)− y(0))2. (1)

Trajectories which possess active motion have periods of
rapid increase or decrease of R (Figure 1a). Fast trajecto-
ries which have active motion are defined as max{R(t)} >
ε and slow trajectories which exhibit only passive motion
are defined by max{R(t)} < ε. Here max{R(t)} denotes
the maximum values of R(t) attained in the time inter-
val (0, t) and ε is the threshold. We choose the threshold
ε = 0.25 µm. In the Appendix we show that changing the
threshold to ε = 0.2 µm in the splitting does not qualita-
tively change the results. Therefore, we define fast mov-
ing endosomes as those that in the time interval (0, t),
experienced at least one period of active motion and the
maximum distance travelled from the origin exceeds the
threshold of ε = 0.25 µm. Otherwise, an endosome is de-
fined as slow moving. Small variations of the threshold
value do not affect the EMSDs of slow and fast moving
endosomes, which suggests that the splitting method is
robust (Figure S3).

Changing the splitting threshold from max{R(t)} =
0.25 µm to max{R(t)} = 0.2 µm, the increase of the



3

number of slow trajectories was 12%. Therefore, in ad-
dition to the method of splitting trajectories which uses
the minimum travelled distance, we have also tested a
second method, which makes use of the time-dependent
Hurst exponent H(t) neural network (NN) estimate at
the single trajectory level [8]. The procedure is as fol-
lows: 1) estimate the time-dependent anomalous expo-
nent αNN using the NN; 2) if the anomalous exponent
αNN is super-diffusive αNN (t) > 1 for more than 4 con-
secutive time points, the endosome is considered as fast
moving. Otherwise, the endosome is labelled as slow
moving (see Figure S2). The correct implementation of
the NN procedure requires a minimum time window [8]
that is larger than the duration of some of the endosomal
trajectories. Hence, short trajectories were discarded in
this analysis. The similarity of the distributions of gener-
alized diffusion coefficients (Figures A3B and A4B) sug-
gests that the chosen threshold max{R(t)} = 0.25 µm
was reasonable. Alternative methods of binary classifica-
tion could be performed using the first passage probabil-
ity analysis [40] or implementing the normalized radius
of gyration of each trajectory [41].

C. Ensemble and time averaged mean squared
displacements

From the two dimensional experimental trajectories
r(t) = {x(t), y(t)}, we calculated the ensemble-averaged
mean squared displacement (EMSD) as

EMSD(t) =
〈r〉2 (t)

l2
, (2)

where l is the length scale which we choose l = 1 µm,

〈r〉2 (t) =
〈
(xi(t)− xi(0))2 + (yi(t)− yi(0))2

〉
, (3)

where the angular brackets denotes averaging over an

ensemble of trajectories, 〈A〉 =
∑N
i=1Ai/N and N is the

number of trajectories in the ensemble.
By fitting the EMSD to power law functions, the

anomalous exponent α and the generalized diffusion co-
efficient Dα can be extracted using

EMSD(t) = 4Dα

(
t

τ

)α
, (4)

where α and Dα are constants which characterize aver-
aged transport properties of ensemble of endosomal tra-
jectories. The time scale τ = 1 sec and the length scale
l = 1 µm are introduced in order to make the generalized
diffusion coefficient Dα dimensionless.

The time-averaged mean squared displacement
(TMSD) of an individual trajectory {xi, yi} of a
duration T is calculated as:

TMSDi(t) =
δ2(t)

l2
, (5)

where l is the length scale which we choose l = 1 µm and

δ2(t) =

∫ T−t
0

(
xi(t

′ + t)− xi(t′))2 + (yi(t
′ + t)− yi(t′))2

)
dt′

T − t
.

(6)
TMSDs of individual trajectories are averaged further
over the ensemble of trajectories to get the ensemble-
time-averaged MSD (E-TMSD):

E-TMSD(t) = 〈TMSDi(t)〉 , (7)

where the angular brackets denotes averaging over an
ensemble of trajectories as before.

