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We propose a fast temporal decomposition procedure for solving long-horizon nonlinear dynamic programs.
The core of the procedure is sequential quadratic programming (SQP) that utilizes a differentiable exact
augmented Lagrangian as the merit function. Within each SQP iteration, we approximately solve the Newton
system using an overlapping temporal decomposition strategy. We show that the approximate search direction
is still a descent direction of the augmented Lagrangian, provided the overlap size and penalty parameters are
suitably chosen, which allows us to establish the global convergence. Moreover, we show that a unit stepsize is
accepted locally for the approximate search direction, and further establish a uniform, local linear convergence
over stages. This local convergence rate matches the rate of the recent Schwarz scheme [38]. However, the
Schwarz scheme has to solve nonlinear subproblems to optimality in each iteration, while we only perform
a single Newton step instead. Numerical experiments validate our theories and demonstrate the superiority
of our method.
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1. Introduction We consider nonlinear equality-constrained dynamic programs (NLDPs):

min
x,u

N−1∑
k=0

gk(xk,uk) + gN(xN), (1.1a)

s.t. xk+1 = fk(xk,uk), k= 0,1, . . . ,N − 1, (1.1b)
x0 = x̄0, (1.1c)

where xk ∈ Rnx is the state variable, uk ∈ Rnu is the control variable, gk : Rnx × Rnu → R (gN :
Rnx→R) is the cost function, fk :Rnx ×Rnu→Rnx is the dynamical constraint function, x̄0 is the
given initial state, and N is the temporal horizon length. In the control literature, Problem (1.1) is
also called nonlinear optimal control problem. This paper focuses on solving (1.1) with a large N .

Large-scale nonlinear problems pose significant computational challenges due to the nonlinearity
of the problems and the large number of variables that need to be optimized. Numerous solvers have
been developed to address the scalability issue from different aspects. For example, IPOPT [60] is a
primal-dual interior point method that employs the logarithmic barrier function with the filter line-
search step. It enjoys both global and local superlinear convergence [58, 59]. As another example,
Knitro [10] integrates the advantages of two complementary methods—the interior point method
and the active-set method—in a unified package, and achieves the robust performance. We refer to
[13, 43, 61] for the other scalable high-performance solvers for nonlinear programs.

The long-horizon NLDPs are of special interest as they appear in a variety of applications includ-
ing portfolio management [56], autonomous vehicle [23, 68], and power planning [15]. The aforemen-
tioned centralized solvers, while exploiting the problem-dependent sparse structures to accelerate
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the computation, are not particularly designed for NLDPs. As these solvers do not take advantage of
generic properties of dynamical systems, they are deficient when directly implemented on Problem
(1.1), especially when we have limited computing resources. The generic properties of dynamical
systems, such as sensitivity and controllability, play a key role in developing various efficient algo-
rithms [34, 52, 53, 54, 65]. Further, the centralized solvers are not flexible enough to be implemented
on different types of computing hardware. Their performance heavily relies on a single high-speed
processor, which sometimes is inaccessible. These limitations motivate us to design a parallel, DP-
oriented procedure for (1.1).

In contrast to solving NLDPs in real time [16, 17, 18, 67], the dominant class of distributed offline
methods is the decomposition-based methods, where the full problem is decomposed into multiple
subproblems, which are then solved in a parallel environment [63]. For example, temporal decompo-
sition [1, 30], Lagrangian dual decomposition [2, 31], and alternating direction method of multipliers
(ADMM) [7, 42] are widely adopted in practice. The decomposition-based methods are preferable
when the problem scale (i.e., N in our case) is so large that solving (1.1) on a single processor is
computationally prohibitive, but multiple processors can be used to solve subproblems in parallel.

This paper contributes to the literature on the overlapping temporal decomposition (OTD) meth-
ods [1, 38, 52, 65]. A TD method decomposes the full temporal horizon [0,N ] into several short hori-
zons [0,N ]⊆∪i[ni, ni+1]; constructs subproblems {P i}i associated with short horizons {[ni, ni+1]}i;
solves all subproblems in parallel; and retrieves the full-horizon solution by composing the subprob-
lem solutions sequentially. Different from the exclusive decomposition in TD, OTD extends each
short horizon [ni, ni+1] by b stages on two ends to encourage information exchange between two
adjacent subproblems. The composition is performed by using only the exclusive part, [ni, ni+1], of
each subproblem’s solution. OTD was first empirically studied in [1] on power planning problems,
and rigorously analyzed for linear-quadratic convex DPs in [65]. In this work, the authors showed
under the controllability and boundedness conditions that maxk ‖(x̂k−x?k; ûk−u?k)‖ ≤Cρb for some
constants C > 0 and ρ∈ (0,1). Here, (x̂k, ûk) is the OTD output at the stage k and (x?k,u

?
k) is the

optimal solution. For general NLDPs, [38, 52] recently proposed an overlapping Schwarz scheme as
an application of OTD on nonlinear problems. We will review the Schwarz scheme in section 2 but
briefly introduce it here to motivate our study.

Following the same spirit as OTD, the Schwarz scheme decomposes [0,N ] by [0,N ]⊆ ∪i [mi
1,m

i
2],

where mi
1 = ni−b and mi

2 = ni+1 +b are two boundaries of the extended intervals. The i-th subprob-
lem P i =P i(di) is parameterized by some boundary variables di = (dmi1 ;dmi2). In the τ -th iteration,
one first specifies the boundary variables dτi by the solutions of adjacent subproblems (noting that
mi

1,m
i
2 /∈ [ni, ni+1]); then solves the subproblems {P i(dτi )}i to optimality in parallel and updates the

boundary variables to dτ+1
i . The solutions to subproblems are finally composed to derive a full-

horizon solution. The Schwarz scheme is demonstrated in Figure 1. Clearly, the OTD step corre-
sponds to one iteration of the Schwarz scheme. [38] empirically showed that the Schwarz scheme sig-
nificantly improves the efficiency of ADMM; and may be as efficient as the centralized solver IPOPT,
but provide significant flexibility on different computing environments. By adjusting the overlap size
b of the decomposition, the scheme adapts to centralized or to decentralized environments. Further-
more, unlike ADMM whose convergence for nonlinear problems is established for some setups that
may not directly apply to (1.1) (see [27, 62]), the Schwarz scheme exhibits a uniform local linear con-
vergence. Under the same conditions of OTD on linear-quadratic convex DPs in [65], [38] showed
maxk ‖(xτk−x?k;uτk−u?k)‖ ≤ (Cρb)τ maxk ‖(x0

k−x?k;u0
k−u?k)‖, where (xτk,u

τ
k) is the τ -th iterate of

the Schwarz scheme. Despite this promising result, the Schwarz scheme has two limitations.
First, only local convergence guarantee is established while global convergence is still unknown.

In fact, as we will explain later, the Schwarz scheme does not converge globally in general. There is
no guarantee that the composed solution of the subproblems is the solution to the full problem, even
if we correctly specify the boundary variables for each subproblem. Thus, we arise the question:
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Figure 1. Demonstration of the Schwarz scheme. The horizontal line is the full horizon [0,N ]. The red vertical lines
are knots of the exclusive intervals; the blue vertical lines are boundaries of the extended intervals. The subproblem
i parameterized by di = (dmi1

,dmi2
) is solved, but only the exclusive part of the solution is used in the composition.

Q1: How to design an OTD-based procedure that converges globally?

Second, the Schwarz scheme is computationally expensive. In each iteration, the scheme solves all
nonlinear subproblems {P i(di)}i to optimality. However, we want to know:

Q2: Is it necessary to solve subproblems to optimality in each iteration to enjoy (uniform) local
linear convergence?

We answer Q1 and Q2 by designing a fast OTD (FOTD) procedure. Our procedure is inspired by
[63], where the author applied the sequential quadratic programming (SQP) to solve (1.1), and a
parallel block-banded linear solver to solve the exact Newton system. By using the unit stepsize, [63]
conducted a local analysis. In this paper, we propose a FOTD procedure to integrate global and
local analyses. Similar to [63], FOTD is also built upon an SQP scheme. However, it utilizes an exact
augmented Lagrangian merit function to adaptively select the stepsize via line search; and adopts
an OTD strategy to approximately solve the Newton system. While there are many distributed
methods for solving the Newton system exactly or approximately, e.g., [30, 39, 40], we specifically
focus on OTD in order to build a relation to the Schwarz scheme. We prove that FOTD converges
globally. A key technical step is to show that the approximate direction is a descent direction of the
augmented Lagrangian, so that the iterates are improved towards the KKT point. This technical
step justifies the choice of the augmented Lagrangian merit function. Furthermore, we show that the
unit stepsize for the approximate direction is accepted locally, so that FOTD enjoys a uniform local
linear convergence. Such a linear convergence matches the one of the Schwarz scheme [38]; however,
FOTD requires much fewer computations as it does not solve nonlinear subproblems to optimality.
Our experiments validate the theorems and demonstrate the superiority of FOTD.

Structure of the paper: In section 2, we present the preliminaries of OTD and review the Schwarz
scheme. In section 3, we introduce our FOTD procedure. In section 4, we study the approximation
error of the Newton system. The global and local convergence results are established in section 5 and
section 6, respectively. Numerical experiments are presented in section 7 followed by conclusions
in section 8. All the proofs are collected in appendices to make the main paper compact.

Notation: For an integer n, [n] := {0,1, . . . , n}. For two integers n,m, we abuse the interval notation
and let [n,m], (n,m), [n,m), (n,m] be the corresponding index sets. All vectors in the paper are col-
umn vectors. For two vectors a, b, (a;b) denotes the column vector that stacks a and b sequentially.
For a vector-valued function f :Rn→Rm, ∇f ∈Rn×m is its Jacobian matrix. We let ‖ ·‖ denote the
`2 norm for vectors and the spectral norm for matrices. For a symmetric matrix A, λmin(A) denotes
its smallest eigenvalue. We let I be the identity matrix and 0 be the zero matrix, whose dimensions
can be inferred from the context. We also reserve the following notation. x=x0:N = (x0; . . . ;xN) is
the state vector; u= u0:N−1 = (u0; . . .uN−1) is the control vector; zk = (xk;uk) (zN = xN) is the
state-control pair at stage k, and z = z0:N = (z0; . . . ;zN). We let nz = (N+1)nx+Nnu and z ∈Rnz .
We may also express z = (x,u) when explicitly specifying the components x,u of z.
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2. Preliminaries We start by setting up an overlapping temporal decomposition (OTD). Given
the full horizon [0,N ], we decompose it into M exclusive intervals with knots 0 = n0 < n1 < · · ·<
nM =N . For example, we can choose evenly spaced knots ni = i ·N/M (suppose M is a divisor of
N). Each one of these intervals is then extended by b≥ 1 stages on two ends; that is, the boundaries
of the extended intervals are

mi
1 = max{ni− b, 0}, mi

2 = min{ni+1 + b, N}, i= 0,1, . . . ,M − 1. (2.1)

To simplify the notation, we use m1,m2 to denote the boundaries of a general extended interval i.
We note that two successive extended intervals overlap on 2b stages.

For the extended interval i, we define the corresponding subproblem as

P iµ(di) : min
x̃i,ũi

m2−1∑
k=m1

gk(xk,uk) + g̃m2
(xm2

;di,2:4), (2.2a)

s.t. xk+1 = fk(xk,uk), k ∈ [m1,m2), (2.2b)
xm1

= di,1, (2.2c)

where x̃i =xm1:m2
and ũi =um1:m2−1 are the state and control variables; di = di,1:4 = (x̄m1

; x̄m2
;

ūm2
; λ̄m2+1) are the boundary variables; g̃m2

(xm2
;di,2:4) = gN(xN) if i=M − 1 (i.e., the last sub-

problem), otherwise for µ> 0,

g̃m2
(xm2

;di,2:4) = gm2
(xm2

, ūm2
)− λ̄Tm2+1fm2

(xm2
, ūm2

) +
µ

2
‖xm2

− x̄m2
‖2. (2.3)

For the boundary variables di = (di,1;di,2:4), di,1 = x̄m1
is the initial state variable; di,2:4 = (x̄m2

; ūm2
;

λ̄m2+1) are the terminal state, control, and dual variables. The boundary variables di = (di,1;di,2:4)
are given to the subproblem. In (2.3), µ is a uniform quadratic penalty parameter independent from
i. In what follows, we denote by z̃i = (x̃i, ũi) the ordered state-control vector of the subproblem i.

The subproblem P i =P iµ(di) in (2.2) is essentially the truncation of the full problem (1.1) onto
the interval [m1,m2], except that the initial state is fixed at di,1 = x̄m1

and the terminal cost on xm2

is adjusted by g̃m2
(xm2

;di,2:4). The subproblem is parameterized by di; we always specify di based
on the previous iterate before solving P iµ(di). The formula (2.3) was first proposed by [35] for analyz-
ing the real-time model predictive control schemes. The middle term depending on λ̄m2+1 and fm2

reduces the KKT residual brought by the horizon truncation, and the quadratic penalty term con-
vexifies the subproblem. The benefits of (2.3) will be clearer later. We clarify two corner cases: for
i= 0 and m1 = 0, x̄m1

is x̄0 from Problem (1.1); for i=M − 1 and m2 =N , the adjustment on the
terminal cost is restored. We mention that there exist other subproblem formulations in some
restrictive setups: if gm2

, fm2
are separable, then ūm2

is not needed in (2.3); if gm2
is quadratic and

convex and fm2
is affine, then we can let µ= 0. All these formulations ensure that the subproblem

P iµ(di) is well-defined (e.g., is lower bounded) given a well-defined full problem.
Before introducing the Schwarz scheme, we need the following notation. We let λ=λ0:N be the

dual variables of (1.1), where λ0 ∈Rnx is associated with the constraint in (1.1c) and λk+1 ∈Rnx for
k ∈ [N−1] is associated with the k-th constraint in (1.1b). Similarly, we let λ̃i =λm1:m2

be the dual
variables of (2.2). For the state variables x̃i (similar for ũi, z̃i, λ̃i) and k ∈ [m1,m2], x̃i,k denotes the
variable at the stage k in the subproblem i. For example, k= ni belongs to both subproblem i− 1
and subproblem i; thus x̃i−1,ni and x̃i,ni refer to different variables at the same stage. The primal-

dual solution of P iµ(di) is denoted by (z̃?i (di), λ̃
?

i (di)). We also define composition and decomposi-
tion operators in the next definition.

Definition 2.1 (composition and decomposition). For the subproblem variables {(z̃i, λ̃i)}M−1
i=0 ,

we define a composition operator C as C({(z̃i, λ̃i)}i) = (z,λ), where (zk,λk) = (z̃i,k, λ̃i,k) if k ∈
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Algorithm 1 Overlapping Schwarz Decomposition Procedure

1: Input: initial iterate (z0,λ0) with x0
0 = x̄0, a scalar µ> 0;

2: for τ = 0,1,2, . . . do
3: for i= 0,1, . . . ,M − 1 (in parallel) do
4: Let dτi = (xτm1

;xτm2
;uτm2

;λτm2+1) (note that dτM−1 =xτm1
);

5: Solve P iµ(dτi ) to optimality and obtain the solution (z̃?i (d
τ
i ), λ̃

?

i (d
τ
i ));

6: end for
7: Let (zτ+1,λτ+1) = C({(z̃?i (d

τ
i ), λ̃

?

i (d
τ
i ))}i);

8: end for

[ni, ni+1) for i∈ [M −1], and zN = x̃M−1,N and λN = λ̃M−1,N . Conversely, for the full-horizon vari-
able (z,λ), we define a decomposition operator D as D(z,λ) = {Di(z,λ)}M−1

i=0 , where Di(z,λ) =
(z̃i, λ̃i) with z̃i = (x̃i, ũi) = (xm1:m2

,um1:m2−1) and λ̃i =λm1:m2
.

From Definition 2.1, we see that the variables on the overlapping stages are discarded during the
composition. That is, x̃i = x̃i,m1:m2

(similar for ũi, λ̃i) only contributes x̃i,ni:ni+1−1 to the full vector.

Schwarz scheme. Given the τ -th iterate (zτ ,λτ ), we specify the boundary variables by dτi = (xτm1
;

xτm2
;uτm2

;λτm2+1); solve the subproblems {P iµ(dτi )}i in parallel to optimality ; and obtain the solu-

tions {(z̃?i (d
τ
i ), λ̃

?

i (d
τ
i ))}i. Then, (zτ+1,λτ+1) = C({(z̃?i (d

τ
i ), λ̃

?

i (d
τ
i ))}i). The Schwarz scheme is dis-

played in Algorithm 1. The convergence of the scheme is achieved by iteratively updating di. One
expects that, as τ increases, dτi becomes more precise so that the solution of P iµ(dτi ) approaches to the
truncated full solution. Thus, the composed solution of subproblems can recover the full solution.

The following result characterizes the relation between the optimality conditions of the subprob-
lems (2.2) and the full problem (1.1).

Theorem 2.1 (relation of KKT conditions). For any scalar µ, we have two cases:
(i) Suppose (z?,λ?) is a KKT point of (1.1), then Di(z?,λ?), ∀i∈ [M−1], is a KKT point of P iµ(d?i )
where d?i = (x?m1

;x?m2
;u?m2

;λ?m2+1);

(ii) Suppose (z̃?i , λ̃
?

i ) = (z̃?i (di), λ̃
?

i (di)), ∀i∈ [M −1], is a KKT point of P iµ(di) with any boundary

variables di satisfying d0,1 = x̄0, then C({(z̃?i , λ̃
?

i )}i) is a KKT point of (1.1) if and only if the solu-
tions of any two successive subproblems are compatible at the common boundaries. That is, for any
i∈ [1,M − 1] and knot k= ni, we have

x̃?i,k = x̃?i−1,k, ATk−1(λ̃
?

i,k− λ̃
?

i−1,k) = 0, BT
k−1(λ̃

?

i,k− λ̃
?

i−1,k) = 0, (2.4)

where Ak−1 =∇Txk−1
fk−1 ∈Rnx×nx, Bk−1 =∇Tuk−1

fk−1 ∈Rnx×nu are the Jacobian matrices of fk−1

evaluated at z̃?i−1,k−1.