D. Local analysis of endosomal trajectories

The time-local statistical analysis has been imple-
mented as follows. We considered only the portion of
a single endosomal trajectory within a window of size W
and centered around the time t, i.e. (t−W/2, t+W/2).
We have calculated the TMSD within this chunk of tra-
jectory only: this is the reason of the acronym L-TMSD,
i.e. the local TMSD. As the experimental detection of
the endosomal motion is achieved with the frame rate
1/∆t s−1, hence t = i∆t (here i = 0, 1, 2, ... is the time
index) and W = N∆t, with N > 10. The first 10 points
of the L-TMSD were fitted with the power-law function

L-TMSD = 4DL(t)

(
t′

τ

)αL(t)

, (8)

where t′ = 10∆t. αL(t) and DαL(t) are the local anoma-
lous exponent and generalized diffusion coefficient respec-
tively. We iterate this procedure by shifting the time
window of a single ∆t (i → i + 1) till the end of the
experimental endosomal trace, thus obtaining αL(t) and
DαL(t) along the entire trajectory. Notice that αL and
DL are not constants in time but they vary, being local
properties of each endosomal trajectory.

E. The time and ensemble-time averaged velocity
auto-correlation functions

The time averaged auto-correlation function (TVACF)
along a single trajectory is defined as:

TVACFi(t) =

∫ T−t−τ
0

~v(t′ + t)~v(t′)dt′

T − t− τ
, (9)

where ~v = ~r(t+τ)−~r(t)
τ . TVACFs of individual trajectories

are averaged further over the ensemble of trajectories to
get the ensemble-time averaged VACF (E-TVACF):

E-TVACF(t) = 〈TVACFi(t)〉 , (10)

where the angular brackets denotes averaging over an
ensemble of trajectories. The velocity autocorrelation
function was suggested as a tool to distinguish between
subdiffusion models [44].



4

III. RESULTS

We split the ensemble of endosomes into slow and fast
moving vesicles using the two methods described above
(see Methods, Figure 1A and Figure S2). For both slow
and fast endosomes, the EMSDs and the E-TMSDs show
similar behaviour which suggest ergodicity (see Methods
and Figure 1B). MSDs of slow endosomes are not increas-
ing in time, which confirms that these trajectories have
no active periods of motion. Surprisingly, we found that
both EMSDs and E-TMSDs of slow endosomes are de-
creasing functions of time which to our knowledge was
never observed before. We explain this behaviour in
terms of the coupling between the average diffusivities of
slow trajectories and their duration (see Figure 4 and the
discussion below). Conversely, MSDs of fast endosomes
are increasing functions of time in the intermediate time
scale (0.2, 2) s. The anomalous exponent extracted from
EMSD or E-TMSD of fast endosomes is α ' 1, smaller
than the anomalous exponent obtained by considering
all trajectories without distinction into fast or slow, i.e.
α ' 1.26. Notice that two sub-diffusive regimes char-
acterize the MSD time behavior for fast and all trajec-
tories. The first, at small time scales (t ≤ 10−1 s) can
be attributed to the measurement errors [42, 45, 46]; the
second, at longer time scales (t > 10 s) was shown to be
spurious and originate from the coupling of the trajecto-
ries’ duration and their diffusivities [39, 43]. We suggest
that, due to this coupling, the anomalous exponents de-
duced from the power-law fit of EMSD and E-TMSD, do
not capture the essential characteristics of the endosome
superdiffusive motility, nor shed light on its fundamen-
tal aspects. Therefore, in order to reveal the effect of
the duration of trajectories on the statistical analysis, we
consider only trajectories longer than a certain threshold
T [39].