Proof. See Appendix A.1. �

From Theorem 2.1(i), we can see that the truncated KKT point Di(z?,λ?) is also a KKT point of
the subproblem, provided the boundary variables are correctly specified (i.e., di = d?i ). However,
Theorem 2.1(ii) provides a negative view: even if one obtains a KKT point for each subproblem
with any boundary variables, composing the solutions together does not necessarily result in a KKT
point of the full problem. Only if the successive KKT points are compatible on knots {ni}M−1

i=1 can we
guarantee to have a full-horizon KKT point. The subtlety lies in the fact that the solution at stage
ni is from subproblem i, while the solution at stage ni− 1 is from subproblem i− 1. Thus, (2.4) is
needed to link solutions from two successive subproblems. By Theorem 2.1(ii), we know the Schwarz
scheme, which simply composes subproblem solutions, may not converge globally in general.
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However, if (z0,λ0) is sufficiently close to (z?,λ?), [38] showed that for i∈ [M −1], P iµ(di) has a

unique solution Di(z?,λ?) in a neighborhood of d?i . Thus, one expects (z̃?i (d
τ
i ), λ̃

?

i (d
τ
i ))→Di(z?,λ

?)

as τ →∞, and C({(z̃?i (d
τ
i ), λ̃

?

i (d
τ
i ))}i)→C({Di(z?,λ

?)}i) = (z?,λ?). Then, the local convergence of
the Schwarz scheme is ensured. Specifically, [38] proved for some C > 0 and ρ∈ (0,1) that

max
k
‖(zτk −z?k;λ

τ
k −λ

?
k)‖ ≤ (Cρb)τ ·max

k
‖(z0

k−z?k;λ
0
k−λ

?
k)‖. (2.5)

In addition to lacking global convergence, the Schwarz scheme is computationally intensive, since
Line 5 of Algorithm 1 requires finding optimal solutions to nonlinear subproblems. In the next sec-
tion, we relax this computational requirement by using an SQP scheme, and finally show in section 6
that (2.5) holds even when Line 5 is substituted by one Newton step (cf. Theorem 6.3).

3. Embedding OTD into SQP We note that the lack of global convergence of the Schwarz
scheme is due to the lack of a coordinator, which can monitor the convergence progress towards the
full solution. This motivates us to solve (1.1) under an SQP framework. For each SQP iteration, we
apply OTD to approximately solve the Newton system, which corresponds to a linear-quadratic DP
problem. Although other distributed methods are also applicable, we are particularly interested in
OTD since it reveals a nice relation to the Schwarz scheme. By embedding OTD into SQP, we are
able to establish global convergence, which resolves one of the limitations of the Schwarz scheme.

We write Problem (1.1) in a compact form by

min
z

g(z), s.t. f(z) = 0,

where

g(z) =
N∑
k=0

gk(zk) =
N−1∑
k=0

gk(xk,uk) + gN(xN),

f(z) = (x0− x̄0;x1− f0(z0); . . . ;xN − fN−1(zN−1))
= (x0− x̄0;x1− f0(x0,u0); . . . ;xN − fN−1(xN−1,uN−1)).

(3.1)

The Lagrangian function is L(z,λ) = g(z) +λTf(z) and the KKT conditions are ∇zL(z?,λ?) = 0,
∇λL(z?,λ?) = 0. The SQP scheme applies Newton’s method on the KKT system. In particular,
given the τ -th iterate (zτ ,λτ ), the Newton direction (∆zτ ,∆λτ ) is obtained by solving(

Ĥτ (Gτ )T

Gτ 0

)(
∆zτ

∆λτ

)
=−

(
∇zLτ
∇λLτ

)
, (3.2)

where ∇zLτ =∇zL(zτ ,λτ ), ∇λLτ =∇λL(zτ ,λτ ), Gτ =∇Tz f(zτ ), and Ĥτ is a modification of the
Hessian Hτ =∇2

zL(zτ ,λτ ) that preserves the block diagonal structure of Hτ . The goal of the mod-
ification is to let Ĥτ be positive definite in the null space {z :Gτz = 0}, if Hτ is not. For example,
a simple structure-preserving modification is the Levenberg-style modification [20]: Ĥτ =Hτ + γI
for a suitably large γ > 0. Other Hessian modification methods are referred to in [41]. The explicit
formula of the system (3.2) is displayed in Problem (3.8).

Given the Newton direction (∆zτ ,∆λτ ) from (3.2), the SQP iterate is updated as(
zτ+1

λτ+1

)
=

(
zτ

λτ

)
+ατ

(
∆zτ

∆λτ

)
, (3.3)

with the stepsize ατ being selected by passing a line search condition based on a merit function. We
employ the following differentiable exact augmented Lagrangian as the merit function

Lη(z,λ) =L(z,λ) +
η1

2
‖∇λL(z,λ)‖2 +

η2

2
‖∇zL(z,λ)‖2, (3.4)
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where η= (η1, η2) are the penalty parameters. The first penalty biases the feasibility error, while the
second penalty biases the optimality error. The function (3.4) is called exact augmented Lagrangian,
since one can show that the solution of the unconstrained problem minz,λLη(z,λ) is also the solu-
tion of (1.1), provided η1 is large enough and η2 is small enough [3, Proposition 4.15]. We refer to
[36, 37, 45, 46, 69] for more studies of (3.4) on constrained optimization problems. We should men-
tion that there are many penalty functions that can be used as a merit function; however, (3.4) is
particularly suitable and important for our analysis. First, recalling the subproblem terminal cost
(2.3), we need an approximation of the terminal dual variable, which means that the merit function
has to endure a dual perturbation. Such a requirement rules out the penalty functions that depend
only on the primal variables z. Second, for the SQP schemes, the differentiable merit functions such
as (3.4) can overcome the Maratos effect and locally accept a unit stepsize, which is critical to have
a fast local convergence rate. In contrast, the non-smooth merit functions suffer from the Maratos
effect and require non-trivial modifications (e.g., the second-order correction) of the SQP schemes
to achieve a fast local rate [41, Chapter 15.5]. We will clearly see the benefits of the merit function
(3.4) later. In particular, see the discussion below Theorem 5.1 and see Theorem 6.1 as well.

With (3.4), the stepsize ατ is selected to make the following Armijo condition hold

Lτ+1
η ≤Lτη +βατ

(
∇zLτη
∇λLτη

)T (
∆zτ

∆λτ

)
, (3.5)

where β ∈ (0,1/2) is a prespecified parameter, Lτη =Lη(zτ ,λτ ) (similar for Lτ+1
η , ∇Lτη), and(

∇zLη(z,λ)
∇λLη(z,λ)

)
=

(
I + η2H(z,λ) η1G

T (z)
η2G(z) I

)(
∇zL(z,λ)
∇λL(z,λ)

)
. (3.6)

Among the steps in (3.2), (3.3), and (3.5), solving the Newton system in (3.2) is often the most
computationally expensive step. Thus, we apply the decomposition method, OTD, to solve (3.2)
approximately. We obtain an approximate direction (∆̃zτ , ∆̃λτ ), and then use it in the steps of
(3.3) and (3.5). We introduce some extra notation. We let H(z,λ) =∇2

zL(z,λ) = diag(H0, . . . ,HN)
be the Hessian of L(z,λ) with respect to z, where

Hk(zk,λk+1) =

(
Qk S

T
k

Sk Rk

)
=

(
∇2
xk
L ∇xkukL

∇ukxkL ∇2
uk
L

)
, ∀k ∈ [N − 1], HN(zN) =∇2

xN
L. (3.7)

Note that H does not depend on λ0. We also let Ak(zk) =∇Txkfk(zk) and Bk(zk) =∇Tukfk(zk). To
simplify the notation, we suppress the evaluation points in {Hk,Ak,Bk} and suppress the iteration
index τ to refer to a general τ -th iteration of (3.2). With the same block-diagonal structure as H,
we have Ĥ = diag(Ĥ0, . . . , ĤN), and use Q̂k, Ŝk, R̂k to denote the components of Ĥk.

Solving (3.2) is equivalent to solving the following linear-quadratic DP problem:

min
p,q

N−1∑
k=0

{
1

2

(
pk
qk

)T (
Q̂k Ŝ

T
k

Ŝk R̂k

)(
pk
qk

)
+

(
∇xkL
∇ukL

)T (
pk
qk

)}
+

1

2
pTNQ̂NpN +∇TxNLpN , (3.8a)

s.t. pk+1 =Akpk +Bkqk−∇λk+1
L, k ∈ [N − 1], (3.8b)

p0 =−∇λ0
L. (3.8c)

We let ζ = ζ0:N be the dual variables andw=w0:N = (p,q) be the primal variables of Problem (3.8).
By the recursive constraints in (3.8b)-(3.8c), we know that the Jacobian G (in any iteration) has a
“staircase” structure: for all k ∈ [N ], the (k,2k−1)-block matrix is an identity matrix. Thus, G has
full row rank. Suppose Ĥ is positive definite in {z :Gz = 0}, then the KKT matrix in (3.2) is non-
singular; (3.8) has a unique global solution (w?,ζ?); and (∆z,∆λ) = (w?,ζ?) [41, Theorem 16.2].
Note that the linear terms in (3.8a) are given by the gradients of the Lagrangian. With this formu-
lation, our dual solution ζ? of (3.8) is the dual direction ∆λ. When the linear terms in (3.8a) are
given by the gradients of the objective g, the dual solution ζ? would be the dual iterate λ+ ∆λ.
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Algorithm 2 A Fast Overlapping Temporal Decomposition Procedure

1: Input: initial iterate (z0,λ0) with x0
0 = x̄0, scalars µ,η1, η2 > 0, β ∈ (0,1/2);

2: for τ = 0,1,2, . . . do
3: Compute Ĥτ , Gτ , and ∇Lτ ;
4: for i= 0,1, . . . ,M − 1 (in parallel) do
5: Let dτi = (0;0;0;0) (note that dτM−1 = 0);

6: Solve LP iµ(dτi ) to optimality and obtain the solution (w̃?
i (d

τ
i ), ζ̃

?

i (d
τ
i ));

7: end for
8: Let (∆̃zτ , ∆̃λτ ) = C({(w̃?

i (d
τ
i ), ζ̃

?

i (d
τ
i ))}i);

9: Select ατ by a line search based on (3.5) and update the iterate by (3.3);
10: end for

We now apply OTD on (3.8). By an analogy to (2.2), the subproblem i, LP iµ(di), is defined as

min
p̃i,q̃i

m2−1∑
k=m1

{
1

2

(
pk
qk

)T (
Q̂k Ŝ

T
k

Ŝk R̂k

)(
pk
qk

)
+

(
∇xkL
∇ukL

)T (
pk
qk

)}
(3.9a)

+
1

2

(
pm2

q̄m2

)T (
Q̂m2

ŜTm2

Ŝm2
R̂m2

)(
pm2

q̄m2

)
+pTm2

(∇xm2
L−ATm2

ζ̄m2+1) +
µ

2
‖pm2

− p̄m2
‖2,

s.t. pk+1 =Akpk +Bkqk−∇λk+1
L, k ∈ [m1,m2), (3.9b)

pm1
= p̄m1

. (3.9c)

With slight abuse of notation, di = di,1:4 = (p̄m1
; p̄m2

; q̄m2
; ζ̄m2+1) are the boundary variables; w̃i =

(p̃i, q̃i), ζ̃i = ζm1:m2
are the primal, dual variables of LP iµ(di); and (w̃?

i (di), ζ̃
?

i (di)) is the solution.

FOTD scheme. We set the stage to present the FOTD procedure. FOTD consists of three steps:
given the τ -th iterate (zτ ,λτ ),

Step 1: Compute Hessian Ĥτ , Jacobian Gτ , and KKT residual vector ∇Lτ .
Step 2: Solve subproblems {LP iµ(dτi )}i with dτi = (0;0;0;0) and obtain solutions {(w̃?

i (d
τ
i ), ζ̃

?

i (d
τ
i ))}i.

Then, (∆̃zτ , ∆̃λτ ) = C({(w̃?
i (d

τ
i ), ζ̃

?

i (d
τ
i ))}i).

Step 3: Update the iterate by (3.3) with ατ being selected by a line search based on (3.5).

We summarize FOTD in Algorithm 2 and present several remarks.

Remark 3.1 (necessity of the quadratic penalty). Even if the full problem (3.8) has a
unique global solution, this does not necessarily imply that the subproblem (3.9) has a unique solu-
tion. Consider the following example. Let N = 2, nx = nu = 1, Q̂0 = R̂0 = 1, Q̂1 =−R̂1 =−2, Q̂2 = 3,
Ŝ0 = Ŝ1 = 0, A0 =A1 =B0 =B1 = 1, and all linear terms in (3.8a) are zero. Then, the full problem:
minp,q p

2
0 + q2

0 − 2p2
1 + 2q2

1 + 3p2
2, s.t. p0 = 0, p1 = p0 + q0, p2 = p1 + q1, has a unique global solution

(p?,q?) = (0,0). However, when we truncate onto [0,1], the subproblem has a quadratic objective
with the square matrix diag(1,1,−2+µ) and constraints p0 = 0, p1 = p0 +q0. Thus, by plugging the
constraints into the objective, we can easily obtain that, when µ< 1, the subproblem is unbounded
below; when µ = 1, the subproblem has infinitely many solutions; when µ > 1, the subproblem
has a unique global solution. Thus, to ensure that the subproblem has a unique global solution, a
quadratic penalty with large enough µ on the terminal stage is necessary (cf. (3.9a)).

Remark 3.2. We can express the optimality conditions of LP iµ(di) using a Newton system like

(3.2). We observe that the KKT matrix depends on {Ak,Bk, Ĥk}m2−1
k=m1

∪{Q̂m2
+µI}, but not on di.

Thus, the uniqueness of the solution of LP iµ(di) is independent from di. By Theorem 2.1(i), if d?i =

(∆xm1
;∆zm2

;∆λm2+1), then (w̃?
i (d

?
i ), ζ̃

?

i (d
?
i )) = (∆xm1:m2

,∆um1:m2−1,∆λm1:m2
). However, since

there is no good guess for a search direction, we always set di = (0;0;0;0) in Algorithm 2 (Line 5).
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Remark 3.3. Comparing Line 6 of Algorithm 2 with Line 5 of Algorithm 1, FOTD also solves
subproblems {LP iµ}i to optimality. However, LP iµ is a linear-quadratic DP, which can be solved effi-
ciently while solving P iµ is more expensive. The problem LP iµ can be regarded as a linearization of
the problem P iµ; thus solving LP iµ corresponds to computing one Newton step of P iµ.

Remark 3.4. Two SQP components, Hessian modification and line search, are less addressed
in this paper. Performing them efficiently in a parallel environment is of course desirable from a
practical aspect, while we put the implementation details of this regard aside in the paper but briefly
discuss in this remark. Our paper is mainly concerned with solving the Newton system (3.2), which
always requires more computations.

For line search, we note that the augmented Lagrangian Lη and its gradient ∇Lη are separable in
stages. Thus, we can easily evaluate them in parallel, where each processor computes a short horizon
e.g., [ni, ni+1), and a coordinator is needed to sum up the results of all processors to check (3.5).

For Hessian modification, a desirable modification Ĥ should be close to the Hessian H whenever
H satisfies the second-order sufficient condition (SOSC, i.e., (4.1) with Ĥ being replaced by H). If
H does not satisfy the condition, we regularize H, e.g. Ĥ =H+(γRH +‖H‖)I, to let Ĥ satisfy the
condition, which ensures that the full Newton system (3.2) has a unique solution. See Assumptions
4.1 and 6.1. Thus, we have to check the positive definiteness of the reduced Hessian ZTHZ, where
the columns of Z span the null space of the Jacobian G=∇Tz f . It is equivalent to testing for positive
definiteness of H + c ·GTG with a scalar c sufficiently large [41]. Note that H + c ·GTG is a block-
tridiagonal matrix; thus, we can apply the parallel Cholesky factorization to check its definiteness in
a parallel environment [12, 63, 64]. As analyzed in [12, Section 2.2], the total flops of the parallel
Cholesky of M processors are less than 7N(nx+nu)3, so the average flop of a single processor is in
order of O(N(nx +nu)3/M), which does not grow with N if the ratio N/M is a constant.

Remark 3.5 (extensions to inequality constraints). The FOTD procedure can be gener-
alized to inequality-constrained problems. In particular, with inequality constraints hk(xk,uk)≤ 0,
k ∈ [N − 1], the full SQP problem (3.8) will additionally have the linearized inequality constraints
Ckpk +Dkqk ≤ 0, k ∈ [N −1], where Ck =∇Txkhk and Dk =∇Tukhk are the Jacobian matrices of hk.
The FOTD scheme still applies OTD on the full problem (3.8) so that the subproblems (3.9) are
inequality-constrained quadratic programs (IQPs). Several methods with warm-start strategies can
be applied on IQPs, such as the interior-point methods and active-set methods. Within the FOTD
scheme, the exact augmented Lagrangian function (3.4) should also be adapted to the one that can
handle inequality constraints. See [47] for a particular choice. We should mention that the alterna-
tive designs with the same flavor of FOTD are also available for dealing with inequality constraints.
For example, we can exploit an active-set SQP scheme, where in each iteration we only consider the
inequality constraints that are in the identified active set and regard them as equalities. Then, the
full problem (3.8) and the subproblem (3.9) are still equality-constrained QPs (EQPs), which are
easier to solve than IQPs. Since the design and analysis of inequality constraints are quite involved,
we leave the above extensions of FOTD to the future, and mainly focus on connecting FOTD with
the Schwarz scheme on equality-constrained problems in this paper.

Remark 3.6 (relationships to other schemes).Besides the Schwarz scheme, FOTD is related
to several other methods for optimal control problems. We introduce the connections in this remark.
We emphasize that the two critical components of FOTD, overlapping temporal decomposition and
augmented Lagrangian merit function, have not been investigated in the following methods. Also,
the convergence of FOTD highly relies on the sensitivity analysis of NLDPs in [34, 38], which differs
from the following methods.
(a) Direct multiple shooting methods. The direct multiple shooting methods decompose the
full horizon into multiple exclusive short intervals, construct the subproblems associated with short
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intervals, and compose the solution trajectories of subproblems under certain matching conditions.
See [4, 5] for more details. The multiple shooting methods are often employed for real-time nonlinear
model predictive control [17, 29, 50], where the subproblems are solved sequentially and an approxi-
mate but fast control feedback is desired for each subproblem. Many efficient solvers that exploit the
problem sparsity structures can be used within the methods, such as qpDUNES [24] and HPMPC
[25]. Compared to the aforementioned literature, FOTD solves (1.1) in an offline fashion (i.e., the
short intervals do not vary with the sampling time) and applies an overlapping decomposition on the
SQP problem instead of on (1.1). More importantly, as analyzed in section 5, FOTD does not use
any matching conditions to compose the subproblem solutions, but requires a large overlap size b.
Such a design is inspired by the sensitivity analysis of NLDPs. The exclusive stages are far from the
boundaries where the system perturbations occur, and the sensitivity results state that the effects
of boundary perturbations decay exponentially fast away from the boundaries. Thus, the solutions
at the exclusive middle stages are still accurate enough even without matching conditions.

(b) Alternating direction method of multipliers (ADMM). ADMM is another popular
method for optimal control problems [7, 42], where one introduces a set of consensus constraints to
split the full problem into multiple subproblems, and solves the subproblems in each iteration in
parallel. We note that our terminal cost (2.3) is conceptually similar to the quadratic proximal term
in [42, (3)]. However, FOTD and ADMM have a few key differences. First, ADMM is designed based
on the augmented Lagrangian method, while FOTD is designed based on SQP. Thus, their primal-
dual updating schemes are quite different. Second, even if we use an augmented Lagrangian merit
function in FOTD, the function is different from the one in ADMM [7] in that it has a quadratic
penalty on the optimality error (i.e., the last term in (3.4)). Also, we use the augmented Lagrangian
for the stepsize selection, not for the direction computation, while ADMM combines the two steps
together. Third, similar to the multiple shooting methods, ADMM decomposes the full problem by
introducing extra consensus constraints without overlaps. Thus, ADMM is sensitive to the parame-
ter µ, while the overlaps in FOTD largely suppress the boundary perturbations brought by different
choices of µ (and imprecise boundary variables di). See [38, Figure 6] for empirical evidence.

(c) Iterative linear-quadratic regulator (ILQR). Another method for optimal control prob-
lems is ILQR [32]. In each step, the search direction of control variables is solved from a QP that is
defined by quadratic approximation of objective (1.1a) with linear approximations of constraints
(1.1b). A parallel implementation of ILQR was designed in [30]. In addition to the difference that
FOTD employs an overlapping decomposition for parallelism, the QP in (3.8) also differs from the
one in ILQR in that its objective is a quadratic approximation of the Lagrangian. Further, FOTD
updates the state, control, and dual variables with the same stepsize selected by the line search on
the augmented Lagrangian (3.4), while ILQR updates the control variables with the line search on
the objective (1.1a), and the state variables are computed by applying (1.1b) in a forward pass.

Remark 3.7 (QP solvers for the subproblems). The subproblems (3.9) of FOTD are QPs.
Many efficient QP or linear system solvers with wart-start strategies can be adopted for FOTD. For
example, the conjugate gradient (CG) and minimal residual (MINRES) are popular methods for
solving the Newton systems, and the popular solvers qpDUNES [24], HPMPC [25], and FORCES [19]
that exploit the sparsity structures of QPs can also be applied on (3.9). We note that the above QP
solvers generally require a positive definite Hessian matrix which (3.9) does not have. Fortunately,
[57] proposed a convexification procedure to resolve this issue.

4. Error of the approximate search direction We study the difference between (∆̃zτ , ∆̃λτ )
and (∆zτ ,∆λτ ), where the former is the OTD approximation (Step 2) and the latter is the exact
Newton direction of (3.2). We state the assumptions that are required for the analysis.
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Assumption 4.1 (lower bound on the reduced Hessian). For any iteration τ ≥ 0, we let
Zτ be a matrix whose columns are orthonormal vectors and span the null space {w :Gτw= 0}. We
assume that there exists a uniform constant γRH > 0 that is independent of τ , such that

(Zτ )T ĤτZτ � γRH · I. (4.1)

The matrix on the left hand side is called the reduced Hessian.

Assumption 4.2 (controllability). For any stage k ∈ [N ] and an integer t∈ [N−k], the con-
trollability matrix is defined as

Ξk,t(zk:k+t−1) =
(
Bk+t−1 Ak+t−1Bk+t−2 · · · (

∏t−1

l=1 Ak+l)Bk
)
∈Rnx×tnu .

For any iteration τ ≥ 0, we assume that there exist a uniform constant γC > 0 and an integer t > 0
that are independent of τ , such that for any k ∈ [N− t], there exists tτk ∈ [1, t] so that Ξτk,tτ

k
(Ξτk,tτ

k
)T �

γCI, where Ξτk,tτ
k

= Ξk,tτ
k
(zτk:k+tτ

k
−1).

Assumption 4.3 (upper boundedness). For any iteration τ ≥ 0, there exists a uniform con-
stant Υupper that is independent of τ , such that for any k, max{‖Ĥτ

k‖, ‖Aτk‖, ‖Bτ
k‖} ≤Υupper .

Since Gτ =∇Tz f(zτ ) has full row rank, Assumption 4.1 ensures that Problem (3.8) has a unique
global solution and the KKT matrix in (3.2) is invertible [41, Lemma 16.1]. This assumption is stan-
dard in the SQP literature [3] and weaker than the linear-quadratic convex DP setup studied in [65].
Assumption 4.2 is specifically used for DP problems [28, 34, 35, 38, 65, 66]. It ensures that the lin-
earized dynamical system pk+1 =Akpk +Bkqk is controllable in at most t steps (in each iteration).
That is, given any initial state pk and target state pk+tk

, we can always evolve from pk to pk+tk
by

specifying a suitable control sequence {qj}
k+tk−1
j=k . Assumption 4.3 is standard in both SQP and

DP literature [3, 34, 65]. In section 5, we will impose a compactness condition on the SQP iterates,
which naturally implies the upper boundedness of the Hessian and Jacobian matrices. We show in
Lemma 4.1 that Assumptions 4.2 and 4.3 imply a uniform lower bound on Gτ (Gτ )T .

Lemma 4.1. Suppose max{‖Aτk‖, ‖Bτ
k‖} ≤Υupper, then Assumption 4.2 implies that Gτ (Gτ )T �

γGI where

γG = γG(γC , t,Υupper) :=

 γC

γC +
Υt+1
upper

Υupper−1

2

· min{1, γC}
(1 + Υupper)2t

. (4.2)

Proof. See Appendix B.1. �

The next result shows that LP iµ(di) has a unique solution if µ is large enough.

Lemma 4.2. Suppose Assumptions 4.1-4.3 hold for Problem (3.8). Let

µ̄= µ̄(γC , t,Υupper) :=
32Υ4t+1

upper

γC
. (4.3)

If µ≥ µ̄, then the reduced Hessian of Problem LP iµ(di) in (3.9), defined similarly to (4.1), is lower
bounded by γRHI for any iteration τ ≥ 0 and any boundary variables di. This implies that LP iµ(di)
has a unique global solution.

Proof. See Appendix B.2. �

Lemma 4.2 shows that {LP iµ(di)}M−1
i=0 are solvable for any iteration τ ≥ 0 if µ≥ µ̄, where µ̄ is

independent of the iteration index τ and the subproblem index i. An immediate consequence is
that Assumptions 4.1-4.3 hold for the subproblems LP iµ as well.
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Corollary 4.1. Suppose Assumptions 4.1-4.3 hold for Problem (3.8) and µ≥ µ̄ with µ̄ given
by (4.3). Then, the three conditions: lower bound on the reduced Hessian, controllability, and upper
boundedness, hold for the subproblems {LP iµ(di)}i∈[M−1] with any di. Furthermore, the condition
constants are independent of i and τ . Specifically, the subproblem LP iµ(di) for i∈ [M − 1] satisfies
(i) Assumption 4.1: the reduced Hessian of LP iµ(di) is lower bounded by γRHI.
(ii) Assumption 4.2: the controllability condition of LP iµ(di) is satisfied with the same constants
(γC , t).
(iii) Assumption 4.3: the boundedness condition of LP iµ(di) is satisfied with constant Υupper +µ.

Proof. See Appendix B.3. �

We are now able to control the error (∆̃zτ −∆zτ , ∆̃λτ −∆λτ ). To ease the notation, we suppress
the iteration index τ . The study of the error (∆̃z−∆z, ∆̃λ−∆λ) relies on the primal-dual sensi-
tivity analysis of NLDPs in [34, 38], which requires Assumptions 4.1-4.3. We apply the sensitivity
results on the subproblems; thus Corollary 4.1 is critical. It shows that Assumptions 4.1-4.3 hold for
the subproblems as long as they hold for the full problem. In principle, the sensitivity results suggest
that, if we perturb the objective and constraints on one stage, then the perturbation effects on the
optimal solution decay exponentially fast away from that perturbed stage. In the OTD setup, the
perturbations occur at the two boundaries of the extended intervals. Thus, the composition that
uses only the exclusive part [ni, ni+1) of the solution preserves all accurate variables.

Let us first bound (w̃?
i (di), ζ̃

?

i (di))− (w̃?
i (d
′
i), ζ̃

?

i (d
′
i)) for any di,d

′
i. Recall that (w̃?

i (di), ζ̃
?

i (di))
denotes the unique global solution of LP iµ(di). In the following presentation, we use C and C ′ to
denote universal constants that are independent of the iteration index τ and the subproblem index i.

Theorem 4.1. Let Assumptions 4.1-4.3 hold for Problem (3.8) and µ≥ µ̄ with µ̄ given by (4.3).
There exist constants C ′ > 0 and ρ∈ (0,1) independent of i and τ , such that for all k ∈ [m1,m2],

max{‖w̃?
i,k(di)− w̃

?
i,k(d

′
i)‖, ‖ζ̃

?

i,k(di)− ζ̃
?

i,k(d
′
i)‖} ≤C ′(ρk−m1‖di,1−d′i,1‖+ ρm2−k‖di,2:4−d′i,2:4‖)

for any two boundary variables di and d′i.

Proof. See Appendix B.4. �

The next theorem characterizes the approximation error of the Newton direction.

Theorem 4.2 (error of approximate direction). Let Assumptions 4.1-4.3 hold for Prob-
lem (3.8) and µ≥ µ̄ with µ̄ given by (4.3). There exist constants C > 0 and ρ∈ (0,1) independent of
τ , such that

‖(∆̃zτ −∆zτ , ∆̃λτ −∆λ)‖ ≤Cρb‖(∆zτ ,∆λτ )‖. (4.4)

Proof. See Appendix B.5. �

Theorem 4.2 suggests that the error of the approximate direction decays exponentially fast in
terms of the overlap size b. We can naturally expect that (∆̃λτ , ∆̃λτ ) contains enough information
to decrease the merit function in each iteration, provided b is large. We study how the inexactness
of the direction affects SQP in the next section.

5. Global convergence of FOTD To enable general distributed methods for solving (3.2),
we suppose that a decomposition method outputs a direction (∆̃zτ , ∆̃λτ ) satisfying

‖(∆̃zτ −∆zτ , ∆̃λτ −∆λτ )‖ ≤ δ · ‖(∆zτ ,∆λτ )‖, for δ ∈ (0,1). (5.1)
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Theorem 4.2 shows that FOTD specializes (5.1) with δ=Cρb. In this section, we study the conver-
gence of SQP with the merit function (3.4) and the direction (∆̃zτ , ∆̃λτ ). We require a compactness
assumption to strengthen Assumption 4.3 to hold in a compact set. We recall that the SQP iterates
are generated by (3.3) and (3.5).

Assumption 5.1 (compactness). There exists a compact set Z×Λ, where Z =Z0×· · ·×ZN
and Λ = Λ0×· · ·×ΛN , such that (zτ +α∆̃zτ ,λτ +α∆̃λτ )∈Z×Λ, ∀τ ≥ 0, α∈ [0,1]; and we assume
that {gk, fk} are thrice continuously differentiable and

max{ sup
Zk×Λk+1

‖Hk(zk,λk+1)‖, sup
Zk
‖Ak(zk)‖, sup

Zk
‖Bk(zk)‖} ≤Υupper, (5.2)

for a constant Υupper > 0 independent of k.

We use the same constant Υupper as in Assumption 4.3 for notational simplicity. The compactness
assumption is standard in the SQP literature [3, Proposition 4.15]. One equivalent assumption is to
assume that the sublevel set {(z,λ) : Lη(z,λ)≤L0

η} is contained in a compact set. Furthermore,
assuming the existence of the third derivatives on {gk, fk} is common for the augmented Lagrangian
merit function (3.4), since ∇2Lη requires ∇3gk and ∇3fk [3, 36, 37, 69]. Note that the third deriva-
tives are only required in the analysis, and not computed or used in the algorithm.

The following lemma is an immediate consequence of Assumption 5.1.

Lemma 5.1. Under Assumption 5.1, there exists a constant ΥHG > 0 such that

max{sup
Z×Λ

‖H(z,λ)‖, sup
Z
‖G(z)‖} ≤ΥHG. (5.3)

Further, if Assumptions 4.1-4.3 hold as well, there exists a constant ΥKKT > 0 that is independent
of τ , such that ∥∥∥∥∥

(
Ĥτ (Gτ )T

Gτ 0

)−1
∥∥∥∥∥≤ΥKKT , ∀τ ≥ 0.

Proof. See Appendix C.1 �

The bound (5.3) suggests that ‖Gτ‖ ≤ΥHG, ∀τ ≥ 0 (since zτ ∈Z). Since (5.2) implies max{‖Aτk‖,
‖Bτ

k‖} ≤Υupper for any k ∈ [N−1], under Assumption 5.1, we only need ‖Ĥτ‖ ≤ Υupper from Assump-
tion 4.3. To simplify the presentation, we define Υ = max{Υupper,ΥKKT ,ΥHG}.

We now show that (∆̃zτ , ∆̃λτ ) is a descent direction of Lτη provided η1 is sufficiently large and
η2, δ are sufficiently small.

Theorem 5.1. Suppose Assumptions 4.1, 4.2, 4.3, 5.1 hold for the SQP iterates with a search
direction (∆̃zτ , ∆̃λτ ) satisfying (5.1). If

η1 ≥
17

η2γG
, η2 ≤

γRH
12Υ2

, δ≤ η2γG
9η1Υ2

, (5.4)

where γG is defined in (4.2), then(
∇zLτη
∇λLτη

)T (
∆̃zτ

∆̃λτ

)
≤−η2

2

∥∥∥∥(∇zLτ∇λLτ
)∥∥∥∥2

. (5.5)

Proof. See Appendix C.2. �
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By the results of Theorem 5.1 and the mean value theorem, we immediately know that, under the
presented conditions, the stepsize ατ to satisfy the Armijo condition (3.5) can be found by the back-
tracking line search, and the SQP iterates with the direction (∆̃zτ , ∆̃λτ ) make successful progress
towards a stationary point.

Theorem 5.1 also shows the importance of using the exact augmented Lagrangian merit function
(3.4). In particular, as proved in (C.8), we rely on a critical property: for suitably chosen η= (η1, η2),
there exists a small constant κ(η2)> 0 (depending on η2) such that(

∇zLτη
∇λLτη

)T (
∆zτ

∆λτ

)
≤−κ(η2)

( ∥∥∥∥(∇zLτ∇λLτ
)∥∥∥∥2

︸ ︷︷ ︸
ensure convergence

+

∥∥∥∥(∆zτ

∆λτ

)∥∥∥∥2

︸ ︷︷ ︸
allow approximation

)
. (5.6)

The first term is needed for global convergence when we accumulate the descent over iterations. The
second term allows us to replace (∆zτ ,∆λτ ) by (∆̃zτ , ∆̃λτ ) because, as proved in (C.10),∥∥∥∥(∇zLτη∇λLτη

)∥∥∥∥∥∥∥∥(∆̃zτ −∆zτ

∆̃λτ −∆λτ

)∥∥∥∥. δ ∥∥∥∥(∆zτ

∆λτ

)∥∥∥∥2

,

where . means that the inequality holds up to a constant multiplier. Therefore, for small enough δ,
the margin ‖(∆zτ ,∆λτ )‖ in (5.6) allows for an approximation error. Our analysis rules out the exact
penalty merit functions that depend only on the primal variables z. Such a functionM(z) satisfies
∇TzMτ∆zτ ≤−κ‖∆zτ‖2 and ‖∇zMτ‖. ‖∆zτ‖ (e.g., [3, 22, 26, 44, 49]). If we approximate ∆zτ by
∆̃zτ , Theorems 4.1, 4.2 suggest that the approximation error ‖∆̃zτ−∆zτ‖ also depends on ‖∆λτ‖.
Thus, the margin ‖∆zτ‖2 may not be enough to endure the approximation error. This reveals the
benefits of using the primal-dual exact merit functions based on (3.4).

We summarize the global convergence results in the next theorem.