Figure 2A and B shows the EMSDs and E-TMSDs of
slow and fast endosomes, considering only experimental
trajectories with duration longer than T seconds (2 or 8
sec). Unlike the slow moving endosomes, the MSDs of
fast vesicles (Figure 2B) present similar qualitative be-
haviors either by choosing T = 2 s, T = 8 s or no T
at all (all the fast molecules considered as in Fig. 1B,
black curve). However, in the intermediate regime, the
superdiffusive behaviour becomes more and more appar-
ent, ∝ t1.26, and stable. In Ref. [39] we have found
that this process is described by the space-time hetero-
geneous FBM with the Hurst exponent H that randomly
switches between persistent H > 0.5 and anti-persistent
regimes H < 0.5, together with the coupling between the
diffusivity and duration of trajectories which account for
spurious sub-diffusion at longer time scales. Moreover
the EMSD curves obtained for T = 2 s and T = 8 s
deviates considerably from the corresponding E-TMSD
curves. The MSDs of slow endosomes (Figure 2A) display
very different, but ergodic, behaviour. For 0.01 < t < 2
s, the MSDs of all slow endosomes decreases in time. On
the other side, the MSDs of the sub-ensembles of slow

FIG. 1. Endosomes are split into slow and fast moving: (A)
Distance R(t) traveled by fast (black curves) and slow (red
curves) endosomes (9 sample experimental trajectories are
shown). Most experimental trajectories possess active motion
visible as a rapid increase or decrease of R. (B) EMSDs (solid
curves) and E-TMSDs (dashed curves) of fast (black curves)
and slow (blue curves) endosomes compared with EMSD and
E-TMSD of all trajectories (orange curves). The dashed-
dotted and dashed-double-dotted lines represent t1.26 and t
functions.

endosomes with T = 2 s and T = 8 s, reveal sub-diffusive
trends with α ∼ 0.5. As in the case of fast moving
endosomes, we argue that this behaviour is due to the
coupling between the diffusivity and duration of trajec-
tories. Therefore we attempt to confirm this hypothesis,
by performing simulations of an ensemble of heteroge-
neous FBM trajectories with constant Hurst exponent
H = 0.25 (see Figure 4 below).

The velocity auto-correlation functions (VACF) also
confirm the effectiveness of this simple threshold splitting
(Figure 3A and B). Indeed, slow and fast endosomes have
very different VACFs. Ensemble-time averaged VACFs
(E-TVACFs) of fast endosomes (Figure 3B) are positive
as expected for super-diffusive motion. In contrast, E-
TVACFs of slow endosomes have negative dips at t = τ
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FIG. 2. EMSDs and E-TMSDs (solid and dashed curves) of
experimental trajectories of slow (A) and fast moving endo-
somes (B). Black curves correspond to T → ∞ s. Red and
blue curves represent EMSDs and E-TMSDs of experimental
trajectories which have duration longer than 2 and 8 seconds,
respectively. The dashed-dotted line in (A) represents the
function t0.5. In (B), the dashed-dotted line and the dashed-
double-dotted line represents the linear, t, and super-linear,
t1.26, functions respectively.

and approach zero from negative values (Figure 3A).
Such behaviour is characteristic of FBM and the gener-
alized Langevin equation, but cannot be reproduced by
the CTRW model [3].

To verify that heterogeneous FBM describes slow mov-
ing endosomes, we simulated an ensemble of hFBM tra-
jectories. Individual hFBM trajectories were simulated
with constant Hurst exponent H = 0.25. For stan-
dard FBM this would correspond to sub-diffusive MSDs,〈
r2(t)

〉
∼ t2H ∼ t0.5. The duration of hFBM trajecto-

ries was drawn from the power-law distribution φ(T ) ∼
T−1.85, in accordance with the experimental evidence
[39]. The generalized diffusion coefficients were chosen
inversely proportional to the duration of trajectories, i.e.
D ∼ T−0.6. As shown in Figure 4, the EMSDs of hFBM
trajectories agree well with the experimental data.

FIG. 3. Time-ensemble averaged VACF (E-TVACF) of ex-
perimental trajectories of slow (A) and fast endosomes (B)
calculated for different τ given in the legend.