Theorem 5.2 (global convergence).Suppose Assumptions 4.1, 4.2, 4.3, 5.1 hold for the SQP
iterates with {(∆̃zτ , ∆̃λτ )}τ satisfying (5.1) and parameters (η, δ) satisfying (5.4), then ‖∇Lτ‖→ 0
as τ →∞. Furthermore, for the FOTD iterates, if µ≥ µ̄ with µ̄ given by (4.3) as well as b satisfies

b≥ log (9Cη1Υ2/(η2γG))

log(1/ρ)
(5.7)

with C > 0 and ρ∈ (0,1) from Theorem 4.2, then the FOTD iterates {(zτ ,λτ )}τ generated by Algo-
rithm 2 satisfy ‖∇Lτ‖→ 0 as τ →∞.

Proof. See Appendix C.3. �

We have shown the global convergence of FOTD. Theorem 5.2 complements the local convergence
result of the Schwarz scheme [38] and answers Q1 raised in section 1. The next section studies the
local convergence of FOTD. We show that FOTD and the Schwarz have the same local behavior.

To end this section, we discuss an adaptivity extension of our scheme.

Remark 5.1 (adaptivity on penalty parameters). Given the conditions (5.4) on (η, δ =
Cρb), it is possible to design a scheme that adaptively selects the suitable penalty parameters η and
overlap size b. Since the upper/lower bound constants in (5.4) do not depend on τ , we can design a
while loop to achieve this goal. In particular, we let ν > 1 be fixed. While (5.5) does not hold, we let

η2← η2/ν, η1← η1ν
2, δ← δ/ν4.

Then, we know η1η2 increases by a factor of ν, and η2 and δη1/η2 decrease by a factor of 1/ν. Thus,
for sufficiently large τ , all parameters are stabilized. We also note that δ← δ/ν4 is equivalent to
letting b← b+ 4 log ν/ log(1/ρ), where only ρ has to be tuned manually.
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6. Local convergence of FOTD From now on, we suppose the FOTD iterates satisfy (zτ ,λτ )
→ (z?,λ?) as τ →∞. For two positive sequences {aτ} and {bτ}, aτ =O(bτ ) if aτ/bτ is uniformly
bounded over τ ; aτ = o(bτ ) if aτ/bτ → 0 as τ →∞. Our local analysis is divided into three steps:

(a) we show that ατ = 1 is selected for the Armijo condition (3.5) when τ is large.
(b) we show a relationship between FOTD and the Schwarz scheme: Line 6 in Algorithm 2 is equiv-

alent to performing a single Newton step for subproblems in Line 5 in Algorithm 1.
(c) we prove that FOTD converges linearly, with a linear rate that decays exponentially in b.

We present additional assumptions for local analysis.

Assumption 6.1 (Hessian approximation vanishes). We assume that ‖Hτ − Ĥτ‖= o(1),
where Hτ =∇2

zLτ is the Lagrangian Hessian and Ĥτ is its approximation.

A vanishing Hessian modification is typical for the local analysis of SQP to have a superlinear (or
quadratic) convergence [6]. As discussed in Remark 3.4, we can check (4.1) for Hessian Hτ to decide
if a modification is needed, since (4.1) holds locally if SOSC is satisfied at (z?,λ?). Equivalently,
we check the positive definiteness of Hτ + c(Gτ )TGτ for a constant c, which is a block-tridiagonal
matrix. A parallel Cholesky decomposition is applicable in this regard.

Assumption 6.2 (local Lipschitz continuity). We assume there exists a constant ΥL inde-
pendent of k such that, for any two points (z,λ) and (z′,λ′) sufficiently close to (z?,λ?),

max{‖Ak(zk)−Ak(z′k)‖, ‖Bk(zk)−Bk(z′k)‖} ≤ΥL‖zk−z′k‖,
‖Hk(zk,λk+1)−Hk(z

′
k,λ

′
k+1)‖ ≤ΥL

∥∥(zk−z′k;λk+1−λ′k+1)
∥∥ .

Assumption 6.2 strengthens the boundedness condition in Assumption 5.1 to the (local) Lipschitz
continuity. We start the local analysis with Step (a).

Step (a): A unit stepsize is accepted. We have the following theorem.

Theorem 6.1. Suppose Assumptions 4.1, 4.2, 4.3, 5.1, 6.1, 6.2 hold for the SQP iterates with
search directions {(∆̃zτ , ∆̃λτ )}τ satisfying (5.1) and parameters (η, δ) satisfying

η1 ≥
17

η2γG
, η2 ≤

γRH
12Υ2

, δ≤ 1/2−β
3/2−β

· η2γG
9η1Υ2

, (6.1)

then ατ = 1 for all sufficiently large τ .

Proof. See Appendix D.1. �

The condition (6.1) on δ is stronger than (5.4) up to a multiplier depending on β. For FOTD, we
suppose µ≥ µ̄ with µ̄ given by (4.3), and let δ=Cρb in (6.1) to get a condition on b as in (6.3).

Step (b): A relation between FOTD and the Schwarz scheme. We establish a relationship
between FOTD and the Schwarz scheme. We will show that, by specifying dτ = (0;0;0;0) in Prob-
lem (3.9), FOTD is equivalent to performing one Newton step for subproblems (2.2) with a warm-
start initialization in the Schwarz scheme. The result is summarized in the next theorem.

Theorem 6.2. Given the current iterate (zτ ,λτ ), we consider two procedures:
(a) Schwarz with a warm-start initialization: for i ∈ [M − 1], we specify boundary variables dτi =
(xτm1

;xτm2
;uτm2

;λτm2+1); perform one full Newton step for P iµ(dτi ) (2.2) at Di(zτ ,λτ ) and get

(z̃τ+1
i , λ̃

τ+1

i ); then let (zτ+1,λτ+1) = C({(z̃τ+1
i , λ̃

τ+1

i )}i).
(b) FOTD scheme without Hessian approximation: for i ∈ [M − 1], we specify boundary variables

dτi = (0;0;0;0); solve LP iµ(dτi ) in (3.9) with Ĥτ
k =Hτ

k , ∀k ∈ [m1,m2]; obtain (w̃?
i (d

τ
i ), ζ̃

?

i (d
τ
i )); then

let (∆̃zτ , ∆̃λτ ) = C({(w̃?
i (d

τ
i ), ζ̃

?

i (d
τ
i ))}i) and update as (zτ+1,λτ+1) = (zτ ,λτ ) + (∆̃zτ , ∆̃λτ ).

Then, starting from (zτ ,λτ ), both procedures generate the same next iterate (zτ+1,λτ+1).
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Proof. See Appendix D.2. �

Theorem 6.2 reveals a strong relation between the Schwarz scheme and FOTD. Locally, FOTD
can be seen as an improvement of the warm-start Schwarz scheme, where a single Newton step is
performed for the subproblems, instead of solving the subproblems to optimality as the original
Schwarz did. The warm initialization is recommended by [38] for practical purpose, which avoids the
case where the solutions of the same subproblem in different iterations are very distinct.

Step (c): local linear convergence of FOTD. We now establish the local convergence rate for
FOTD. For τ ≥ 0 we let

Ψτ := max
k∈[N ]

Ψτ
k := max

k∈[N ]
‖(zτk,λ

τ
k)− (z?k,λ

?
k)‖. (6.2)

We require the following lemma that shows the one-step error recursion. We use C1,C2 to denote
generic constants that are ensured to exist, but may differ from the constant C in Theorem 4.2. The
constant ρ is from Theorem 4.2.

Lemma 6.1. Consider the FOTD iterates {(zτ ,λτ )}τ under Assumptions 4.1, 4.2, 4.3, 5.1, 6.1,
6.2 and suppose µ≥ µ̄ with µ̄ given by (4.3) and η satisfies (6.1). There exist constants C1 > 0 and
ρ∈ (0,1) independent of τ, η1, η2, β, such that, if b satisfies

b≥ log {(3/2−β)C1η1/((1/2−β)η2)}
log(1/ρ)

, (6.3)

then, for all sufficiently large τ (in each case below, m1,m2 depend on i correspondingly, see (2.1)),

Ψτ+1
k ≤o(Ψτ ) +C1

{
ρk−m1‖xτm1

−x?m1
‖+ ρm2−k

∥∥∥∥( zτm2
−z?m2

λτm2+1−λ
?
m2+1

)∥∥∥∥} , ∀k∈[ni,ni+1)
i∈[M−2] , (6.4a)

Ψτ+1
k ≤o(Ψτ ) +C1ρ

k−m1‖xτm1
−x?m1

‖, ∀k ∈ [nM−1, nM ]. (6.4b)

Proof. See Appendix D.3. �

Lemma 6.1 relies on the decay structure of the KKT matrix inverse, established in [35, Lemma 2].
In particular, the authors showed that, if Assumptions 4.1-4.3 hold for subproblems (3.9) (verified in
Corollary 4.1), the block matrices of KKT inverse corresponding to each stage have an exponentially
decay structure (see [35, Figure 2]). The core of such a result is the primal-dual sensitivity analysis
of NLDPs [34, 38], which we also made use of in the proof of Theorem 4.1.

Seeing from (6.4), the first o(Ψτ ) term is the algorithmic convergence rate, which is superlinear
and achieved by the SQP framework; the second term C1{ρk−m1‖xτm1

−x?m1
‖+ρm2−k‖(zτm2

,λτm2+1)
−(z?m2

,λ?m2+1)‖} has a linear convergence rate, which is brought by the horizon truncation in OTD.
Specifically, the perturbations come from the misspecification of boundary variables: we use dτi =
(0;0;0;0) while d?i = (∆xm1

;∆xm2
;∆um2

;∆λm2+1).
Our result in Lemma 6.1 is different from [35, Theorem 2], where the algorithmic convergence rate

is quadratic as they used the unperturbed Hessian Hτ in each iteration. The Hessian modification
is necessary in our case as it ensures the global convergence. Our result is also different from [38,
Theorem 7], which has no algorithmic rate as they solved the subproblems to optimality. Our result
reveals that, even if we do not solve the subproblems to optimality, as long as the algorithmic rate
is faster than linear (superlinear in our case), the perturbation rate will always dominate for large
τ , which is linear. Therefore, a local linear convergence is still achieved.

We summarize the local convergence guarantee in the next theorem.

Theorem 6.3 (uniform linear convergence). Under the setup of Lemma 6.1, we have for
all sufficiently large τ that Ψτ+1 ≤ 3C1ρ

b ·Ψτ for constants C1 > 0 and ρ∈ (0,1) from Lemma 6.1.
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Proof. We use the facts that xτ0 =x?0 = x̄0 (see the proof of Theorem 4.2) and min{k−m1,m2−k} ≥
b for all k ∈ [ni, ni+1], and apply (6.4). Then, we obtain Ψτ+1

k ≤ 3C1ρ
bΨτ for all k. Thus, by (6.2), we

complete the proof. �

We finally summarize our convergence analysis of FOTD in the next theorem.

Theorem 6.4 (convergence of FOTD in Algorithm 2).Consider Algorithm 2 under Assump-
tions 4.1-4.3, 5.1, and suppose µ satisfies (4.3). There exist constants C2 > 0, ρ∈ (0,1) independent
of τ and algorithmic parameters η1, η2, β, such that if

η1 ≥
17

η2γG
, η2 ≤

γRH
12Υ2

, b≥ log {(3/2−β)C2η1/((1/2−β)η2)}
log(1/ρ)

,

then ‖∇Lτ‖ → 0 as τ →∞. Moreover, if Assumptions 6.1, 6.2 hold locally as well, then for all
sufficiently large τ , ατ = 1 and

Ψτ+1 ≤ (C2ρ
b)Ψτ . (6.5)

Proof. By Theorems 5.2, 6.1, 6.3, Lemma 6.1 and rescaling C2 properly, we complete the proof. �

The result in (6.5) matches the local result (2.5) proved in [38]; thus, we answer the Q2 raised in
section 1—it is not necessary to solve the subproblems to optimality for achieving the local linear
convergence. As mentioned earlier, as long as the algorithmic rate is faster than linear (e.g., one
Newton step for each subproblem), the local linear rate, induced by the decay of the sensitivity of
perturbations, is always achieved. We should also mention that both the Schwarz scheme and FOTD
have linear rates of the form Cρb. Since the analyses of both algorithms only claim the existence of
some constants C > 0 and ρ∈ (0,1) (see Theorem 6.4 and [38, Theorem 8]), we can always use larger
constants between the two algorithms to make their linear rates identical. In fact, comparing their
constant C can be difficult since it depends on the sharpness of the derivation and various quantities
of the problem (e.g., Υ, γG etc.). However, the constant ρ is the same, and is from [34, Theorem 5.7].
More importantly, both their linear rates decay exponentially in the overlap size b.

7. Numerical experiments We first conduct a numerical experiment on a toy NLDP in [35]:

min
x,u

N−1∑
k=0

{
2cos(xk− dk)2 +C1(xk− dk)2−C2(uk− dk)2

}
+C1x

2
N , (7.1a)

s.t. xk+1 = xk +uk + dk, ∀k ∈ [N − 1], (7.1b)
x0 = 0. (7.1c)

Here, nx = nu = 1, and references {dk} are specified later. As checked in [35], if C1−2> 4|C2|, then
ZT (z)H(z,λ)Z(z)� (C1− 2− 4|C2|)/4 · I ∀z,λ. Thus, we simply let Ĥτ =Hτ in implementation.

We implement seven methods: one centralized method IPOPT [60] (which is our baseline), and six
parallel methods including the proposed FOTD, the Schwarz method [38], the direct multiple shoot-
ing method [4], the iterative differential dynamic programming (IDDP) method [55], ILQR [32], and
ADMM [42]. The scheme of IDDP is almost the same as ILQR, except that the control variables of
QPs are computed by rolling out the policies along the original nonlinear dynamics rather than the
linearized dynamics [48]. Since the dynamics (7.1b) are linear, IDDP and ILQR are identical in this
case. We will study a temperature control problem of thin plates later, where we then have nonlin-
ear dynamics. We aim to demonstrate three points in this experiment: (i) FOTD converges globally
while the Schwarz may not converge within a reasonable computational budget for some initializa-
tions. (ii) FOTD exhibits at least linear convergence locally, and the larger overlap size b leads to the
faster convergence. (iii) FOTD is a superior parallel method. It is as competitive as the centralized
solver IPOPT, and robust to the penalty parameter µ (cf. (3.9a)). To illustrate the first point, we
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generate random initial iterates that are shared by all methods, and see if each method converges for
all initializations. To illustrate the second point, we plot ‖∇Lτ‖ v.s. τ for FOTD with different b,
and see how ‖∇Lτ‖ behaves on the tail. To illustrate the third point, we compare the KKT residual
‖∇Lτ‖ and running time for all methods, and vary µ for FOTD to test its robustness.

Simulation setting: We consider three cases in Table 1. For all parallel methods, we use the same
horizon decomposition; that is, we decompose [0,N ] evenly with length M for each (exclusive) short
interval. Different from the methods of multiple shooting, ILQR, IDDP, and ADMM, the Schwarz
and FOTD have overlaps between two successive short intervals. We vary the overlap size b from
{1,5,25}. For FOTD, we let η1 = 10, η2 = β = 0.1, and vary µ in a wide range {1,25,125}. The setup
of µ is shared by the Schwarz and ADMM, both of which also require the penalty parameter. When
doing the backtracking line search, we decrease the stepsize by a factor of 0.9 each time until the line
search condition is satisfied. For each case in Table 1 and each setup of b and µ, we generate 5 initial
iterates for FOTD that are shared by other methods: one is (z0,λ0) = (0,0) and the other four are

from x0
k, u

0
k, λ

0
k

iid∼ Uniform(−105,105) (with x0
0 = 0). For those methods that have to solve nonlinear

subproblems (i.e., the Schwarz, multiple shooting, ADMM), we apply Julia/JuMP package [21]
with IPOPT solver [60]. For all methods except ADMM, we stop the iteration if

‖∇Lτ‖ ≤ 10−6 OR ‖(zτ+1−zτ ;λτ+1−λτ )‖ ≤ 10−6. (7.2)

Since FOTD, ILQR, and IDDP have comparable computations in each iteration (i.e., they all solve
QPs), we regard them as converged if they trigger the condition (7.2) within 40 iterations bud-
get (we see from Figure 2 that FOTD actually needs much less iterations). For the multiple
shooting and Schwarz that solve NLDPs, we reduce the iteration budget a bit to 30 for sake
of a comparable total computation cost. For ADMM, we observe in our experiment that its KKT
sequence has a long flat tail (see [38, Figure 6]). Thus, we prefer to stop the ADMM iteration
early by relaxing the condition (7.2) to ‖∇Lτ‖ ≤ 10−6 OR ‖(zτ+1 − zτ ;λτ+1 − λτ )‖ ≤ 10−3, and
increase its iteration budget to 100. For the methods that do not compute λ (i.e., multiple shoot-
ing, ADMM, ILQR, IDDP), we let λτ = −(Gτ (Gτ )T )−1Gτ∇g(zτ ) when evaluating ∇Lτ . Note
that λτ → λ? as zτ → z?. In addition to the above settings, we try three linear system solvers
for FOTD: one is sparse LU (which is a default choice and adopted by other methods), and the
other two are generalized minimal residual (GMRES) and induced dimension reduction (IDR)
methods implemented in Julia/IterativeSolvers package.
Table 1. Simulation setups

Cases N M (C1,C2) dk
Case 1 5000 50 (8,1) 1
Case 2 5000 100 (15,3) 100 sin(k)2

Case 3 10000 100 (12,2) 5 sin(k)

Result summary: First, we investigate whether different methods converge within the computa-
tional budget for all five initializations. We observe that the multiple shooting, ILQR, and FOTD
converge by triggering (7.2) for all three cases in Table 1 and for all initializations and setups. The
Schwarz converges for most of cases, but does not converge within the budget for Case 2 with b= 1.
In particular, for this case, there are 2,4,5 out of 5 initializations that the Schwarz does not trigger
(7.2) when setting µ= 1,25,125, respectively. For ADMM, it converges for all three cases with µ=
1, but does not converge for all three cases with µ = 25 and 125. We do not claim that ADMM
diverges with large µ (its KKT is actually below 10−3 with > 2000 iterations), but we clearly see
that ADMM is not as robust as the Schwarz and FOTD to the parameter µ.

Second, we draw the KKT convergence plots for FOTD in Figure 2. We apply the sparse LU solver
for solving QPs and, for Cases 1, 2, and 3, we take µ= 1, 25, and 125 as examples respectively. We
emphasize that the other setups of µ of each case have similar convergence behavior (as revealed by
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(a) Case 1, b= 1 (b) Case 1, b= 5 (c) Case 1, b= 25

(d) Case 2, b= 1 (e) Case 2, b= 5 (f) Case 2, b= 25

(g) Case 3, b= 1 (h) Case 3, b= 5 (i) Case 3, b= 25

Figure 2. Convergence figures. The three plots on each row correspond to the same case in Table 1, while the three
plots on each column correspond to the same setup of b. Each plot has 5 lines corresponding to 5 initial iterates. The
blue line that is separated from the other four lines corresponds to the initial point (z0,λ0) = (0,0). We observe that
FOTD converges for all initializations. It exhibits between linear and superlinear convergence locally, and a larger b
generally leads to a faster convergence.

Tables 2-4). From Figure 2, we observe that FOTD converges for all initializations with different µ
for different cases and exhibits between linear and superlinear convergence locally. Its performance
is robust to µ, and a larger b generally leads to a faster convergence (cf. Figures 2g-2i). Our obser-
vation is consistent with Theorem 6.4.

Third, we report the KKT residual and running time for all methods. We average the results over
the convergent runs among five runs (corresponding to five initializations). Since ADMM converges
within the budget for µ= 1 only, we report its results under this setup. The results for Cases 1, 2,
and 3 are summarized in Tables 2, 3, and 4, respectively. From the tables, we have the following
observations. (i) The proposed FOTD and Schwarz outperform other parallel methods such as the
multiple shooting, ILQR, and ADMM, among which ADMM has the worst performance. We believe
the reasons are two folds. First, the Schwarz [38] and FOTD employ an overlapping decomposition.
The overlaps facilitate the information exchange between subproblems, and effectively suppress the
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Table 2. The KKT residual and running time for all methods implemented on Case 1. For the Schwarz and FOTD,
the smallest KKT residual and least running time among different setups of b are highlighted for each setup of µ.

Type Method KKT residual (10−7) Time (sec.)
Centralized IPOPT 172.686 0.851

Decomposed

MultiShoot 23.375 7.863
ILQR 29.268 7.047

ADMM 2603.063 36.125
b= 1 b= 5 b= 25 b= 1 b= 5 b= 25

FOTD (sparse LU)
µ= 1 13.324 0.878 0.0979 0.474 0.455 0.881
µ= 25 4.828 1.618 0.0980 0.460 0.449 0.885
µ= 125 7.210 0.328 0.0977 0.459 0.453 0.881

FOTD (GMRES)
µ= 1 4.686 0.672 0.549 0.566 0.537 1.019
µ= 25 12.841 0.897 0.132 0.597 0.559 1.026
µ= 125 4.997 0.251 0.451 0.621 0.604 1.041

FOTD (IDR)
µ= 1 4.051 0.275 0.106 0.619 0.468 0.875
µ= 25 2.688 0.832 0.0982 0.500 0.467 0.896
µ= 125 5.206 0.380 0.0978 0.536 0.491 0.878

Schwarz
µ= 1 0.448 0.298 0.0418 1.969 2.197 2.009
µ= 25 1.451 0.454 0.0418 2.116 2.199 2.027
µ= 125 3.467 0.521 0.0422 2.173 2.185 2.160

Table 3. The KKT residual and running time for all methods implemented on Case 2. For the Schwarz and FOTD,
the smallest KKT residual and least running time among different setups of b are highlighted for each setup of µ.
The dash “-” means the scheme does not trigger (7.2) within the budget.

Type Method KKT residual (10−7) Time (sec.)
Centralized IPOPT 31.227 1.075

Decomposed

MultiShoot 15.998 10.126
ILQR 26.685 9.334

ADMM 11841.583 35.133
b= 1 b= 5 b= 25 b= 1 b= 5 b= 25

FOTD (sparse LU)
µ= 1 607.625 117.596 1.108 0.708 0.599 0.863
µ= 25 364.783 106.214 0.848 0.699 0.601 0.906
µ= 125 240.339 0.268 4.753 0.735 0.557 1.026

FOTD (GMRES)
µ= 1 798.660 115.055 56.258 1.224 1.084 1.503
µ= 25 193.723 5.581 12.745 1.265 1.077 1.652
µ= 125 738.168 62.946 33.445 1.310 1.029 1.520

FOTD (IDR)
µ= 1 662.446 37.652 8.290 0.828 0.695 1.098
µ= 25 310.175 48.570 7.662 0.848 0.724 1.203
µ= 125 160.98 9.470 15.706 0.900 0.754 1.245

Schwarz
µ= 1 11.675 14.911 1.916 2.427 2.316 2.055
µ= 25 14.402 14.770 1.203 2.852 2.335 2.057
µ= 125 - 22.714 9.227 - 2.229 2.155

system perturbations brought by the horizon truncation and different choices of µ. Second, as also
observed in [38, Figure 6], the ADMM iterates often generate a small stepsize, which is less effective
than the stepsize that is selected by the line search. As the augmented Lagrangian method, ADMM
also suffers when it is initialized with a poor penalty parameter and/or poor Lagrange multipliers,
especially for nonconvex problems [14]. Note that our objective coefficient for the control variables in
(7.1a) is −C2 with C2 > 0; thus, (7.1) is nonconvex even if we have a linear system in the constraints.
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Table 4. The KKT residual and running time for all methods implemented on Case 3. For the Schwarz and FOTD,
the smallest KKT residual and least running time among different setups of b are highlighted for each setup of µ.

Type Method KKT residual (10−7) Time (sec.)
Centralized IPOPT 285.911 1.405

Decomposed

MultiShoot 5.652 18.571
ILQR 19.983 15.732

ADMM 28467.487 38.571
b= 1 b= 5 b= 25 b= 1 b= 5 b= 25

FOTD (sparse LU)
µ= 1 69.097 159.907 1.471 1.067 1.048 1.480
µ= 25 23.867 6.988 0.714 1.161 0.942 1.480
µ= 125 4.944 23.393 1.906 1.066 1.038 1.513

FOTD (GMRES)
µ= 1 4.293 28.472 0.0544 1.382 1.373 1.903
µ= 25 47.298 12.676 0.624 1.490 1.284 1.877
µ= 125 5.838 11.084 17.412 1.559 1.355 1.897

FOTD (IDR)
µ= 1 144.449 5.971 3.612 1.110 0.989 1.571
µ= 25 40.627 0.735 0.532 1.147 1.020 1.557
µ= 125 31.889 29.349 0.0760 1.140 1.062 1.574

Schwarz
µ= 1 2.363 1.691 0.0154 4.914 3.994 2.686
µ= 25 1.383 0.134 0.0166 4.441 3.485 2.711
µ= 125 3.127 0.182 0.0155 4.937 3.536 2.715

Table 5. The KKT residual and running time for all methods implemented on the temperature control problem. For
the Schwarz and FOTD, the smallest KKT residual and least running time among different setups of b are highlighted
for each setup of µ. For ADMM, the best results among different µ are highlighted.

Type Method KKT residual (10−7) Time (sec.)
Centralized IPOPT 0.889 16.934

Decomposed

MultiShoot 3937.071 104.021
ILQR 2941.207 89.655
IDDP 2619.498 93.832

ADMM
µ= 1 µ= 25 µ= 125 µ= 1 µ= 25 µ= 125

1680.350 11684.271 61455.896 76.732 224.930 479.194
b= 1 b= 5 b= 25 b= 1 b= 5 b= 25

FOTD (sparse LU)
µ= 1 13.621 13.488 8.050 16.914 15.134 25.531
µ= 25 28.266 8.024 5.316 19.973 18.023 28.752
µ= 125 11.448 3.112 2.712 19.416 18.356 28.841

FOTD (GMRES)
µ= 1 17.837 15.228 2.368 16.653 16.729 21.293
µ= 25 61.917 6.623 0.573 21.023 17.350 22.830
µ= 125 15.052 2.937 1.704 23.336 17.871 23.571

FOTD (IDR)
µ= 1 14.934 13.515 3.998 17.106 17.425 21.393
µ= 25 33.351 6.954 8.766 18.459 16.515 21.888
µ= 125 28.830 8.553 7.119 20.244 17.318 22.750

Schwarz
µ= 1 10.995 8.750 1.303 23.873 21.155 21.724
µ= 25 12.976 4.260 2.991 24.503 22.410 23.306
µ= 125 5.124 3.501 1.996 23.506 20.431 22.359

(ii) With three different (but efficient) QP solvers, FOTD performs equally well, although GMRES
has slightly longer running time (within 0.3 sec.) than the other two solvers. Thus, different linear
system solvers can be employed in FOTD to accelerate its computation. (iii) Between Schwarz and
FOTD, the Schwarz tends to attain a smaller KKT residual than FOTD, which is more significant
when the overlap size b is as small as 1. For the majority of cases, both methods attain the smallest
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KKT residual when b is as large as 25, while attain the largest KKT residual when b is as small as 1.
As for the running time, FOTD consistently converges faster than the Schwarz for different choices
of µ and b. The running time of FOTD is comparable to that of the centralized solver IPOPT. For
the three choices of b, the Schwarz tends to converge faster for a large b than for moderate or small
b. This is because that the Schwarz performs less iterations when b is large even if solving each sub-
problem is also more expensive. On the contrary, FOTD converges faster for a moderate b, which
reveals the trade-off between the total number of iterations and the computation cost of a single
iteration. Overall, our experiments demonstrate that both FOTD and Schwarz are superior parallel
methods and robust to the parameter µ. FOTD is more efficient than the Schwarz, and is as efficient
as the popular solver IPOPT. However, as the parallel method, FOTD (and Schwarz) offers more
flexibility to the computing environments and can be applied when a single high-speed processor
is not accessible.

Thin plate temperature control: We apply FOTD on a thin plate temperature control problem
studied in [38]. We refer to [8, 9, 33] for the physical background of the problem. In particular, we
let k ∈ [0,1] be the continuous time index and ω ∈Ω = [0,1]× [0,1] be the position in the domain Ω.
Then, we consider the following problem

min
x,u

∫ 1

0

∫
ω∈Ω

{
(x(ω, k)− d(ω, k))2 +u(ω, k)2

}
dω dk, (7.3a)

s.t.
∂x(ω, k)

∂k
=∇2x(ω, k) +u(ω, k) +

2hc
κctc

(Tc−x(ω, k)) +
2εcσc
κctc

(T 4
c −x(ω, k)4), (7.3b)

∀k ∈ [0,1],∀ω ∈Ω,
x(ω, k) = 0, ∀(ω, k)∈Ω×{0} or ∂Ω× [0,1], (7.3c)

where ∇2 is the Laplace operator, that is, ∇2x= ∂2x
∂ω2

1
+ ∂2x

∂ω2
2
, and d(ω, k) in the objective (7.3a) is the

prespecified desired temperature. Here, the PDE constraints in (7.3b) are governed by a controlled
heat equation (i.e., the first two terms) with extra convection and radiation terms (i.e., the third and
fourth terms). All the symbols with a subscript “c” are the prespecified constants. In particular, hc is
the convection coefficient; κc is the thermal conductivity; εc is the emissivity coefficient; σc is the
Stefan-Boltzmann constant; Tc is the ambient temperature; and tc is the plate thickness. We unify
the coefficients of heat equation for simplicity. The initial and boundary conditions are in (7.3c).

In our implementation, we discretize Ω by a 4×4 mesh grid, i.e. 2×2 mesh grid in the interior. The
temporal horizon is decomposed by 5000 evenly spaced knots with 50 knots for each subproblem.
The setups of all methods are as before, and we follow [33] to set up the problem parameters. In
particular, we let hc = 1, κc = 400, εc = 0.5, σc = 5.67× 10−8, Tc = 300, tc = 0.01, and let d(ω, k) =
sin(k). The KKT residual and running time of the methods are summarized in Table 5. From the
table, we again observe that the Schwarz and FOTD outperform other four parallel methods. The
Schwarz attains smaller KKT residual than FOTD, while FOTD converges faster than the Schwarz.
Overall, our experiment shows the superiority of the overlapping decomposition-based methods.

8. Conclusion This paper proposes a fast overlapping temporal decomposition (FOTD) pro-
cedure for solving long-horizon NLDPs in (1.1). FOTD relies on the sequential quadratic program-
ming (SQP) and incorporates SQP with OTD technique. We establish global convergence and uni-
form, local linear convergence for FOTD. The local result matches [38], while FOTD requires fewer
computations in each iteration (cf. Theorem 6.2).

Considering the improvement of the performance of the Schwarz scheme over ADMM [38], and
the relation between FOTD and the Schwarz, we believe the extension of FOTD is worth studying.
One of the drawbacks of FOTD is the separation of modifying the Hessian matrix and solving the
linear-quadratic subproblems (steps 1 and 2 in section 3), which leads to two separate factorizations
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for the subproblem matrices. Such a drawback does not enlarge the flops order of a single processor,
but indeed results in a suboptimal flop multiplier. A more desirable algorithm should perform the
Hessian modification and solve the subproblem in a single machine jointly, with one factorization,
such as parallel quasi-Newton scheme [11]. Further, we can embed OTD into more advanced SQP
frameworks, such as the trust region-SQP. We can also replace the line search step by the filter step,
and study the behavior of the approximate direction obtained by OTD on the filter step.

In addition, FOTD can be applied on graph-structured problems, seeing that a similar exponen-
tial decay of sensitivity for graph-structured problems was established in [51]. Finally, a reasonable
conjecture for the improved performance of the Schwarz scheme and FOTD over ADMM (and other
parallel methods) is the lack of information exchange among subproblems in ADMM. No overlaps
are adopted in ADMM. Thus, whether we can embed OTD into ADMM to improve the performance
of ADMM, and whether the OTD-based ADMM exhibits a similar convergence rate as FOTD are
interesting future research directions.

Acknowledgments. This material was based upon work supported by the U.S. Department
of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR) under
Contract DE-AC02-06CH11347 and by NSF through award CNS-1545046.

Appendix A: Proofs of results in section 2

A.1. Proof of Theorem 2.1 We start by writing the KKT conditions of Problem (1.1) and
Problem (2.2). For k ∈ [N − 1], we let Ak(zk) =∇Txkfk(zk), Bk(zk) =∇Tukfk(zk) be the Jacobian
matrices. Then the Lagrange function of (1.1) is

L(z,λ) =
N−1∑
k=0

{gk(zk) +λTkxk−λ
T
k+1fk(zk)}+ {gN(xN) +λTNxN}−λ

T
0 x̄0. (A.1)

Thus, the KKT conditions of (1.1) are

∇xkgk(zk) +λk−ATk (zk)λk+1 = 0, ∀k ∈ [N − 1], (A.2a)
∇ukgk(zk)−B

T
k (zk)λk+1 = 0, ∀k ∈ [N − 1], (A.2b)

∇xN gN(zN) +λN = 0, (A.2c)
xk+1− fk(zk) = 0, ∀k ∈ [N − 1], (A.2d)

x0− x̄0 = 0. (A.2e)

Similarly, the KKT conditions of P iµ(di) in (2.2) are

∇xkgk(z̃i,k) + λ̃i,k−ATk (z̃i,k)λ̃i,k+1 = 0, ∀k ∈ [m1,m2), (A.3a)

∇ukgk(z̃i,k)−B
T
k (z̃i,k)λ̃i,k+1 = 0, ∀k ∈ [m1,m2), (A.3b)

∇xm2
gm2

(x̃i,m2
, ūm2

) + λ̃i,m2
−ATm2

(x̃i,m2
, ūm2

)λ̄m2+1

+µ(x̃i,m2
− x̄m2

) = 0, (A.3c)
x̃i,k+1− fk(z̃i,k) = 0, ∀k ∈ [m1,m2), (A.3d)

x̃i,m1
− x̄m1

= 0. (A.3e)

(i). By Definition 2.1, Di(z?,λ?) = (x?m1:m2
,u?m1:m2−1,λ

?
m1:m2

). Letting di = d?i in (A.3c), (A.3e),
we see (A.3) is a subsystem of (A.2) so that Di(z?,λ?) satisfies (A.3). Thus, the statement holds.