We now implement the local analysis [39] to better
characterize the slow and fast endosomal dynamics. We
calculate the local TMSDs (L-TMSD) for each experi-
mental trajectory at various times t ( Methods). From
the fit of L-TMSD to Eq.8 we extracted the local anoma-
lous exponents αL(t) and the local generalized diffusion
coefficients DαL(t) for slow and fast endosomes sepa-
rately. The local anomalous exponents αL(t) and the
local generalized diffusion coefficients DαL(t) appear to
be positively correlated both for slow and fast endosomes
(see Fig. S6). The origin of these correlations is not
known and will be investigated in future publications.
In Ref. [39], we found that PDFs of local anomalous
exponents and local generalized diffusion coefficients do
not depend on the window size, nor on the time t (sta-
tionary) and are best fitted with exponential and power
law functions respectively. The PDFs of αL and DαL for
slow and fast endosomes are shown in Figure 5 A and
B. In both cases, the PDFs of αL follow an exponential
distribution, while those of DαL are best fitted with a
power-law. However, the parameters characterizing the
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FIG. 4. EMSDs calculated for simulated hFBM trajectories
(solid lines) as a function of time interval. Black curves cor-
respond to EMSDs of all trajectories of slow endosomes and
hFBM, blue curves are EMSDs of trajectories longer than
T = 2 s and cyan curves are EMSDs of trajectories longer
than T = 8 s. The sub-diffusive behaviour with the anoma-
lous exponent α = 0.5 is shown as the dashed-dotted line.
The EMSDs of slow experimental endosomal trajectories are
shown for comparison (dashed lines). Notice that hFBM tra-
jectories were simulated without external noise (measurement
error) which lead to discrepancy between simulated and ex-
perimental EMSDs at small time scale.

distribution shapes are very different. Furthermore the
parameters for the fast endosomes PDFs coincide with
those found by considering all experimental trajectories
[39]. This is in agreement with an heterogeneous FBM
model of endosomal transport [39], which describes the
endosome motion as FBM with non-constant Hurst ex-
ponents.

Finally, we calculated propagators of experimental tra-
jectories for slow and fast endosomes (Fig. 6). Using the
power-law forms of distributions of local generalized dif-
fusion coefficients of slow pS(DL) ∼ (DL)−1−γS and fast
pF (DL) ∼ (DL)−1−γF endosomes with γS ' 1.7 and
γF ' 0.5 (Fig. 5), we fit the propagators with the prop-
agators of hFBM, PDF(ξ) ∼ |ξ|−1−2γ with γ = γS for
slow endosomes and γ = γF for fast endosomes (see Sup-
plementary Note and Ref. [32]). For slow endosomes
(Fig. 6A), we also compare the experimental PDFs with
the analytical propagator for obstructed diffusion in two
dimensions, ξ−0.108 exp(−|ξ|1.65) [50].

IV. DISCUSSION

In this paper we have extended our investigation of the
heterogeneous intracellular transport of endosomes based
on the local analysis of experimental trajectories [39]. In-
dividual endosomes move for long distances in a hetero-
geneous way with short bursts of directed motility, inter-
spersed with periods of sub-diffusive motion [47, 48]. The

FIG. 5. Distribution of local anomalous exponents αL (A)
and local generalized diffusion coefficients DL (B) obtained
from experimental trajectories of slow and fast endosomes.
The dashed and dashed-dotted lines are best fits to exponen-
tial (A) and power-law pdfs (B). In (A) they correspond to
1.86 exp(−1.86αL) for pdf of αL of fast endosomes (dashed
line) and 4.3 exp(−4.3αL) for pdf of αL of slow endosomes
(dashed-dotted line). In (B) they correspond to (DL)−1.5 for
pdf of DL of fast endosomes (dashed line) and (DL)−2.7 for
pdf of DL of slow endosomes (dashed-dotted line).

heterogeneous character of this motion is also manifested
as some endosomes are less motile then others. Some en-
dosomes look as of they are jiggling in one position for
the whole period of observation. Therefore, we split the
ensemble of trajectories into slow and fast moving endo-
somes. The distinct time behaviour of mean squared dis-
placements and velocity auto-correlation functions con-
firm the effectiveness of these methods. The splitting al-
lowed us to study passive sub-diffusive and active super-
diffusive transport of endosomes separately.