(ii). Suppose (z̃i, λ̃i) = (z̃?i (di), λ̃
?

i (di)) satisfies conditions (A.3). Since [ni, ni+1) ⊆ [m1,m2), we
know from (A.3a), (A.3b), (A.3d) that (z̃i,ni:ni+1−1, λ̃i,ni:ni+1−1) satisfies

∇xkgk(z̃i,k) + λ̃i,k−ATk (z̃i,k)λ̃i,k+1 = 0, ∀k ∈ [ni, ni+1), (A.4a)

∇ukgk(z̃i,k)−B
T
k (z̃i,k)λ̃i,k+1 = 0, ∀k ∈ [ni, ni+1), (A.4b)

x̃i,k+1− fk(z̃i,k) = 0, ∀k ∈ [ni, ni+1), (A.4c)
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which is a subset of (A.2a), (A.2b), (A.2d). We consider the composed point (z,λ) = C({(z̃i, λ̃i)}i).
By Definition 2.1, we know

zk = z̃i,k, if k ∈ [ni, ni+1) for some i∈ [M − 1], zN = x̃M−1,N ,

λk = λ̃i,k, if k ∈ [ni, ni+1) for some i∈ [M − 1], λN = λ̃M−1,N .
(A.5)

Thus, (A.2c) is implied by (A.3c) for i=M−1, and (A.2e) is implied by (A.3e) for i= 0. For (A.2b),
we use the decomposition [N − 1] =∪M−1

i=0 [ni, ni+1). For any k ∈ [N − 1], we have two cases.
(a). k 6= ni+1 − 1, ∀i ∈ [M − 2]. Then, k ∈ [ni, ni+1 − 1) for some i ∈ [M − 2], or k ∈ [nM−1, nM).
Thus, k+1∈ [ni+1, ni+1) for i∈ [M −2] or k+1∈ [nM−1 +1,N ]. By (A.5), we know for both cases
that zk and λk+1 are from the same subproblem, i.e. zk = z̃i,k and λk+1 = λ̃i,k+1. Thus, (A.2b) is
implied by (A.4b).
(b). k = ni+1− 1 for i ∈ [M − 2]. Then, k+ 1 = ni+1 and thus λk+1 = λ̃i+1,k+1. Comparing (A.2b)
with (A.4b), we know that

∇ukgk(zk)−B
T
k (zk)λk+1 = 0⇐⇒∇ukgk(z̃i,k)−B

T
k (z̃i,k)λ̃i+1,k+1 = 0

(A.4b)⇐⇒ BT
k (z̃i,k)λ̃i+1,k+1 =BT

k (z̃i,k)λ̃i,k+1. (A.6)

Following the same derivation, we consider (A.2a) and can easily get

∇xkgk(zk) +λk−ATk (zk)λk+1 = 0
(A.4a)⇐⇒ ATk (z̃i,k)λ̃i+1,k+1 =ATk (z̃i,k)λ̃i,k+1, (A.7)

if k= ni+1− 1 for i∈ [M − 2]. Finally, we consider (A.2d), where we have two cases.
(a). k 6= ni+1 − 1, ∀i ∈ [M − 2]. As before, zk and xk+1 are from the same subproblem, so that
(A.2d) is implied by (A.4c).
(b). k= ni+1− 1 for i∈ [M − 2]. Then, xk+1 = x̃i+1,k+1. Comparing (A.2d) with (A.4c), we know

xk+1 = fk(zk)⇐⇒ x̃i+1,k+1 = fk(z̃i,k)
(A.4c)⇐⇒ x̃i+1,k+1 = x̃i,k+1. (A.8)

Combining (A.6), (A.7), and (A.8), we complete the proof.

Appendix B: Proofs of results in section 4

B.1. Proof of Lemma 4.1 We suppress the iteration index τ since the result holds uniformly
over τ . By Assumption 4.2, we know that for any integer k, there exists an integer tk ∈ [1, t] such
that Ξk,tkΞTk,tk � γCI. Let us define the knots recursively by kj+1 = kj + tkj , j = 0,1, . . . , J − 1 with
k0 = 0. We suppose J is large enough such that kJ >N−t. Thus, we derive a horizon decomposition
[N−1] =∪J−1

j=0 [kj, kj+1−1]∪ [kJ ,N−1]. Since G=∇Tz f , we can apply the definition of f in (3.1) and
write GGT explicitly. We have

GGT =


I −AT0

−A0 I+A0A
T
0 +B0B

T
0

...
...

... −ATN−1

−AN−1 I+AN−1A
T
N−1+BN−1B

T
N−1

 . (B.1)

We let k′j = kj+1−1 = kj+tkj−1, and define matrices {Tj}j∈[J] corresponding to each interval [kj, k
′
j]

as (TJ is defined similarly, except that the bottom corner block is I +AN−1A
T
N−1 +BN−1B

T
N−1)

Tj =


I −ATkj

−Akj I+AkjA
T
kj

+Bkj
BTkj

...

...
... −AT

k′
j

−Ak′
j

Ak′
j
AT
k′
j
+Bk′

j
BT
k′
j

 , ∀j ∈ [J − 1].
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By the expression in (B.1), it suffices to show that each Tj is lower bounded away from zero. Then,
we have λmin(GGT )≥minj∈[J] λmin(Tj). Let us consider TJ first. We let Anm =AmAm−1 · · ·An and

define a matrix T 1/2
J as

T 1/2
J :=


I

−AkJ I −BkJ
...

...
...

I −BN−2
−AN−1 I −BN−1



=


I

−AkJ I

...
I
I

× · · ·×
 I

I

...
I

−AN−1 I

×


I
I −BkJ

...
...

...
I −AkJ+1

N−2
BkJ

−BN−2

I −AkJ+1
N−1

BkJ
−AN−1BN−2 −BN−1


=:PkJ · · ·PN−1QJ .

Then, we use the fact that QJQ
T
J � I and have

TJ = T 1/2
J (T 1/2

J )T = PkJ · · ·PN−1QJQ
T
JP

T
N−1 · · ·P T

kJ
� PkJ · · ·PN−1P

T
N−1 · · ·P T

kJ
.

Since ‖Ak‖ ≤Υupper for k ∈ [kJ ,N−1], we know ‖P−1
k ‖ ≤ 1+Υupper. Thus, PkP

T
k � 1/(1+Υupper)

2I.
By the above display and using N − kJ ≤ t, we have λmin(TJ)� 1/(1 + Υupper)

2t. We then consider
Tj for j ∈ [J − 1] similarly. By the same matrix multiplication, we have

T 1/2
j :=


I

−Akj I −Bkj
...

...
...

I −Bk′
j
−1

−Ak′
j

−Bk′
j

= Pkj · · ·Pk′jQj,

where (slightly different from QJ)

Qj =


I
I −Bkj

...
...

...
I −A

kj+1

k′
j
−1
Bkj

−Bk′
j
−1

−A
kj+1

k′
j

Bkj
−Ak′

j
Bk′

j
−1 −Bk′

j

=:

(
I Qj,1

0 Qj,2

)
.

Since Qj,2 is just the controllability matrix Ξkj ,tkj (except that the components are in a reverse

order), Assumption 4.2 implies that Qj,2Q
T
j,2 � γCI. Furthermore, since max{‖Ak‖, ‖Bk‖} ≤Υupper,

∀k ∈ [kj, k
′
j − 1], we get

max{‖Qj,2‖, ‖Qj,1‖} ≤Υupper + Υ2
upper + · · ·Υk′j−kj+1

upper ≤
t∑
i=1

Υi
upper ≤

Υt+1
upper

Υupper− 1
,

where the second inequality is due to tkj ≤ t. Finally, noting that

QjQ
T
j =

(
I +Qj,1Q

T
j,1 Qj,1Q

T
j,2

Qj,2Q
T
j,1 Qj,2Q

T
j,2

)
,

we apply the algebra result in [34, Lemma 4.8(ii)] and obtain

QjQ
T
j �

 γC

γC +
Υt+1
upper

Υupper−1

2

·min{1, γC} · I =: γQI.
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Thus, using PkP
T
k � 1/(1 + Υupper)

2I, we obtain

Tj = T 1/2
j (T 1/2

j )T = Pkj · · ·Pk′jQjQ
T
j P

T
k′j
· · ·P T

kj
� γQ

(1 + Υupper)2t
I.

Since γQ < 1, we let γG = γQ/(1+Υupper)
2t and have λmin(Tj)� γG, ∀j ∈ [J ]. This finishes the proof.

B.2. Proof of Lemma 4.2 We adapt the proof of [35, Lemma 1 and Theorem 1]. We suppress
the iteration index τ . The reduced Hessian of LP iµ is independent from di, which only affects linear
terms. From (3.9b)-(3.9c), we know that the Jacobian matrix of the constraints in LP iµ has full
row rank. Thus, it suffices to show that the reduced Hessian of LP iµ is lower bounded by γRHI. Let

Ĥ(i) = diag(Ĥm1
, Ĥm1+1, . . . , Ĥm2−1, Q̂m2

+µI)

be the Hessian of LP iµ. We only need to show that w̃T
i Ĥ

(i)w̃i ≥ γRH‖w̃i‖2 for any w̃i = (p̃i, q̃i) 6= 0
satisfying

p̃i,k+1 =Akp̃i,k +Bkq̃i,k, k ∈ [m1,m2), (B.2a)
p̃i,m1

=0. (B.2b)

We take the last subproblem (i.e., i=M − 1) as an example to illustrate the proof idea. For i=
M−1, we have µ= 0. For any w̃M−1 = (p̃M−1, q̃M−1) 6= 0 satisfying (B.2), we extend w̃M−1 forward
by filling with 0 to get a full-horizon vector w. That is w = (0; w̃M−1). We can verify that w =
(p,q)∈ {w :Gw= 0,w 6= 0}. Therefore,

w̃T
M−1Ĥ

(M−1)w̃M−1 =wT Ĥw≥ γRH‖w‖2 = γRH‖w̃M−1‖2,

where the first and last equalities are due to the construction of w, and the middle inequality is due
to Assumption 4.1. For i∈ [M − 2], we consider the following two cases.
Case 1: m2 ≥ N − t. Given w̃i = (p̃i, q̃i) 6= 0 satisfying (B.2), we can still extend it forward by
filling with 0. However, extending backward with 0 will make the full vector w outside the space
{w :Gw= 0}. Instead, we construct the following extension. We let qm2:N−1 = 0, pk+1 =Akpk for
k= [m2,N). Thus,

w= (0; w̃i;0;pm2+1;0;pm2+2 . . . ;0;pN)∈ {w :Gw= 0,w 6= 0}. (B.3)

Moreover, by Assumption 4.3,

‖pm2+1:N‖2 =
N∑

k=m2+1

‖pk‖2 ≤
N−m2∑
j=1

Υ2j
upper‖pm2

‖2

=
Υ2
upper(Υ

2(N−m2)
upper − 1)

Υ2
upper− 1

‖pm2
‖2 ≤

Υ2t+2
upper−Υ2

upper

Υ2
upper− 1

‖pm2
‖2. (B.4)

The last inequality uses N −m2 ≤ t. Further,

wT Ĥw
(B.3)
= w̃T

i Ĥ
(i)w̃i−µ‖pm2

‖2 +
N∑

k=m2+1

pTk Q̂kpk ≤ w̃
T
i Ĥ

(i)w̃i−µ‖pm2
‖2 + Υupper‖pm2+1:N‖2

(B.4)

≤ w̃T
i Ĥ

(i)w̃i−
(
µ−

Υupper(Υ
2t+2
upper−Υ2

upper)

Υ2
upper− 1

)
‖pm2

‖2, (B.5)
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where the second inequality is due to Assumption 4.3. By Assumption 4.1, wT Ĥw ≥ γRH‖w‖2 ≥
γRH‖w̃i‖2. Combining with (B.5), we see that w̃T

i Ĥ
iw̃i ≥ γRH‖w̃i‖2 provided

µ≥
Υupper(Υ

2t+2
upper−Υ2

upper)

Υ2
upper− 1

. (B.6)

Case 2: m2 <N − t. In this case, using the construction of w in (B.3) will result in a bound on µ
that grows exponentially in N . Instead, we make use of controllability in Assumption 4.2. In par-
ticular, we still let (p0:m1−1,q0:m1−1) = (0,0) and qm2

= 0. Then pm2+1 =Am2
pm2

. Let l=m2 + 1
and let (pk,qk) = (0,0), ∀k≥ l+ tl. We now show how to evolve from pl to pl+tl . Applying (B.2a)
recursively, we have

pl+j =

(
j∏

h=1

Al+h−1

)
pl + Ξl,j

ql+j−1
...
ql

 , ∀j ≥ 1. (B.7)

Letting j = tl in (B.7), we see that if we specify the control sequence ql+tl−1:l by

ql+tl−1:l =−ΞTl,tl(Ξl,tlΞ
T
l,tl

)−1(

tl∏
h=1

Al+h−1)pl, (B.8)

and generate pl+j as (B.2a), then we have pl+tl = 0. Thus, w= (p,q)∈ {w :Gw= 0,w 6= 0}. More-
over, by Assumptions 4.2 and 4.3, we obtain from (B.8) that

‖ql+tl−1:l‖ ≤ ‖ΞTl,tl(Ξl,tlΞ
T
l,tl

)−1‖ ·Υtl
upper‖pl‖ ≤

Υtl+1
upper√
γC
‖pm2

‖ ≤
Υt+1
upper√
γC
‖pm2

‖. (B.9)

The second inequality uses the fact that ‖AT (AAT )−1‖= ‖Σ−1‖ for any full row rank matrix A,
and UΣV T is its singular value decomposition. The last inequality is due to tl ≤ t by Assumption
4.2. Furthermore, for any 1≤ j ≤ tl− 1,

‖pl+j‖
(B.7)

≤ Υj
upper‖pl‖+ ‖Ξl,j‖‖ql+j−1:l‖ ≤Υj

upper‖pl‖+

(
j∑

h=1

Υh
upper

)
‖ql+tl−1:l‖

(B.9)

≤ Υj+1
upper‖pm2

‖+
Υj+1
upper−Υupper

Υupper− 1
·
Υt+1
upper√
γC
‖pm2

‖, (B.10)

where the second inequality is due to ‖Ξl,j‖ ≤
∑j

h=1 Υh
upper by the definition of Ξl,j in Assumption

4.2. Without loss of generality, we suppose Υupper/2≥ 1≥ γC , then

Υupper ≤
Υt+2
upper

(Υupper− 1)
√
γC
≤

2Υt+1
upper√
γC

. (B.11)

Thus, (B.10) can be further simplified as

‖pl+j‖
(B.10)

≤ Υj+1
upper‖pm2

‖+
Υj+1
upper

Υupper− 1
·
Υt+1
upper√
γC
‖pm2

‖
(B.11)

≤
2Υj+1

upper

Υupper− 1
·
Υt+1
upper√
γC
‖pm2

‖
(B.11)

≤ 4Υj
upper ·

Υt+1
upper√
γC
‖pm2

‖.
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The above inequality also holds for j = 0. Thus,

‖pl:l+tl−1‖2 =

tl−1∑
j=0

‖pl+j‖2 ≤ 16

tl−1∑
j=0

Υ2j
upper ·

Υ2t+2
upper

γC
‖pm2

‖2

=
16(Υ2t

upper− 1)Υ2t+2
upper

γC(Υ2
upper− 1)

‖pm2
‖2 ≤

31Υ4t
upper

γC
‖pm2

‖2, (B.12)

where the last inequality uses Υ2
upper/(Υ

2
upper− 1)≤ 31/16 (as Υupper ≥ 2). Combining (B.12) with

(B.9) and noting that 2t+ 2≤ 4t, we get

‖(pl:l+tl−1;ql:l+tl−1)‖2 ≤
32Υ4t

upper

γC
‖pm2

‖2.

Finally, by a similar derivation as (B.5), we know w̃T
i Ĥ

(i)w̃i ≥ γRH‖w̃i‖2 provided µ≥ 32Υ4t+1
upper/γC .

This condition implies (B.6), so we complete the proof.

B.3. Proof of Corollary 4.1 We note that all three conditions are independent of di, so the
statement holds for any di. By Lemma 4.2, the reduced Hessian of LP iµ(di) is lower bounded by
γRHI for any i∈ [M −1]. Thus, (i) holds. The controllability in Assumption 4.2 holds naturally for
the subproblems with the same constants (γC , t), as the dynamics of the subproblems are a subset
of the full problem. Thus, (ii) holds. For the upper boundedness condition, we note that the last
square matrix of the objective of (3.9a) is bounded by Υupper+µ, and other square matrices are the
same as the full problem (3.8). Thus, (iii) holds. This completes the proof.

B.4. Proof of Theorem 4.1 Our proof relies on the primal-dual sensitivity results of NLDPs
[34, 38]. We omit the subproblem index i in the proof. We define

g̃k(pk,qk) =
1

2

(
pk
qk

)T (
Q̂k Ŝ

T
k

Ŝk R̂k

)(
pk
qk

)
+

(
∇xkL
∇ukL

)T (
pk
qk

)
, ∀k ∈ [m1,m2),

g̃m2
(pm2

;d2:4) =
1

2

(
pm2

d3

)T (
Q̂m2

ŜTm2

Ŝm2
R̂m2

)(
pm2

d3

)
+∇Txm2

Lpm2
−dT4Am2

pm2
+
µ

2
‖pm2

−d2‖2,

f̃k(pk,qk) =Akpk +Bkqk−∇λk+1
L, k ∈ [m1,m2).

Then, (3.9) is rewritten as min
∑m2−1

k=m1
gk(pk,qk) + g̃m2

(pm2
;d2:4), s.t. pm1

= d1, pk+1 = f̃k(pk,qk),

∀k ∈ [m1,m2). By Lemma 4.2, this problem has a unique solution (w̃?(d), ζ̃
?
(d)) for any d. Let us

define a parameterized perturbation path from d to d′:

d(1)(ω) =(d1;d2:4) +ω

(
d′1−d1

‖d′1−d1‖
;0

)
, ∀0≤ ω≤ ‖d′1−d1‖,

d(2)(ω) =(d′1;d2:4) +ω

(
0;

d′2:4−d2:4

‖d′2:4−d2:4‖

)
, ∀0≤ ω≤ ‖d′2:4−d2:4‖,

where we essentially first perturb d1 and then perturb d2:4. At d(j)(ω) for j = 1,2, we define the
directional derivatives of the solution trajectories as (similar for Dq?k,Dζ

?
k)

Dp?k(d
(j)(ω)) = lim

ε↘0

p?k(d
(j)(ω+ ε))−p?k(d

(j)(ω))

ε
, ∀k ∈ [m1,m2].

The existence of the directional derivatives is ensured by Lemma 4.2 and [34, Theorem 2.3]. By
Corollary 4.1 and the fact that (by Assumption 4.3)

‖∇pm2
d2:4 g̃m2

‖= ‖(µI STm2
−ATm2

)‖ ≤ µ+ 2Υupper,
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we know that [34, Assumption 4.2] is satisfied. Thus, by [34, Theorem 5.7],

‖Dp?k(d
(1)(ω))‖ ≤C ′ρk−m1 , ‖Dp?k(d

(2)(ω))‖ ≤C ′ρm2−k, ∀k ∈ [m1,m2], (B.13)

for constants C ′ > 0 and ρ∈ (0,1) depending on µ,Υupper, γRH , γC only. By [34, Theorem 5.7] and
[38, Theorem 5], we know (B.13) holds for Dq?k(d

(j)(ω)) and Dζ?k(d
(j)(ω)) as well. Furthermore,

‖p?k(d)−p?k(d
′)‖= ‖p?k(d

(1)(0))−p?k(d
(2)(‖d′2:4−d2:4‖))‖

≤ ‖p?k(d
(1)(0))−p?k(d

(1)(‖d′1−d1‖))‖+ ‖p?k(d
(2)(0))−p?k(d

(2)(‖d′2:4−d2:4‖))‖

=

∥∥∥∥∥
∫ ‖d′1−d1‖

0

Dp?k(d
(1)(ω))dω

∥∥∥∥∥+

∥∥∥∥∥
∫ ‖d′2:4−d2:4‖

0

Dp?k(d
(2)(ω))dω

∥∥∥∥∥
(B.13)

≤C ′
(
ρk−m1‖d′1−d1‖+ ρm2−k‖d′2:4−d2:4‖

)
.

The above inequality also holds for ‖q?k(d)− q?k(d
′)‖, ‖ζ?k(d)− ζ?k(d

′)‖. Since ‖w?
k(d)−w?

k(d
′)‖=√

‖p?k(d)−p?k(d
′)‖2 + ‖q?k(d)− q?k(d

′)‖2, the proof is complete by redefining C ′←
√

2C ′.

B.5. Proof of Theorem 4.2 Since (∆̃z, ∆̃λ) = C({(w̃?
i (di), ζ̃

?

i (di))}i) with di = (0;0;0;0)
(dM−1 = 0), by Definition 2.1 we know that

∆̃zk = w̃?
i,k(di), if k ∈ [ni, ni+1) for some i∈ [M − 1], ∆̃zN = w̃?

M−1,N(dM−1),

∆̃λk = ζ̃
?

i,k(di), if k ∈ [ni, ni+1) for some i∈ [M − 1], ∆̃λN = ζ̃
?

M−1,N(dM−1).
(B.14)

Applying Theorem 2.1(i) on Problem (3.8), we know that if

d?i = (∆xm1
;∆xm2

;∆um2
;∆λm2+1), (B.15)

then

∆zk = w̃?
i,k(d

?
i ), if k ∈ [ni, ni+1) for some i∈ [M − 1], ∆zN = w̃?

M−1,N(d?M−1),

∆λk = ζ̃
?

i,k(d
?
i ), if k ∈ [ni, ni+1) for some i∈ [M − 1], ∆λN = ζ̃

?

M−1,N(d?M−1).
(B.16)

Moreover, we claim d?0,1 = ∆x0 = 0 for any iteration τ . In fact, from the input to Algorithm 2, x0
0 =

x̄0. By (3.8c), ∆x0
0 = −(x0

0 − x̄0) = 0. Furthermore, if xτ−1
0 = x̄0 for τ ≥ 1, we use the fact that

∆̃xτ−1
0 = dτ−1

0,1 = 0 (the first equality is due to (3.9c); the second equality is due to the specification

of the boundary variable), and obtain xτ0 =xτ−1
0 +ατ−1∆̃xτ−1 =xτ−1

0 = x̄0. Thus, we have ∆xτ0
(3.8c)
=

−(xτ0 − x̄0) = 0. Comparing (B.14) and (B.16) for each stage and applying Theorem 4.1, we have

max{‖∆̃zk−∆zk‖2, ‖∆̃λk−∆λk‖2}
≤ 2(C ′)2(ρ2(k−m1)‖d?i,1‖2 + ρ2(m2−k)‖d?i,2:4‖2), ∀k ∈ [ni, ni+1), i∈ [M − 2], (B.17a)

max{‖∆̃zk−∆zk‖2, ‖∆̃λk−∆λk‖2} ≤ (C ′)2ρ2(k−m1)‖d?i,1‖2, ∀k ∈ [nM−1, nM ], (B.17b)

where (B.17a) holds for i= 0 since d?0,1 = 0 as we just claimed. Thus, we get

‖∆̃z−∆z‖2 =
M−2∑
i=0

ni+1−1∑
k=ni

‖∆̃zk−∆zk‖2 +

nM∑
k=nM−1

‖∆̃zk−∆zk‖2

(B.17)

≤ 2(C ′)2

M−2∑
i=0

(
ni+1−ni−1∑

j=0

ρ2(b+j)‖d?i,1‖2 +

ni+1−ni∑
j=1

ρ2(b+j)‖d?i,2:4‖2
)

+ (C ′)2

nM−nM−1∑
j=0

ρ2(b+j)‖d?M−1‖2

≤ 2(C ′)2ρ2b

M−2∑
i=0

∞∑
j=0

ρ2j‖d?i ‖2 + (C ′)2ρ2b

∞∑
j=0

ρ2j‖d?M−1‖2

≤ 2(C ′)2ρ2b

1− ρ2

M−1∑
i=0

‖d?i ‖2
(B.15)

≤ 2(C ′)2ρ2b

1− ρ2
‖(∆z,∆λ)‖2.
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The above derivation also holds for ‖∆̃λ−∆λ‖2. Thus,

‖(∆̃z−∆z, ∆̃λ−∆λ)‖2 ≤ 4(C ′)2ρ2b

1− ρ2
‖(∆z,∆λ)‖2.

Letting C = 2C ′/
√

1− ρ2, we complete the proof.

Appendix C: Proofs of results in section 5

C.1. Proof of Lemma 5.1 Recall from (3.7) that H(z,λ) = diag(H0, . . . ,HN). Thus,

‖H(z,λ)‖ ≤max
k∈[N ]

‖Hk(zk,λk+1)‖ ≤Υupper

for any (z,λ)∈Z ×Λ, where the last inequality is due to Assumption 5.1. Furthermore, using the

expression of GGT in (B.1), we immediately have

‖G(z)‖=
√
‖GGT‖ ≤

√
1 + ‖Ak‖2 + ‖B2

k‖+ 2‖Ak‖
(5.2)

≤ 1 + 2Υupper.

Thus, we can let ΥHG = 1 + 2Υupper and the first part of the statement holds. Moreover, if ‖Ĥk‖ ≤
Υupper by Assumption 4.3, then ‖Ĥ‖= ‖diag(Ĥ0, . . . , ĤN)‖ ≤Υupper. Let Z be defined in Assump-

tion 4.1. Then, noting that GT (GGT )−1G+ZZT = I, we can verify that

B :=

(
Ĥ GT

G 0

)−1

=

(
B1 BT2
B2 B3

)
,

where

B1 =Z(ZT ĤZ)−1ZT , B2 = (GGT )−1G(I − ĤZ(ZT ĤZ)−1ZT ),

B3 =(GGT )−1G(ĤZ(ZT ĤZ)−1ZT Ĥ − Ĥ)GT (GGT )−1.

Then, by Assumptions 4.1-4.3 and Lemma 4.1, we have

‖B1‖ ≤
1

γRH
, ‖B2‖ ≤ ‖(GGT )−1G‖(1 +

Υupper

γRH
)≤ 1
√
γG

(1 +
Υupper

γRH
),

‖B3‖ ≤
1

γG
(Υupper +

Υ2
upper

γRH
).

Noting that ‖B‖≤ ‖B1‖+ 2‖B2‖+ ‖B3‖, we complete the proof.

C.2. Proof of Theorem 5.1 We suppress the iteration index τ . We know

(
∇zLη
∇λLη

)T (
∆̃z

∆̃λ

)
=

(
∇zLη
∇λLη

)T (
∆z
∆λ

)
+

(
∇zLη
∇λLη

)T (
∆̃z−∆z

∆̃λ−∆λ

)
. (C.1)
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For the first term in (C.1),

I1 :=

(
∇zLη
∇λLη

)T (
∆z
∆λ

)
(3.6)
=

(
∆z
∆λ

)T (
I + η2H η1G

T

η2G I

)(
∇zL
∇λL

)
(3.2)
=−

(
∆z
∆λ

)T (
I + η2H η1G

T

η2G I

)(
Ĥ GT

G 0

)(
∆z
∆λ

)
=−

(
∆z
∆λ

)T (
(I + η2H)Ĥ + η1G

TG (I + η2H)GT

G(I + η2Ĥ) η2GG
T

)(
∆z
∆λ

)
(3.2)
=−(∆z)T

{
(I + η2H)Ĥ +

η1

2
GTG

}
∆z− η1

2
‖∇λL‖2− η2‖Ĥ∆z+∇zL‖2

− (∆λ)TG{2I + η2(Ĥ +H)}∆z
=−η1

2
‖∇λL‖2−

η2

2
‖∇zL‖2− (∆z)T

{
(I + η2H)Ĥ +

η1

2
GTG

}
∆z

− (∆λ)TG{2I + η2(Ĥ +H)}∆z+
(η2

2
‖∇zL‖2− η2‖Ĥ∆z+∇zL‖2

)
. (C.2)

For the last term in the above equation,

η2

2
‖∇zL‖2− η2‖Ĥ∆z+∇zL‖2

=−η2‖Ĥ∆z‖2− 2η2(∆z)T Ĥ∇zL−
η2

2
‖∇zL‖2

(3.2)
=−η2‖Ĥ∆z‖2 + 2η2(∆z)T Ĥ(Ĥ∆z+GT∆λ)− η2

2
‖Ĥ∆z+GT∆λ‖2

= η2‖Ĥ∆z‖2 + η2(∆z)T ĤGT∆λ− η2

2
‖Ĥ∆z‖2− η2

2
‖GT∆λ‖2

≤ η2‖Ĥ∆z‖2 + η2(∆z)T ĤGT∆λ− η2

2
‖GT∆λ‖2. (C.3)

Combining the above two displays and supposing η1 ≥ η2 at the moment,

I1

(C.2)

≤−η2

2
‖∇L‖2− (∆z)T

{
(I + η2H)Ĥ +

η1

2
GTG

}
∆z− (∆λ)TG{2I + η2(Ĥ +H)}∆z

+
(η2

2
‖∇zL‖2− η2‖Ĥ∆z+∇zL‖2

)
(C.3)

≤−η2

2
‖∇L‖2− (∆z)T

{
(I + η2H)Ĥ +

η1

2
GTG

}
∆z− (∆λ)TG{2I + η2(Ĥ +H)}∆z

+ η2‖Ĥ∆z‖2 + η2(∆z)T ĤGT∆λ− η2

2
‖GT∆λ‖2

=−η2

2
‖∇L‖2− (∆z)T

{
(I + η2(H − Ĥ))Ĥ +

η1

2
GTG

}
∆z− (∆λ)TG(2I + η2H)∆z− η2

2
‖GT∆λ‖2

≤−η2

2
‖∇L‖2 + 2η2Υ2‖∆z‖2 + 2‖∆λ‖‖G∆z‖+ η2Υ‖GT∆λ‖‖∆z‖− η2

2
‖GT∆λ‖2

− (∆z)T
{
Ĥ +

η1

2
GTG

}
∆z

≤−η2

2
‖∇L‖2 + 3η2Υ2‖∆z‖2 + 2‖∆λ‖‖G∆z‖− η2

4
‖GT∆λ‖2− (∆z)T

{
Ĥ +

η1

2
GTG

}
∆z

Lemma 4.1

≤ −η2

2
‖∇L‖2 + 3η2Υ2‖∆z‖2 + 2‖∆λ‖‖G∆z‖− η2γG

4
‖∆λ‖2− (∆z)T

{
Ĥ +

η1

2
GTG

}
∆z

≤−η2

2
‖∇L‖2− η2γG

8
‖∆λ‖2 + 3η2Υ2‖∆z‖2− (∆z)T

{
Ĥ +

(
η1

2
− 8

η2γG

)
GTG

}
∆z, (C.4)
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where the fourth inequality uses Assumption 4.3 and (5.3) so that max{‖Ĥ‖,‖H‖} ≤Υ; the fifth
and seventh inequalities use Young’s inequalities:

η2Υ‖GT∆λ‖‖∆z‖ ≤η2

4
‖GT∆λ‖2 + η2Υ2‖∆z‖2,

2‖∆λ‖‖G∆z‖ ≤η2γG
8
‖∆λ‖2 +

8

η2γG
‖G∆z‖2.

To simplify the last two terms, we suppose η1 ≥ 16/(η2γG), and decompose ∆z = ∆u+ ∆v, where
∆u∈ span(GT ) so that ∆u=GT ∆̄u for some ∆̄u, and ∆v ∈ kernel(G) so that G∆v= 0. Then, we
have ‖∆z‖2 = ‖∆u‖2 + ‖∆v‖2 and

3η2Υ2‖∆z‖2− (∆z)T
{
Ĥ +

(
η1

2
− 8

η2γG

)
GTG

}
∆z

= 3η2Υ2‖∆z‖2− (∆v)T Ĥ∆v− 2(∆v)T Ĥ∆u− (∆u)T Ĥ∆u−
(
η1

2
− 8

η2γG

)
‖GGT ∆̄u‖2

≤ (3η2Υ2− γRH)‖∆z‖2 + 2Υ‖∆v‖‖∆u‖+ (γRH + Υ)‖∆u‖2−
(
η1

2
− 8

η2γG

)
γG‖GT ∆̄u‖2

≤
(

3η2Υ2− γRH
2

)
‖∆z‖2 +

(
γRH + Υ +

2Υ2

γRH
+

8

η2

− η1γG
2

)
‖∆u‖2, (C.5)

where the second inequality uses Assumptions 4.1, 4.3, and Lemma 4.1, and the third inequality uses
Young’s inequality

2Υ‖∆v‖‖∆u‖ ≤ γRH
2
‖∆v‖2 +

2Υ2

γRH
‖∆u‖2 ≤ γRH

2
‖∆z‖2 +

2Υ2

γRH
‖∆u‖2.

To make (C.5) negative, we let

3η2Υ2 ≤ γRH
4
⇐⇒ η2 ≤

γRH
12Υ2

. (C.6)

Furthermore, without loss of generality, we suppose Υ/2≥ 1≥max{γRH , γG}, and have

γRH + Υ +
2Υ2

γRH
+

8

η2

≤ 3Υ

2
+

2Υ2

γRH
+

8

η2

≤ 3Υ2

γRH
+

8

η2

(C.6)

≤ 1

4η2

+
8

η2

≤ 8.5

η2

.

Thus, we let

η1 ≥
17

η2γG
, (C.7)

which implies η1 ≥ η2 and η1 ≥ 16/(η2γG) as required in (C.4) and (C.5). Thus, under (C.7) and (C.6),
the inequality (C.5) leads to

3η2Υ2‖∆z‖2− (∆z)T
{
Ĥ +

(
η1

2
− 8

η2γG

)
GTG

}
∆z ≤−γRH

4
‖∆z‖2

(C.6)

≤ −η2γG
8
‖∆z‖2.

Combining the above display with (C.4), we obtain

I1 =

(
∇zLη
∇λLη

)T (
∆z
∆λ

)
≤−η2

2
‖∇L‖2− η2γG

8

∥∥∥∥(∆z
∆λ

)∥∥∥∥2

. (C.8)

For the second term in (C.1),

I2 :=

(
∇zLη
∇λLη

)T (
∆̃z−∆z

∆̃λ−∆λ

) (3.6)
(3.2)
= −

(
∆̃z−∆z

∆̃λ−∆λ

)T (
(I + η2H)Ĥ + η1G

TG (I + η2H)GT

G(I + η2Ĥ) η2GG
T

)(
∆z
∆λ

)
(5.1)

≤ δ‖(∆z,∆λ)‖2
{

Υ + η2Υ2 + (η1 + η2)Υ2 + 2(1 + η2Υ)Υ
}

= δ‖(∆z,∆λ)‖2
{

3Υ + 4η2Υ2 + η1Υ2
}
,
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where the third inequality also uses Assumption 4.3 and (5.3) so that max{‖G‖,‖Ĥ‖,‖H‖} ≤Υ.
We use Υ/2≥ 1≥max{γRH , γG} and know that

3Υ + 4η2Υ2 + η1Υ2
(C.6)

≤ 3Υ +
γRH

3
+ η1Υ2 ≤ 9.5Υ

3
+ η1Υ2 ≤ 1.1η1Υ2, (C.9)

where the last inequality uses η1

(C.7)

≥ 17
η2γG

> 17×12Υ2

γRHγG
, so 9.5/3≤ 0.1η1Υ. By the above two displays,

I2 =

(
∇zLη
∇λLη

)T (
∆̃z−∆z

∆̃λ−∆λ

)
≤ 1.1η1δΥ

2‖(∆z,∆λ)‖2. (C.10)

Combining (C.10) with (C.8) and (C.1),(
∇zLη
∇λLη

)T (
∆̃z

∆̃λ

)
= I1 + I2 ≤−

η2

2

∥∥∥∥(∇zL∇λL
)∥∥∥∥2

−
(η2γG

8
− 1.1η1δΥ

2
)∥∥∥∥(∆z

∆λ

)∥∥∥∥2

≤−η2

2
‖∇L‖2,

(C.11)
where the last inequality holds if δ≤ η2γG

9η1Υ2 . This completes the proof.