Comparing the behaviour of fast endosomes (MSDs,
VACFs and propagators) to the behaviour of the en-
tire ensemble, we find that they are most consistent with
FBM models [39]. Therefore, we conclude that fast en-
dosomes follow heterogeneous FBM [39]. The ergodic-
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FIG. 6. Distribution of scaled x-component of coordinate
ξ = x/σx obtained from experimental trajectories of slow (A)
and fast (B) endosomes. The dashed-dotted lines correspond
to power-law fit |ξ|−1−2γS for slow endosomes (γS ' 1.7) and
|ξ|−1−2γF for fast endosomes (γF ' 0.5). In (A) we also com-
pare PDF of slow endosomes with the analytical propagator
for obstructed diffusion (dashed line) [50].

ity (Figure 2A) and the VACF (Figure 3A) suggest that
slow endosomes are also described by the hFBM or het-
erogeneous generalized fractional Langevin equation mo-
tion. For slow endosomes, crowding and obstruction ef-
fects could also lead to sub-diffusive behaviour [2, 4]. It
is known that obstructed diffusion has many similarities
with fBm such as stationarity of the increments and the
equivalence of the time and ensemble MSDs [49, 50]. The
propagators provide a clear way to distinguish obstructed
diffusion from fBm. Therefore, we calculated propagators
of experimental slow endosomes and compare it with an-
alytical prediction for the propagator of obstructed dif-
fusion and prediction of heterogeneous fBM. The results
shown in Fig. (6) indicate that slow endosomes follow
hfBm at longer time scales while on smaller scales ob-
structed diffusion likely contributes to their sub-diffusive
behaviour as well. Crowding effects remain as a possible
source of anomalous diffusion of slow endosomes. Re-

cently, numerical simulations of lipids in crowded condi-
tions of the membrane was shown to be multifractal and
anomalous. The dynamics was no longer described by
the mechanism consistent with the fractional Langevin
equation, or by any single known mechanism. Instead,
the motion was found to be non-Gaussian and heteroge-
neous, yet maintains its ergodic properties [51] which is
similar to what we observed for experimental trajectories
of slow endosomes.

Both slow and fast endosomal trajectories are found
to be highly heterogeneous in space and time. The spa-
tial heterogeneity in the form of coupling between en-
dosome diffusivity and duration of endosome trajectory
explains the behaviour of the MSDs. Longer trajectories
have smaller generalized diffusion coefficients since in ex-
periments slowly moving endosomes with smaller diffu-
sion coefficients stay longer in the field of view, having
longer durations. For slow and fast endosomes, we can
conclude that EMSD and E-TMSD are not adequate to
describe the large heterogeneity exhibited in space and
time. Therefore, we applied a time local analysis of indi-
vidual trajectories.

From the local analysis, we found that slow and fast en-
dosomal trajectories are both characterized by exponen-
tially distributed anomalous exponents and power-law
distributed generalized diffusion coefficients. However,
the parameters of these distributions are different. Al-
though the factors that cause the power-law distributed
generalized diffusion coefficients for slow and fast endo-
somes could be different, some common factors can exist.
One of them could be the scale free properties of endo-
somal networks [52]. Hence the differences in endosome
diameters could generate distinct diffusive properties in-
trinsic to each endosome. Heterogeneous diffusion gen-
erated by the fluctuations of molecular size was found in
single-molecule experiments within the cell [13, 17, 41].
Another common factor promoting power-law distribu-
tions of generalized diffusion coefficients could be non-
specific interactions with the endoplasmic reticulum or
other organelles and large intracellular structures. Re-
cently, non-specific interactions were shown to generate
heterogeneous diffusion of nanosized objects in mam-
malian cells [43].

Our analysis of endosomal transport would be valuable
both for fundamental cell biology and nanomedicine ap-
plications such as drug and gene delivery. Often in these
applications, nanoparticles are used as cargo-carrying
vesicles which in turn utilize endosomal network for their
intracellular transport. For example, gold nanoparticles
was shown to cluster inside endosomes and move via sub-
and superdiffusion [53]. Our results would be also useful
for the nanoparticle enhanced radiation therapy of cancer
[54–56] where clusters of nanoparticles inside endosomes
are used for dose-enhancement.