C.3. Proof of Theorem 5.2 It suffices to prove the first part of the statement. The second
part holds immediately by Theorem 4.2 and specializes (5.1) with δ=Cρb. By compactness of iter-
ates and continuous differentiability of {gk, fk} in Assumption 5.1, we know supZ×Λ ‖∇2Lη(z,λ)‖ ≤
Υη for some Υη > 0 independent of τ . We apply the Taylor expansion and obtain

Lτ+1
η ≤Lτη +ατ

(
∇zLτη
∇λLτη

)T (
∆̃zτ

∆̃λτ

)
+

Υηα
2
τ

2

∥∥∥∥(∆̃zτ

∆̃λτ

)∥∥∥∥2

(5.1)

≤Lτη +ατ

(
∇zLτη
∇λLτη

)T (
∆̃zτ

∆̃λτ

)
+

Υηα
2
τ (1 + δ)2

2
‖(∆zτ ,∆λτ )‖2

(3.2), Lemma 5.1

≤ Lτη +ατ

(
∇zLτη
∇λLτη

)T (
∆̃zτ

∆̃λτ

)
+ 2ΥηΥ

2α2
τ‖∇Lτ‖2

Theorem 5.1

≤ Lτη +ατ

(
∇zLτη
∇λLτη

)T (
∆̃zτ

∆̃λτ

)
− 4ΥηΥ

2

η2

α2
τ

(
∇zLτη
∇λLτη

)T (
∆̃zτ

∆̃λτ

)
=Lτη +ατ

(
∇zLτη
∇λLτη

)T (
∆̃zτ

∆̃λτ

)
·
{

1− 4ΥηΥ
2

η2

ατ

}
,

where the third inequality also uses δ≤ 1. Thus, as long as

1− 4ΥηΥ
2

η2

ατ ≥ β⇐⇒ ατ ≤
(1−β)η2

4ΥηΥ2
,

the Armijo condition (3.5) is satisfied. Since the right hand side is independent of τ , we know ατ ≥ ᾱ
for some ᾱ > 0 when doing, for example, a backtracking line search. By (3.5) and Theorem 5.1,

Lτ+1
η ≤Lτη −

η2ατβ

2
‖∇Lτ‖2 ≤Lτη −

η2ᾱβ

2
‖∇Lτ‖2.

Summing over τ ,
∑∞

τ=0 ‖∇Lτ‖2 ≤
2

η2ᾱβ
(L0

η −minZ×ΛLη(z,λ))<∞. This completes the proof.

Appendix D: Proofs of results in section 6
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D.1. Proof of Theorem 6.1 By (3.5), it suffices to show for large τ that

Lη(zτ + ∆̃zτ ,λτ + ∆̃λτ )≤Lτη +β

(
∇zLτη
∇λLτη

)T (
∆̃zτ

∆̃λτ

)
. (D.1)

By the thrice continuous differentiability of {gk, fk}, we know ∇2Lη is continuous. Thus, we have
the following Taylor expansion

Lη(zτ + ∆̃zτ ,λτ + ∆̃λτ )

≤Lτη +

(
∇zLτη
∇λLτη

)T (
∆̃zτ

∆̃λτ

)
+

1

2

(
∆̃zτ

∆̃λτ

)T
∇2Lτη

(
∆̃zτ

∆̃λτ

)
+ o(‖(∆̃zτ , ∆̃λτ )‖2). (D.2)

By direct calculation, we have that

∇2
zLη =H + η1G

TG+ η2H
2 + η1〈∇zG,f〉+ η2〈∇zH,∇zL〉,

∇zλLη =GT + η2HG
T + η2〈∇λH,∇zL〉, ∇2

λLη = η2GG
T ,

where for a function a(x) : Rn→Rm1×m2 and a vector b ∈Rm1 , we let 〈∇a(x), b〉 :=∇T (aT (x)b) =∑m1

j=1 bj∇Taj(x)∈Rm2×n for aT (x) = (a1(x), . . . , am1
(x)). Thus, we define

Hτ :=

(
Hτ + η1(Gτ )TGτ + η2(Hτ )2 (I + η2H

τ )(Gτ )T

Gτ (I + η2H
τ ) η2G

τ (Gτ )T

)
,

apply ‖∇Lτ‖= ‖(∇zLτ , f τ )‖→ 0, and get∥∥∇2Lτη −Hτ
∥∥= o(1). (D.4)

Combining (D.1), (D.2) and (D.4), it suffices to show that

(1−β)

(
∇zLτη
∇λLτη

)T (
∆̃zτ

∆̃λτ

)
+

1

2

(
∆̃zτ

∆̃λτ

)T
Hτ

(
∆̃zτ

∆̃λτ

)
+ o(‖(∆̃zτ , ∆̃λτ )‖2)≤ 0. (D.5)

We observe that(
∇zLτη
∇λLτη

)T (
∆̃zτ

∆̃λτ

)
+

(
∆̃zτ

∆̃λτ

)T
Hτ

(
∆̃zτ

∆̃λτ

)
(3.6)
(3.2)
=

(
∆̃zτ

∆̃λτ

)T {
Hτ −

(
Ĥτ + η1(Gτ )TGτ + η2H

τĤτ (I + η2H
τ )(Gτ )T

Gτ (I + η2Ĥ
τ ) η2G

τ (Gτ )T

)}(
∆zτ

∆λτ

)
+

(
∆̃zτ

∆̃λτ

)T
Hτ

(
∆̃zτ −∆zτ

∆̃λτ −∆λτ

)
=: I3 + I4.

For term I3, we let ∆Hτ =Hτ − Ĥτ and have

I3 =

(
∆̃zτ

∆̃λτ

)T (
(I + η2H

τ )∆Hτ 0
η2G

τ∆Hτ 0

)(
∆zτ

∆λτ

)
(5.3)

≤ ‖(∆̃zτ , ∆̃λτ )‖ · (1 + 2η2Υ)‖∆Hτ∆zτ‖

≤2(1 + 2η2Υ)‖(∆zτ ,∆λτ )‖o(‖∆zτ‖) = o(‖(∆zτ ,∆λτ )‖2), (D.6)

where the third inequality uses (5.1) and Assumption 6.1. For term I4, we apply Assumptions 4.3
and (5.3), and have

I4 ≤ ‖(∆̃zτ , ∆̃λτ )‖ · ‖Hτ‖ · ‖(∆zτ − ∆̃zτ ,∆λτ − ∆̃λτ )‖
(5.1),(5.3)

≤ 2δ‖(∆zτ ,∆λτ )‖2
{

Υ + η2Υ2 + (η1 + η2)Υ2 + 2(1 + η2Υ)Υ
} (C.9)

≤ 2.2δη1Υ2‖(∆zτ ,∆λτ )‖2.
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Combining the above display with (D.5), (D.6), and using o(‖(∆̃zτ , ∆̃λτ )‖) (5.1)
= o(‖(∆zτ ,∆λτ )‖),

it suffices to show that

(
1

2
−β)

(
∇zLτη
∇λLτη

)T (
∆̃zτ

∆̃λτ

)
+ 1.1δη1Υ2‖(∆zτ ,∆λτ )‖2 + o(‖(∆zτ ,∆λτ )‖2)≤ 0.

By (C.8), (C.10), (C.11) in the proof of Theorem 5.1, the above inequality holds if

(
1

2
−β)

(η2γG
8
− 1.1δη1Υ2

)
≥ 1.1δη1Υ2⇐= δ≤ 1/2−β

3/2−β
· η2γG
9η1Υ2

.

This completes the proof.

D.2. Proof of Theorem 6.2 It suffices to show that the Newton system of P iµ(dτi ) at

Di(zτ ,λτ ) is the same as (3.9) with Ĥτ
k = Hτ

k . We suppress the iteration index τ . The Newton
system of P iµ(dτi ) can be expressed as(

H(i) (G(i))T

G(i) 0

)(
∆z(i)

∆λ(i)

)
=−

(
∇z̃iL(i)

∇λ̃iL
(i)

)
, (D.7)

where L(i) is the Lagrangian function of P iµ(dτi ), and H(i) =∇2
z̃i
L(i) and G(i) =∇λ̃iz̃iL

(i). By direct
calculation and using the setup of di of procedure (a), we have

H(i) =diag(Hm1
, . . . ,Hm2−1,Qm2

+µI), (D.8a)

G(i) =


I

−Am1 −Bm1 I

−Am1+1 −Bm1+1 I

...
...

...
−Am2−1 −Bm2−1 I

 , (D.8b)

and

∇z̃iL
(i) = (∇zm1

L; . . . ;∇zm2−1
L;∇xm2

L), ∇λ̃iL
(i) = (0;∇λm1+1

L; . . . ;∇λm2
L). (D.9)

Plugging (D.8) and (D.9) into (D.7), we observe that (D.7) is the same as LP iµ(di) in (3.9) with

di = (0;0;0;0) and Ĥk =Hk. Thus,

(∆z(i),∆λ(i)) = (w̃?
i (di), ζ̃

?

i (di)). (D.10)

Moreover, we denote by (zτ+1
s ,λτ+1

s ) and (zτ+1
f ,λτ+1

f ) the next iterate generated by the one-Newton-
step Schwarz scheme and generated by FOTD, respectively. We have

(zτ+1
s ,λτ+1

s ) = C
({
Di(zτ ,λτ ) + (∆z(i),∆λ(i))

}
i

)
= C ({Di(zτ ,λτ )}i) + C

({
(∆z(i),∆λ(i))

}
i

)
(D.10)

= C ({Di(zτ ,λτ )}i) + C
({

(w̃?
i (di), ζ̃

?

i (di))
}
i

)
= C ({Di(zτ ,λτ )}i) + (∆̃zτ , ∆̃λτ )

= (zτ ,λτ ) + (∆̃zτ , ∆̃λτ ) = (zτ+1
f ,λτ+1

f ),

where the first, fourth and last equalities are due to the definitions of the Schwarz and the FOTD
procedures; the second and fifth equalities are due to Definition 2.1. This completes the proof.
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D.3. Proof of Lemma 6.1 Our proof relies on the KKT inverse structure in [35, Lemma 2].
We only show (6.4a), while (6.4b) holds by recalling that the last subproblem does not have bound-

ary variables at the terminal stage N . For subproblem i∈ [M −2], we let (z̃?i , λ̃
?

i ) =Di(z?,λ?). Let
C,ρ be the constants in Theorem 4.2, and let C1 = 9CΥ2/γG. Then, under the assumptions and
the setup of b in (6.3), δ= γGC1ρ

b/(9Υ2) satisfies (6.1). Suppose τ is large enough so that ατ = 1.
Borrowing the notation in (D.7)-(D.9), we let Ĥ(i), G(i), ∇L(i) be the Hessian, Jacobian, and KKT
residual vector of Problem (3.9) at the τ -th iterate (z̃τi , λ̃

τ

i ). We consider the FOTD update:(
z̃τ+1
i − z̃?i
λ̃
τ+1

i − λ̃
?

i

)
=

(
z̃τi − z̃

?
i

λ̃
τ

i − λ̃
?

i

)
+

(
w̃?
i (di)

ζ̃
?

i (di)

)
(3.9)

Theorem 6.2=

(
Ĥ(i) (G(i))T

G(i) 0

)−1{(
Ĥ(i) (G(i))T

G(i) 0

)(
z̃τi − z̃

?
i

λ̃
τ

i − λ̃
?

i

)
−
(
∇z̃iL(i)

∇λ̃iL
(i)

)}
. (D.11)

We define the KKT residual evaluated at the truncated full horizon solution (z̃?i , λ̃
?

i ) as

∇z̃iL
(i),? =(∇zm1

L?; . . . ;∇zm2−1
L?;∇xm2

L̃?),
∇λ̃iL

(i),? =(x?m1
−xτm1

;∇λm1+1
L?; . . . ;∇λm2

L?), (D.12)

where ∇zm1:m2−1
L? (similar for ∇λm1+1:m2

L?) replaces the evaluation point (z̃τi , λ̃
τ

i ) of the compo-

nents ∇zm1:m2−1
L of ∇z̃iL(i) (cf. (D.9)) with (z̃?i , λ̃

?

i ), and

∇xm2
L̃? :=∇xm2

gm2
(x?m2

,uτm2
) +λ?m2

−ATm2
(x?m2

,uτm2
)λτm2+1 +µ(x?m2

−xτm2
). (D.13)

Clearly, if we change the evaluation point from (z̃?i , λ̃
?

i ) back to (z̃τi , λ̃
τ

i ) in (D.12) and (D.13), then
we get the vectors ∇z̃iL(i) and ∇λ̃iL

(i) in (D.11). Moreover, for 0≤ φ≤ 1, we let

u?m2
(φ) =u?m2

+φ(uτm2
−u?m2

), λ?m2+1(φ) =λ?m2+1 +φ(λτm2+1−λ
?
m2+1),

z̃?i (φ) =z̃?i +φ(z̃τi − z̃
?
i ), λ̃

?

i (φ) = λ̃
?

i +φ(λ̃
τ

i − λ̃
?

i ),

and let H(i)(φ), G(i)(φ) be H(i), G(i) (cf. (D.8)) evaluated at (z̃?i (φ), λ̃
?

i (φ)). Then, (D.11) implies(
z̃τ+1
i − z̃?i
λ̃
τ+1

i − λ̃
?

i

)
=−

(
Ĥ(i) (G(i))T

G(i) 0

)−1(∇z̃iL(i),?

∇λ̃iL
(i),?

)
+

(
Ĥ(i) (G(i))T

G(i) 0

)−1{(
Ĥ(i) (G(i))T

G(i) 0

)(
z̃τi − z̃

?
i

λ̃
τ

i − λ̃
?

i

)
−
(
∇z̃iL(i)−∇z̃iL(i),?

∇λ̃iL
(i)−∇λ̃iL

(i),?

)}
=−

(
Ĥ(i) (G(i))T

G(i) 0

)−1(∇z̃iL(i),?

∇λ̃iL
(i),?

)
+

(
Ĥ(i) (G(i))T

G(i) 0

)−1 ∫ 1

0

(
Ĥ(i)−H(i)(φ) (G(i))T − (G(i)(φ))T

G(i)−G(i)(φ) 0

)(
z̃τi − z̃

?
i

λ̃
τ

i − λ̃
?

i

)
dφ

=:K−1
i J1 +K−1

i J2.

To establish the stagewise error recursion, it suffices to establish the blockwise bound for the KKT
inverse K−1

i and the component-wise bound for vectors J1 and J2. The KKT inverse structure is
given by [35, Lemma 2] (the conditions are satisfied by Corollary 4.1). We now deal with J1 and J2.

Term J1. By Theorem 2.1(i) (or checking the KKT conditions (A.2) in the appendix), we know
∇zm1:m2−1

L? = 0 and ∇λm1+1:m2
L? = 0. Thus, only the last component of ∇z̃iL(i),? and the first
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component of∇λ̃iL
(i),? are nonzero. The first component of∇λ̃iL

(i),? is trivially bounded by ‖x?m1
−

xτm1
‖. For the last component of ∇z̃iL(i),?, we have

∇xm2
L̃?(D.13)

=
{
∇xm2

gm2
(x?m2

,uτm2
) +λ?m2

−ATm2
(x?m2

,uτm2
)λτm2+1

}
+µ(x?m2

−xτm2
)

−
{
∇xm2

gm2
(x?m2

,u?m2
) +λ?m2

−ATm2
(x?m2

,u?m2
)λ?m2+1

}︸ ︷︷ ︸
this is 0 by KKT conditions (cf. (A.2))

=

∫ 1

0

(
STm2

(x?m2
,u?m2

(φ),λ?m2+1(φ)) −ATm2
(x?m2

,u?m2
(φ))

)( uτm2
−u?m2

λτm2+1−λ
?
m2+1

)
dφ

+µ(x?m2
−xτm2

)
(5.3)

≤ (2Υ +µ)‖(zτm2
−z?m2

;λτm2+1−λ
?
m2+1)‖.

Thus, we have (� means component-wise ≤)

J1 �



0
...
0

(2Υ +µ)

∥∥∥∥( zτm2
−z?m2

λτm2+1−λ?m2+1

)∥∥∥∥
‖xτm1

−x?m1
‖

0
...
0


, J2 �



o(Ψτ
m1

) +O((Ψτ
m1+1)2)

...
o(Ψτ

m2−1) +O((Ψτ
m2

)2)

o(Ψτ
m2

)

0
O((Ψτ

m1
)2)

...
O((Ψτ

m2−1)2)


. (D.14)

Term J2. Applying Assumption 6.1 so that ‖Ĥ(i)−H(i)‖= o(1), and using the Lipschitz continuity
of H(i) and {Ak,Bk} assumed by Assumption 6.2, we immediately obtain (D.14) for J2 (� means
component-wise =).

Finally, we apply [35, Lemma 2] and know that, there exists a constant C̃ > 0 independent of τ
and algorithmic parameters β, η1, η2 (ρ is the same as Theorem 4.2), such that ∀k ∈ [m1,m2],

‖z̃τ+1
i,k −z?k‖ ≤C̃

{
ρk−m1‖xτm1

−x?m1
‖+ ρm2−k

∥∥∥∥( zτm2
−z?m2

λτm2+1−λ
?
m2+1

)∥∥∥∥}+ C̃

m2∑
j=m1

ρ|k−j| · o(Ψτ )

=o(Ψτ ) + C̃

{
ρk−m1‖xτm1

−x?m1
‖+ ρm2−k

∥∥∥∥( zτm2
−z?m2

λτm2+1−λ
?
m2+1

)∥∥∥∥} , (D.15)

where the second equality is due to
∑m2

j=m1
ρ|k−j| ≤ 2

∑∞
j=0 ρ

j <∞. The inequality (D.15) holds for

‖λ̃
τ

i,k−λ
?
k‖ as well. Using Ψτ+1

k ≤ ‖z̃τ+1
i,k −z?k‖+‖λ̃

τ

i,k−λ
?
k‖, we rescale C1 by C1←max{C1,2C̃} and

complete the proof.
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