In the future, we expect microscopy techniques will
improve in tandem with tracking algorithms, providing
data sets with larger ranges of time scales and improved
resolution. Thus further subclassification of ensembles of
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endosomal tracks (beyond the binary fast and slow sepa-
ration) will become possible towards the ultimate goal of
single molecule specificity. Increasing the dynamic range
(to sub millisecond time scales) will allow the stepping
motion of the motor proteins (kinesin and dynein) at-
tached to microtubules to be connected with the spectra
of α and Dα for the fast moving endosomes at a funda-
mental level.
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APPENDIX A

Figure A1: A example of experimental endosome tra-
jectories measured in MRC5 cells stably expressing GFP-
Rab5. See the main text for details.

FIG. S1. An example of experimental endosomal trajectories
(30000 trajectories are shown).

Figure A2: Two splitting methods used to separate
endosome trajectories into slow and fast moving en-
dosomes. The first method uses the maximum dis-
tance traveled R(t). The second method uses the time-
dependent anomalous exponent H(t) estimated with the
neural network. An example of two trajectories is shown

which were classified as slow and fast by both methods.
See the main text for details of the methods.

FIG. S2. An example of experimental trajectories of slow and
fast moving endosomes obtained using the maximum distance
traveled R(t) (upper panel) and the time-dependent anoma-
lous exponent H(t) estimated with the neural network (lower
panel).

Figure A3: The EMSD of slow and fast moving endo-
somes calculated with the splitting method which uses
the maximum distance traveled R(t). Two values of the
threshold ε produce qualitatively similar results which
suggests that the splitting method is robust against small
variations of the threshold.

FIG. S3. The EMSD of experimental trajectories of slow and
fast moving endosomes calculated with the splitting method
which uses the maximum distance traveled R(t) for two values
of the threshold ε = 0.2 µm and ε = 0.25 µm.

Figure A4: Comparison of distributions of anoma-
lous exponents αNN and generalized diffusion coefficients
DNN and local anomalous exponents αL and DL of slow
moving endosomes. Anomalous exponents αNN were es-
timated using a neural network with window size 0.26
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s. The generalized diffusion coefficients DNN were esti-
mated by fitting the local TMSD of the trajectory with

the power law DNN tα
NN

. The distribution of αNN has a
maximum of 0.6 and decays faster then the distribution
of αL. This may be because many short trajectories are
missing in the NN analysis, since the NN could analyse
trajectories with durations longer than its window size
[8]. The distributions of generalized diffusion coefficients
(right panel), on the other hand, are similar to each other.

FIG. S4. Slow endosomes. Left panel: Distribution of anoma-
lous exponents αNN of slow moving endosome trajectories
(the solid curve) compared with the distribution of local
anomalous exponents αL of slow moving endosome trajec-
tories (the dashed curve). Right panel: Distribution of gen-
eralized diffusion coefficients DNN of slow moving endosome
trajectories (the solid curve) compared with the distribution
of local generalized diffusion coefficients DL of slow moving
endosome trajectories (the dashed curve).

Figure A5: Comparison of distributions of anoma-
lous exponents αNN and generalized diffusion coefficients

DNN and local anomalous exponents αL and DL of fast
moving endosomes. Anomalous exponents αNN were
estimated using neural network with window size 0.26
s. The generalized diffusion coefficients DNN were esti-
mated by fitting the local TMSD of trajectory with the

power law DNN tα
NN

. The distributions of anomalous
exponents (left panel) are similar to each other while the
distributions of generalized diffusion coefficients (right
panel) are almost indistinguishable.

FIG. S5. Fast endosomes. Left panel: Distribution of anoma-
lous exponents αNN of fast moving endosome trajectories (the
solid curve) compared with the distribution of local anoma-
lous exponents αL of slow moving endosome trajectories (the
dashed curve). Right panel: Distribution of generalized dif-
fusion coefficients DNN of fast moving endosome trajecto-
ries (the solid curve) compared with the distribution of local
generalized diffusion coefficients DL of fast moving endosome
trajectories (the dashed curve).

Figure A6: Local anomalous exponents αL and local
generalized diffusion coefficients DL are positively corre-
lated both for slow and fast moving endosomes.
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